
Zolotas, A, Hoyos Rodriguez, H, Hutchesson, S, Sanchez Pina, B, Grigg, A, Li,
M, Kolovos, DS and Paige, RF

 Bridging proprietary modelling and open-source model management tools:
the case of PTC Integrity Modeller and Epsilon

http://researchonline.ljmu.ac.uk/id/eprint/16160/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Zolotas, A, Hoyos Rodriguez, H, Hutchesson, S, Sanchez Pina, B, Grigg, A,
Li, M, Kolovos, DS and Paige, RF (2019) Bridging proprietary modelling and
open-source model management tools: the case of PTC Integrity Modeller
and Epsilon. Software and Systems Modeling, 19 (1). pp. 17-38. ISSN 1619-

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Software & Systems Modeling (2020) 19:17–38
https://doi.org/10.1007/s10270-019-00732-1

SPEC IAL SECT ION PAPER

Bridging proprietary modelling and open-source model management
tools: the case of PTC Integrity Modeller and Epsilon

Athanasios Zolotas1 · Horacio Hoyos Rodriguez1 · Stuart Hutchesson2 · Beatriz Sanchez Pina1 · Alan Grigg2 ·
Mole Li2 · Dimitrios S. Kolovos1 · Richard F. Paige1,3

Received: 25 July 2018 / Revised: 20 February 2019 / Accepted: 12 April 2019 / Published online: 11 May 2019
© The Author(s) 2019

Abstract
While the majority of research on Model-Based Software Engineering revolves around open-source modelling frameworks
such as the Eclipse Modelling Framework, the use of commercial and closed-source modelling tools such as RSA, Rhapsody,
MagicDraw and Enterprise Architect appears to be the norm in industry at present. This technical gap can prohibit industrial
users from reaping the benefits of state-of-the-art research-based tools in their practice. In this paper, we discuss an attempt
to bridge a proprietary UML modelling tool (PTC Integrity Modeller), which is used for model-based development of safety-
critical systems at Rolls-Royce, with an open-source family of languages for automated model management (Epsilon). We
present the architecture of our solution, the challenges we encountered in developing it, and a performance comparison against
the tool’s built-in scripting interface. In addition, we use the bridge in a real-world industrial case study that involves the
coordination with other bridges between proprietary tools and Epsilon.

Keywords Model-driven engineering · Model management · Open-source

Communicated by Mr. Vinay Kulkarni.

B Athanasios Zolotas
thanos.zolotas@york.ac.uk

Horacio Hoyos Rodriguez
horacio.hoyos.rodriguez@ieee.org

Stuart Hutchesson
stuart.hutchesson@rolls-royce.com

Beatriz Sanchez Pina
basp500@york.ac.uk

Alan Grigg
alan.grigg@rolls-royce.com

Mole Li
mole.li@rolls-royce.com

Dimitrios S. Kolovos
dimitris.kolovos@york.ac.uk

Richard F. Paige
richard.paige@york.ac.uk; paigeri@mcmaster.ca

1 Department of Computer Science, University of York, York,
UK

2 Rolls-Royce, Control Systems, Derby, UK

3 Department of Computer Science, McMaster University,
Hamilton, Canada

1 Introduction

Large enterprises often use proprietary and closed-source
software and system modelling tools, such as Magic-
Draw [23], Rhapsody [13] and Enterprise Architect [28] as
these come with extensive documentation and are backed by
commercial vendors offering guaranteed maintenance and
support. By contrast, the majority of research in Model-
Based Software Engineering (MBSE) is conducted using
open-source modelling tools and frameworks (e.g. Eclipse
Modelling Framework (EMF) [29]). This technological gap
means that research outcomes aremore often than not largely
inaccessible to enterprise users. This is clearly detrimental to
both enterprise users, who are often unable to readily exploit
recent advances in MBSE research, and to researchers, who
would benefit from the feedback of enterprise users on the
use of research outcomes in industrial-scale applications. In
addition, enterprise users are restricted to use only built-in
model analysis and management facilities provided by the
modelling tool. Companies may see the need to eventual
transition from proprietary tools to open-source modelling
and model management tools, in order to reduce costs or use
state-of-the-art MBSE technologies.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00732-1&domain=pdf

18 A. Zolotas et al.

The risks associated with this transition may be very high,
especially if the legacymodel has been used to develop safety
critical software that has undergone safety assessment as part
of certification. In addition, the challenges of such an attempt
include the potential need of bridging different technologies
which might have an impact in the time required to execute
the model management tasks. Any proposed solution should
perform as fast as the built-in model management scripting
interface (or as close as possible to that).

In this paper, we present the results of collaboration
between researchers at the University of York and practition-
ers at Rolls-Royce, on bridging the gap between a proprietary
UMLmodelling tool, PTC Integrity Modeller (IM), which is
used extensively at Rolls-Royce to support MBSE activities,
and the open-source Epsilon family of model management
languages (http://www.eclipse.org/epsilon/), which is driven
by MBSE research primarily conducted at the University
of York and Ashton University. In particular, we discuss
the design and implementation of an interoperability layer
through which Epsilon model management programs (e.g.
validation constraints, model-to-model and model-to-text
transformations, etc.) can query and modify IM models
without needing to transform them to an intermediate rep-
resentation (e.g. XMI) first. We also report on the findings
of experiments which evaluate the performance and main-
tainability of equivalent model validation rules defined using
IM’s built-in scripting language (Visual Basic) and Epsilon’s
EVL language.

This paper is an extended version of the work presented
in [34]. Compared to [34], in this paper, we also:

1. Apply our solution to a real-world industrial case study
that involves the use of other bridges available in Epsilon.
This demonstrates the full potential of the implemen-
tation of bridges between open-source and proprietary
tools.

2. Include additional related work.
3. Discuss in detail the handling of UML stereotypes.
4. Propose and implement a solution that supports execution

in both 32-bit and 64-bit environments instead of the 32-
bit-only version presented previously.

The rest of the paper is structured as follows. Section 2
discusses the current practice of MBSE at Rolls-Royce and
motivates our work. Section 3 then describes the design
and implementation of the IM-Epsilon interoperability layer
(driver). In Sect. 4, examples of using the bridge are pre-
sented. In Sect. 5, the driver is evaluated by executing
validation rules on models of real systems provided by
Rolls-Royce. In addition, a new case study that involves the
coordination of two bridges built for MathWorks Simulink
and Microsoft Excel with the PTC IM bridge is presented
in the same section. Section 6 presents our observations and

the lessons learnt working on this project. Section 7 presents
related work, and Sect. 8 concludes the paper and presents
directions for future work.

2 Background andmotivation

Rolls-Royce has successfully used a combination of UML
class and structure models to define the software architecture
for Full-Authority Digital Engine Control (FADEC) systems
for over 15 years. This approach uses classmodels to describe
the software structure, and employs model-to-text transfor-
mation to generate a SPARK [2] implementation. A SPARK
profile is used to allow the structure of the SPARKprogram to
be fully described at the lowest modelled level of abstraction.

The UML modelling environment is used to define the
architectural framework and the design details for the hosted
components. Design artefacts are produced from the UML
models through automatic report generation. These are used
as configured design artefacts to support the software system
approval (certification) process.

The company has more recently started to employModel-
Based Systems Engineering approaches to design and anal-
yse the FADEC system at a higher level of abstraction.
This makes use of SysML [11] to produce functional and
physical models of the control system and perform early val-
idation of the design choices. Rolls-Royce Control Systems
is using MBSE/SysML to capture system and software-level
requirements, in accordance with a Control Systems mod-
elling standard that defines the subset of SysML notation to
be used and the mandatory information content of the model.
This gives significant benefits in terms of both quality and
levelling of system requirements but is, however, currently
limited to the use of textual requirementswithin the structural
framework of the SysML model.

Automated validation scripts are executed against both
the systems and software-level models to ensure consistency,
correctness (where possible) and compliance to modelling
standards. Currently, the development of these validation
scripts is a specialist activity as it requires a relatively deep
knowledge of the underlying metamodel used by the mod-
elling tool (IM), plus Visual Basic programming skills to
interact with the tool’s scripting interface. This approach is
also highly coupled with the particular modelling tool, so the
validation checks are not easily portable across modelling
environments. To leverage higher-level model management
(e.g. model validation, M2M and M2T transformation) lan-
guages that provide support for different environments, the
only available option is to use IM’smodel exporting facilities
which can serialise models in the form of XMI documents.
This option has two notable shortcomings:

1. It imposes a significant overhead as even when small
changes are made to models within the tool; the whole

123

http://www.eclipse.org/epsilon/

Bridging proprietary modelling and open-source model management tools: the case of PTC… 19

Fig. 1 Architecture of Epsilon
(https://www.eclipse.org/
epsilon/doc/)

model should be exported again to include the changed
elements.

2. Some of the information in the native model representa-
tion (particularly diagram layout information) cannot be
exported to XMI, which in practice makes programmatic
modification and re-importing of the XMI prohibitive.

3. Taking into account the fact that PTC IM can be deployed
on a server and the models can be edited by multiple
users, this can lead to situations where engineers work
with stale versions of the model which may be unde-
sirable especially in the development of safety-critical
applications.

To overcome these challenges, particularly with a view to
enabling heterogeneous modelling, analysis and code gener-
ation in the future, in this work, we developed a direct bridge
between IM and the Epsilon family of task-specific model
management languages, which provides Epsilon programs
with direct and full (read/write) access of in-memory IM
models. This solution tackles all the aforementioned short-
comings of the XMI serialisation approach.

3 Bridging Epsilon with PTC Integrity
Modeller

In this section, we briefly introduce Epsilon and the Epsilon
Model Connectivity (EMC) layer atop which the IM driver1

has been developed. We also provide a brief overview of IM
before and then discuss the architecture and implementation
of the driver along with appropriate examples.

1 The driver can be installed to an Epsilon distribution from this Eclipse
update site: http://zolotas.net/EpsilonPTC/updates/v1.0.1/.

3.1 Epsilon

Epsilon is a mature open-source family of interoperable
task-specific languages that can be used to manage mod-
els of diverse metamodels and technologies. At the core
of Epsilon is the Epsilon Object Language (EOL) [19],
an OCL-based imperative language that provides support
for querying and modifying models conforming to diverse
modelling technologies. Although EOL can be used as a
general-purpose model management language, its primary
aim is to be embedded as an expression language in hybrid
task-specific languages. Indeed, a number of task-specific
languages have been implemented atop EOL, including lan-
guages for model-to-model (ETL) and model-to-text (EGL)
transformation (ETL), model comparison (ECL), merging
(EML), validation (EVL), refactoring (EWL) and pattern
matching (EPL) as illustrated in Fig. 1.

One of the notable features of Epsilon is that its languages
are not bound to any particular metamodelling architecture.
To treatmodels of different technologies in a uniformmanner
and to shield the languages of the platform (and the develop-
ers of model management programs) from the intricacies of
underlying technologies, Epsilon provides theEpsilonModel
Connectivity (EMC) layer (illustrated at the lower part of
Fig. 1).

The core abstractions provided by EMC are the IModel,
IPropertyGetter and IPropertySetter interfaces, which pro-
vide methods for creating, retrieving (by ID or by type) and
deleting model elements, and for retrieving and setting the
values of their properties, respectively. These interfaces are
discussed in more detail in the section that follows while
presenting the implementation of the IM driver for Epsilon.

123

https://www.eclipse.org/epsilon/doc/
https://www.eclipse.org/epsilon/doc/
http://zolotas.net/EpsilonPTC/updates/v1.0.1/

20 A. Zolotas et al.

Fig. 2 Metamodel hierarchy in
IM repository (taken from [26])

Fig. 3 High-level architecture
of the solution

3.2 PTC integrity modeller

PTC Integrity Modeller (formerly known as Atego Artisan
Studio) allows the definition of UML and SysML models
and diagrams. Among other functionalities, IM offers facil-
ities for synchronisation with other modelling tools (e.g.
Simulink [32], Doors [14]) and automatic code synchroni-
sation for many programming languages (e.g. C, Ada, Java).

In IM, models are stored in a centralised object database
called Enabler [12], developed by Fujitsu. The model repos-
itory consists of three layers: the repository services, the
integration services and the user access layer. Models, model
elements, relationships, attributes and their values are stored
inEnabler’s datastore kernel files. Thedatastore also provides
a cache that stores recently accessed elements to improve per-
formance.

Figure 2 shows the organisation of an IM model reposi-
tory. TheProjects item holds all the projects in the repository.
Each project consists of oneDictionary where all model ele-
ments (Dictionary Item) and a diagram object (Diagrams),
which holds all the diagrams in the model, are stored. Each
model element has a set of attributes and associations (col-
lectively referred to as properties) that are common between
all types. For example, each element has a unique id, a name
and a type attribute. There are also properties which are spe-
cific for each type of elements. For example, IsAbstract has a
value for each element of type Classwhich value is ‘true’ for
a class that is abstract (e.g. AbstractPersonClass1). In addi-
tion, each property is characterised by four boolean flags:
isReadOnly, isAssociation, isMultiple and isPublic (e.g. the
property IsAbstract of the AbstractPersonClass1 has a value
‘false’ for the isAssociation property). These flags allow the
tool to identify which operations are permitted on each prop-

erty (e.g. if a property is read-only, then setting its value is
not allowed).

Engineers are able to access and manipulate model ele-
ments programmatically through a scripting API in Visual
Basic (VB). Listing 1.1 shows an example VB script that
prints the names of all the elements of type Activity in the
HSUV model, which is one of the examples that ship with
the tool.

1Dim projects = CreateObject(”OMTE.Projects”)
2Dim project = projects.Item(”Reference”, ”\\Enabler\Desktop\Examples\Filling

Station\0”)
3Dim dictionary = project.Item(”Dictionary”, ”Dictionary”)
4Dim activities = dictionary.Items(”Activity”)
5Do While activities.MoreItems
6 a = activities.NextItem
7 Console.WriteLine(a.Property(”Name”))
8Loop

Listing1.1 Example of aVisualBasic program that queries an IMmodel

3.3 The IM-Epsilon bridge

This section presents the details on providing the IM-Epsilon
bridge as an Epsilon EMC Driver. An overview of the high-
level architecture of the bridge developed between IM and
Epsilon is presented in Fig. 3. IM exposes models through
the Automation Interface (the one that is also used for the VB
scripting functionality) that provides model query and mod-
ification operations. Access to the Automation Interface is
given through a Windows COM layer. As the Epsilon Model
Connectivity layer requires the extension of three Java inter-
faces, our integration (labelled PTC IM Driver in Fig. 3)
needs to use an intermediate layer that realises Java/COM
communication. Our initial implementationwas based on the
open-source Jawin [31] library. This was replaced in the cur-

123

Bridging proprietary modelling and open-source model management tools: the case of PTC… 21

PtcimModel

+allContentsFromModel(): Collection<PtcimObject>
+deleteElementInModel(instance: PtcimObject): boolean
+getAllOfKindFromModel(kind: String): Collection<PtcimObject>
+getAllOfTypeFromModel(kind: String): Collection<PtcimObject>
+getElementById(id: String): PtcimObject
+getElementId(instance: PtcimObject): String
+createInstance(type: String, params: Collection<Object>): PtcimObject

PtcimObject
-id: String
+getType(): String
+equals(obj: Object): boolean
+getProperty(name: String): Object
+setProperty(name: String, value: Object)

PtcimProperty
-name: String
-isReadOnly: Boolean
-isMultiple: Boolean
-isAssociation: Boolean
-isPublic: Boolean

PtcimPropertyGetter

+invoke(object: Object, property: String): PtcimObject

PtcimPropertySetter
-comProperty: PtcimProperty
+invoke(value: Object)

PtcimPropertyManager

+getPtcProperty(obj: PtcimObject, property: String): PtcimProperty
+normalise(propertyName: String): String

AbstractPropertySetter AbstractPropertyGetter

+propertyManager1

«interface»
IPropertyGetter+getter

1

«interface»
IModel«interface»

IPropertySetter +setter

1

+elements

0..*

+properties

0..*

Fig. 4 Class diagram of the IM-Epsilon driver

rent implementation by the com4j [16] library - we discuss
the rationale behind this decision in Sect. 3.4.

By using the IM-Epsilon bridge, developers are able to
query the IM models, access and modify all model element
properties exposed through the COM interface using any of
the model management languages that are part of the Epsilon
suite. Examples of properties include the name, type and last
change date attributes, or the child object, scoping iItem and
stereotype associations. A comprehensive list of supported
types, attributes and references (i.e. IM’s metamodel) can be
found in the IM documentation [25].

Figure 4 shows a class diagramof the driver. EveryEpsilon
driver consists of three main classes that implement the
IModel, IPropertyGetter and IPropertySetter interfaces. For
the PTC IM driver presented in this work, these are the
PtcimModel, PtcimPropertyGetter and PtcimPropertySetter
classes (see Fig. 4), respectively. The PtcimModel class pro-
vides (among other) implementations of functions that create
new elements, delete existing elements, return all the ele-
ments in a model, return all elements of a specific type, etc.
Themost importantmethods in thePtcimModel class are pre-
sented below. For each of them, a mapping to the equivalent
IM’s COM interface method is given.

– getAllOfTypeFromModel(type : String) : PtcimObject[]:
This method returns all the elements of the given type.

– getAllOfKindFromModel(kind : String) : PtcimObject[]:
Returns all the elements of the type including all the ele-

ments whose type extends the given type. However, IM
does not have a notion of meta-type hierarchy; thus, this
method delegates its functionality to getAllOfTypeFrom-
Model(…).

– allContentsFromModel() :PtcimObject[]:Returns all the
elements in the model.

– getElementById(id : String) : PtcimObject: This method
returns the element that has a specific id.

– createInstance(type : String) : PtcimObject: Creates new
elements of a specified type. This is realised by calling
the Add(type) method in IM COM.

– deleteElementInModel(element : PtcimObject): Deleted
elements from the model. By invoking this method, IM
also automatically removes all the elements that are con-
nected to this element via associations that are flagged
with the Propagate Delete value set to true.

A PtcimModel consists of a number of PtcimObjects
which are proxies for the elements of the model and which
provide the following methods.

– getId() : String: This method returns the unique id of the
element.

– getType() : String: Returns the type of the element.
– getProperty(name : String) : Object: This method retrie-

ves the value of a property. If the property is an attribute,
this is achieved by invoking the Property(arg) method,
else the Items(property) or Item(property) are invoked

123

22 A. Zolotas et al.

depending on whether the association is multi-valued or
single-valued.

– setProperty(name : String, value : Object): This method
sets the value of a model element property by invoking
the Add(value) method of the COMAPI if the property is
an association or the PropertySet(value) method in case
the property is an attribute.

Each model element has a number of properties which
are represented as instances of the PtcimProperty class. As
discussed above, each property in IM has four boolean flags
that characterise it (e.g. isAssociation, etc.). These flags are
retrieved by a method in the PtcimPropertyManager class
which is described below.

– getPtcProperty(obj, property): This method invokes the
Property(‘All Property Descriptors’) method of the IM
automation interface. The later returns a string containing
the four boolean values, separated by the new line char-
acter (\n), which are used to create a newPtcimProperty.

A getter and a setter are instantiated for each PtcimModel
and are attached to it. They include methods for getting and
setting the value(s) of model element properties, which del-
egate to the getProperty(…) and setProperty(…) methods of
PtcimObject discussed above.

Finally, all property names are normalised using the
normalise(propertyName : String) method of the Ptcim-
PropertyManager class (see Fig. 4). This method turns all
characters to lower case and strips all white space. As a result,
the user can refer to attributes and associations using different
aliases without the need of paying attention to capitalisation
and word separation. For example, developers can access the
Child Object association using any of the following aliases:
childObject, childobject, ChildObject, child object, etc.

3.4 Java/Windows COM integration

IM exposes all the functionality available to the native
scripting facility (using VB), through the Windows Com-
ponent Object Model (Windows COM). As Epsilon is
written in Java, the bridge should also be built using Java.
AlthoughCOMallowsdirect interactionwithmanyprogram-
ming languages, calling COM objects using Java cannot be
achieved natively. For that reason, a number of Java/Windows
COM interoperability libraries were developed, including
Jawin [31], com4j [16] and Jacob [1].

In our previous work [34], we used Jawin as the Java/-
COM bridge. IM is a 32-bit Windows application and Jawin,
which (only) supports 32-bit execution environments, was
a good candidate. As described in Sect. 3.1, Epsilon sup-
ports the execution of model management scripts on models
that are based on a variety of modelling technologies (e.g.

Table 1 Time (in seconds) each library needed to execute a set of simple
commands 10,000 to IM through COM

Library 32-bit (first/second repeat) 64-bit (first/second repeat)

Com4j 296/304s 311/322s

Jacob 304/312s 315/322s

Jawin 285/297s –

EMF, CSV, Spreadsheets, etc.). It is often the case that more
than one of the supported modelling technologies are used
in the same Epsilon script, as shown in the case study pre-
sented in Sect. 5.2, where SysML models are transformed
to Simulink models and the latter are simulated using values
taken from an Excel spreadsheets. Some of the supported
modelling technologies (e.g. Simulink) only support 64-bit
execution environments, thus combining 64-bit-only bridges
with the 32-bit-only PTC IM bridge was not possible.

In order to overcome this problem, we investigated the
possibility of using a 32/64-bit Java/COM bridge instead.
Com4j and Jacob are two libraries that support both 32
and 64-bit execution environments. However, a direct con-
nection of 64-bit environments with PTC IM’s 32-bit-only
COM interface is not possible. Either a 64-bit DLL should
be provided instead (but this requires PTC to develop it) or a
workaround of using a surrogate 64-bit COM interface can be
used instead. The later will be visible to the 64-bit Java envi-
ronments andwill delegate to the 32-bit provided by PTC IM.
This can be done by asking through the OLE/COM Object
Viewer the default dllhost to act as the needed surrogate for
the 32-bit IM interface. We opted for this second solution.

In order to decide which library we should use for re-
implementing the driver, we ran a small-scale experiment.
We invoked a set of eleven simple commands to IM through
the COM interface using each of the libraries, 10,000 times.
We executed the experiment twice for each of the 32 and 64-
bit variations. Table 1 summarises the execution times for
Jacob and com4J, while the 32-bit times for Jawin are also
presented for reference.

As one can see from the results, there are no notable dif-
ferences between the libraries. We decided to use com4j as
it was slightly faster in 32-bit environments than Jacob.

3.5 Caching

In order to be able to offer comparable performance to the
built-in scripting interface, the driver provides two different
caches. The first one caches the boolean flags for each prop-
erty and the second the actual value of each property. Both are
implemented as instances of the WeakHashMap data struc-
ture which allow the key to be garbage-collected when there
is no reference to it outside the map, making them useful
for the implementation of caches. Three new classes are cre-

123

Bridging proprietary modelling and open-source model management tools: the case of PTC… 23

PtcimModel
-propertiesValuesCache: WeakHashMap<String, Object>
-propertiesValuesCacheEnabled: Boolean
+setPropertiesValuesCacheEnabled(flag: boolean)

PtcimCachedPropertyGetter

+invoke(obj: Object, property: String): PtcimObject

PtcimCachedPropertySetter

+invoke(value: Object)

PtcimCachedPropertyManager
+elementPropertiesNamesCache: WeakHashMap<String, PtcimProperty>
+getPTCProperty(obj: PtcimObject, property: String): PtcimProperty

PtcimPropertyGetterPtcimPropertySetter

PtcimPropertyManager

AbstractPropertySetter AbstractPropertyGetter

+propertyManager1

«interface»
IPropertyGetter+getter

1

«interface»
IModel«interface»

IPropertySetter +setter

1

Fig. 5 Class diagram of the caches in IM-Epsilon driver

ated to implement caching. Their relationships with the other
classes described before are shown in Fig. 5 and are explained
below.

– PtcimCachedPropertyManager: The first of the caches
(i.e. elementPropertiesNamesCache) is hosted in the
PtcimCachedPropertyManagerwhich extends thePtcim-
PropertyManager class. Elements of the same type have
common properties; thus, they share the same boolean
flags. This cache maps the fully qualified name of each
property to the property’s boolean flags following a
type.propertyName→ PtcimProperty pattern. For exam-
ple, all elements of type Activity have a property called
isReentrant. The first time an element of type Activ-
ity is accessed, an entry in the map is created with
Activity.isReentrant as key. The four boolean values are
queried when creating the PtcimProperty object using
the overridden getPtcProperty(…) method. If the key
(e.g. Activity.isReentrant) exists in the cache, the boolean
values are returned. If a property of a type has not
been visited before (thus the key is not in the cache),
this method delegates to the super getPtcProperty(…)
methodwhich queries the booleanflags through theCOM
interface and stores them in the cache.

– PtcimCachedPropertyGetter: The second cache (i.e.
propertiesValuesCache), hosted in thePtcimModel class,
is used in thePtcimCachedPropertyGetterwhich extends
the PtcimPropertyGetter class. This cache stores the
actual values of the properties of each element. The key
used in this cache is constructed by concatenating the
unique id of the element and the name of the property that
is accessed. For example, the value of the name attribute
of an element with id 5eg494 is mapped using the key

5eg494.name to its value. PtcimCachedPropertyGetter
overrides the invoke(…)method ofPtcimPropertyGetter.
Every time the value of a property needs to be retrieved,
the invoke method queries the cache first. If a property
has not been accessed before (hence the key is not in
the cache), the invoke method delegates to its superclass
implementation to query the value through the COM
interface and then stores it in the cache.

– PtcimCachedPropertySetter: Caching can lead to incon-
sistencies when values of properties are changed for the
reasons explained below. Thus, value caching is optional.
When value caching is enabled, a PtcimCachedProper-
tySetter is created instead of the default PtcimProper-
tySetter. The former overrides the invoke(…) method of
its superclass. This method adds or updates the mapping
id.property → value to the values cache and then calls
its superclass method that updates the property’s value in
IM.

As mentioned above, value caching can lead to incon-
sistencies when values of properties are set as a result of
opposite references in amodel. Consider the following exam-
ple depicted in Fig. 6, the user retrieves the package in
which a class is contained via the Scoping Item relation-
ship (see Fig. 6b). The package will be stored in the values
cache. Next, the user retrieves the contents of that package
by navigating the Child Object relationship and removes the
aforementioned class from its contents (effectively remov-
ing the class from the package). The cache will be updated
(thus the Child Object relationship of the package will not
include the class). However, if now the user navigates again
the Scoping Item relationship of the class, the returned value
will be the same package (while it should now be null). This

123

24 A. Zolotas et al.

Fig. 6 Example of a value
caching failing scenario

(b)(a)

is because IM does not expose a special relationship between
the two properties (in Ecore terminology these would be
opposite references) and as such the driver fails to update
the cache on both ends consistently. As such, value caching
is only safe to use when an IMmodel is accessed in read-only
mode.

Moreover, even in read-only mode, the property values
cache—like all caches—has a memory overhead which may
not be justifiable (i.e. if the majority of property accesses
occur only once). As such, value caching is optional and
needs to be enabled/disabled by the developer according to
the nature of the model management program.

3.6 Working with stereotypes

Stereotypes in SysML (andUML) are important because they
provide themeans to extend themeaning of amodel element.
A stereotype can be used to specialise the type of an element,
for example to clarify its purpose or to change its semantics.
Additionally, a stereotype can also define additional prop-
erties for an element, referred to as tagged definitions. This
allows a model of the system to capture additional informa-
tion that can be used throughout the modelling life cycle.

Profiles are managed differently by different modelling
frameworks. Ideally, if profile A can be applied to elements
of typeClass and it defines an ‘isSerializable’ (boolean) prop-
erty, all classes to which the profile is applied should have
an additional ‘isSerializable’ attribute that can be set by the
users. Implementation wise, making the profile properties
available as attributes of the class is very difficult. The reason
is that since profiles are defined by the user, it is impossible
to foresee them and attach them to the Class implementa-
tion. Depending on the implementation, adding additional
attributes dynamically can be difficult or impossible.

A common pattern to solve the aforementioned issue is to
model applied profiles as a feature/attribute of Classes. Each
of the applied profiles is an instance of the profile definition,
and this instance holds the values of the profile attributes for
that particular Class. Figure7 presents this in practice. The
Bean stereotype is applied to Class elements (blue elements
in the diagram). The Person and Account classes (in vio-

let) have the Bean stereotype applied. The appliedStereotype
reference contains Bean stereotype instances.

The use of this pattern means that attributes provided via
stereotypes cannot be accessed directly when navigating the
SysML model. For example, to get the value of the isSeri-
alizable, the following property access (see Listing 1.2) is
necessary:

1 Class . a l l () . f i r s t () . appliedStereotypes () . selectOne(s | s .name == ”Bean
”) . isSerializable ;

Listing 1.2 Stereotype attribute access.

On the contrary, IM handles the definition of stereotypes
in a dynamic way. That is, once a stereotype is applied to an
element, the stereotype properties are directly accessible in
the class. That is, Listing1.2 can be rewritten as shown in
Listing 1.3.

1 Class . a l l () . f i r s t () . isSerializable ;

Listing 1.3 Stereotype attribute access.

Our bridge provides full support for the dynamic stereo-
type property access as implemented by IM. Consider the
following example in which pieces of MATLAB code need
to be attached to action nodes in UML activity diagrams. In
PTC IM, endusersmight decide to implement this by creating
a new stereotype (e.g. MATLAB Action) that has a property
(e.g.MATLAB code), of type text, where the MATLAB code
will be stored. Listing 1.4 shows how the MATLAB code
property defined in the MATLAB Action stereotype applied
to an UML action node can be retrieved using EOL.

1 var allActionNodes = IM!ActionNode.all();
2 var allActionNodesWithMatlabActionStereotype = allActionNodes.select(n|n.

appliedStereotypes.name.includes(”MATLAB Action”));
3 for (node in allActionNodesWithMatlabActionStereotype) {
4 (node.name + ”MATLAB code: ” + node.MATLABCode).println();
5 }

Listing 1.4 Example of EOL code that prints the content of a custom
property created through a stereotype.

123

Bridging proprietary modelling and open-source model management tools: the case of PTC… 25

Fig. 7 SysML profiles modelled
as class attributes

4 Demonstration

Epsilon scripts can be run either from pure Java applications
orwithin theEclipse IDE.2 In this section,we showhow to set
up run configurations for Epsilon programs to be executed on
IMmodels fromwithin the Eclipse IDE. Information on how
to run Epsilon scripts from Java applications can be found in
the Epsilon website.3 Following, we give two examples of
Epsilon scripts that access information in an IM model. The
examples demonstrate that IM model element properties can
be accessed directly by property name via dot navigation.
Further, the model-to-model transformation script demon-
strates that by using other EMC drivers, it is possible to use
multiple combinations of proprietary and open-source tools.
Finally, we also discuss how UML stereotypes defined in
an IM model can be accessed via the Epsilon-IM bridge.
Model management scripts can be run through a configura-
tion dialogue which is part of the driver’s user interface and
allows developers to select and configure IM models to be
used in Epsilon programs. The dialogue allows developers to
set

– the name through which the Epsilon program can refer
to the model (in case the program operates on more than
one models concurrently)

– the server that hosts the repository of interest
– the repository that holds the model of interest
– the name of the model in the repository
– whether property value caching should be enabled during
execution

– the element to be treated as the root of the model (to limit
the scope of a program to a sub-tree of the model)

2 https://www.eclipse.org, last accessed May 9, 2019.
3 https://www.eclipse.org/epsilon/examples/index.php?example=org.
eclipse.epsilon.examples.standalone, last accessed May 9, 2019.

4.1 Runningmodel management programs

Listings 1.5 and1.6 showavalidation constraint (inEVL[20])
and a fragment of a model-to-model transformation (in
ETL [18]) that can be executed against IM models. The con-
straint of Listing 1.5 checks that the names of all elements
in the IM model which are of type Class start with an upper-
case letter. In line 1, the context keyword is used to define
the elements to which the constraint applies. In line 2, we
declare that this is a soft constraint (critique), and in line 3 of
the script, the condition to be satisfied is provided following
the check keyword. If the condition is not satisfied for a par-
ticular class, a context-aware warning message is produced
in line 4.

1 context Class {
2 critique NameShouldStartWithUpperCase {
3 check : self .name. substring(0 ,1) = self .name. substring(0 ,1) .

toUpperCase()
4 message : ”The name of class ” + self .name + ” (” + self . Id + ”

) should star t with an upper−case le t te r”
5 }
6 }

Listing 1.5 Example of an EVL critique which checks if the name of a
class starts with upper-case letter

It is important to note that the bridge implementation sup-
ports not only reading from models created in PTC IM, but
also writing to them. The user can create new elements and
set or change the values of their properties. This is achieved
by using the CreateInstance() and SetProperty() methods of
the bridge which delegate to the appropriate PTC IM COM
methods as described in Sect. 3.3.

One of the distinguishing features of Epsilon is that it is
metamodelling technology agnostic and thus its languages
can manage different types of models. Listing 1.6 demon-
strates a fragment of a model-to-model transformation that
produces a Papyrus [21] UML model from an IM model.
The Package2Package rule in line 1 transforms all packages
in the IM model to packages in the Eclipse UML model. In
particular, it copies across the name of the IM package (line

123

https://www.eclipse.org
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.standalone
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.standalone

26 A. Zolotas et al.

1 rule Package2Package
2 transform s : IM!Package
3 to t : UML!Package {
4
5 t.name = s.name;
6 t.nestedPackage ::= s.scopedPackage;
7 t.ownedType ::= s.packageItem.
8 select(pi|pi.isTypeOf(IM!Class));
9 }
10
11 rule Class2Class
12 transform s : IM!Class
13 to t : UML!Class {
14
15 t.name = s.name;
16 }

Listing 1.6 Fragment of an ETL M2M transformation that produces
Eclipse/Papyrus UML models from IM models.

5), it recursively transforms the IM package’s sub-packages
(line 6), and then, it populates the owned types of the UML
package with the transformed equivalents of classes under
the IM package (lines 7 and 8). The Class2Class rule in line
12 transforms IM classes to Eclipse UML classes and copies
names across.

5 Evaluation

Having presented the architecture and implementation of the
Epsilon-IM driver and how to use it within the Eclipse IDE,
in this section we present an evaluation of the IM-Epsilon
bridge from two perspectives. The first is an experimental
setup to evaluate the performance of the driver against the
native Visual Basic support in executing model management
tasks on themodels stored in PTC IM. The second, which is a
new evaluation added to this extended version of the original
work presented in [34], is an applicability setup to evaluate
the ability to use the driver in a real-world case scenario. The
experimental setup is based on a set of validation constraints
that capture some of theRolls-Royce internalmodelling stan-
dards. The real-world case study describes how an existing
manual process can be automated by usingEpsilon languages
and a combination of EMC drivers.

5.1 Performance experiment

The objective of the experiment is to compare the perfor-
mance, measured as execution time, of a validation script
written in Epsilon’s EVL (and run from Eclipse) against
equivalent constraints expressed in Visual Basic (and run
fromwithin IM). The complete EVL andVisual Basic imple-
mentations are listed in the appendix of the paper.

Table 2 The evaluated constraints

Id Description

#1 Classes’ names should start with upper-case letter

#2 Attributes’ names should start with lower-case letter

#3 Classes should not have more than seven operations

#4 Operations should not have more than seven parameters

#5 Classes must not have multiple inheritance

#6 The upper multiplicity of aggregation ends must be 1

#7a The lower bound of an association start must not be
greater than its upper bound

#7b The lower bound of an association start must not be
greater than its upper bound

#8a Numeric upper bounds of association starts must be
positive integers

#8b Numeric upper bounds of associations ends must be
positive integers

5.1.1 Experiment setup

Our experiments involved the execution of ten constraints
that look for common errors and violations of naming con-
ventions in IMmodels. Table 2 summarises these constraints.

We executed the constraints on three real models of Rolls-
Royce engine controllers constructed using IM and ranging
from 13,823 to 116,251 model elements, and on 16 smaller
example models that ship with IM. Column # Elements of
Table 3 summarises the sizes of all 19 models used for our
experiments.

Five configurations were used in total: (1) Visual Basic,
(2) EVL and the Epsilon-IM driver without caching, (3) with
both caches enabled and finally (4, 5) two experiments with
only one of the two caches enabled each time. The constraints
were executed three times on each model, and the execution
time was logged for each iteration. The Epsilon cache was
empty before each run. To avoid any overheads due towarm-
up effects on the Java and database level, the first run of each
experiment was ignored.

5.1.2 Results

Table 3 summarises the execution times4 of evaluating the
constraints on all models for all five configurations. The
models marked with an asterisk are the real-world models
constructed by Rolls-Royce. Two line graphs (see Figs. 8
and 9) present the execution times of Visual Basic and EVL
(with both caches turned on).

As illustrated in Table 3, the native Visual Basic imple-
mentation is faster than all four EVL configurations. In

4 Execution environment.Operating System:Windows 10 Pro 64-bit,
CPU: Intel Core i7-6560 @ 2.2GHz, RAM: 16GB @ 1066MHz, Disc:
Toshiba XG3 SSD (512GB).

123

Bridging proprietary modelling and open-source model management tools: the case of PTC… 27

Table 3 Execution time for different models for all five configurations

Average execution time (in seconds)

Model Name #Elements VB Epsilon
(both caches)

Epsilon
(flags cache)

Epsilon
(values cache)

Epsilon
(no cache)

Template - Small Project 21 0.024 0.066 0.072 0.064 0.068

Template - Incremental Process 32 0.037 0.082 0.082 0.088 0.088

Heart Monitor C 109 0.015 0.196 0.163 0.224 0.284

BallCpp 123 0.024 0.296 0.296 0.400 0.520

Heart Monitor Java 159 0.022 0.212 0.218 0.274 0.306

Template - Component-based Products 227 0.328 0.390 0.380 0.402 0.392

Traffic Lights 297 0.067 0.446 0.442 0.814 0.948

Distributed Ball Game MDA Example 395 0.074 0.476 0.469 1.035 1.133

VB Another Block (Tetris) Example 675 0.295 2.046 2.050 4.780 5.021

C# Another Block (Tetris) Example 695 0.301 2.098 2.119 4.607 5.144

Waste System 815 0.152 1.273 1.304 2.856 3.296

Traffic Lights - SySim 1323 0.267 1.517 1.586 4.206 5.984

Speed Controller 1405 0.442 2.143 2.264 5.946 8.191

Filling Station 1519 1.010 3.432 3.556 7.636 8.363

HSUV 2186 1.304 5.210 5.504 12.693 16.602

Search and Rescue 5956 0.965 3.886 4.083 11.418 15.450

Large Civil Aero-Engine 1 Small Model* 13,823 7.974 42.797 46.167 141.310 216.010

Large Civil Aero-Engine 2 Control SW* 90,221 65.091 410.509 489.496 851.138 1450.564

Large Civil Aero-Engine 3 Control SW* 116,251 79.721 713.034 708.492 1474.994 2243.216

particular, EVL (with both caches enabled) is up to almost
10× slower than Visual Basic for the biggest model we have
experimented with (116K model elements). This is to be
expected given that EVL execution has the overhead of cross-
ing the (expensive) Java-COM bridge every time it needs to
fetch new information from the model. Indeed, by profiling
the EVL execution we observed that the majority of the exe-
cution time (more than 90%) is consumed in the method of
the Jawin interface that invokes the COM layer of IM.

The driver configuration that uses no caching is up to five
times slower than the configuration that uses both caches.
Looking at the respective columns of Table 3, this is largely
due to the use of the first (property flags) cache as the con-
straints do not make heavy reuse of the same property values
in order to benefit substantially from the second (property
values) cache. This justifies the design decision tomake prop-
erty value caching optional, as its cost (memory overhead)
can sometimes outweigh its benefits (performance).

Figures 8 and 9 present the results of Table 3 for the Visual
Basic experiment and the Epsilon (both caches enabled con-
figuration).

5.1.3 Threats to validity

For all models, the constraints were violated 12,901 times
in total in the case of the Visual Basic and 12,887 for the

0

200

400

600

800
13

82
3

90
22

1

11
62

51

se
co

nd
s

of model elements
Visual Basic Epsilon (both caches)

Fig. 8 Execution time of the constraints using VB and Epsilon (both
caches enabled) with Rolls-Royce real models

0
1
2
3
4
5
6

21 32 10
9

12
3

15
9

22
7

29
7

39
5

67
5

69
5

81
5

13
23

14
05

15
19

21
86

59
56

se
co

nd
s

of model elements
Visual Basic Epsilon (both caches)

Fig. 9 Execution time of the constraints using VB and Epsilon (both
caches enabled) with the IM example models

123

28 A. Zolotas et al.

Fig. 10 Overview of the IM to
Simulink case study

Epsilon script. By examining the error report, we identi-
fied that 12,887 errors and warnings were identical, while
the 14 extra constraint violations in the Visual Basic imple-
mentation were on model elements whose name started with
a special character (i.e. <) or a space. The Epsilon script
treated the upper-case of this special character as the same
of the lower-case, which was not the case in Visual Basic.
These 14 additional violations do not significantly impact
the logged execution times as the properties and the values
of the elements were actually accessed to check the con-
straint conditions in both cases. However, this highlights the
risks in migrating certified applications implemented in one
technology to another, as corner cases might be overlooked.

The experiments were run three times on each model. The
first execution was ignored to avoid any overhead due to the
Enabler database and Epsilon/Java cache warm-up. We ran
a small-scale experiment on the example models provided
by the tool where we evaluated all five solutions by running
the constraints for ten iterations and we identified that the
execution time was consistent after the second (first, if one
does not take into account the warming-up run) execution.
As a result, we do not have reasons to believe that the same
would not be the case for the three remaining larger models
constructed by Rolls-Royce.

5.2 UML activity diagrams to Simulink

One important aspect of modelling is the ability to vali-
date and verify the models. In the previous experiment, we
used a model validation DSL, EVL, against the IM models
to validate if they have been built according to the project
specifications and comply to internal and external standards.
However, for verification, it is often the case that separate
activities like testing, simulation, among others, must be car-
ried out in order to determine if the system is error-free,
produces the correct outputs given a set of known inputs,
and such. Currently, IM models must be manually recreated
in Simulink in order to simulate them. In this section, we
present how Epsilon transformations can be used to auto-
mate this process. In particular,weuse three proprietaryEMC

Drivers for IM, Simulink and Excel [10]. A model-to-model
transformation written in ETL performs the IM to Simulink
transformation, while a script written in EOL performs the
simulation and validates the results. This gives the ability to
perform early validation of the functional requirements cap-
tured in the SysML model (IM) at any given level of system
definition by executing the corresponding Simulink model
against defined test cases. The proposed solution was applied
to a real-world model developed in Rolls-Royce.5

Figure 10 presents an overview of the case study. Initially,
activity diagrams in PTC IM are transformed to Simulink
models (step 1 in Fig. 10). For each of the input pins of
the activity diagram, an instantiation value is taken from the
Excel document (step 2). The simulation is run (step 3) based
on these inputs, and the results produced in the output pins
are then stored in the Excel spreadsheet and compared with
the expected results (written by the engineers) also stored in
the same file (step 4). If all the expected values are the same
with those returned, the simulation is marked as ‘PASSED’
in the spreadsheet.6 More simulations are run until all the
given input values are used. Engineers are able to compare
the returned result of the simulationwith the expected results.
A more detailed explanation of the transformation follows.

Listing 1.7 shows fragments of the M2M transformation
(step 1 in Fig. 10). We explain the transformation through
a running example. In this, the activity diagram shown in
Fig. 11 is transformed to a Simulink model presented in
Figs. 12 and 13.

In lines 1–5of the transformation, the activity diagram (i.e.
‘Protection Activity’ in Fig. 11) is transformed to a Simulink
subsystem (i.e. ‘Protection Activity’ element in Fig. 12),

5 The original names of the elements and variables appearing in the
models used in this work and provided by Rolls-Royce have been
replaced with descriptive ones.
6 In principle, the simulations could be run automatically taking inputs
fromSimulinkDataSource elements. However, in the process followed,
we use the Excel spreadsheet to take the input values as in the same
file we need to store the actual output, compare the results against the
expected output and also mark if the test has passed or failed. Hav-
ing everything stored in the same file makes debugging easier for the
engineers.

123

Bridging proprietary modelling and open-source model management tools: the case of PTC… 29

Fig. 11 Example activity diagram in IM

Fig. 12 Simulink generated
model for activity diagram of
Fig. 11

Fig. 13 The contents of the
‘Protection Activity’ subsystem
of Fig. 12

while the name is also copied (line 4). In the transforma-
tion rule presented in lines 7–14, a new MATLAB function
(e.g. ‘DetectEvent’ block in Fig. 13) is created for each UML
Action Node7 (e.g. ‘Detect Event: Detection Function’ in
Fig. 11) appearing in the activity diagram. The parent of the
ActionNode can be found by querying the Scoping Item rela-
tionship on it. This will return an activity diagram. By using
the equivalent notation (::=) in Epsilon, we can get the equiv-
alentMATLABobject that was created for this IMobject (i.e.
the Subsystem created in the previous rule). The transforma-
tion sets the parent of the newly created Function block to
this returned element. MATLAB code is stored in a stereo-

7 In SysML and PTC IM these are called SysMLCall Behaviour Action
nodes.

type for each of the action nodes. For example, the ‘Detect
Event: Detection Function’ action node has ‘Detected_Event
= Rate_Input_2 > 5’ MATLAB code stored. This code is
retrieved and stored in the attribute script of each MATLAB
Function block in line 12 (the content of the getScript() oper-
ation is omitted for reasons of brevity).

The rule in lines 16–20 create input ports for each UML
Input (e.g. ‘Rate_Input_1’ in Fig. 11) pin. The parent of each
pin is identified using again the equivalent (::=) function-
ality as explained before. In the same manner, output ports
and links between the ports are created. The transformation
rules for these are not shown here for reasons of brevity.
New Simulink elements are created in a default position on
the canvas. As a result, the elements overlap, while Simulink

123

30 A. Zolotas et al.

Fig. 14 Simulation scenarios
stored in an Excel Spreadsheet

does not offer an auto-layout function. For this reason, in line
13, we assign a position to the newly created element taking
its coordinates from the position of the equivalent element
in the PTC IM model. The getPosition() operation that we
defined takes the position of the element in PTC IM (coordi-
nates of the top-left corner) and the width and height of the
element and calculates the top-left and bottom-right coordi-
nates that are needed by Simulink. This demonstrates how
our bridge can exploit the graphical information provided by
PTC IM COM interface. Finally, links are created to connect
the output and input pins between activities in lines 32–36.
(Low-level implementation details are omitted as these are
beyond the scope of this paper.)

1 rule Activity2Subsystem
2 transform s : UML! ‘UMLAD Activity ’
3 to t : Simulink! ‘simulink / Ports & Subsystems/Subsystem’ {
4 t .name = s . ‘DictionaryItemName‘;
5 }
6
7 rule CallBehaviourAction2Function
8 transform s : UML! ‘UMLAD Action Node’
9 to t : Simulink! ‘simulink /User−Defined Functions /MATLAB Function’ {
10 t . parent ::= s . ‘ScopingItem’;
11 t .name = s . ‘DictionaryItemName’;
12 t . script = s . getScript (t) ;
13 t . position = s . getPosition () ;
14 }
15
16 rule InputPin2Inport
17 transform s : UML! ‘UMLAD Pin’
18 to t : Simulink! ‘simulink / Ports & Subsystems/ In1’ {
19 . . .
20 }
21
22 operation Any getPosition () {
23 var le f t = self . position . spl i t (” ,”) . get (0) . asInteger () /5;
24 var top = self . position . spl i t (” ,”) . get (1) . asInteger () /5;
25 var right = lef t . asInteger () + self .width . asInteger () /4;
26 var bottom = top . asInteger () + self . height . asInteger () /10;
27 return (”[” + lef t + ” ,” + top + ” ,” + right + ” ,” + bottom + ”]”

) ;
28 }

Listing 1.7 Fragment of an ETL M2M transformation that produces
Simulink models from IM models.

At this point, the generated Simulink model is executable.
However, oneneeds to create sample inputs thatwill resemble
test input data and output sinks where the results of the sim-
ulation will be stored. This is done in a post-transformation
script shown in Listing 1.8 (lines 2–13). We create one ‘Con-
stant’ input block for each of the input ports in the top-level
subsystem and one ‘ToWorkspace’ output sink for each of the

output ports. The values for the inputs in each simulation are
taken from the Excel spreadsheet (see Fig. 14—columns A–
C). Each row represents one simulation, and as such,we parse
the file line by line using the loop in lines 16–33 (see List-
ing 1.8). For each line, using the Epsilon’s Excel spreadsheet
bridge, we collect the values for each input andwe set them in
the constant inputs created in the Simulink model (lines 17–
20). We then execute the simulation (line 21). Then, in lines
22–32, the simulation results, stored in the ‘To Workspace’
variables, are moved to the appropriate Excel columns (F
and G in Fig. 14) and are compared with the expected ones
(columns D and E). If they match, the script prints the word
‘PASSED’ in the results column (H in Fig. 14), otherwise it
prints ‘FAILED’.

6 Observations and lessons learnt

This section summarises the main observations and lessons
learnt through our attempt to bridge Epsilon with IM.

Performance Despite using caching aggressively, the per-
formance of the Epsilon IM driver is still substantially
inferior (up to 10×) to that of IM’s nativeVisual Basic.While
this may not be an issue for smaller models and simplemodel
management activities, it can become disruptive as models
and model management programs grow in size and com-
plexity. This observation is consistent with our experiences
from attempting to bridge out to other modelling tools such
as MetaEdit+8 and Simulink9 in a live manner through their
APIs.

The performance difference was mostly occurred in the
communication between our bridge, built-in Java and the
COM. In our experiments, over 90% of the execution time
was spent in the commands exchange between the two tech-
nologies and not internally (i.e. in the handling of objects
and the execution of the model management commands by
Epsilon). Thus, bridging the Java/COM gap is expensive –
but not prohibitive—in terms of performance. This sheds
light on the value of open/standardmodel persistence formats
(e.g.XMI) forwhich performing support can be implemented

8 https://github.com/epsilonlabs/emc-metaedit.
9 https://github.com/epsilonlabs/emc-simulink.

123

https://github.com/epsilonlabs/emc-metaedit
https://github.com/epsilonlabs/emc-simulink

Bridging proprietary modelling and open-source model management tools: the case of PTC… 31

1 post {
2 / / Create constants for inputs
3 for (i in Sequence{1.. inports . size () }) {
4 var constant : new Simulink! ‘simulink /Sources /Constant ‘ ;
5 . . .
6 }
7
8 / / Create workspace variables to store the output
9 var myOuts : new Sequence;
10 for (i in Sequence{1.. outports . size () }) {
11 var out : new Simulink! ‘simulink /Sinks /To Workspace‘ ;
12 . . .
13 }
14
15 ”Starting Simulations” . println () ;
16 for (v in XL!Values . a l l) {
17 for (inport in inports) {
18 var simulinkConstant = Simulink!Constant . a l l . selectOne(c | c .Name.

equals(inport . ‘DictionaryItemName‘)) ;
19 simulinkConstant .Value =

getValueOfPropertyWhichNameIsOnlyKnownAtRuntime(v, inport
. ‘DictionaryItemName‘) ;

20 }
21 Simulink . simulate () ;
22 var testPassed = ”PASSED” ;
23 for (anOutport in outports) {
24 var returnValue = Simulink .getWorkspaceVariable(anOutport . ‘

DictionaryItemName‘) [0]. println () ;
25 var expectedValue =

getValueOfPropertyWhichNameIsOnlyKnownAtRuntime(v,
anOutport . ‘DictionaryItemName‘) . println () ;

26 var colName = anOutport . ‘DictionaryItemName‘;
27 v.setValueOfPropertyWhichNameIsOnlyKnownAtRuntime(v, colName,

returnValue) ;
28 i f (returnValue . asString () <> expectedValue . asString ()) {
29 testPassed = ”FAILED” ;
30 }
31 v.TestResult = testPassed ;
32 }
33 }
34 ”Finished Simulations” . println () ;
35 }

Listing 1.8 Fragment of an ETLM2M transformation that executes the
simulations on the produced Simulink models.

across different platforms. Yet, not many proprietary prod-
ucts expose the totality of the modelling concepts [6] in these
formats.

Interoperability The development of the Epsilon-IM driver
has opened a wide range of possibilities for further model-
based activities in Rolls-Royce, which were not considered
previously, including bespoke Epsilon-based transforma-
tions between IM and EMF-based models, between IM and
Simulink models (as shown in Sect. 5.2) and synchronisation
facilities between IM models and Ada source code. (The
latter can be parsed into XML using the AdaCore GNAT
toolkit.10)

Incrementality While the constraints in VB execute faster
than those in EVL, their execution time is far from negligible

10 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/
gnat_utility_programs.html#the-ada-to-xml-converter-gnat2xml.

(almost 80 s for the largest model in our experiments), which
means that re-evaluating them upon every model change to
discover problems as they are being introduced is not a real-
istic option. To provide near-instant feedback, in the future,
constraints need to be executed incrementally as demon-
strated in [8]. While this is not easy to achieve using a
general-purpose language like VB, it is straightforward to
implement using a task-specific language such as EVL or
OCL, whose engines provide support for recording property
access events [8,24]. IMprovides a built-in facility for record-
ing fine-grained model element changes, which is another
essential component for achieving performant incremental
re-execution of model management programs [24].

Usability Domain-specific languages offer an advantage
compared to general-purpose languages in terms of concise-
ness and expressive power [33]. Model management pro-
grams are noticeably more concise—and therefore arguably
easier to write and maintain—when expressed in the task-
specific languages of Epsilon compared to Visual Basic.
Thus, bridging a modelling tool, like PTC IM, with a model
management suite, helped towards the direction of increased
conciseness compared to the built-in Visual Basic solution.
For example, the same constraints used as part of the per-
formance evaluation (see Sect. 5 and Listings 1.9 and 1.10)
are expressed in 119 lines of code using EVL compared to
the 200 that the VB approach requires. In addition, although
knowledge of VB is a much less rare skill compared to the
knowledge of a DSL, like EVL, the latter due to their rela-
tively small size and the fact that they target a specific domain
are easier to learn and use. In fact, after a few days of personal
study, our collaborators were able to use various Epsilon lan-
guages with the bridge we implemented, and they were able
to develop complicated scripts after a one-day workshop. In
contrast, the bridge offers no gains in terms of the knowledge
one should have on the underlying metamodel that PTC IM
uses in order to be able towritemodelmanagement programs.
The bridge uses the same metamodel as the native solution,
thus, regardless of the language one picks (i.e. a DSL or the
built-in general-purpose language) they need to understand
the modelling tool’s structure of the stored models.

Other Despite their independent implementations and their
different model representations, IM provided a relatively
similar API to that provided by EMF. A notable difference
is that the IM API provides built-in support for retrieving all
instances of a type, whereas when using the standard EMF
interfaces, this needs to be achieved by iterating through all
the contents of a model. On the other hand, IM does not
support explicit inheritance among meta-types and does not

123

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-ada-to-xml-converter-gnat2xml
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-ada-to-xml-converter-gnat2xml

32 A. Zolotas et al.

provide metadata that allow external tools to identify pairs
of opposite properties.

From all the above, we believe that a bridging solution
could be useful in scenarios where the performance is not
an issue (e.g. scripts are run overnight, or only once, or their
execution takes a minimal amount of time). In addition, if
conciseness and expressiveness is of value and performance
is an acceptable trade-off, then bridging solutions offer some
benefits. However, we believe that the most important aspect
of such a solution is the fact that it allows the seamless
integration and exchange of information between multiple
modelling technologies (e.g. PTC IM, Simulink, Rhapsody,
etc.) as shown in the experiment presented in Sect. 5.2.

7 Related work

In order to manage models from a variety of proprietary
modelling tools, we might need a common-ground mod-
elling framework. [6] proposed the definition of a pivot
language based on UML profiles and fUML in the open-
source Papyrus project to bridge models from an arbitrary
number of proprietary tools such as Bridgepoint andRational
Software Architect. The authors discuss how the approach
removes the need for import and export facilities tailored
for each involved tool [6] although bidirectional mappings
between the pivot language and each proprietary tool are
still required. In a similar approach, all the Epsilon family of
languages (e.g. ETL [18], EVL [20]) can manipulate mod-
els or arbitrary modelling technologies, either proprietary
(e.g. IM, Simulink) or open source (e.g. EMF), as long as
there is an implementation of the Epsilon Model Connectiv-
ity (EMC) interface for the technology. Another example is
MDEForge [3], which is an extensible software-as-a-service
modelling platform that can be used to fostermodels and exe-
cute model-to-model transformations [7] although currently
only EMFmodels and the execution of ATL[30] transforma-
tions are supported.

An alternative to manipulate models managed by other
modelling tools is to use the import and export facilities
of the tools regarding common exchange modelling for-
mats such as XMI. Unfortunately, sometimes tools that
provide these import/export facilities do not fully comply
with these formats (e.g. PTCIM11 and GenMyModel12).
Sometimes, it is open-source projects such as the MATLAB
Simulink Integration Framework (MASSIF)13 that provide
these import/export facilities that the proprietary tools do not
offer.Work by [15] shows howSimulinkmodels are exported

11 https://bit.ly/2WtOOOJ.
12 https://bit.ly/2Uvsy59.
13 https://github.com/viatra/massif.

into EMF using MASSIF facilities so they can be consumed
by an open-source analysis tool.

When import/export facilities into exchange modelling
formats aremissing fromamodelling tool, developers rely on
any available API that could be used to bridge the tool with
others. As in our case study, transformations from SysML
to Simulink models have motivated several research works
such as [5,22,27]. Those three papers have used model-to-
text transformation that produce MATLAB scripts which are
used to create and populate Simulink models from SysML.
In addition, [27] proposes a way back from Simulink into
SysML through a MATLAB script that parses the Simulink
model and produces an XML model description file that
can be parsed by the SysML tool. Further differences in
their approaches are that [22] generates several MATLAB
scripts that populate different parts of the Simulink model,
while [5] proposes a UML profile to annotate the SysML
diagrams before the MATLAB code generation. In contrast,
our case study used a direct model-to-model transformation
that involved three heterogeneous models: IM, Simulink and
Excel.

The Open Services for Lifecycle Collaboration (OSLC)14

is an initiative that aims at simplifying the software tool
integration problem among proprietary tools. Built atop the
W3C Resource Description Framework (RDF) [17], Linked
Data [4], and the REST architecture, OSLC provides a set of
specifications targeted at different aspects of application and
product lifecycle management. OSLC is becoming widely
popular among proprietary tool vendors (e.g. IBM Rational
DOORS [14])who are exposing a range of services following
these specifications, and it has also been adopted by open-
source tools (e.g. [9]). The comprehensiveness of the model
information exposed by these services is at the discretion of
the service provider. PTC Integrity Modeller, as of version
8.4 (2017/08), claims to be OSLC-compliant with require-
ment and architecture management provider services.

8 Conclusions and future work

In this paper, we presented a solution that bridges a pro-
prietary modelling tool, used for modelling safety-critical
systems in Rolls-Royce, with the Epsilon open-source model
management suite. The Epsilon-IM driver enables programs
written in languages of the Epsilon platform to read andwrite
IM models in the context of a wide range of model manage-
ment activities such as model validation andmodel-to-model
and model-to-text transformation, in conjunction with arte-
facts captured using different technologies such as Simulink,
EMF and Excel spreadsheets.

14 http://open-services.net/.

123

https://bit.ly/2WtOOOJ
https://bit.ly/2Uvsy59
https://github.com/viatra/massif
http://open-services.net/

Bridging proprietary modelling and open-source model management tools: the case of PTC… 33

Our evaluation has demonstrated that the price to pay
for this flexibility and interoperability is increased execution
time, compared to the native Visual Basic scripting facilities
provided by IM.

Weare currentlyworkingon a robust and extensible imple-
mentation of incremental model management infrastructure
for Epsilon (a proof of concept has already been implemented
for EGL [24]), which will enable Epsilon to strengthen its
position as the preferred option for interacting with IMmod-
els in Rolls-Royce not only from a conciseness and openness
but also from a performance point of view.

Acknowledgements This work was partially supported by Innovate
UK and the UK aerospace industry through the SECT-AIR project, the
Mexican National Council for Science and Technology (CONACyT)
under Grant No.: 602430/472773 and the Engineering and Physical
Sciences Research Council (EPSRC) through the National Productiv-
ity Investment Fund in partnership with Rolls-Royce under Grant No.:
EP/R512230/1.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

Listing 1.9 presents the EVL implementation of the evalua-
tion constraints of Section 5, and Listing 1.10 presents the
equivalent implementations in Visual Basic.

1 context Class {
2 critique NameShouldStartWithUpperCase {
3 check : self.name.substring (0,1) =

self.name.substring (0,1).
toUpperCase ()

4 message : "The name of class " +
self.name + " (" + self.Id + ")
should start with an upper -case
letter. [#1]"

5 }
6 }
7
8 context Attribute {
9 critique NameShouldNotStartWithUpperCase

{
10 check : self.name.substring (0,1) =

self.name.substring (0,1).
toLowerCase ()

11 message : "The name of attribute " +
self.name + " (" + self.Id + ")
should not start with an upper -

case letter. [#2]"
12 }
13 }
14
15 context Class {
16 critique

OperationsShouldeBeLessThanSeven {
17 check : self.‘operation ‘.size <= 7
18 message : "Class " + self.name + "

(" + self.Id + ") has more than
7 operations. [#3]"

19 }
20 }
21

22 context Operation {
23 critique

OperationsShouldHaveLessThanSeven
24 Parameters {
25 check : self.parameter.size <= 7
26 message : "Operation " + self.name +

" (" + self.Id + ") has more
than 7 parameters. [#4]"

27 }
28 }
29
30 context Class {
31 constraint

MultipleInheritanceIsNotAllowed {
32 check : self.superclass.size - self.

superclass.select(i|i.
isInterface.equals ("TRUE")).size
() < 1

33 message : "Class " + self.name + "
(" + self.Id + ") has multiple
inheritance. [#5]"

34 }
35 }
36
37 context Association {
38 constraint

AggregateStartMultiplicityShould
39 BeAlwaysOne {
40 check {
41 if (self.aggregate.equals ("Start

") and (not self.
EndMultiplicityUML.equals
("1"))) {

42 return false;
43 }
44 return true;
45 }
46 message : "Aggregation " + self.name

+ " (" + self.Id + ") has
multiplicity different than 1.
[#6]"

47 }
48 }
49
50 context Association {
51 constraint

LowerBoundShouldBeSmallerThanUpper
52 BoundStart {
53 check {
54 var startMultiplicity = self.

startMultiplicityUML;
55 if (startMultiplicity.matches

("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

56 var lowerBound =
startMultiplicity.split
("\\.{2}").get(0);

57 var upperBound =
startMultiplicity.split
("\\.{2}").get(1);

58 if (lowerBound.asInteger () >
upperBound.asInteger ())
{

59 return false;
60 }
61 }
62 return true;
63 }
64 message : "Lower bound is bigger

than upper bound in the start of
association " + self.name + "

(" + self.Id + "). [#7a]"
65 }
66 }

64
65 context Association {
66 constraint

LowerBoundShouldBeSmallerThanUpper
67 BoundEnd {
68 check {

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

34 A. Zolotas et al.

69 var endMultiplicity = self.
endMultiplicityUML;

70 if (endMultiplicity.matches
("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

71 var lowerBound =
endMultiplicity.split
("\\.{2}").get(0);

72 var upperBound =
endMultiplicity.split
("\\.{2}").get(1);

73 if (lowerBound.asInteger ()
> upperBound.asInteger
()) {

74 return false;
75 }
76 }
77 return true;
78 }
79 message : "Lower bound is bigger

than upper bound in the end of
association " + self.name + "
(" + self.Id + "). [#7b]"

80 }
81 }
82
83 context Association {
84 constraint

UpperBoundShouldBePositiveStart {
85 check {
86 var startMultiplicity = self.

startMultiplicityUML;
87 if (startMultiplicity.matches

("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

88 var upperBound =
startMultiplicity.split
("\\.{2}").get(1);

89 if (upperBound.asInteger ()
<= 0) {

90 return false;
91 }
92 }
93 return true;
94 }
95 message : "Upper bound in the start

of association " + self.name +
" (" + self.Id + ") should be

a positive integer. [#8a]"
96 }
97 }
98
99 context Association {

100 constraint
UpperBoundShouldBePositiveEnd {

101 check {
102 var endMultiplicity = self.

endMultiplicityUML;
103 if (endMultiplicity.matches

("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

104 var upperBound =
endMultiplicity.split
("\\.{2}").get(1);

105 if (upperBound.asInteger ()
<= 0) {

106 return false;
107 }
108 }
109 return true;
110 }
111 message : "Upper bound in the end

of association " + self.name +
" (" + self.Id + ") should be a
positive integer. [#8b]"

112 }
113 }

Listing 1.9 Evaluation constraints implemented in EVL

1 Private Function CheckConstraint1(dictionary
As Object)

2 Dim errorBuilder As New StringBuilder
3 Dim c
4 Dim Number As Integer
5 Dim classes = dictionary.Items("Class")
6 Do While classes.MoreItems
7 c = classes.NextItem
8 Dim cName = c.Property("Name")
9 If ((Not Integer.TryParse(cName.

Substring(0, 1), Number)) And (
Not Char.IsUpper(cName , 0)))
Then

10 errorBuilder.AppendLine("[VB],
Class " + cName + " (" + c.
Property("Id") + ") does not
start with uppercase .,[#1]"

)
11 numberOfTotalErrors += 1
12 End If
13 Loop
14 Return errorBuilder.ToString
15 End Function
16
17 Private Function CheckConstraint2(dictionary

As Object)
18 Dim errorBuilder As New StringBuilder
19 Dim a
20 Dim Number As Integer
21 Dim attributes = dictionary.Items("

Attribute")
22 Do While attributes.MoreItems
23 a = attributes.NextItem
24 Dim aName = a.Property("Name")
25 If ((Not Integer.TryParse(aName.

Substring(0, 1), Number)) And (
Char.IsUpper(aName , 0))) Then

26 errorBuilder.AppendLine("[VB],
Attribute " + aName + " (" +
a.Property("Id") + ")

should not start with
uppercase . ,[#2]")

27 numberOfTotalErrors += 1
28 End If
29 Loop
30 Return errorBuilder.ToString
31 End Function
32
33 Private Function CheckConstraint3(dictionary

As Object)
34 Dim errorBuilder As New StringBuilder
35 Dim c
36 Dim classes = dictionary.Items("Class")
37 Do While classes.MoreItems
38 c = classes.NextItem
39 Dim cName = c.Property("Name")
40 If (c.ItemCount("Operation") > 7)

Then
41 errorBuilder.AppendLine("[VB],

Class " + cName + " (" + c.
Property("Id") + ") has more
than 7 operations . ,[#3]")

42 numberOfTotalErrors += 1
43 End If
44 Loop
45 Return errorBuilder.ToString
46 End Function
47
48 Private Function CheckConstraint4(dictionary

As Object)
49 Dim errorBuilder As New StringBuilder
50 Dim o
51 Dim operations = dictionary.Items("

Operation")
52 Do While operations.MoreItems
53 o = operations.NextItem
54 Dim oName = o.Property("Name")
55 If (o.ItemCount("Parameter") > 7)

Then
56 errorBuilder.AppendLine("[VB],

Operation " + oName + " (" +
o.Property("Id") + ") has

123

Bridging proprietary modelling and open-source model management tools: the case of PTC… 35

more than 7 parameters .,[#4]
")

57 numberOfTotalErrors += 1
58 End If
59 Loop
60 Return errorBuilder.ToString
61 End Function
62
63 Private Function CheckConstraint5(dictionary

As Object)
64 Dim errorBuilder As New StringBuilder
65 Dim c
66 Dim classes = dictionary.Items("Class")
67 Do While classes.MoreItems
68 c = classes.NextItem
69 Dim cName = c.Property("Name")
70 Dim superClasses = c.Items("

SuperClass")
71 ’Dim numOfSuperClasses = c.ItemCount

(" SuperClass ")
72 Dim numOfNonInterfaces = 0
73 Dim s
74 Do While superClasses.MoreItems
75 s = superClasses.NextItem
76 If (s.Property("IsInterface") =

"FALSE") Then
77 numOfNonInterfaces += 1
78 End If
79 Loop
80 If (numOfNonInterfaces > 1) Then

81 errorBuilder.AppendLine("[VB],
Class " + cName + " (" + c.
Property("Id") + ") has
multiple inheritance . ,[#6]")

82 numberOfTotalErrors += 1
83 End If
84 Loop
85 Return errorBuilder.ToString
86 End Function
87
88 Private Function CheckConstraint6(dictionary

As Object)
89 Dim errorBuilder As New StringBuilder
90 Dim a
91 Dim associations = dictionary.Items("

Association")
92 Do While associations.MoreItems
93 a = associations.NextItem
94 Dim aName = a.Property("Name")
95 If (a.Property("Aggregate") = "Start

") Then
96 If (a.Property("

EndMultiplicityUML") <> "1")
Then

97 errorBuilder.AppendLine("[VB
],Aggregation " + aName
+ " (" + a.Property("Id"
) + ") has multiplicity
different than 1. ,[#7]")

98 numberOfTotalErrors += 1
99 End If

100 End If
101 Loop
102 Return errorBuilder.ToString
103 End Function
104
105 Private Function CheckConstraint7a(

dictionary As Object)
106 Dim errorBuilder As New StringBuilder
107 Dim a
108 Dim associations = dictionary.Items("

Association")
109 Do While associations.MoreItems
110 a = associations.NextItem
111 Dim aName = a.Property("Name")
112 Dim startMultiplicity = a.Property("

StartMultiplicityUML")
113 If (Regex.IsMatch(startMultiplicity ,

"(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

114 Dim splitMultiplicity =
startMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

115 Dim lowerBound =
splitMultiplicity (0)

116 Dim upperBound =
splitMultiplicity (1)

117 If (lowerBound > upperBound)
Then

118 errorBuilder.AppendLine("[VB
],Lower bound is bigger
than upper bound in the
start of association " +
aName + " (" + a.

Property("Id") + ").,[#8
a]")

119 numberOfTotalErrors += 1
120 End If
121 End If
122 Loop
123 Return errorBuilder.ToString
124 End Function
125
126 Private Function CheckConstraint7b(

dictionary As Object)
127 Dim errorBuilder As New StringBuilder
128 Dim a
129 Dim associations = dictionary.Items("

Association")
130 Do While associations.MoreItems
131 a = associations.NextItem
132 Dim aName = a.Property("Name")
133 Dim endMultiplicity = a.Property("

EndMultiplicityUML")
134 If (Regex.IsMatch(endMultiplicity , "

(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

135 Dim splitMultiplicity =
endMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

136 Dim lowerBound =
splitMultiplicity (0)

137 Dim upperBound =
splitMultiplicity (1)

138 If (lowerBound > upperBound)
Then

139 errorBuilder.AppendLine("[VB
],Lower bound is bigger
than upper bound in the
end of association " +
aName + " (" + a.
Property("Id") + ").,[#8
b]")

140 numberOfTotalErrors += 1
141 End If
142 End If
143 Loop
144 Return errorBuilder.ToString
145 End Function
146
147 Private Function CheckConstraint8a(

dictionary As Object)
148 Dim errorBuilder As New StringBuilder
149 Dim a
150 Dim associations = dictionary.Items("

Association")
151 Do While associations.MoreItems
152 a = associations.NextItem
153 Dim aName = a.Property("Name")
154 Dim startMultiplicity = a.Property("

StartMultiplicityUML")
155 If (Regex.IsMatch(startMultiplicity ,

"(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

156 Dim splitMultiplicity =
startMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

157 Dim upperBound =
splitMultiplicity (1)

123

36 A. Zolotas et al.

158 If (upperBound <= 0) Then
159 errorBuilder.AppendLine("[VB

],Upper bound in the
start of association " +
aName + " (" + a.

Property("Id") + ") must
be a positive integer

.,[#9a]")
160 numberOfTotalErrors += 1
161 End If
162 End If
163 Loop
164 Return errorBuilder.ToString
165 End Function
166
167 Private Function CheckConstraint8b(

dictionary As Object)
168 Dim errorBuilder As New StringBuilder
169 Dim a
170 Dim associations = dictionary.Items("

Association")
171 Do While associations.MoreItems
172 a = associations.NextItem
173 Dim aName = a.Property("Name")
174 Dim endMultiplicity = a.Property("

EndMultiplicityUML")
175 If (Regex.IsMatch(endMultiplicity , "

(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

176 Dim splitMultiplicity =
endMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

177 Dim upperBound =
splitMultiplicity (1)

178 If (upperBound <= 0) Then
179 errorBuilder.AppendLine("[VB

],Upper bound in the end
of association " +

aName + " (" + a.
Property("Id") + ") must
be a positive integer

.,[#9b]")
180 numberOfTotalErrors += 1
181 End If
182 End If
183 Loop
184 Return errorBuilder.ToString
185 End Function

Listing 1.10 Evaluation constraints implemented in Visual Basic

References

1. Adler, D.: The JACOB project: a JAva-COM bridge (2004). http://
danadler.com/jacob/

2. Barnes, J.: High integrity Ada: the SPARK approach. Addison-
Wesley Professional, Boston (1997)

3. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L.,
Pierantonio, A.: MDEForge: an extensible web-based modeling
platform. CEUR Work. Proc. 1242(619583), 66–75 (2014)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far.
Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

5. Chabibi, B.,Douche,A.,Anwar,A.,Nassar,M.: IntegratingSysML
with simulation environments (Simulink) by model transformation
approach. In: Proceedings—25th IEEE International Conference
on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, WETICE 2016, pp. 148–150 (2016)

6. Cucchiella, S., Cicchetti, A., Ciccozzi, F.: An open-source pivot
language for proprietary tool-chaining. In: Proceedings—18th
IEEE International Conference and Workshops on Engineering of
Computer-Based Systems, ECBS 2011, pp. 241–250 (2011)

7. Di Rocco, J., Di Ruscio, D., Pierantonio, A., Cuadrado, J.S., De
Lara, J., Guerra, E.: Using ATL transformation services in the
MDEForge collaborative modeling platform. Lect. Notes Comput.
Sci. 9765, 70–78 (2016)

8. Egyed, A.: Instant consistency checking for the UML. In: Proceed-
ings of the 28th International Conference on Software Engineering,
pp. 381–390. ICSE ’06, ACM, New York, NY, USA (2006)

9. El-Khoury, J., Ekelin, C., Ekholm, C.: Supporting the linked data
approach to maintain coherence across rich EMF models. Lecture
Notes in Computer Science, vol. 7949, pp. 36–47. Springer, Berlin
(2016)

10. Francis, M., Kolovos, D.S., Matragkas, N., Paige, R.F.: Adding
spreadsheets to the MDE toolkit. In: International Conference on
Model Driven Engineering Languages and Systems, pp. 35–51.
Springer (2013)

11. Friedenthal, S.,Moore, A., Steiner, R.: A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, Burlington
(2014)

12. FUJITSU Enabling Software Technology GmbH: Enabler Admin-
istration, Release 7.0 Service Pack 1 (2006)

13. IBM: IBM—Rational Rhapsody family. Online (2017). http://
www-03.ibm.com/software/products/en/ratirhapfami

14. IBM: Rational DOORS. Online (2017). http://www-03.ibm.com/
software/products/en/ratidoor

15. Iyenghar, P., Wessels, S., Noyer, A., Pulvermueller, E., West-
erkamp, C.: A novel approach towards model-driven reliability
analysis of Simulink models. In: IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA 2016-
Novem(d), pp. 1–6 (2016)

16. Kawaguchi, K.: com4j - Type-safe Java/COMbridge (2014). http://
com4j.kohsuke.org/

17. Klyne, G., Carroll, J.J.: Resource description framework (RDF):
concepts and abstract syntax (2006)

18. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object lan-
guage (EOL). In: Rensink, A., Warmer, J. (eds.) Model Driven
Architecture – Foundations and Applications. ECMDA-FA 2006.
Lecture Notes in Computer Science, vol. 4066, pp. 128–142.
Springer, Berlin, Heidelberg (2006)

19. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object lan-
guage (EOL). In: Model Driven Architecture–Foundations and
Applications, pp. 128–142. Springer, Berlin (2006)

20. Kolovos, D.S., Paige, R.F., Polack, F.A.: On the evolution of OCL
for capturing structural constraints in modelling languages. In:
Abrial, J.R., Glässer, U. (eds.) Rigorous Methods for Software
Construction and Analysis. Lecture Notes in Computer Science,
vol. 5115, pp. 204–218. Springer, Berlin, Heidelberg (2009)

21. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S.,
Tessier, P., Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus
UML:Anopen source toolset forMDA. In: Proceedings of the Fifth
European Conference on Model-Driven Architecture Foundations
and Applications (ECMDA-FA 2009), pp. 1–4 (2009)

22. Natale, M.D., Chirico, F.: An MDA approach for the generation of
communication adapters integrating SWand FWcomponents from
Simulink. Model Driv. Eng. Lang. Syst. 8767, 353–369 (2014)

23. NoMagic Inc.: MagicDraw. Online (2017). https://www.nomagic.
com/products/magicdraw

24. Ogunyomi, B., Rose, L.M., Kolovos, D.S.: Property Access Traces
for Source Incremental Model-to-Text Transformation, pp. 187–
202. Springer, Cham (2015)

25. PTC: PTC Integrity Modeller. Online (2017). https://www.
ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-
Modeler-Data-Sheet.pdf

26. PTC Inc.: PTC Integrity Modeler Automation Interface User’s
Guide Version 8.2 (2015)

27. Sindico, A., Di Natale, M., Panci, G.: Integrating SysML with
Simulink using open-source model transformations. SIMULTECH

123

http://danadler.com/jacob/
http://danadler.com/jacob/
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoor
http://com4j.kohsuke.org/
http://com4j.kohsuke.org/
https://www.nomagic.com/products/magicdraw
https://www.nomagic.com/products/magicdraw
https://www.ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Data-Sheet.pdf
https://www.ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Data-Sheet.pdf
https://www.ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Data-Sheet.pdf

Bridging proprietary modelling and open-source model management tools: the case of PTC… 37

2011—Proceedings of 1st International Conference on Simulation
and Modeling Methodologies, Technologies and Applications, pp.
45–56 (2011)

28. Sparx Systems Pty Ltd.: Enterprise Architect (2019). https://
sparxsystems.com/products/ea/

29. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
Eclipse Modeling Framework. Pearson Education, London (2008)

30. The Eclipse Foundation: The ATLAS Transformation Language
Project. https://www.eclipse.org/atl/

31. The Jawin Project: Jawin—a Java/Win32 interoperability project.
Online (2005). http://jawinproject.sourceforge.net/

32. The MathWorks Inc.: Simulation and model-based design. https://
www.mathworks.com/products/simulink.html

33. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages:
an annotated bibliography. ACMSigplan Not. 35(6), 26–36 (2000)

34. Zolotas, A., Rodriguez, H.H., Kolovos, D.S., Paige, R.F., Hutches-
son, S.: Bridging proprietary modelling and open-source model
management tools: the case of PTC integrity modeller and epsilon.
In: 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 237–
247. IEEE (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Athanasios Zolotas is a Research
Fellow at the Computer Science
Department of University of York,
UK. Athanasios received his EngD
in Large-Scale Complex IT Sys-
tems from the University of York
in 2017. His research interests are
in model-driven engineering, big
data analytics, safety critical sys-
tems and requirements engineer-
ing while he is collaborating with
leading companies in the aero-
space and automotive domain such
as Rolls-Royce and Vollskwagen.

Horacio Hoyos Rodriguez is a
Research Associate at the Uni-
versity of York, where he cur-
rently researches on incremental
execution of model management
languages. His main interests are
model management languages and
model persistence technologies.

Dr. Stuart Hutchesson is Senior
Software Specialist in the Control
Systems division of Rolls-Royce.
He has over 30 years’ experience
in the development of real-time
embedded software for safety-
critical systems, primarily FADEC
systems for civil aerospace gas-
turbine applications. Stuart’s cur-
rent interests include the use of
model-based techniques for the
specification, generation and ver-
ification of systems and software,
and in the use of Product Line
techniques to develop high-integrity

applications. Stuart was a member of the working group that produced
DO-331/ED-218 (the Model-Based Supplement to DO-178C/ED-
12C). He is a Chartered Engineer and Fellow of both the BCS and IET.

Beatriz Sanchez Pina is a PhD
candidate at the Department of
Computer Science of the Univer-
sity of York where she received
an MSc in Software Engineering
in 2017. Her main research focus
is on Model-Driven Engineering,
Workflows and Traceability. She
has been a contributor of the
Eclipse Foundation Epsilon project
since 2017, in particular, on its
integration with the MATLAB
Simulink and Stateflow toolboxes.

Alan Grigg graduated in Math-
ematics at Thames Polytechnic
(now University of Greenwich) in
1985. After a spell in BAE Sys-
tems working on Integrated Mod-
ular Avionics (IMA) standardiza-
tion programmes, he undertook
a PhD at University of York to
research timing analysis for dis-
tributed real-time systems which
he completed in 2002 entitled
’Reservation-based Timing Anal-
ysis’. He then worked as part of
the BAE Systems Hawk Advanced
Jet Trainer software development

team to pursue the first project deployment of IMA. He then spent
6 years in the BAE Systems Engineering Innovation Centre at
Loughborough University working on collaborative industrial/aca-
demic research into novel system and software architectures for avion-
ics. In 2012, he joined Rolls-Royce Control Systems to work on
Model-Based Systems Engineering process improvements for Engine
Control Systems.

123

https://sparxsystems.com/products/ea/
https://sparxsystems.com/products/ea/
https://www.eclipse.org/atl/
http://jawinproject.sourceforge.net/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

38 A. Zolotas et al.

Mole Li received the MSc degree
from Loughborough University in
2013. Currently, he is finishing
the Ph.D. degree at Loughborough
University. His research is in the
integration of Software Product
Line Engineering with Model-
based Systems Engineering. He
is a control systems engineer at
Rolls-Royce where he is currently
working on Model Based Sys-
tems Engineering (MBSE) pro-
cesses, Co-simulation and Model
Based Safety Engineering research
for Engine Control Systems. Mr.

Li is a member of the IEEE, OMG and INCOSE.

Dimitris S. Kolovos is a Profes-
sor of Software Engineering in the
Department of Computer Science
at the University of York, where
he researches and teaches auto-
mated and model-based software
engineering. He is also an Eclipse
Foundation committer, leading the
development of the open-source
Epsilon model-based software
engineering platform, and an asso-
ciate editor of the IET Software
journal. Prof. Kolovos has co-
authored more than 150 peer-
reviewed papers and his research

has been supported by the European Commission, UK’s Engineering
and Physical Sciences Research Council (EPSRC), InnovateUK and
by companies such as Rolls-Royce and IBM.

Richard F. Paige is a Professor in
the Department of Computing and
Software at McMaster University,
Hamilton, Canada, and holds a
part-time appointment at the Uni-
versity of York, UK. His research
interests are in modelling, model
transformation, model validation,
open-source software and safety-
critical systems. He is on the edi-
torial boards of the journals Soft-
ware and Systems Modelling,
Empirical Software Engineering
and the Journal of Object Tech-
nology. He chairs the steering com-

mittee for the STAF conference series, and is on the steering commit-
tee for the MoDELS conference.

123

	Bridging proprietary modelling and open-source model management tools: the case of PTC Integrity Modeller and Epsilon
	Abstract
	1 Introduction
	2 Background and motivation
	3 Bridging Epsilon with PTC Integrity Modeller
	3.1 Epsilon
	3.2 PTC integrity modeller
	3.3 The IM-Epsilon bridge
	3.4 Java/Windows COM integration
	3.5 Caching
	3.6 Working with stereotypes

	4 Demonstration
	4.1 Running model management programs

	5 Evaluation
	5.1 Performance experiment
	5.1.1 Experiment setup
	5.1.2 Results
	5.1.3 Threats to validity

	5.2 UML activity diagrams to Simulink

	6 Observations and lessons learnt
	7 Related work
	8 Conclusions and future work
	Acknowledgements
	Appendix
	References

