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ABSTRACT Bayesian Networks are probabilistic graph models that can be used for classification, predic-
tion, diagnosis and parameter learning. Probabilities can be inferred from the models and missing values can
be imputed, based on probability theory. Missing person cases place a strain on the already overstretched
resources of Police Forces. Such cases predominantly come from at risk groups such as children in care and
people suffering from depression or dementia. Current approaches for dealing with such cases are manual
and rely upon empirical studies and domain knowledge. This paper proposes the use of a Bayesian Network
model, which can be used to predict the likely location of a missing person (misper) for a number of at risk
groups. The model is evaluated using a set of misper cases and results compare very favourably with those
of the manual processes currently used by UK Police forces. The novel approach described provides both a
theoretical foundation and a practical framework for the future development of a decision support system.
In addition to the model, a contribution is made through guidelines, which recount experiences in learning a
Bayesian Network from data.

INDEX TERMS Algorithms, Bayesian methods, computer and information processing, decision support
systems, modeling, probability.

I. INTRODUCTION
According to National Guidelines set out for UK Police
Forces [1], A missing person is defined as:
‘‘Anyone whose whereabouts cannot be established and

where the circumstances are out of character or the context
suggests the person may be subject of crime or at risk of harm
to themselves or another.’’

When someone is categorized as missing, the police will
investigate their disappearance and try to find and safeguard
them.

In 2013 the Guidelines introduced a second absent person
category, defined as:

‘‘A person not at a place where they are expected or
required to be’’ and perceived to be ‘‘not at any apparent
risk’’.

When someone is categorised as absent, no police response
is required except to monitor and review the situation.

Typically absent cases involve individuals who go missing
frequently (often referred to as frequent fliers). They are
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likely to be designated a missing person for the first few times
that they are missing, but, if they return unharmed, thereafter
they may be designated absent.

Dealing with missing person cases consumes a large pro-
portion of Police time and resources, particularly in urban
areas.

This paper distinguishes a missing person (colloquially
referred to as a misper) from a person who has lost their way,
perhaps due to getting lost during a hiking expedition.

Fig. 1 highlights the scale of misper cases facing UKPolice
Forces and the volume of calls generated from dealing with
such cases.

Mispers come from a spectrum of the population. Many
are children (typically teenagers) who go missing from care
homes, others are adults with mental illness or depression.
Cases also include elderly people suffering from dementia
related conditions. Murder (homicide) cases, manslaughter
cases and death by misadventure often start out as misper
cases until a body is located. Current practice relies on
heuristics and localized domain knowledge. Social science
studies will often interview mispers in the hope of eliciting
knowledge in relation to the mispers thought processes, while
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FIGURE 1. Key statistics for missing person in the UK, 2016-17 [1].

they were missing. Typically, Police rely heavily on historical
data and behavioural patterns. For example, many teenagers
who go missing are found in local parks, where teenagers are
known to congregate. Elderly people suffering from dementia
may travel to a location associated with a past event in their
lives.

Bayesian Networks (BN) are directed graphical models,
which have been used extensively in the fields of cognitive
science and artificial intelligence throughout the latter half of
the 20th and early 21st centuries. The models are based on
the theorem of Thomas Bayes [2], which allows probabilities
to be updated in light of new evidence. BN have been used
for some time within the AI community and more recently
amongst the machine learning community [3].

This paper describes the use of a BN model to capture the
causal relationships that exist in a misper case and go on to
show how the model can be used to impute missing values,
such as the likely distance travelled and the likely location,
where they may be found.

The paper makes a novel contribution through the develop-
ment of the BN model, which is learned from data. The work
also makes a contribution through the guidance proposed for
determining the structure of the model. Current procedures,
as used by UK Police forces, rely on iFIND [4], which is a
PDF document, based on an empirical study. The BN model
allows likely locations to be imputed from input data and
serves as the basis of a computer based system.

II. RELATED WORK
Before describing the development of the model some related
work is first reviewed, which is of relevance to the work that
is the subject of this paper.

A. BAYESIAN NETWOKS FOR SEARCH AND RESCUE
To date no other work has been found, which is concerned
with the use of BN to predict outcomes for at-risk misper
groups. There is however, some notable research concerned
with the use of BN for Search And Rescue (SAR), in relation
to people (and ‘‘things’’) whom have got lost. The distinction
of course is that at risk misper groups have intentionally
gone missing, whilst SAR cases have unintentionally got

lost. The most notable use of Bayesian inference for search
techniques was that of the search for Air France Flight AF
447, which crashed into the Atlantic on 1st June 2009 [5].
After two years of unsuccessful searching, the team used a
Bayesian procedure developed for search planning to produce
the posterior target location distribution. The distribution was
used to guide the search and the wreckage was located within
a week.

Reference [6] describes a Bayesian approach to modeling
lost person behaviors based on terrain features in Wilderness
Search and Rescue. The approach uses a first-order Markov
transition matrix for generating a temporal, posterior predic-
tive probability distribution map. The approach also uses a
Bayesian χ2 test for goodness-of-fit and goes on to show
that the model closely fits a synthetic dataset. Reference [7]
provides a thorough study of missing person behavior in
Australia. The study, conducted by Victoria Police as part of
the SARBayes project, considers a large dataset of parame-
ters, some of which are more significant than others. Terrain
plays an important role and the range of activities, relating
to the missing person, are also considered (e.g. climbing,
canoeing, hunting etc.).

These works make valid contributions to further knowl-
edge within the field, but they differ to this work in that they
deal with cases of entities (people, planes) that go missing by
accident. This work is concerned with people who largely go
missing intentionally, which reinforces the choice of BN to
help understand the structure of causality relations.

B. MACHINE LEARNING AND FORMAL APPROACHES
There are also several other machine learning related
approaches for dealing with missing person cases. For exam-
ple, [8] compares the use of neural networks and rule-
based systems for missing person cases in Australia. In later
work [9] considers the use of J48 to derive rules, based on the
popular C4.5 decision tree generator.

In previous work conducted by the authors [10], a missing
person model was developed based on Situation Calculus.
The approach represented the state changes that take place
over time, whilst the person is missing. The formalisms help
to provide a consistent means to represent the uncertainty
present in such investigations.

C. EMPIRICAL STUDIES
Two notable related empirical approaches are those of
the UK booklet ‘Missing Persons: Understanding, Planning
and Responding’ (colloquially referred to as the Grampian
Study) [11] and the iFINDSystem [4], which is currently used
by a number of UK Police forces.

The Grampian Study considers a similar set of at risk
groups to this work. For each group the study provides a num-
ber of tables, which portray useful information, such as likely
time periods of missing, distance travelled and likely places
for a misper to be found. The Grampian Study also translates
data into useful search ranges, which can be superimposed on
a map.
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TABLE 1. iFIND table of likely locations for 5-8 year olds.

iFIND follows a similar structure, but is based on more
recent data to provide a more through coverage. iFIND pro-
vides more detail in terms of likely locations. Both Grampian
and iFIND place emphasis on Time, Distance and Likely
Location and these parameters also feature predominantly
in this work. Table 1 shows a typical excerpt from iFIND,
which highlights the places where mispers for the category
were located. The majority being found outside locally, with
a smaller proportion either returning home of being found at
a friend’s house.

The Grampian Study and iFIND are manual solutions to
misper cases. They provide lookup tables that Police officers
and call handlers can use to plan search strategies. The model
described in this paper provides a computer-based solution,
which calculates location probabilities in response to input
data related to a misper case.

D. GEOSPATIAL REASONING
In previous work conducted by the authors, the CASPER
System (Computer Assisted Search Prioritization and
Environmental Response) [12] was developed to study the
Geographies of Missing Persons. CASPER combines data
analysis and GIS to develop a Google map application to
assist investigative and strategic decision making. CASPER
was developed to a prototype stage and demonstrated to
several Police forces as a viable alternative to their existing
case management systems, namely COMPACT and NICHE.

CASPER (illustrated in Fig. 2) was rich in terms of the
geospatial information it provided, being able to display
heatmaps, places of interest and even live CCTV footage.
CASPER allows the search team to overlay a range of differ-
ent layers onto amap region of interest. For example, the team
may choose to overlay information of ATM cash machines if
it is known that a misper may be short of money. Alterna-
tively, suicide hotspots can be overlayed (from precompiled
suicide data) when dealing with a potential suicide case.

FIGURE 2. CASPER missing persons prototype.

However, the algorithms used in CASPER were largely
rule-based algorithms (based on empirical data) which were
not optimal.

III. PRELIMINARIES
Formally, for a discrete random variable X = {X1, . . . ,Xn},
a BN is an annotated directed acyclic graph, which encodes a
joint probability distribution (JPD) over X. Formally, a BN
is expressed as the pair N = 〈G,2〉 . The first element
in N, is a directed acyclic graph, G = (V ,E). V denotes
the random variables in X , and E denotes the edges, which
represent direct dependencies between the variables. The sec-
ond element 2 denotes the set of parameters, which quan-
tify the network, via conditional probability tables. Each
node is annotated with a conditional probability distribution,
P (Xi | Pa (Xi)), representing the conditional probability of
the node Xi given its parents in G. The network N defines
a unique JPD over X given by:

P (X1, . . . ,Xn) =
N∏
i=1

P (Xi | Pa (Xi)) (1)

In a BN a conditional probabilityP(X | Y ) is the probability
of an eventX occurring given that Y occurs. Amarginal prob-
ability is effectively an unconditional probability. A marginal
probability is a distribution formed by calculating the subset
of a larger probability distribution. For example, for a JPD
P(X, Y ) the probability of X can be determined simply by
summing all the values for X = False and X = True in the
joint table. For a query on a node in a BN, the result is often
referred to as the marginal for that node.

For BNs, inference, is the computational methods for
deriving answers to queries given a probability model
expressed as a BN. Inference in BNs can take on sev-
eral different forms [13]–[15], broadly speaking, it may be
exact or approximate, depending upon the structure of the
graph. Exact inference is not always possible when the num-
ber of combinations and paths are excessively large. However,
it is often possible to refactor a BN graph (i.e. alter the graph
structure) before resorting to approximate inference.

Let U be the set of random variables. Let U e
⊆ U be the

set of known (evidence) variables. Let Xq ∈ U\U e be the
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variables of interest (queries) and let U r
= U\ (U e

∪ Xq) be
the set of remaining variables.

The probability distribution of the evidence variables and
the query variables can be calculated, via marginalization, as:

P
(
Xq,U e)

=

∑
U r

P (X1, . . . ,XN ) (2)

The normalization may be calculated as:

P
(
U e)
=

∑
Uq

P
(
Xq,U e) (3)

Then conditional probabilities may be calculated as:

P
(
Xq | U e)

=
P (Xq,U e)

P (U e)
(4)

Inference can be used to ask a range of different questions,
in relation to the probability distribution, depending upon
the nature and context of the problem at hand. Typically
one or more of the following are likely to be of interest:
• Diagnosis: P(X = cause | U = symptom)
• Prediction: P(X = symptom | U = cause)
• Classification: arg max

class
P(X = class | U = data)

• Decision-making (given a cost function)
The particular strengths and weaknesses of BN are covered

well in [16]. To summarize:
• They provide a natural way to handle missing data
• Suitable for small and incomplete datasets
• Combine different sources of knowledge
• Explicit treatment of uncertainty and support for deci-
sion analysis

• Fast response to queries
Essentially, a BN defines a unique JPD over X and compu-

tationally the JPD takes the form of a large table, constructed
from the tables defined at individual nodes, in accordance
with the graph links. So computationally, inference is the
process of scanning the joint table to find a value (or values),
which correspond to evidence E, possibly summing values
along the way.

Often, the table will take the form of a sparse matrix (i.e.
many zero entries) and this property can be exploited to
make inference tractable, even when the number of param-
eters is very large. Subsequent sections in the paper will
consider certain legal rearrangements of the JPD table, can be
used to marginalize out certain parameters. Such rearrange-
ments allow queries to be satisfied in linear-time methods by
identifying a subgraph of the original graph relevant to the
query [17].

IV. DESIGN AND IMPLEMENTATION
A. MISPER-BAYES MODEL DEVELOPMENT
The development of a BN model requires the learning of
two components: the graph topology (structure) and the
parameters of each conditional probability distribution. Both
structure and parameters can be learnt from data. However,
learning structure is much harder than learning parameters.

FIGURE 3. Misper-Bayes model.

There are a number of established techniques available
to learn both the parameters and the structure [18]. Algo-
rithms for learning a BN structure from data have two com-
ponents: a scoring metric and a search procedure. The scoring
metric computes a score reflecting the goodness-of-fit of the
structure to the data. The search procedure tries to identify
network structures with high scores and is regarded as NP
hard [19].

Typically, the Naïve Bayes classifier provides a good place
to start in relation to learning BN structure for a relatively
small set of variables. The Naïve Bayes classifier (and its
variants) [20] provides a baseline model for many machine
learning classification problems. Naïve Bayes gives surpris-
ingly good results, provided the condition of independence
amongst variables hold. Unfortunately, in this case indepen-
dence does not hold. For example, the different mental health
categories, under consideration, are age related.

After dismissing Naïve Bayes, the development process
went on develop a Generalized Bayesian Network (GBN)
and chose the bnlearn Python library [21] to learn the struc-
ture, based on data from iFIND. After several iterations and
variable eliminations the development process arrived at the
graph similar to that of Fig. 3. bnlearn starts with an empty
network structure of all variables, then proceeds by adding,
removing and reversing edges between nodes to maximize
the goodness of fit of the model. The final structure, learnt
by bnlearn, contained an excessive number of edges, likely
due to overfitting (i.e. the noise within the data had been
represented in the model itself). These unnecessary edges out
were thinned out, based on the interpretation of the causal
relationships between variables to deliver the final structure
of Fig. 3. Finally, bnlearn was used to learn the parameters
using iFIND data compiled from the summary table (Table 2).

In summary, automated structure learning is useful to
develop the initial structure, but it can lead to overfitting and
manual intervention is required to thin out some unnecessary
edges. Based on the journey in developing the BN model,
it was thought that it would be worthwhile sharing the expe-
riences of learning a BN model in terms of structure and
parameters, as presented in Algorithm 1.
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TABLE 2. iFIND data summary.

Fig. 3 represents the model in terms of a digraph and asso-
ciated conditional probability tables. The nodes in the graph
represent the random variables, which are linked through the
conditional probability tables.

Most of the tables are fairly self-explanatory, with a couple
of exceptions: the Cat(x) table reflects the different categories
of at risk mispers and the Loc(x) table reflects the different
locations that mispers are likely to be found. Note that there
is no edge connecting Cat(x) and Time(x) (although there was
an edge in an earlier version of the model). It transpired that
Age(x) provides a better predictor of the time spent missing
than Cat(x). For example, the age of a young child or an
elderly subject has a direct bearing on the time that they
are missing. There were other variables that could have been
included into the model such as race, ethnicity and depriva-
tion index, but these were seen to have a lesser effect than the
variables shown in Fig. 3.

Recalling equation (1), the JPD for the Misper-Bayes
graphical model (Fig. 3) can be written as:

P(L,D,C,T ,S,A) = P(L|D,C)P(D|T )P(C|S,A)

P(T |A)P(S)P(A) (5)

where:
P(A) represents the probability of the different age groups.
P(S) represents the probability of the sex types male and

female.

Algorithm 1 (BN Model Development Guidelines)
1. If variable set is small and variables are independent

apply Naïve Bayes (or its variants)
2. Otherwise consider General BN (GBN)

2.1 Learn structure
2.2 Check structure for Markov blanket
2.3 If Markov blanket exists

2.3.1 Discard variables outside of the blanket
2.4 Otherwise

2.4.1 Check structure for excessive edges
2.4.2 Foreach edge:

2.4.2.1 Check causal relationship
2.4.2.2 Remove if not needed

3. Learn parameters
4. Evaluate model accuracy and performance
5. If performance is acceptable

5.1 Validate model
6. Otherwise

6.1 If GBN is not a tree
6.1.1 Construct Tree approximation
6.2.2 Compare Tree against GBN

6.2 Validate Tree or GBN

P(T | A) represents the conditional probability of time
missing, based on age.
P(C | S, A) represents the conditional probability of the

different categories, based on sex type and age group.
P(D | T ) represents the conditional probability of distance

travelled, based on time missing.
P(L | D, C) represents the conditional probability of the

likely location, based on the different categories and the
distance travelled.

In Fig. 3 the Sex(x) category values (Male/Female) do not
total to 1 because for certain categories there is no distinction
between gender types in the iFIND data (Table 1). This is the
case for young children for whom gender is not significant.

The current model represents time missing as a discrete
variable (Time(x)) and as such, the model does not provide
a continuous representation of time. Section V.D alludes
to misper cases for which time may prove significant and
suggest alterations to the model to accommodate time as a
continuum.

B. MISPER-BAYES IMPLEMENTATION AND INFERENCE
The Misper-Bayes model was implemented in Python using
the pomegranate machine learning package [22], which
provides an easy to use abstraction of BN modelling.
Pomegranate uses a belief propagation algorithm to satisfy
conditional probability queries, which gives exact marginals
when the graph is a tree (i.e. has no loops), but only approxi-
mates the truemarginals in cyclic (loopy) graphs. Under these
circumstances the algorithm is referred to as loopy belief
propagation.
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Pomegranate, provides a useful predict_proba() function,
which uses loopy belief propagation in order to query
probabilities for different parts of the graph and calculate
marginals. For example (in the Python interpreter) a set of
facts may be entered as a collection of dictionary entries to
represent a realistic misper case.
>>>facts = { ’Sex’ : ’M’, ’Age’ : ’T’, ’Cat’ : ’C5’,

’Time’ : ’D’ }
>>>beliefs = map( str, model.predict_proba
( facts ) )
>>>print("\n".join( "{}\t \t{}".format( state.name,
belief ) for state, belief in zip( model.states,
beliefs ) ))

The encoding for observations is such that:

Sex: Male (‘M’)
Age: Teenager (‘T’)
Category: Child in Care (aged 12-17) (‘C5’)
Time: Missing Several Days (‘D’)

The beliefs map will provide probability predictions for
likely Distance travelled and likely Location to be found.
After some Python pretty printing, the output is as shown
below.
Sex M
Age T
Cat. C5
Time D
Distance {

"class" :"Distribution",
"dtype" :"str",
"name" :"DiscreteDistribution",
"parameters" :[

{
"S" :0.383,
"M" :0.344,
"L" :0.273,
"X" :0.0

}
],
"frozen" :false

}
Location {

"class" :"Distribution",
"dtype" :"str",
"name" :"DiscreteDistribution",
"parameters" :[

{
"Pc" :0.051,
"Ts" :0.02,
"Aa" :0.01,
"Fr" :0.081,
"Oe" :0.04,
"Ol" :0.162,
"Fa" :0.091,
"Re" :0.545

}
],

"frozen" :false
}
The figures of interest here are the imputed values for likely

Distance travelled and likely Location to be found.
According to the encoding the figures tell us:

Distance: ‘S’ - Short Distance (up to 2 miles)
= 0.383

‘M’ - Medium Distance (up to 10 miles) = 0.344
‘L’ - Long Distance (up to 50 miles) = 0.273
‘X’ - Extra Long Distance (> 50 miles) = 0.0

Location: ‘Re’ - Returned Home (i.e. Care Home) =
0.55

‘Ol’ - Outside Local (e.g. Street, Park) = 0.16
‘Fa’ - Family Members House = 0.09
‘Fr’ - Friends House = 0.08
‘Pc’ - Place of Care (e.g. Police/social care) =

0.05
‘Oe’ - Outside Elsewhere = 0.04
‘Ts’ - Train Station = 0.02
‘Aa’ - Another Address = 0.01

The BN model was designed and implemented using data
relating to UK misper cases. As such, the current implemen-
tation will have a bias towards UK cases, although it is felt
that the model itself (Fig. 3) defines the nodes and the graph
structure that are sufficiently generic to apply internationally.

V. RESULTS AND DISCUSSION
A. MODEL EVALUATION
The Misper-Bayes model was evaluated using a series of
queries with a set of misper cases. For each query, the results
of the model were cross checked against the results of
the iFIND system. The result comparisons are summarized
in Table 3.

Table 3 shows the three most likely locations for each
misper case (other locations with very low probabilities are
omitted or brevity). The Misper-Bayes column has probabili-
ties rounded to 2 decimal places. As can be seen the majority
of results give the same value as iFIND and several results
that are not the same are accurate within±1%. This indicates
that the model converges to the results provided in iFIND.
Details of how the iFIND results were rounded is unknown,
also in the majority of iFIND Location tables there is a final
row termed ‘Individual Cases’ for which no numerical values
are given. These ‘Individual Cases’ could explain the very
slight variation, between or ownMisper-Bayes results and the
results of iFIND.

Although data from iFIND was used in the development of
the model, it is important to stress that the Location values
for Misper-Bayes were imputed from the model, based on the
conditional relationships of Fig. 3. Typically a Police Officer
using iFINDwould need to perform amanual lookup to locate
the appropriate table in order to determine the likely Location.

B. MODEL REFINEMENT–TREE APPROXIMATION
As shown in Table 3, the Misper-Bayes model (Fig. 3)
provides a very similar set of results to those of iFIND.
The model was examined further to see if it could
be improved or made more computationally efficient.
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TABLE 3. Results of queries for misper cases (iFIND and Misper-Bayes
comparison).

Asmentioned previously in section 1.1, there are certain legal
rearrangements of the joint probability distribution (JPD)
table through which certain parameters may be marginalized

TABLE 3. (Continued.) Results of queries for misper cases (iFIND and
Misper-Bayes comparison).

out of a graph and such rearrangements allow queries to be
satisfied in linear-time.

There is a large body of work concerned with the manipu-
lation and transformation of probabilistic graphical models to
improve structured learning, inference and information stor-
age and representation. There are various techniques, rooted
in graph theory, such as moralization [23], d-separation [17]
and tree-decompositions [24]. Of particular interest to this
work is the idea of a tree approximation to the original model
and determining how good this approximation actually is,
based on the use of cross-entropy. Further still, what is the
optimum approximation and how well does it match the
results of the original model?

As mentioned previously, in BNs tree structures are desir-
able because belief propagation is exact. A tree with n ver-
tices ((n-1) edges) only requires ((d − 1)+ d(d − 1)(n− 1))
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Algorithm 2 (Chow Liu)
1. From the given distribution P(x) compute the joint dis-

tribution P(xi, xj) for all i 6= j
2. Using the pairwise distributions from step 1, compute

themutual information for each pair of nodes and assign
it as the weight to the corresponding edge.

3. Compute the maximum-weight spanning tree (MST):
3.1 Start from the empty tree over n variables.
3.2 Insert the two largest-weight edges.
3.3 Find the next largest-weight edge and add it to

the tree if no cycle is formed; otherwise, discard
the edge and repeat this step.

3.4 Repeat step 3.3 until n − 1 edges have been
selected (a tree is constructed).

4. Select an arbitrary root node, and direct the edges out-
wards from the root.

5. Tree approximation Q(x) can be computed as a pro-
jection of P(x) on the resulting directed tree (using the
product-form of Q(x)).

parameters, where d is the domain size. The actual complexity
of inference in a BN is proportional to its tree-width [25]
which measures how closely the network resembles a tree.

The further examination of the model considered the Chow
Liu theorem [26], which relies on Kullback-Leibler diver-
gence (KL-divergence or cross entropy), which is expressed
in (6).

D(P‖Q) = P
∑
X

P(x) log
P(x)
Q(x)

(6)

The KL-divergence, quantifies how much one probability
distribution differs (or diverges) from another probability
distribution (|| is the divergence operator, indicating that P
deviates from Q). K-L divergence expresses the amount of
information lost when Q is used to approximate P, proof of
which is provided in [16]. The Chow Liu theorem is stated
below.
Lemma:
For a JPD P(X = x) and a tree structure T , the best

approximation Q(X = x) (i.e., Q(X = x) that minimizes
D(P||Q) ) satisfies:

Q
(
xi | xj(i)

)
= P

(
xi | xj(i)

)
for all i = 1, . . . , n (7)

Such Q(x) is called the projection of P(x) on T .
Theorem (Chow Liu):
For a JPD P(x), the KL-divergence D(P||Q) ) is minimized

by projecting P(x) on a Maximum-Weight Spanning Tree
(MST) over nodes in X , where the weight on the edge (Xi,
Xj) is defined by the mutual information measure:

I
(
Xi,Xj

)
=

∑
xixj

P
(
xi, xj

)
log

P
(
xi, xj

)
P (xi)P

(
xj
) (8)

FIGURE 4. Misper-Bayes polytree representation.

If the Chow Liu algorithm is applied to the previous
Misper-Bayes model, the model is transformed into the poly-
tree structure shown below in Fig. 4.

Effectively, the algorithm produces an approximation,
which is always a tree. It works by computing the weight
I
(
Xi,Xj

)
of each edge between nodes Xi,Xj and finding the

MST. When the algorithm is applied to the graph of Fig. 3,
the MST eliminates the edge connecting nodes ‘Dist.’ and
‘Loc.’.

To evaluate the revised polytree approximation the same
set of queries from Table 3 were executed. Numerically,
the marginals were almost identical (barring some rounding
errors).

C. MODEL ASSESSMENT (QUANTITATIVE)
Given that the results of the queries were largely the same,
the execution time for queries on the ploytree model were
then examined against those for the original acyclic graph.
It turned out that the execution times for the polytree model
were only marginally less than those of the original acyclic
graphmodel. On average a query for the original graphmodel
took 0.036 seconds, whereas the same query for the polytree
model took 0.03 seconds, executed on an Intel Core i7, 16GB
RAM (no GPU). As mentioned previously, pomegranate uses
a loopy belief propagation algorithm for the implementation
of the predict_proba() function, which is an inexact
algorithm that converges to the exact solution on BNs which
have a tree structure.

The additional time for the original graph model (0.006
seconds) is likely to be down to the time taken for con-
vergence. By realistic BN standards both of the models are
relatively small in terms of the number of nodes and edges.
However, the models contain relatively large, sparse condi-
tional probability tables (e.g. Loc(x) is 700× 4 elements). The
literature provides specialised algorithms for dealing with
sparseness in BN, which restrict the search space based on
heuristics that either bound the search space by limiting the
degree of nodes within the network or by limiting the set of
possible edges [27]. Many BN models typically consist of
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a large number of variables (e.g. medical applications may
use several hundred variables) with small probability tables.
In contrast, the model is based on a small number of variables
with large probability tables.

Computationally, the latter type of model is beneficial
for satisfying queries. For models with many variables (i.e.
nodes), more effort is expended traversing the nodes as
opposed to the values in a probability table associated with
a given node. To improve query performance the model was
transformed into a polytree using the Chow Liu algorithm,
which is based on mutual information. The Chow Liu algo-
rithm is known to reduce sparseness [27] but results showed
only a minimal performance improvement, which suggests
that sparseness in models with few variables yet large proba-
bility tables does not have a major impact on performance.

After examining the revised polytree model, it was con-
cluded that the original acyclic graph is preferable as it is
semantically richer. For example, the location of a missing
person is likely to depend on how far a misper has travelled.
If a misper has travelled a considerable distance, they may be
less likely to frequent certain locations that they would do if
they had stayed local.

D. MODEL ASSESSMENT (QUANTITATIVE)
The model performs well for cases that fit the discrete cat-
egories and exhibit normal behavior within that category.
Results of such cases compare very closely to those of iFIND.
However, it is unknown how well the model performs for
cases that are a combination of categories. For example,
if an individual is categorized, equally, as suffering from
ADHD, but with a history of schizophrenia then, manually,
one could impute the outcome for each case and look for
common ground between the outcomes to inform the search
strategy. However, for many cases, one category will be more
dominant than the other.

There was no data available to consider such cases because
UK Police Forces record data based on the discrete categories
considered in the paper. Hybrid cases are, at present, largely
dealt with based on the domain knowledge of the officers
involved in the investigation. However, to consider a sample
of such cases the tables in the Python implementation were
modified to allow values to be imputed for queries with two
categories of equal (50:50) weighting. This did not require
any alteration to the model itself (Fig. 3), only the implemen-
tation. Based on this revised implementation, queries for two
categories could be issued as below.

Sex: Male (’M’)
Age: Teenager (’T’)
Category: Child in Care (aged 12-17) (’C5’),
ADHD (’Ad’)
Time: Missing Several Days (’D’)

The results for a small sample of queries are shown
in Table 4.

The Combined Category results are comparable with
those imputed from real data in the Individual Category
(Misper-Bayes) column. For the Combined Category results

TABLE 4. Results of queries for misper cases (individual categories in
column 5 and Combined (50:50) categories in column 6)).

the four most likely locations for each case are shown. It is
important to stress that the Combined Category results were
not arrived at by simply taking an average of the Individual
category results, they were imputed from the tables of the
Misper-Bayes BN model. These results cannot be compared
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TABLE 4. (Continued.) Results of queries for misper cases (individual
categories in column 5 and Combined (50:50) categories in column 6)).

against any tangible results used in Police cases, but they
serve only to show the versatility of the model in that it is
amendable to change to satisfy specific requirements.

One drawback with this approach is that it is difficult to
estimate the balance between the two (or more) categories.
Ratios of 50:50 were chosen, although it could be 60:40 or
30:70. Police officers alone would not be able to judge the
balance, it would require input from a Psychologist, which
adds strength to the argument that misper cases require input
from many sources not just Police. Typically, misper cases
require a multi-agency approach with input from Police, Psy-
chologists, Health-care professionals, family members and
friends, to name but a few.

Inevitably, some misper cases prove difficult, particularly
those in which the subject endeavors to stay missing. Under
such circumstances the model will only provide a baseline
fromwhich search strategy decisions can bemade. Themodel
was chosen for its simplicity and accuracy in predicting loca-
tion and the variables defined in the model are still valid, even
for the more difficult cases. The success in dealing with the
more difficult cases often depends on the response time of the
Police officers involved and the thoroughness of their search
of a particular location. These more difficult cases could be
assisted by a model that accommodates changes that may
occur over time. Such temporal effects exceed the scope of
the current work, but this is something that will be pursued in
future work.

In misper cases Police forces refer to the ‘‘golden hour’’,
particularly for cases involving children. This is the time
period in which the application of standardized approaches
will, in theory, yield a desirable result. It is also the time
period in which tangible evidence and information is abun-
dant. As time progresses the case may become more complex
and standardized approaches alone may not yield a desirable
result and Police may have to think ‘‘outside of the box’’.
Periodically, misper cases are reviewed to see if any further
evidence has come to light to assist search strategies. The
passage of time may lead to significant changes such as a
misper failing to take vital medication, or falling short of
money, food or accommodation. The scope of the current
work was the development of a Bayesian Network model to
impute likely locations for different categories of mispers.
In future work, the model will be extended using Dynamic
Bayesian Networks to incorporate the timeline of events asso-
ciated with a misper investigation.

VI. CONCLUSION
This research has described the design and implementation of
our Misper-Bayes model to assist Police forces in determin-
ing the whereabouts of a missing person. The work makes a
novel contribution as it is the first computer-based solution to
assist in actively dealing with misper cases.

Misper-Bayes provides a powerful tool, which can be used
to good effect to whittle down the likely locations where the
missing person may be found. The results of likely location
queries on the Misper-Bayes model delivered very similar
results to those of the iFIND system. The model was exam-
ined to see if a tree approximation provides a better alterna-
tive. It was concluded that a tree approximation is not needed,
assuming the current implementation based on the Python
Pomegranate package.

The strength of the model lies in its simplicity yet ver-
satility. The model can accommodate some variation to the
discrete categories through some changes to the Python
implementation. When combined with a geospatial front-end
(e.g. CASPER), the Misper-Bayes model can be used to very
good effect to assist Police Officers with the prioritization of
their search strategy. The approach demonstrated has scope
to support evidence-based policing beyond that of missing
person cases.

In addition to the development of the model, guidelines
were provided that may prove useful for others faced with
learning a BN model from data.
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