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Abstract

Human disturbance is an ongoing threat to many wildlife species, manifesting as habitat

destruction, resource overuse, or increased disease exposure, among others. With increas-

ing human: non-human primate (NHP) encounters, NHPs are increasingly susceptible to

human-introduced diseases, including those with parasitic origins. As such, epidemiology of

parasitic disease is becoming an important consideration for NHP conservation strategies.

To investigate the relationship between parasite infections and human disturbance we stud-

ied yellow baboons (Papio cynocephalus) living outside of national park boundaries in west-

ern Tanzania, collecting 135 fresh faecal samples from nine troops occupying areas with

varying levels of human disturbance. We fixed all samples in 10% formalin and later evalu-

ated parasite prevalence and abundance (of isotrichid ciliates and Strongylida). We identi-

fied seven protozoan and four helminth taxa. Taxa showed varied relationships with human

disturbance, baboon troop size and host age. In four taxa, we found a positive association

between prevalence and troop size. We also report a trend towards higher parasite preva-

lence of two taxa in less disturbed areas. To the contrary, high levels of human disturbance

predicted increased abundance of isotrichid ciliates, although no relationship was found

between disturbance and Strongylida abundance. Our results provide mixed evidence that

human disturbance is associated with NHP parasite infections, highlighting the need to con-

sider monitoring parasite infections when developing NHP conservation strategies.

Introduction

Parasites can harm host species through a variety of ways, from altering social behaviours [1]

to diminishing host physical health and consequently reducing reproductive and foraging
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success [2]. Parasite infection can further cause damage to neural tissue, reduce fitness, and

can even prompt population decline [1, 3], with some infections being fatal to their host [4, 5].

Despite this, parasitic infections in wild animals are often asymptomatic [6, 7], with many

hosts coevolving with their parasites overtime [8] and some now believed to be commensals or

even mutualists that benefit host physiological functioning, such as aiding digestion [9, 10].

The capacity of parasites to be detrimental to host health may be exacerbated in wild animals

that live in fragmented populations or in close contact to human settlements [11], through

either increased occurrence of clinical infections [12] or loss of symbiont diversity [10]. This

highlights the need to consider the association between human disturbance and parasite infec-

tions in wild animals.

Human disturbance has the potential to influence parasite infection of wildlife hosts

through multiple indirect mechanisms, such as inducing chronic stress through increased

human (predator) encounter rates, urbanisation and noise pollution [13–15], with cascading

effects resulting from immunosuppression [16]. Reduced food availability, resulting from hab-

itat disturbance, increases susceptibility to parasites by compromising host nutrition [17, 18].

Additionally, human disturbance may influence parasite infections of wild hosts through

transmission from domestic animals, with ongoing agricultural expansion, driven by growing

human food demands [19], increasing wildlife to livestock exposure [20]. Livestock proximity

has been found to correlate with increased parasite infection in a range of species [21].

Humans can also transfer pathogens to wild animals through reliance on common resources,

such as water sources, with poor human sanitation heightening this potential [22, 23]. Trans-

mission from humans is even more likely for non-human primates (NHPs) [6, 24], with their

close phylogenetic relationship resulting in numerous shared parasite taxa [21]. Expanding

human settlements and fragmentation of wildlife habitat increases human:NHP interactions

[6], and thus transmission risk, with forest fragmentation previously linked to increased gas-

trointestinal parasite infections in western chimpanzees (Pan troglodytes verus) [25], among

others.

While there are many proposed mechanisms of how human disturbance can influence

wildlife hosts, mechanisms are typically taxa specific. Papio are known to adapt to anthropo-

genic environments relatively well [26], in part due to being dietary generalists [27, 28], mean-

ing habitat disturbance is unlikely to influence parasite infections through compromised

nutritional status in these hosts. However, higher parasite richness in olive baboons (P. anubis)
has previously been linked with their foraging in anthropogenic habitats [29]. Despite being

one of the most terrestrial primates, Papio still exhibit arboreal behaviours [30], meaning tim-

ber extraction may influence host behaviour. Anthropogenically induced behavioural shifts

can increase host exposure risk to parasite infections and consequently shift transmission

dynamics, with intensity of timber extraction one factor of human disturbance previously

associated with nematode prevalence and infection risk (assessed through a specific index)

amongst red colobus (Piliocolobus tephrosceles) [31]. Additionally, through either chronic

stress or shared parasite taxa, human presence may also influence parasitic infections in Papio,

as found in lion-tailed macaques (Macaca silenus), where increased parasite prevalence and

species richness were explained by human presence [17].

Aside from human disturbance, other factors can also influence parasite transmission

dynamics. Group size is positively associated with parasite infection in some populations [32].

A variety of mechanisms are proposed for this, including increased exposure resulting from

higher animal densities [32] as well as resource competition increasing susceptibility to infec-

tion [33, 34]. Age is also associated with parasite infections, with exposure risk and susceptibil-

ity to infection influenced by both behavioural and physiological differences between juvenile

and adult hosts [35].
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For the current study, we focused on nine troops of baboons living within the Basanza For-

ests of the Uvinza district and Tongwe East and West Forest Reserves, in western Tanzania.

The gastrointestinal parasites of baboons are widely documented across Papio geographic dis-

tribution [29, 36–39]. Gastrointestinal parasites of baboons in Gombe and Mahale Mountains

National Parks (Tanzania) have previously been described, identifying nine metazoan and one

protozoan species [40]. Despite this extensive documentation of Papio parasite infections, little

research has focused on the potential impact of human disturbance on these infections. Previ-

ously, gastrointestinal symbiont richness in yellow baboons (Papio cynocephalus) showed no

variation between troops inhabiting protected and unprotected forests in central Tanzania

[10]. We compare gastrointestinal parasites of yellow baboons occupying habitat along a gradi-

ent of human disturbance in western Tanzania. We investigated troops of differing group size,

comprised of both juvenile and adult individuals. We hypothesised that habitat disturbance

would be associated with higher prevalence of parasite taxa, resulting from increased transmis-

sion risk of previously documented human: NHP shared parasites. We also predicted human

disturbance to be associated with higher parasite abundance, due to behavioural shifts and

human presence increasing parasite exposure and susceptibility, respectively.

Material and methods

Study site

We conducted sampling in Tongwe East and West Forest Reserves within the Greater Mahale

Ecosystem and Basanza Forests (Uvinza District) within the Masito-Ugalla Ecosystem, western

Tanzania. We selected the Issa Valley (-5.5, 30.54) as a low disturbance area and the outskirts

of Uvinza (-5.1, 30.39), a town of>10,000 people ca. 50 km from Issa Valley, as a high distur-

bance area (Fig 1). In total, we surveyed an area 146 km2: ca. 45 km2 near Issa Valley and ca.

101 km2 near Uvinza. Issa valley is characterised by large expanses of miombo woodland, sepa-

rated by broad valleys with steep slopes, lined with riparian forests and intermittent grasslands

[41, 42]. Uvinza hosts a sprawling town, surrounded by a similar habitat mosaic interspersed

Fig 1. Study area in western Tanzania. Visual mapping of Tongwe Forest Reserve [45] in Western Tanzania,

overlayed with GPS log of faecal collections and transect locations for nine yellow baboon troops, generated in QGIS (v

3.8). Group number is indicated by the boxed number adjacent to transect lines.

https://doi.org/10.1371/journal.pone.0262481.g001
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with small-scale agriculture and logging sites [43]. Average altitude of sample collection was

1515.5 m in Issa Valley and 1051.3 m in Uvinza, with yearly rainfall around 1000 mm in both

areas [41, 42]. Temperature ranges from 11 to 35 ˚C in Issa Valley [41] and from 20 to 30 ˚C in

Uvinza [44].

Faecal sample collection

We collected all faecal samples between April and May 2018, spanning the transitional period

between the wet (November-April) and dry (May-October) seasons, with dry months defined

as those with<60 mm of rainfall [42]. We collected 135 faecal samples of baboons from nine

troops (Table 1). One troop (group 1) was habituated and we used individual identifications to

ensure no individual was repeatedly sampled, for other troops we collected all faecal samples

within a 120 min time period, assuming the limited timespan prevented repeated sampling

[46]. We estimated group size by counting all visible individuals prior to sampling, assuming

the entire group was counted. We collected samples as soon after defecation as possible (when

baboons vacated the immediate vicinity) and stored in sealed sampling pots, with only the cen-

tral faecal matter being collected to avoid environmental contamination [37, 39]. We recorded

a GPS location for each sample and assigned baboon age categories based on size of faeces

(juvenile <2 cm faecal diameter; adult>2 cm faecal diameter) [47]. For smaller troops (<15

individuals) we sampled at least 80% of individuals and at least 50% in larger troops (>20 indi-

viduals), based on a recommended sample size and gastrointestinal parasite prevalence in olive

baboons [18, 39]. Within 180 min of initial collection and storage, we mixed each sample and

fixed ca. 3 g of faeces with 10% formalin, storing at room temperature before shipment to the

University of Veterinary Sciences, Czech Republic, for analyses.

Assessing human disturbance

Although we selected two localities with presumably low (Issa Valley) and high (Uvinza Dis-

trict) human disturbance, we still evaluated the human impact directly in the areas occupied

by the baboon groups at the time of collection. We assessed human disturbance through a gen-

eral disturbance index adapted from Barelli et al. [48]. We established five northward orien-

tated 2-km long transects for each sampled troop. Transects were spaced 1 km apart, covering

a total area of 8 km2 per troop (Fig 1). We recorded all evidence of human disturbance within

a five-metre strip of transects, including, but not limited to, roads, livestock, honey production

Table 1. Sample collection from yellow baboons in western Tanzania.

Sampling Area Group Group Size Samples Collected

Total Adult Juvenile

Issa Valley 1 13 12 10 2

2 25 19 19 0

(n = 91) 3 37 19 17 2

4 21 21 18 3

8 28 20 19 1

Uvinza District 5 5 4 4 0

6 7 7 6 1

(n = 44) 7 12 10 8 2

9 29 23 19 4

TOTAL 177 135 120 15

Number of samples collected from yellow baboons in western Tanzania split by all relevant factors (sampling area, group, and estimated age).

https://doi.org/10.1371/journal.pone.0262481.t001
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and litter (Fig 2). All signs of tree cutting were also recorded, including cut shrubbery, trees,

and any machete marks. We generated transect locations systematically from the faecal collec-

tion GPS centroid of each troop, which formed the middle point of the central transect (Fig 1).

If natural barriers (e.g., rivers) prevented transect access, we walked additional transects

between those that were accessible, ensuring we conducted five transects per troop. If a tran-

sect could not be finished due to impassable terrain, the distance completed was used to pro-

vide a proportional score. We calculated a mean transect score for each troop then pooled

groups by disturbance level based on naturally forming categories: low (< 10 signs) or high

(> 300 signs) (Fig 3). Overall, the disturbance levels correspond to the locality which baboon

troops inhabit. Areas with high human disturbance are within the Uvinza district (troops

assigned high-disturbance level), while low disturbance was observed within the Issa Valley

area (groups with low-disturbance level). Interestingly, one group (Group 8, see Fig 3) ranged

Fig 2. Human disturbances observed in the Basanza Forests miombo woodland surrounding Uvinza, Tanzania.

(a) Crop agriculture; (b) Livestock agriculture; (c) Cutting signs; (d) Constructional timber production; (e) Charcoal

production; (f) Vehicle track.

https://doi.org/10.1371/journal.pone.0262481.g002
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between these two localities and did not fall into these disturbance categories, (79 signs); we

assigned this area with medium disturbance levels, testifying to the declining human activities

toward the Issa Valley.

Faecal sample analysis

We used coproscopic diagnostics by light microscope (Olympus CX40) to determine gastroin-

testinal parasite diversity and abundance (a proxy for infection intensity) [49]. We diluted

samples with water and filtered through gauze before halving sediment to re-fix half (up to 10

ml) in 10% formalin and suspend half (up to 50 ml) in sodium chloride solution [50]. We used

the suspended solution to quantify strongylid nematode eggs per gram (EPG), using Mini-

FLOTAC apparatus (x100 magnification) and recounting formula. We used the re-fixed sedi-

ment to evaluate parasite diversity by Sheather’s flotation [51], documenting all parasite taxa,

using cyst, trophozoite and egg morphology for identification [6, 52]. We also examined 0.2

ml of the sediment directly for protozoa diversity (x400 magnification) and evaluation of iso-

trichid ciliate cyst and trophozoite abundance (CPG = ciliates per gram) [53]. We quantified

strongylids and isotrichid ciliates because of their possible pathogenic potential [54].

Statistical analysis

We performed all statistical analyses using the R statistical interface, R v.3.2.2 [55]. We investi-

gated factors influencing parasite infection, with parasite presence/absence and abundance

(measured as EPG/CPG) as response variables, using Generalized Linear Mixed Models

(GLMMs). We ran GLMMs using Ime4 package [56] with binomial distribution for presence/

absence data and negative binomial distribution for abundance data, to account for the aggre-

gated distribution of parasites within-host population. First of all, our aim was to evaluate the

impact of human disturbance level (three categories: low in Issa valley, high in Uvinza district

and medium in between these two localities) and further impact of group size and age on the

presence/absence and/or abundance of yellow baboon parasites, therefore we set these as

explanatory variables. Lastly, as the medium disturbance level was represented by only one

Fig 3. Human disturbances observed in the habitat of yellow baboon troops in western Tanzania. Average human

disturbance score, calculated through five transects, recorded in the habitat of nine troops of yellow baboons in

western Tanzania, with fill colour depicting the type of human disturbances encountered.

https://doi.org/10.1371/journal.pone.0262481.g003
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group, we set the group affinity as a random factor. We ran a separate model for each parasite

and log-transformed the abundance data. Finally, we used Tukey post hoc tests to evaluate dif-

ferences among levels of factorial explanatory variables in case of disturbance level. We did not

use parasite richness to test impact of human disturbance, group size or age, as some parasite

taxa (e.g., strongylids and spirurids) comprise multiple species, which are indistinguishable as

egg/cysts, which limits the credibility of parasite richness.

Ethics statement

All protocols were approved by The Animal Welfare and Ethics Steering group at Liverpool

John Moores University and adhered to the UK Home Office Animals (Scientific Procedures)

Act (ASPA). Research was approved by the Tanzania Commission for Science and Technology

(COSTECH), permit no. 2017-320-NA-2011-94, and we collected all samples non-invasively,

adhering to Tanzania Wildlife Research Institute (TAWIRI) regulations.

Results

Parasite taxa

From the 135 samples examined, we found a total of six protozoan taxa and four helminth taxa

(Fig 4), with prevalence data shown in Table 2. We identified three protozoa to species level:

Entamoeba coli, Iodamoeba buetschlii and Chilomastix mesnili; and two protozoan taxa to

genus level: Blastocystis and Entamoeba spp. We also noted unidentified isotrichid ciliates. Ent-
amoeba coli was identified to species based on the presence of at least eight nuclei, whilst iden-

tified Entamoeba with alternative nuclei numbers were grouped as Entamoeba spp. [35, 57].

Isotrichid ciliates (95.56% positive) and Entamoeba spp. (91.11% positive) were the most prev-

alent protozoa. Four samples were negative for all protozoa. We identified the four helminth

taxa based on egg presence, two to genus: Strongyloides and Streptopharagus, and two to order/

suborder (because of microscopically indistinguishable eggs): Strongylida (later strongylids)

and Spirurida (later spirurids). Streptopharagus’ smaller size compared to other spirurids [58]

was used for its distinction. Amongst the helminths, strongylids were the most prevalent, con-

firmed in all collected samples.

The mean abundance of isotrichid ciliates was 231.5 EPG, SD: 410.6, and of strongylid nem-

atodes 422.5 EPG, SD: 487.2, in all samples.

Association with human disturbance

Our transects confirmed higher occurrences of human disturbance in baboon habitat sur-

rounding Uvinza than in Issa Valley, with medium levels of disturbance encountered between

the two sites (Figs 1 and 3, Group 8). While a variety of different types of human disturbance

were observed, the majority were signs of tree cutting, with livestock and footpaths also fre-

quently occurring.

All parasite taxa were found across all three disturbance levels. Prevalence of two protist and

one helminth taxa were associated with disturbance level. The prevalence of E. coli was signifi-

cantly associated with disturbance level (GLMM: χ = 126553.0, p< 0.001), whereby the

prevalence was higher in low disturbance areas compared to high (p<0.001). Similarly, the

prevalence of I. buetschlii was significantly different according to disturbance level (GLMM: χ =

13.384, p = 0.001), due to being higher in low disturbance areas compared to both in medium

(p = 0.001) and (although not significant) in high (p = 0.066) disturbance areas. Significant dif-

ferences were observed in distribution levels according to prevalence of Streptopharagus sp.

(GLMM: χ = 10.106, p = 0.006). Significantly higher prevalence of Streptopharagus sp. was
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observed in medium disturbance areas compared to low disturbance areas (p = 0.011). Preva-

lence of other parasite taxa was not significantly associated with disturbance level (S1 Table).

Increasing disturbance did show a positive association with isotrichid ciliate abundance

(GLMM: χ = 15.8, p< 0.001; for results of post hoc tests see Fig 5). Though no significant asso-

ciation with strongylid abundance was found (GLMM: χ = 1.433, p = 0.488; Fig 5).

Impact of group size and age

The prevalence of I. buetschlii, E. coli, Blastocystis sp., and Streptopharagus sp. was positively

associated with group size (GLMM: χ = 14.6981, p< 0.001; GLMM: χ = 1024.1, p< 0.001;

Fig 4. Photos of parasites found in yellow baboons’ faeces in western Tanzania. Unidentified isotrichid ciliate cysts:

(a) with thick outer protective sheath; (b) without additional protective sheath. (c) Unidentified isotrichid ciliate

trophozoites. (d) Entamoeba coli. (e) Entamoeba sp. (lower cyst) and Blastocystis sp. (upper cyst). (f) Iodamoeba
buetschlii. (g) strongylid egg. (h) Strongyloides sp. (i) Spirurid egg. (j) Streptopharagus sp.

https://doi.org/10.1371/journal.pone.0262481.g004
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GLMM: χ = 6.478, p = 0.011; GLMM: χ = 5.084, p = 0.024, respectively) (Fig 6). Additionally,

juveniles had increased prevalence of E. coli (66.6% in adults; 73.3% in juveniles; GLMM: χ =

1777.9, p< 0.001) and Strongyloides sp. (20% in adults; 53.3% in juveniles; GLMM: χ = 7.365,

p = 0.007). Prevalence of other parasite taxa was not significantly associated with group size or

age (S1 Table).

Group size was significantly associated with isotrichid ciliate abundance (GLMM: χ = 6.99,

p = 0.008), while strongylids abundance was not (GLMM: χ = 0.321, p = 0.571). Age showed

no association with abundance of either isotrichid ciliates (GLMM: χ = 0.214, p = 0.644) or

strongylids (GLMM: χ = 0.064, p = 0.801).

Discussion

Western Tanzania is a mosaic of varied land status, from national parks to open areas, with

multiple NHP species, including yellow baboons, distributed throughout, including adjacent

to human settlements. To assess the relationship between human disturbance and

Table 2. Prevalence of gastrointestinal parasites of yellow baboons.

Prevalence (%)

Total Low disturbance Medium disturbance High disturbance

(135) (71) (20) (44)

Isotrichid ciliates 95.56 100.00 100.00 86.36

Entamoeba coli 67.41 76.06 55.00 59.09

Entamoeba spp. 91.11 97.18 95.00 79.55

Iodamoeba buetschlii 70.37 84.51 55.00 54.55

Blastocystis sp. 69.63 63.38 95.00 68.18

Chilomastix mesnili 6.67 7.04 0.00 9.09

Strongylids 100.00 100.00 100.00 100.00

Strongyloides sp. 23.70 32.39 20.00 11.36

Spirurids 22.96 22.54 25.00 22.73

Streptopharagus sp. 44.44 33.80 75.00 47.73

Overall prevalence of gastrointestinal parasites of yellow baboons in Issa Valley and Basanza Forests, western Tanzania, as well as prevalence at each of three disturbance

levels. Values in parenthesis indicate number of faecal samples examined.

https://doi.org/10.1371/journal.pone.0262481.t002

Fig 5. Parasite abundance in yellow baboons in western Tanzania. Plots are split by human disturbance of habitat area and

show two parasite taxa: (a) unidentified isotrichid ciliate; (b) strongylids.

https://doi.org/10.1371/journal.pone.0262481.g005
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gastrointestinal parasite infection of yellow baboons, we examined faecal samples from baboon

troops inhabiting areas with different levels of human disturbance. Some troops ranged in

intact forest areas with minimal human activities, while others ranged closer to human settle-

ments, with larger disturbance signatures, including tree felling, cattle grazing and charcoal

production; in some cases, individuals were observed crop raiding.

In general, all ten parasite taxa found in this study are widely reported in yellow baboons

from elsewhere [36, 37, 39, 40] as well as in closely related olive and chacma (P. ursinus)
baboons [29, 35]. In Papio, gastrointestinal ciliates are typically identified as Balantioides coli,
however, genetic sequencing of microscopically indistinguishable ciliates, obtained from mul-

tiple NHP species, suggests numerous species of Balantioides-like and Buxtonella-like ciliates

inhabit NHP gastrointestinal tracts [59]. Therefore, we report Balantioides-like ciliates as

‘unidentified isotrichid ciliates’. One noticeable difference was the absence of Trichuris in Issa

samples, a parasite widely documented in baboons [29, 36–40], though also absent from savan-

nah chimpanzees (P. troglodytes schweinfurthii) surveyed in the Issa Valley region [41]. As Tri-
churis is a soil-transmitted helminth (STH), the hot and dry conditions of western Tanzania’s

dry season may be unsuitable for the Trichuris life cycle, with a low probability of survival dur-

ing the soil living stage [41]. However, other STH (Strongyloides and strongylids) were present,

despite requiring a moist external environment for transmission [41]. Examination of all sym-

patric NHPs would be required to determine if Trichuris was absent from specific primate taxa

or the entire region, only then yielding further explanation.

In addition, while strongylids are commonly reported amongst baboons, our reported

100% prevalence is high compared to previous studies, where prevalence ranged from 5.9% to

75.4% [10, 38, 40].

Fig 6. Association between yellow baboon group size and parasite prevalence. Association between group size and

parasite prevalence of four parasite taxa amongst yellow baboons situated in western Tanzania.

https://doi.org/10.1371/journal.pone.0262481.g006

PLOS ONE Human disturbance and baboon parasite infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0262481 January 12, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0262481.g006
https://doi.org/10.1371/journal.pone.0262481


Association with human disturbance

Prevalence of some parasite taxa varied with disturbance level, with most showing decreased

prevalence with increased habitat disturbance. Gastrointestinal protozoans and metazoans

have previously shown richness reduction in association with habitat degradation in other

NHPs: black howler monkeys (Aloutta pigra) [60] and Udzungwa red colobus (Procolobus gor-
donorum) [10], although these observations were not mirrored in yellow baboons inhabiting

the same area [10]. A reduction in either parasite richness or prevalence could be expected if

gastrointestinal protozoans and metazoans respond similarly to human disturbance as many

of their animal hosts do, with decreasing population size and diversity [10]. Intuitively, if host

numbers, range or densities decrease, the same may be expected for their parasites due to

reduced transmission rates [60]. Additionally, conversion of natural habitat for human land

use often alters environmental conditions, reducing prevalence of parasite taxa with poor resil-

ience to environmental change [60]. Counterintuitively, reduced gastrointestinal parasite

diversity, associated with human disturbance, may be of great concern for wildlife hosts, with

many gastrointestinal protozoans and metazoans now considered as vital gut symbionts.

These gastrointestinal communities are now believed to be important for maintaining host

health and fitness, calling for further research and its inclusion in conservation strategies as a

method of endangered species health monitoring [10].

Contrasting findings may be explained by some parasite taxa being more susceptible to the

environmental pressures of human disturbance. Convolutions may also arise through micro-

scopic methodologies being unable to reveal all taxa to species or genus level, meaning parasite

richness is often a combination of species richness and higher-level taxonomic richness. This

calls into question the reliability of parasite richness as a measure for evaluating NHP gastroin-

testinal parasite communities, with some single parasite taxa in fact representing multiple

species.

Besides parasite prevalence, we also evaluated the abundance of strongylids and unidenti-

fied isotrichid ciliates according to human disturbance, using EPGs and CPGs respectively. It

is debated if intensity of parasite infection is linearly correlated with eggs/cysts shed in faeces,

due to temporal variation of egg/cyst output [61–63]. However, with various studies identify-

ing a linear relationship between egg output and adult worm burden within the host [64–66],

and a lack of data for wild baboons, we assume egg/cyst output still provides a reliable insight

into parasitic infections, as done previously in parasitic research of both Papio [39] and other

NHP hosts [67–70].

Strongylid nematodes showed no association with level of human disturbance, however,

increasing abundances of isotrichid ciliates significantly associated with increased human dis-

turbance. While parasite abundances are less well documented than prevalence data, previous

research has shown increases in abundance of other parasite taxa (Strongyloides and E.histoly-
tica) with increases in human disturbance [17, 71]. Human disturbance could potentially

increase parasite abundance indirectly through increased chronic stress, with high cortisol

(‘the stress hormone’) levels previously correlated with increased parasite susceptibility in

NHPs [18]. Alternatively, previous research found B. coli (an isotrichid ciliate) abundance was

higher amongst crop-raiding baboons than wild foraging baboons [29]. While no systematic

dietary observations were made here, all troops in the high disturbance area were within one

kilometre of cropland and some were seen crop-raiding. Those in the low disturbance area

were not in any proximity to cropland. Individuals observed crop raiding were consuming cas-

sava, a highly starch rich crop [72]. Diets high in starch based carbohydrates have been shown

to increase B. coli growth within hosts [73], therefore the increased abundance of isotrichid

ciliates in the high disturbance area might be explained by starch rich diets resulting from
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crop-raiding. While habitat disturbance, due to decreased resource availability, may reduce

host nutritional status and thus increase parasite susceptibility in some NHPs [74], this is

unlikely to be the case in baboons. Papio are typically described as dietary generalists [75],

showing adaptability of foraging techniques to anthropogenic food sources [76]. As such, for-

aging in disturbed areas may in fact be energetically beneficial to Papio hosts [77], with anthro-

pogenic food, such as crops, providing nutrient and energy-rich dietary supplementation [60],

highlighting the potential impact of increased starch intake as previously mentioned.

Impact of age and group size

We found group size to be associated with prevalence of some parasite taxa, mostly protozo-

ans, which results from increased animal density and exposure risk amongst larger groups

[78]. While sociality, the tendency to form social living groups, has many benefits for wild

NHPs [79], increased risk of parasite infection is one well-documented cost [80, 81], with spa-

tial cohesion and contact between individual hosts facilitating parasite transmission [82, 83].

Larger group size may also be associated with higher parasite prevalence due to increased

resource competition between group members and social stress amongst host individuals [33,

84] leading to poor nutrition and thus increased parasite susceptibility.

While we found no relationship between age and parasite abundance, we found baboon age

to be associated with prevalence of two parasite taxa (Strongyloides sp. and E. coli). Age has

previously been linked to parasite prevalence, abundance, and richness in baboons [35, 39],

although the direction of these relationships varies between parasite taxa. Increased prevalence

in juveniles, as we observed, may be explained by increased susceptibility to parasite infection,

less active parasite avoidance or increased exposure risk resulting from age based behavioural

differences [35]. Additionally, juveniles may lack fully developed immune systems [85],

increasing their susceptibility to parasites [86], while older individuals may acquire immunity

to certain parasite stages through repeated exposure [87].

Conservation implications

Some parasite taxa (Strongyloides, Blastocystis, Entamoeba, isotrichid ciliates and strongylids)

found in our samples could have zoonotic potential. However, we highlight that we did not

examine inter-specific parasite transmission in this study. Balantioides coli, an isotrichid cili-

ate, is both non-typical and often asymptomatic in humans, though reported in rural areas of

some countries [88]. In some cases, B. coli infection of humans results in diarrhoea with poten-

tial for colonic invasion, while rare cases report more serious effects of inflammatory infections

and pulmonary haemorrhage [88]. Likewise, Strongyloides is also reported in humans and can

be asymptomatic [89]. Mixed infections, of multiple Strongyloides species, have been reported

in both humans and NHPs [25, 90], suggesting zoonotic potential. Blastocystis is believed to

have larger zoonotic potential, resulting from low host specificity [91]. While Blastocystis is

commonly reported as part of a healthy human gastrointestinal biome [92], it is also linked to

diarrhoea, vomiting and bloating [93]. While Entamoeba infection reported in humans is typi-

cally of different species to those reported in NHPs, human:NHP shared species have been

identified, flagging the zoonotic potential of Entamoeba [94]. The symptoms of Entamoeba
infection are again varied but can cause amebiasis, a potentially fatal intestinal illness [95]. The

zoonotic potential of the other parasite taxa found during this study is less understood,

although there is still potential for human:NHP transmission [96]. Consequently, shifting pat-

terns of zoonotic parasite infections in wild hosts, resulting from human disturbance, could

have implications also for the epidemiology of human parasite infections, heightening the

value of considering parasitology within endangered species management.
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Conclusions

Yellow baboons of the Tongwe Forest Reserve exhibit parasite fauna similar to other baboons

across Tanzania. Factors influencing both parasite prevalence and abundance varied amongst

parasite taxa, providing insight into the complexity of a host’s parasite fauna.

Although we hypothesized that parasite prevalence would increase with human disturbance

level, we found the opposite trend, with some taxa showing reduced prevalence in the highly

disturbed area. This may result from symbiont organisms showing similar responses to habitat

disturbance and degradation as many host species. On the other hand, high levels of human dis-

turbance predicted increased isotrichid ciliate abundance, potentially explained by starch rich

diets of baboons in the disturbed area. In future, inclusion of nutritional ecology assays would

determine dietary shifts [97] associated with human disturbance, potentially linking with

changes in gastrointestinal communities. While measurement of glucocorticoids in faecal sam-

ples could provide valuable insight into host stress and fitness [98] and attempt to explain how

human disturbance may cause observed differences in gastrointestinal parasite communities.

Further research focused on parasite epidemiology and human:NHP transmission, includ-

ing sampling of humans and livestock inhabiting the same environment, would be useful in

determining the zoonotic parasite risk ongoing habitat disturbance poses to humans. In addi-

tion, gastrointestinal communities should be considered as a health monitoring method within

NHP conservation strategies, particularly when addressing the threat of human disturbance.
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