{ LIVERPOOL

JOHN MOORES
UNIVERSITY

LJMU Research Online

Markus, A, Biro, M, Kecskemeti, G and Kertesz, A
Actuator behaviour modelling in loT-Fog-Cloud simulation

http:/Iresearchonline.ljmu.ac.uk/id/eprint/16512/

Article

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Markus, A, Biro, M, Kecskemeti, G and Kertesz, A (2021) Actuator behaviour
modelling in loT-Fog-Cloud simulation. PeerJ Computer Science, 7. ISSN
2376-5992

LJMU has developed LUMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LUIMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Peer.

Submitted 11 November 2020
Accepted 5 July 2021
Published 30 July 2021

Corresponding author
Andras Markus,
markusa@inf.u-szeged.hu

Academic editor
Mario Luca Bernardi

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.651

© Copyright
2021 Markus et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Actuator behaviour modelling in IoT-Fog-
Cloud simulation

Andras Markus', Mate Biro', Gabor Kecskemeti? and Attila Kertesz!

! Software Engineering Department, University of Szeged, Szeged, Hungary
% Institute of Information Technology, University of Miskolc, Miskolc, Hungary

ABSTRACT

The inevitable evolution of information technology has led to the creation of
IoT-Fog-Cloud systems, which combine the Internet of Things (IoT), Cloud
Computing and Fog Computing. IoT systems are composed of possibly up to billions
of smart devices, sensors and actuators connected through the Internet, and these
components continuously generate large amounts of data. Cloud and fog services
assist the data processing and storage needs of IoT devices. The behaviour of
these devices can change dynamically (e.g. properties of data generation or device
states). We refer to systems allowing behavioural changes in physical position

(i.e. geolocation), as the Internet of Mobile Things (IoMT). The investigation and
detailed analysis of such complex systems can be fostered by simulation solutions.
The currently available, related simulation tools are lacking a generic actuator
model including mobility management. In this paper, we present an extension of the
DISSECT-CF-Fog simulator to support the analysis of arbitrary actuator events
and mobility capabilities of IoT devices in IoT-Fog-Cloud systems. The main
contributions of our work are: (i) a generic actuator model and its implementation in
DISSECT-CF-Fog, and (ii) the evaluation of its use through logistics and healthcare
scenarios. Our results show that we can successfully model IoMT systems and
behavioural changes of actuators in IoT-Fog-Cloud systems in general, and analyse
their management issues in terms of usage cost and execution time.

Subjects Computer Networks and Communications, Distributed and Parallel Computing, Mobile
and Ubiquitous Computing, Scientific Computing and Simulation
Keywords Fog computing, Internet of things, Actuator, Mobility, Simulation

INTRODUCTION

The Internet of Things (IoT) is estimated to reach over 75 billion smart devices around the
world by 2025 (Taylor, Baron ¢ Schmidt, 2015), which will dramatically increase the
network traffic and the amount of data generated by them. IoT systems often rely on Cloud
Computing solutions, because of its ubiquitous and theoretically infinite, elastic computing
and storage resources. Fog Computing is derived from Cloud Computing to resolve the
problems of increased latency, high density of smart devices and the overloaded
communication channels, which also known as the bottleneck-effect.

Real-time IoT applications (Ranjan et al., 2020) require faster and more reliable data
storage and processing than general ones, especially when data privacy is also a concern.
The proximity of Fog Computing nodes to end users usually ensures short latency
values, however these nodes are resource-constrained as well. Fog Computing can aid
cloud nodes by introducing additional layers between the cloud and the IoT devices, where

How to cite this article Markus A, Biro M, Kecskemeti G, Kertesz A. 2021. Actuator behaviour modelling in IoT-Fog-Cloud simulation.
Peer] Comput. Sci. 7:¢651 DOI 10.7717/peerj-cs.651

http://dx.doi.org/10.7717/peerj-cs.651
mailto:markusa@�inf.�u-szeged.�hu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.651
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Environment

Q Cloud layer

) U Y, Fog layers

=] =)
Smart Device E Smart Device E
-—— -——
L3 L3
\

PO RO

. .
Sensor Actuator Sensor Actuator Device layer
’ ’

Figure 1 The connections and layers of a typical fog topology.
Full-size k&l DOTL: 10.7717/peerj-cs.651/fig-1

a certain part of the generated data can be processed faster (Mahmud, Kotagiri &
Buyya, 2018).

A typical fog topology is shown in Fig. 1, where sensors and actuators of IoT devices are
located at the lowest layer. Based on their configuration and type, things produce raw
sensor data. These are then stored and processed on cloud and fog nodes (this data flow is
denoted by red dotted arrows). Sensors are mostly resource-constrained and passive
entities with restricted network connection, on the other hand, actuators ensure broad
functionality with Internet connection and enhanced resource capacity (Ngai, Lyu ¢ Liu,
2006).

They aspire to make various types of decisions by assessing the processed data retrieved
from the nodes. This data retrieval is marked by solid orange arrows in Fig. 1. These
actions can affect on the physical environment or refine the configuration of the sensors,
such modification can be the increasing or decreasing of the data sampling period or
extending the sampling period, this later results in different amounts of generated data.
Furthermore, the embedded actuators can manipulate the behaviour of smart devices, for
instance, restart or shutdown a device, and motion-related responses can also be expected.
These kind of actions are noted by grey dashed arrows in Fig. 1.

In the surrounding world of IoT devices, location is often fixed; however, the Quality of
Service (QoS) of these systems should also be provided at the same level in case of dynamic

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 2/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-1
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

and moving devices. Systems composed of IoT devices supporting mobility features are

also known as the Internet of Mobile Things (IoMT) (Nahrstedt et al., 2020). Mobility can
have a negative effect on the QoS to be ensured by fog systems, for instance, they could
increase the delay between the device and the actual node it is connected to. Furthermore,
using purely cloud services can limit the support for mobility (Pisani et al., 2020).

Wireless Sensor Networks (WSN) are considered as predecessors of the Internet of
Things. In a WSN, the naming convention of sensor and actuator components follows
publisher/subscriber or producer/consumer notions (Sheltami, Al-Roubaiey ¢» Mahmoud,
2016), however IoT sensor and actuator appellations are commonly accepted by the
IoT simulation community as well. Publishers (i.e. sensors or producers) share the data
which are sensed in the environment, until then subscribers (i.e. actuators or consumers)
react to the sensor data (or to an incoming message) with an appropriate action.

In certain situations, actuators can have both of these roles, and behave as a publisher,
especially when the result of a command executed by an actuator needs to be sent and
further processed.

Investigating IoT-Fog-Cloud topologies and systems in real word is rarely feasible on
the necessary scales, thus different simulation environments are utilised by researchers and
system architects for such purpose. It can be observed that only a few of the currently
available simulation tools deal with a minimal ability to model actuator and/or mobility
events, which strongly restricts their usability. It implies that a comprehensive simulation
solution, with an extendable, well-detailed mobility and actuator model, is missing for
fog-enhanced IoT systems.

To address this open issue, we propose a generic actuator model for IoT-Fog-Cloud
simulators and implement it by extending the DISSECT-CF-Fog (Markus, Gacsi ¢ Kertesz,
2020) open-source simulator, to be able to model actuator components and mobility
behaviour of IoT devices. As the main contributions of our work, our proposal enables:
(i) more realistic and dynamic IoT behaviour modelling, which can be configured by using
the actuator interface of IoT devices, (ii) the ability of representing and managing IoT
device movement (IoMT), and (iii) the analysis of different types of IoT applications
having actuator components in IoT-Fog-Cloud environments. Finally, the modelling of
such complex systems are demonstrated through a logistics and a healthcare scenario.

The rest of the paper is structured as follows: “Related Work” introduces and compares
the related works, “The Actuator and Mobility Models of Dissect-CF-Fog” presents our
proposed actuator model and simulator extension. “Evaluation” presents our evaluation
scenarios, and finally “Conclusion” concludes our work.

RELATED WORK

According to the definition by Bonomi et al. (2012), an actuator is a less limited entity
than a sensor in terms of its network connectivity and computation power, since it is
responsible for controlling or taking actions in an IoT environment. Usually actuators are
identified as linear, motors, relays or solenoids to induce motion of a corresponding entity.
The work in Motlagh et al. (2020) categorises actuators based on their energy source as
following: (i) pneumatic, (ii) hydraulic, (iii) electric and finally (iv) thermal actuator,

Markus et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.651 3/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

however this kind of classification might restrict the usability of actuators to the energy
sector.

The presence of actuators plays a vital role in higher level software tools for IoT as well,
for instance in FogFlow (Cheng et al., 2018). It is an execution framework dedicated for
service orchestrations over cloud and fog systems. This tool helps infrastructure operators
to handle dynamic workloads of real IoT services enabling low latency on distributed
resources. According to their definition, actuators perform actions (e.g. turning on/off the
light) in an IoT environment, which can be coordinated by an external application.

The already existing, realised actuator solutions are well-known and commonly used in
technical informatics; however the modelling of an actuator entity in simulation
environments is not straightforward, and most of the simulation tools simply omit or
simplify it, nevertheless actuators are considered as essential components of the IoT world.

Concerning IoT and fog simulation, a survey paper by Svorobej et al. (2019) compares
seven simulation tools supporting infrastructure and network modelling, mobility,
scalability, resource and application management. Unfortunately, in some cases the
comparison is restricted to a binary decision, for instance if the simulator has a mobility
component or not. Another survey by Markus ¢» Kertesz (2020) examined 44 IoT-Fog-
Cloud simulators, in order to determine the characteristics of these tools. A total of
11 parameters were used for the comparison, such as type of the simulator, the core
simulator, publication date, architecture, sensor, cost, energy and network model,
geolocation, VM management and lastly, source code metrics. These survey papers
represent the starting point for our further investigations in the direction of geolocation
and actuator modelling.

FogTorchPI (Brogi, Forti & Ibrahim, 2018) is a widely used simulator, which focuses on
application deployment in fog systems, but it limits the possibilities of actuator
interactions. Tychalas ¢» Karatza (2018) proposed a simulation approach focusing on the
cooperation of smartphones and fog, however the actuator component was not considered
for the evaluation.

The CloudSim-based iFogSim simulator (Gupta et al., 2016) is one of the leading fog
simulators within the research community, which follows the sense-process-actuate
model. The actuator is declared as the responsible entity for the system or a mechanism,
and the actualisation event is triggered when a task, which known as a Tuple, determining
a certain amount of instruction and size in bytes, is received by the actuator. In the
current implementation of iFogSim, this action has no significant effect, however custom
events also can be defined by overriding the corresponding method, nevertheless no such
events are created by default. The actuator component is determined by its connection
and network latency. The original version of iFogSim does not support mobility, however
the static, geographical location of a node is stored.

Another CloudSim extension is the EdgeCloudSim (Sonmez, Ozgovde ¢» Ersoy, 2018),
which aims to ensure mobility support in simulation environments. It associates the
position information of a mobile device to a two-dimensional coordinate point, which can
be updated dynamically. This simulation solution considers the nomadic mobility model,
by its definition, a group of nodes moves randomly from one position to another. This

Markus et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.651 4/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

work also takes into account the attractiveness of a position to define the duration of stay at
some place. Further mobility models can be created by extending the default class for
mobility, but there is no actuator entity implemented in this approach.

The FogNetSim++ (Qayyum et al., 2018) can be used to model fog networks supporting
heterogeneous devices, resource scheduling and mobility. In this paper six mobility
strategies were proposed, and new mobility policies can also be added. This simulator aids
the entity mobility models, which handles the nodes independently, and takes into account
parameters such as speed, acceleration, direction in a three-dimensional coordinate
system. Unfortunately, the source code of the simulator presents examples of the linear
and circular mobility behaviour only. This simulation tool used no actuator model.

YAFS (Lera, Guerrero ¢ Juiz, 2019) is a simulator to analyse IoT application
deployments and mobile IoT scenarios. The actuator in this realisation is defined as an
entity, which receives messages with the given number of instructions and bytes, similarly
to the solution of iFogSim. The paper also mentioned dynamic user mobility, which
takes into account different routes using GPX formats (it is used by application to depict
data on the map), but this behaviour was not explained or experimented with.

Jha et al. (2020) proposed the IoTSim-Edge simulation framework by extending the
CloudSim to model towards IoT and Edge systems. This simulator focuses on resource
provisioning for IoT applications considering the mobility function and battery-usage
of IoT devices, and different communication and messaging protocols as well. The
IoTSim-Edge contains no dedicated class for the actuator components, nevertheless the
representative class of an IoT device has a method for actuator events, which can be also
overridden. There is only one predefined actuator event affecting the battery of an IoT
device, however it was not considered during the evaluation phase by the authors. This
simulation tool also takes into consideration the mobility of smart devices. The location of
a device is represented by a three-dimensional coordinate system. Motion is influenced
by a given velocity and range, where the corresponding device can move, and only
horizontal movements are considered within the range by the default moving policy.

MobFogSim (Puliafito et al., 2020) aims to model user mobility and service migration,
and it is one of the latest extension of the iFogSim, where actuators are supported by
default. Furthermore, the actuator model was revised and improved to handle migration
decisions, because migration is often affected by end user motions. To represent
mobility, it uses a two-dimensional coordinate system, the users’ direction and velocity.
The authors considered real datasets as mobility patterns, which describe buses and routes
of public transportation.

The comparison of related simulation based approaches is shown in Table 1. It
highlights the existence of actuator and mobility interfaces, the base simulator of the
approach and the programming language, in which the actual tool was written. We also
denoted the year, when the simulation solution was released or published. It also reveals
the leading trends for fog simulation. Based on Markus ¢ Kertesz (2020), more than 70% of
the simulators are written in Java programming language and only 20% of them are
developed using Python or C++. The rest of them are more complex applications
(i.e. Android-based software). This survey also points out that mostly the network type of

Markus et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.651 5/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Comparison of the related simulation tools.

Simulator Actuator Mobility = Core simulator ~ Prog. language Year
DISSECT-CF-Fog (this work) X X DISSECT-CF Java 2020
iFogSim X - CloudSim Java 2017
EdgeCloudSim - X CloudSim Java 2017
FogNetSim++ - X OMNet++ C++ 2018
IoTSim-Edge X X CloudSim Java 2019
YAFS X X - Python 2019
MobFogSim X X iFogSim Java 2020
Table 2 Detailed characteristics of the related simulation tools.
Simulator Communication direction Actuator events Mobility Position
DISSECT-CF-Fog e Sensor — Fog/Cloud — Actuator e 10 different predefined actions for =~ e Nomadic e Latitude,
(this work) actuation Longitude
e Sensor — Actuator e Adding new by overriding e Random
Walk
iFogSim o Sensor — Fog — Actuator o Default, but it can be overridden - o Coordinates
EdgeCloudSim - - e Nomadic e Coordinates
FogNetSim++ - - e Linear o Coordinates
o Circular
IoTSim-Edge e Sensor — Fog Device — Actuator e Default, but it can be overridden e Linear o Coordinates
YAFS e Sensor — Service — Actuator - o Real dataset e Latitude,
Longitude
MobFogSim e Mobile Sensor — Mobile Device — Mobile e Migration o Linear o Coordinates

Actuator

o Real dataset

simulators is written in C++, which focuses on fine-grained network model, however
these tools typically do not have predefined models and components for representing
cloud and fog nodes, and VM management operations. The event-driven general purpose
simulators are usually implemented in Java.

The actuator and mobility abilities of these simulators are further detailed in Table 2.
The second column shows possible directions for transferring the sensor data (usually in
the form of messages), in case the actuator interface is realised in the corresponding
simulator. It can be observed that it basically follows similar logic in all cases. The third
column highlights actuator events that can be triggered in a simulator. The fourth column
shows the supported mobility options (we only listed the ones offered in their source code)
and finally we denoted the position representation manner in the last column.

One can observe that there is a significant connection between mobility support and
actuator functions, but only half of the investigated simulators applied both of them. Since
the actuator has no commonly used software model within the latest simulation tools,
developers omit it, or it is left to the users to implement it, which can be time consuming

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 6/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

(considering the need for additional validation). In a few cases, both actuator and mobility
models are simplified or just rudimentary handled, thus realistic simulations cannot be
performed.

In this paper, we introduce an actuator interface and mobility functionality for the
DISSECT-CF-Fog simulator. We define numerous actuator events and mobility patterns
to enhance and refine the actuator model of a simulated IoT system. To the best of our
knowledge, no other simulation solution offers such enriched ways to model actuator
components.

THE ACTUATOR AND MOBILITY MODELS OF
DISSECT-CF-FOG

The heterogeneity of interconnected IoT devices often raises difficulties in simulator
solutions, as the creation of a model that comprehensively depicts the behaviour of these
diverse components is challenging. In a simulation environment, a concrete type of any
device is described by its characteristics. For instance, it does not really matter, if a physical
machine utilises an AMD or an Intel processor, because the behaviour of the processor
are modelled by the number of CPU cores and the processing power of one core, which
should be defined in a realistic way. Following this logic, the actual realisation of an
actuator entity—which follows the traditional subscriber model -, can be any type of
actuator (e.g. motors or relays), if the effects of it are appropriately and realistically
modelled. This means that in our actuator implementation, a command received by an
actuator must affect the network load considering bandwidth and latency, moreover based
on certain decisions the actuator should indicate changes in the behaviour of the IoT
device or sensor (e.g. increasing data sensing frequency or changing the actual position).
In case of IoMT, the traditional WSN model cannot be followed, hence moving devices can
act as a publisher (monitoring) and subscriber as well (receiving commands related to
movements).

Our proposed actuator interface of the DISSECT-CF-Fog simulator aims to provide a
generic, unified, compact and platform-independent representation of IoT actuator
components. DISSECT-CF-Fog is based on DISSECT-CF (Kecskemeti, 2015), which was
proposed as a general purpose simulator to investigate the energy consumption of cloud
infrastructures. The evolution phases of DISSECT-CF-Fog can be seen in Fig. 2, where
each background colour represents a milestone of the development, and it also depicts the
layers of the simulation tool.

Typical event-driven simulators are lacking predefined models for complex
behaviours (e.g. considering both detailed network and computational resource utilisation),
nevertheless DISSECT-CF has such abilities. It utilises its own discrete event simulation
(DES) engine, which is responsible to manage the time-dependent entities (Event System)
and also considers low-level computing resource sharing, for instance balancing network
bandwidth (Unified Resource Sharing) or enabling the measurement of different energy
usage patterns of resources (Energy Modelling). Through the Infrastructure Simulation and
Infrastructure Management layers, general IaaS clouds can be modelled with different
scheduling policies.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 7127

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

1
1
' loT Pricing | | Cloud Pricing | |
] ;
| e e e e e o o o e e e e e o e e e e e e o o e e o e e e e e e e e e e e e e = o e e e e e e = =
y _~--------------------"-"-"-"-"-"-"-"-"-"-=-"--"-"-"-"-"-"-"-"-"-"-"-"-""-""-- 1
' loT Actuator | [Virtual Machine [| Network Node |
A loT Device | | loT Sensor | | Physical Machine | E
1
1 1

1
1
]
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

B |
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

m
>
0]
=
«Q
<
=
®
—
®
=
>
«Q

DISSECT-CF-Fog Actuator Extension (2020)
DISSECT-CF Fog Extension (2019)
DISSECT-CF Pricing Extension (2017)
DISSECT-CF loT Extension (2017)
DISSECT-CF Core Simulator (2015)

Figure 2 The evolution of DISSECT-CF-Fog through its components.
Full-size k&l DOTL: 10.7717/peerj-cs.651/fig-2

The current version of DISSECT-CF-Fog is strongly built on the subsystems of the basic
simulator, which is proven to be accurate. This system has been leveraged since 2017 to
realise different aspects of complex IoT-Fog-Cloud systems. First, we added the typical
components of IoT systems (denoted by green in Fig. 2) like IoT Sensor, IoT Device and IoT
Application, to model various IoT use cases with detailed configuration options. The
naming DISSECT-CF-Fog was introduced at the end of 2019, after developing the Cost
Modelling layer to apply arbitrary IoT and cloud side cost schemes of any providers
(shown by blue coloured boxes in Fig. 2). The tree main components of the fog extension,
denoted by yellow (Fig. 2), are the Fog and Cloud Node, which are responsible for the
creation of multi-tier fog topology, the Device Strategy, which chooses the optimal node for
a device, and (iii) the Application Strategy, which enables offloading decisions between
the entities of the fog topology. The strategies can take into account various parameters of
the system, such as network properties (e.g. latency), cost and utilised CPU and memory.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 8/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-2
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

The main contribution of this paper are denoted by red in Fig. 2. To satisty the
increasing need for a well-detailed and versatile simulator, we complete the IoT layer by
adding the IoT Actuator component, with its corresponding management elements
Actuator Strategy and Device Mobility, to realise the business logic for such related
behaviours. In the former versions of DISSECT-CF-Fog, the position of IoT devices were
static and fixed, and also the backward communication channels (from the computational
nodes to actuators through the IoT devices) did not exist.

Actuator model

In the layered architecture of IoT, actuators are located in the perception layer, which is
often referred to as the lowest or physical layer that requires the most detailed level of
abstraction in IoT.

In this paper, we are focusing mainly on software-based actuator solutions due to their
increasing prevalence in the field of IoT. The DISSECT-CF-Fog actuator model is fairly
abstract, hence it mainly focuses on the actuators’ core functionality and its effect on the
simulation results, but it does not go deep into specific actuator-device attributes.

The actuator interface should facilitate a more dynamic device layer and a volatile
environment in a simulation. Therefore, it is preferred to be able to implement actuator
components in any kind of simulation scenario, if needed. In our model, one actuator is
connected to one IoT device for two reasons in particular: (i) it is observing the
environment of the smart device and can act based on previously specified conditions, or
(ii) it can influence some low-level sensor behaviour, for instance it changes the sampling
interval of a sensor, resets or completely stops the smart device.

The latter indirectly conveys the conception of a reinterpreted actuator functionality for
simulator solutions. The DISSECT-CF-Fog actuator can also behave as a low-level
software component for sensor devices, which makes the model compound.

The actuator model of DISSECT-CF-Fog can only operate with compact, well-defined
events, that specify the exact influence on the environment or the sensor. The set of
predefined events during a simulation provides a restriction to the capability of the
actuator and limits its scope to certain actions that are created by the user or already exist
in the simulator. A brief illustration of sensor-based events are shown in Fig. 3.

The determination of the exact event, executed by the actuator, happens in a separate,
reusable and extendable logic component. This logic component can serve as an actual
actuator configuration, but can also be used as a descriptor for environmental changes and
their relations to specific actuator events. This characteristic makes the actuator interface
thoroughly flexible and adds some more realistic factors to certain simulation scenarios.

With the help of the logic component, the actuator interface works in an automatic
manner. After a cloud or fog node has processed the data generated by the sensors, it sends
a response message back to the actuator, which chooses an action to be executed. This
models the typical sensor-service-actuator communication direction.

Unexpected actions may occur in real-life environments, which are hard to be defined
by algorithms, and the execution of some events may not require cloud or fog processes,
e.g. when a sensor fails. To be able to handle such issues, the actuator component is

Markus et al. (2021), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.651 9/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

o—l
o—l
X

1101 1nnn 1nnn
- - - - - -)
L - - - L] -
- - L - - -
- - - - - -
1nn 1l 1l
Increase frequency Reduce frequency Change filesize Stop device Restart device
Figure 3 Low-level sensor events. Full-size] DOT: 10.7717/peerj-cs.651/fig-3

capable of executing events apart from its predefined configuration. This feature facilitates
the immediate and direct communication between sensors and actuators.

For the proper behaviour of the actuator, the data representation in the simulator needs
to be more detailed and comprehensive. Consequently, this extension of the DISSECT-CF-
Fog simulator introduces a new type of data fragment in the system, to store specific
details throughout the life-cycle of the sensor-generated data.

Finally, the DISSECT-CF-Fog actuator should be optional for simulation scenarios.
In consideration of certain scenarios, where the examined results do not depend on
the existence of actuator behaviours, the simulation can be run without the actuator
component. This might significantly decrease the actual runtime of the simulation, as there
could potentially be some computing heavy side effects, when applying actuator
functionalities.

Requirements for modelling the internet of mobile things
The proximity of computing nodes is the main principle of Fog Computing and it has
numerous benefits, but mobile IoT devices may violate this criterion. These devices can
move further away from their processing units, causing higher and unpredictable latency.
When a mobile device moves out of range of the currently connected fog node, a new,
suitable fog node must be provided. Otherwise, the quality of service would drastically
deteriorate and due to the increased latencies, the fog and cloud nodes would hardly be
distinguishable in this regard, resulting in losing the benefits of Fog Computing.
Another possible problem that comes with mobile devices is service migration. The
service migration problem can be considered as when, where and how (W2H) questions.
Service migration usually happens between two computing nodes, but if there is no fog
node in an acceptable range, the service could be migrated to the smart device itself,
causing lower performance and shorter battery time. However, service migration only
makes sense when there are stateful services, furthermore it is beyond the topic of this
paper, we consider stateless services and decisions of their transfer among the nodes only.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 10/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-3
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

X , X
& —_—
N - e— - e— - a— - — - a—
0= o= 0= o= o=
Change position Disconnect from node Connect to node Change node Timeout

Figure 4 Actuator events related to mobility behaviour. Full-size Kl DOI: 10.7717/peerj-cs.651/fig-4

The physical location of fog nodes in a mobile environment is a major concern.
Placing Fog Computing nodes too far from each other will result in higher latency or
connection problems. In this case, IoT devices are unable to forward their data, hence they
are never processed. Some devices may store their data temporarily, until they connect to a
fog node, but this contradicts real-time data processing promises of fogs.

A slightly better approach would be to install fog nodes fairly dense in space to avoid the
problem discussed above. However, there might be some unnecessary nodes in the system,
causing a surplus in the infrastructure, which results in resource wastage.

Considering different mobility models for mobile networks in simulation environments
have been researched for a while. The survey by Camp, Boleng ¢» Davies, 2002 presents
seven entity and six group mobility models in order to replace trace files, which can be
considered as the footprints of movements in the real world. Applying mobility models is a
reasonable decision, because they mimic the movements of IoT devices in a realistic way.
The advent of IoT and the technological revolution of smartphones have brought the
need for seamless and real time services, which may require an appropriate simulation tool
to develop and test the cooperation of Fog Computing and moving mobile devices.

The current extension of the DISSECT-CF-Fog was designed to create a precise
geographical position representation of computing nodes (fog, cloud) and mobile devices
and simulate the movements of devices based on specified mobility policies. As the
continuous movement of these devices could cause connection problems we consider the
following events shown in Fig. 4.

Examining the occurrence of these specific events can help in optimising the physical
allocation of fog nodes depending on the mobility features of IoT devices.

Actuator implementation in DISSECT-CF-Fog

DISSECT-CF-Fog is a discrete event simulator, which means there are dedicated moments,
when system variables can be accessible and modifiable. The extended classes of the
timing events, which can be recurring and deferred, ensure to create the dedicated
time-dependent entities in the system.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 11/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-4
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

As mentioned in “Actuator Model”, a complex, detailed data representation in the
simulator is mandatory in order to provide sufficient information for the actuator
component. Data fragments are represented by DataCapsule objects in the system of
DISSECT-CF-Fog. The sensor-generated data is wrapped in a well-parameterized
DataCapsule object, and forwarded to an IoT Application located in a fog or cloud node to
be processed. A DataCapsule object uses the following attributes:

e source: Holds a reference to the IoT device generating sensor data, so the system keeps
track of the data source.

e destination: Holds a reference to the Application of a fog node where the data has been
originally forwarded to.

e dataFlowPath: In some cases fog nodes cannot process the current data fragment,
therefore they might send it to another one. This parameter keeps track of the visited fog
nodes by the data before it has been processed.

o bulkStorageObject: Contains one or more sensor-generated data that has been wrapped
into one DataCapsule.

o evenSize: The size of the response message sent from a fog node to the actuator
component (in bytes). This helps to simulate network usage while sending information
back to the actuator.

e actuationNeeded: Not every message from the IoT device requires an actuator response
event. This logical value (true-false) holds true, if the actuator should take action after
the data has been processed, otherwise it is false.

o fogProcess: A logical value (true—false), that is true, if the data must be processed in a fog
node, and should not be sent to the cloud. It is generally set to true, when real-time
response is needed from the fog node.

o startTime: The exact time in the simulator, when the data was generated.

o processTime: The exact time in the simulator, when the data was processed.

e endTime: The exact time in the simulator, when the response has been received by the
actuator.

o maxToleratedDelay and priorityLevel: These two attributes define the maximum delay
tolerated by the smart device and the priority of the data. Both of them could play a
major role in task-scheduling algorithms (e.g. priority task scheduling), but they have no
significant role in the current extension.

o actuatorEvent: This is the specific event type that is sent back to the actuator for
execution.

To set these values accurately, some sensor-specific and environment-specific properties
are required. The SensorCharacteristics class integrates these properties and helps to create
more realistic simulations. The following attributes can be set:

o sensorNum: The number of applied sensors in a device. It is directly proportional to the
size of the generated data.

Markus et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.651 12/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

o mittf: The mean time until the sensor fails. This attribute is essential to calculate the
sensor’s average life expectancy, which helps in modelling sensor failure events. If the
simulation’s time exceeds the mttf value, the sensor has a higher chance to fail. If a
sensor fails, the actuator forces it to stop.

e minFreq and maxFreq: These two numbers represent the maximum and minimum
sampling rate of the sensor. If a sensor does not have a predefined sampling rate but
rather senses changes in the environment, then these are environment-specific attributes
and their values could be defined by estimating the minimum and maximum time
interval between state changes in the environment. These attributes are necessary to
limit the possible frequency value of a sensor when the actuator imposes an event which
affects the frequency.

e fogDataRatio: An estimation on how often the sensor generates data, that requires a fog
process. This value is usually higher in the case of sensors that generate sensitive data or
applications that require real-time response.

e actuatorRatio: An estimation on how often the sensor generates data, that requires
actuator action. This is typically an environment-specific attribute. The more
inconsistent and variable the environment is, the higher its chance to trigger the
actuator, thus the value of this attribute should be set higher. This attribute has an
impact on the DataCapsule’s actuationNeeded value. If the actuatorRatio is higher, then
it is more likely to set the actuationNeeded attribute to true.

e maxLatency: Its value determines the maximum latency tolerated by the device when
communicating with a computing node. For instance, in the case of medical devices, this
value is generally lower than in the case of agricultural sensors. Mobile devices may
move away from fog nodes inducing latency fluctuations and this attribute helps to
determine whether a computing node is suitable for the device, or the expected
latency exceeds this maxLatency limitation, therefore the device should look for a new
computing node. This attribute plays a major role in triggering fog-selection actuator
events when the IoT device is moving between fog nodes.

o delay: The delay of the data generating mechanism of the sensor.

When creating an IoT device in the simulation, its SensorCharacteristics features should
also be defined. This will enable the simulated device to start generating DataCapsule
objects according to its characteristics. This is the start of the life-cycle of a DataCapsule
object. DataCapsule objects are forwarded to a certain Application of a fog node, based on
the fog selection strategy of the device.

The corresponding timed method (called (tick())) of the Application is responsible
for processing the data on a fog node. If the actual fog node has adequate resources to
process the received data, the processing happens, and if the actuationNeeded attribute of
the processed DataCapsule object was true, then it is sent back to the actuator (i.e. the
data source) expanded with a specific actuatorEvent object (denoting an action to be
performed by the actuator). After the data object stored in the DataCapsule is received by
the actuator, it executes the event. If the actuationNeeded attribute was false during the

Markus et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.651 13/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

Cloud

Application

L

Fog 1 Fog 2 Fog N
n Datacapsu|e ;;.7.7; Application PR T -. W

“DataCapsule

DaTaCapsyle
DataCapsule ™

Actuator

Device

Figure 5 Data flow in the DISSECT-CF-Fog. Full-size k] DOT: 10.7717/peerj-cs.651/fig-5

data processing, then the procedure mentioned before is omitted. Otherwise, if the current
fog node does not have the capacity to process the data, it sends them over to another node
based on the actual strategy of the Application.

The life-cycle of a DataCapsule object ends, when the actuator interface receives a
notification indirectly by triggering a consumption event for which the IoT device has
been subscribed to. By definition of the DataCapsule, its life-cycle can also end without
actualisation events, if the actuationNeeded is set to false. A simplified demonstration of
the DataCapsule’s path in the system (meaning the data flow) can be seen in Fig. 5.

The actuator model in DISSECT-CF-Fog is represented as the composition of three
entities that highly depend on each other. These entities are the Actuator, ActuatorStrategy
and the ActuatorEvent. The entities are serving input directly or indirectly for each other,
as shown in Fig. 6.

As mentioned in “Actuator Model” the actuator model must only operate with
predefined events to limit its scope to certain actions. These events are represented by
the ActuatorEvent component, which is the core element of this model. By itself, the
ActuatorEvent is only an interface and should be implemented in order to specify an exact
action. There are some predefined events in the system: five of them are low-level,
sensor-related events (as discussed in “Actuator Model”), the other five are related to
the mobile functionality of the devices, but these can be extended to different types of
behaviours.

Since the actuator has the ability to control the sensing process itself (Pisani et al., 2020),
half of the predefined actuator events foster low-level sensor interactions. The Change
filesize event can modify the size of the data to be generated by the sensor. Such behaviour
reflects use cases, when more or less detailed data are required for the corresponding
IoT application, or the data should be encrypted or compressed for some reason.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 14/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-5
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

ActuatorStrategy DataCapsule ActualizationEvent Actuator

Locic ActuatorEvent DataCapsule Datacapsulc) EFFECT
ActuatorEvent

Selects an ActuatorEvent based on DataCapsule is sent over via a
B N Stores the ActuatorEvent N
its algorithm ConsumptionEvent

Executes the ActuatorEvent

Figure 6 Operation of the actuator model. Full-size 4] DOT: 10.7717/peerj-cs.651/fig-6

The Increase frequency and Decrease frequency might be useful when the IoT application
requires an increased time interval between the measurements of a sensor. A typical

use case of this behaviour is when a smart traffic control system of a smart city monitors
the traffic at night, when usually less inhabitants are located outside. The maximum value
of the frequency is regulated by the corresponding SensorCharacteristics object. The
Decrease frequency is the opposite of the previously mentioned one, a typical procedure
may appear in IoT healthcare, for instance the blood pressure sensor of a patient measures
continuously increasing values, thus more frequent perceptions are required. The
minimum value of the frequency is regulated by the corresponding SensorCharacteristics.
The Stop device event imposes fatal error of a device, typically occurring randomly, and it is
strongly related to the mttf of the SensorCharacteristics. The mttf is considered as a
threshold, before reaching it, there is only a small chance for failure, after exceeding it, the
chance of a failure increases exponentially. Finally, the Restart device reboots the given
device to simulate software errors or updates.

Customised events can be added to the simulation by defining the actuate() method of
the ActuatorEvent class, that describes the series of actions to occur upon executing the
event. The event is selected corresponding to the ActuatorStrategy, which is a separate and
reusable logic component and indispensable according to “Actuator Model”. It is also an
interface, and should be implemented to define scenario-specific behaviour. Despite its
name, the ActuatorStrategy is capable of more than just simulating the configuration of an
actuator and its event selection mechanism. This logic component can also be used to
model the environmental changes and their side effects.

DISSECT-CF-Fog is a general fog simulator that is capable of simulating a broad
spectrum of scenarios only by defining the key features and functionalities of each element
of a fog and cloud infrastructure. The ActuatorStrategy makes it possible to represent an
environment around an IoT device, and make the actuator component reactive to its
changes. For instance, let us consider a humidity sensor and a possible implementation of
the actuator component. We can then mimic an agricultural environment in the
ActuatorStrategy with the help of some well-defined conditions to react to changes in
humidity values, and select the appropriate customised actuator events (e.g. opening
windows, or watering), accordingly. This characteristic enables DISSECT-CF-Fog to

Markus et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.651 15/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-6
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

simulate environment-specific scenarios, while maintaining its extensive and generic
feature.

Finally, the Actuator component executes the implemented actions and events. There
are two possible event executions offered by this object:

1. It can execute an event selected by the strategy. This is the typical usage, and it is
performed automatically for devices needing actualisation, every time after the data have
been processed by a computing unit, and a notification is sent back to the device.

2. Single events can also be fired by the actuator itself. If there is no need for an
intermediate computing unit (i.e. data processing and reaction for the result), the
actuator can act immediately, wherever it is needed as we mentioned in “Actuator
Model”.

There might be a delay between receiving an ActuatorEvent and actually executing
it, especially when the execution of the event is a time consuming procedure. This possible
delay can be set by the latency attribute of the Actuator. By default, a device has no inherent
actuator component, but it can be explicitly set by the setActuator() method in order
to fulfil the optional presence of the actuator as mentioned in “Actuator Model”.

Representing loMT environments in DISSECT-CF-Fog

The basis of mobility implementations in the competing tools usually represent the
position of users or devices as two or three-dimensional coordinate points, and the
distance between any two points is calculated by the Euclidean distance, whereby the
results can be slightly inaccurate. To overcome this issue and have a precise model (as we
stated in “Requirements for modelling the Internet of Mobile Things”), we take into
account the physical position of the end users, IoT devices and data centres (fog, cloud) by
longitude and latitude values. The representative class called GeoLocation calculates
distance using the Haversine formula. Furthermore, applying geographical location with a
coordinate system often results in a restricted map, where the entities are able to move,
thus in our case worldwide use cases can be implemented and modelled.

In real life, the motion of an entity can be represented by a continuous function,
however in DISSECT-CEF-Fog the discrete events reflect the state of the function describing
a motion, thus continuous movements are transformed into such events, for instance
modifying the direction in discrete moments. Therefore, the actual position only matters
and is evaluated before the decisions are made by a computing appliance or a device, for
instance when the sensed data is ready to be forwarded.

As we stated in “Requirements for modelling the Internet of Mobile Things”, the mobile
device movements are based on certain strategies. Currently two mobility strategies are
implemented. We decided to implement one entity and one group mobility model
according to Camp, Boleng ¢» Davies (2002), but since we provide a mobility interface, the
collection of the usable mobility models can be easily extended.

The goal of the (i) Nomadic mobility model is that entities move together from one
location to another, in our realisation multiple locations (i.e. targets) are available. It is very
similar to the public transport of a city, where the route can be described by predefined

Markus et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.651 16/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

pz(lat,long)

p3(lat,long)

P4 (lat,long)

Figure 7 Random Walk mobility model. Full-size K&l DOT: 10.7717/peerj-cs.651/fig-7

points (or bus stops), and the dedicated points (Pi) are defined as entities of the
GeoLocation class. An entity reaching the final point of the route will no longer move, but
may function afterwards. Between the locations, a constant v speed is considered, and there
is a fixed order of the stops as follows:

Pilanlong) _V> Pglat,long) l} o _V) P,(qlm"long)

The (ii) Random Walk mobility takes into consideration entities with unexpected and
unforeseen movements, for instance the observed entity walks around the city,
unpredictably. The aim of this policy is to avoid moving in straight lines with a constant
speed during the simulation, because such movements are unrealistic. In this policy, a
range of the entity is fixed (r), where it can move with a random speed (v). From time to
time, or if the entity reaches the border of the range, the direction and the speed of the
movement dynamically change (Pi). That kind of movement is illustrated in Fig. 7.

The MobilityDecisionMaker class is responsible for monitoring the position of the fog
nodes and IoT devices, and making decisions knowing these properties. This class has two
main methods. The (i) handleDisconnectFromNode() closes the connection with the
corresponding node in case the latency exceeds the maximum tolerable limit of the device,
or the IoT device is located outside of the range of the node. The (ii) handleConnectToNode
() method is used, when a device finds a better fog node instead of the current one, or

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 17/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-7
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

' LPDS Cloud of the MTA SZTAKI web-
site is available at: https://www.sztaki.hu/
en/science/departments/lpds (accessed in
October, 2020).

% The Amazon Web Service website is
available at: https://aws.amazon.com/
ec2/pricing/on-demand/ (accessed in
QOctober, 2020).

the IoT device runs without connection to any node, and it finds an appropriate one.
These methods are directly using the actuator interface to execute the corresponding
mobility-based actuator events.

As we mentioned earlier, actuation and mobility are interlinked, thus we introduce five
actuator events related to mobility according to “Requirements for modelling the Internet
of Mobile Things”. Position changes are done by Change position event of the actuator.
The connection or disconnection methods of a device are handled by the Disconnect from
node and Connect to node events, respectively. When a more suitable node is available
for a device than the already connected one, the Change node actuator event is called.
Finally, in some cases a node may stay without any connection options due to its position,
or in cases when only overloaded or badly equipped fog nodes are located in its
neighbourhood. The Timeout event is used to measure the unprocessed data due to these
conditions, and to empty the device’s local repository, if data forwarding is not possible.

EVALUATION

We evaluated the proposed actuator and mobility extensions of the DISSECT-CF-Fog
simulator with two different scenarios, which belong to the main open research challenges
in the IoT field (Marjani et al., 2017). The goal of these scenarios is to present the
usability and broad applicability of our proposed simulation extension. We also extended
one of the scenarios with larger scale experiments, in order to determine the limitations
of DISSECT-CF-Fog (e.g. determining the possible maximum number of simulated
entities).

Our first scenario is IoT-assisted logistics, where more precise location tracking of
products and trucks can be realised, than with traditional methods. It can be useful for
route planning (e.g. for avoiding traffic jams or reducing fuel consumption), or for better
coping with different environmental conditions (e.g. for making weather-specific
decisions).

Our second scenario is IoT-assisted (or smart) healthcare, where both monitoring and
reporting abilities of the smart systems are heavily relied on. Sensors wore by patients
continuously monitor the health state of the observed people, and in case of data spikes it
can immediately alarm the corresponding nurses or doctors.

During the evaluation of our simulator extension we envisaged a distributed computing
infrastructure composed of a certain number of fog nodes (hired from local fog providers)
to serve the computational needs of our IoT applications. Beside these fog resources,
additional cloud resources can be hired from a public cloud provider. For each of the
experiments, we used the cloud schema of LPDS Cloud of MTA SZTAKI' to determine
realistic CPU processing power and memory usage for the physical machines. Based on
this schema we attached 24 CPU cores and 112 GB of memory for a fog node, and set at
most 48 CPU cores and 196 GB of memory to be hired from a cloud provider to start
virtual machines (VMs) for additional data processing.

The simulator can also calculate resource usage costs, so we set VM prices according to
the Amazon Web Services’ (AWS) public cloud pricing scheme. For a cloud VM having 8
CPU cores and 16 GB RAMs we set 0.204$ hourly price (al.2xlarge), while for a fog

Markus et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.651 18/27

https://www.sztaki.hu/en/science/departments/lpds
https://www.sztaki.hu/en/science/departments/lpds
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

o . S8 y AN p—— Y- (/ >\ 3 e
a) 25 kilometers range b) 50 kilometers range
Figure 8 Applied fog ranges in the first scenario. Full-size k4] DOT: 10.7717/peerj-cs.651/fig-8

VM having four CPU cores and 8 GB RAMs we set 0.102$ hourly price (al.xlarge).
This means that the same amount of data is processed twice faster on the stronger, cloud
VM, however the cloud provider also charges twice as much money for it. In our
experiments, we proportionally scale the processing time of data, for every 50 kBytes, we
model one minute of processing time on the Cloud VM.

For both scenarios, we used a PC with Intel Core i5-4460 3.2 GHz, 8 GB RAM and
a 64-bit Windows 10 operating system to run the simulations. Since our simulations take
into account random factors, each experiment was executed ten times, and the average
values are presented below.

The logistics loT scenario
In the first scenario, we simulated a one year long operation of a smart transport route
across cities located in Hungary. This track is exactly 875 km long, and it takes slightly
more than 12 h to drive through it by a car based on the Google Maps, which means the
average speed of a vehicle is about 73 km/h.

We placed fog nodes in nine different cities maintained by a domestic company, and we
used a single cloud node of a cloud provider located in Frankfurt. Each fog node has direct
connection with the cloud node, the latency between them is set based on the values

3 The WonderNetwork website is available provided by the WonderNetwork service’. A fog node forms a cluster with the subsequent
at: https://wondernetwork.com/pings

(accessed in October, 2020). and the previous fog node on the route as depicted in Fig. 8. This figure also presents

the first test case (a), when the range of a fog node is considered as 25 km radius (similarly
to a LoRa network). For the second test case (b), we doubled the range to 50 km

radius. The IoT devices (placed in the vehicles to be monitored) were modelled with

4G network options with an average 50 ms of latency.

4 The Ericsson website is available at: All vehicles were equipped by three sensors (asset tracking sensor, AIDC (automatic
https://www.ericsson.com/en/mobility-
report/articles/massive-iot-in-the-city
(accessed in May, 2021). 150 bytes” of data per sensor. A daemon service on the computational node checks the

identification and data capture) and RFID (radio-frequency identification)) generating

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 19/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-8
https://wondernetwork.com/pings
https://www.ericsson.com/en/mobility-report/articles/massive-iot-in-the-city
https://www.ericsson.com/en/mobility-report/articles/massive-iot-in-the-city
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Results of the random actuator strategy and number of events during the first scenario.

Actuator strategy Random

Fog node range (km) 25 50

Vehicle (pc.) 2 20 200 2 20 200

VM (pc.) 19 19 19 19 19 19
Generated data (MB) 48 491 4,868 79 801 8,025
Fog + Cloud cost ($) 1,988.5 2,973.1 9,619.9 3061.1 4,026.1 10,357.4
Delay (min.) 5.0 4.01 2.03 5.0 4.02 2.02
Runtime (sec.) 3 13 141 4 16 169
Change file size (pc.) 20,937 210,009 2,102,215 34,873 348,226 3,477,983
Change node (pc.) 0 0 0 11,573 115,535 1,155,243
Change position (pc.) 181,388 1,812,784 18,137,172 181,447 1,814,159 18,141,355
Connect/disconnect to node (pc.) 12,985 129,944 1,299,099 1,556 15,833 158,751
Increase frequency (pc.) 21,239 210,352 2,104,912 34,812 346,774 3,479,261
Decrease frequency (pc.) 10,591 105,888 1,059,124 17,282 174,314 1,739,929
Restart/stop device (pc.) 0 0 0 0 0 0
Timeout (pc.) 70,941 709,384 7,091,262 0 0 0
Timeout data (MB) 27 274 2,752 0 0 0

local storage for unprocessed data in every five minutes, and allocates them in a VM for
processing. Each simulation run deals with increasing number of IoT entities, we initialise
2, 20 and 200 vehicles in every twelve hours, which go around on the route. Half of

the created objects are intended to start their movements in the opposite direction
(selected randomly).

During our experiments, we considered two different actuator strategies: the
(i) RandomEvent models a chaotic system behaviour, where both mobility and randomly
appearing actualisation events of a sensor can happen. The failure rate of IoT components
mttf were set to 90% of a year, and avoiding unrealistically low or high data generation
frequencies, we limited them to a range of one to 15 min (minFreq,maxFreq). Finally,
we enhanced the unpredictability of the system by setting the actuatorRatio to 50%.

The (ii) TransportEvent actuator policy defines a more realistic strategy to model asset
tracking, which aims to follow objects based on a broadcasting technology (e.g. GPS).

A typical use case of this, when a warehouse can prepare for receiving supplies according to
the actual location of the truck. In our evaluation, if the asset was located closer than 5 km,
it would send position data in every 2 min. In case of 5 to 10 km, the data frequency is
5 min, and from 10 to 30, the data generation is set to 10 min, lastly if it is farther than
30 km, it informs changes in 15 min.

The results are shown in Tables 3 and 4. The comparison are based on the following
parameters: (i) VM reflects the number of created VMs during the simulation on the cloud
and fog nodes, which process the amount of generated data. As we mentioned earlier,
our simulation tool is able to calculate the utilisation cost of the resources based on the
predefined pricing schemes (Fog+Cloud cost). Delay reflects the timespan between the

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 20/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Results of the transport actuator strategy and number of events during the first scenario.

Actuator strategy Transport

Fog node range (km) 25 50

Vehicle (pc.) 2 20 200 2 20 200

VM (pc.) 19 19 19 19 19 19
Generated data (MB) 65 642 6445 83 851 8469

Fog + Cloud cost ($) 1,974.7 4,492.9 10,231.1 2,557.8 5,006.5 10,312.7
Delay (min.) 5.0 4.03 2.02 5.0 4.04 4.01
Runtime (sec.) 3 13 119 4 15 128
Change file size (pc.) 20,012 198,221 1,986,157 20,107 189,693 1,870,594
Change node (pc.) 0 0 0 6,111 65,424 654,135
Change position (pc.) 91,167 910,014 9,122,057 93,088 970,373 9,791,859
Connect/disconnect to node (pc.) 13,140 131,455 1,314,037 7,029 66,349 659,573
Increase frequency (pc.) 19,833 198,888 1,982,648 19,573 66,117 1,872,881
Decrease frequency (pc.) 19,735 199,759 1,983,997 19,646 189,298 1,875,489
Restart/stop device (pc.) 0 0 0 0 0 0
Timeout (pc.) 35,379 354,788 3,536,881 0 0 0
Timeout data (MB) 15 149 1,557 0 0 0

time of last produced data and the last VM operation. Runtime is a metric describing
how long the simulation run on the corresponding PC. The rest of the parameters are
previously known, it shows the number of the defined actuator and mobility events.
Nevertheless Timeout data is highlighting the amount of data lost, which could not
been forwarded to any node, because the actual position of a vehicle is to far for all
available nodes.

Interpreting the results, we can observe that in case of the 25 km range, the
RandomEvent drops more than half (around 56.19%) of the unprocessed data losing
information, whilst the same average is about 23.4% for the TransportEvent. In case of
50 km range, there is no data dropped, because the nodes roughly cover the route and the
size of gaps cannot trigger the Timeout event. In contrary, the ranges do not cover each
other in case of the 25 km range, which results in zero Change node event.

Based on the Fog+Cloud cost metric, one can observe that the TransportEvent utilises
the cloud and fog resources more, than the RandomEvent, nevertheless the average price of
a device (applying two vehicles) is about 1197.7$, in case of 20 assets it decreases to
about 206.2$, and lastly operating 200 objects reduce the price to about 50.6$, which means
that the continuous load of the vehicles utilises the VMs more effectively.

Since the IoT application frequency was set to five minutes, we considered the Delay
acceptable, when it was equal or less than five minutes. Based on the results, all test cases
fulfilled our expectation. It is worth mentioning that mttf might be effective only in
simulating years of operation, thus neither software nor hardware error is triggered
(Restart/stop device) in this case. The Runtime metric also points to the usability and
reliability performance of DISSECT-CF-Fog; less than three minutes was required to

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 21/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

® The AWS Architecture Guidelines and
Decisions website is available at: https://
aws.amazon.com/blogs/compute/low-
latency-computing-with-aws-local-
zones-part-1/ (accessed in May, 2021).

evaluate a one year long scenario with thousand of entities (i.e. simulated IoT devices and
sensors running for a year).

Smart healthcare scenario

In the second scenario, we continued our experiments with a smart healthcare case study.
In this scenario, patients wear blood pressure and heart rate monitors. We automatically
adjust the data sampling period if the monitors report off nominal behaviour: (i) in

case of blood pressure lower than 90 or higher than 140; (ii) in case of heart rate values
lower than 60, and higher than 100.

In this scenario, each patient represents a different data flow (starting from its IoT
device), similarly to the previously mentioned way. First the data is forwarded to the fog
layer, if the data processing is impossible there due to overloaded resources, then the
data is moved to the cloud layer to be allocated to a VM for processing. As IoT healthcare
requires as low latency as possible, the frequency of the daemon services on the
computational node was set to one minute. Similarly to the first scenario, one
measurement of a sensor creates (a message of) 150 bytes.

We focus on the maximum number of IoT devices which can be served with minimal
latency by the available fog nodes, and we are also interested in the maximum tolerable
delay, if the raw data is processed in the cloud. We applied the same VM parameters
as in the previous scenario, and the simulation period took one day. We did not implement
mobility in this scenario, nevertheless actualisation events were still required in case of
health emergency to see how the system adapts to the unforeseen data.

Similarly to the first scenario, the hospital was assumed to use a public cloud node in
Frankfurt, but it was also assumed to maintain three fog nodes on the premises of the
hospital. During our experiments, we considered various number of patients (100, 1,000
and 10,000), and we investigated how the operating costs and delay change and adapt to
the different the number of fog VMs and actualisation events.

Since each fog node is available in the local region, the communication latency was set
randomly between 10 and 20 ms (regarding to AWS”), furthermore the actuatorRatio
was set to 100%, because of the vital information of the sensed data, thus each
measurement required some kind of actuation. The rest of the parameters were the same
we used in the logistics scenario.

Our findings are depicted in Table 5. One can observe that the increasing number of
applied fog nodes reduces the average costs per patient, in case of three fog nodes the mean
cost (projected on one patient) is around 83.7$. This amount of money is continuously
grows as the fog nodes are omitted one by one, the corresponding average operating costs
are about 97.7$, 118.7$ and 124.08, respectively, which means maintaining fog nodes also
might be economically worthy.

Figure 9 presents the delay of the IoT application concerning the number of utilised fog
and cloud nodes. Using a higher number of fog nodes can foster faster data processing,
however in case of 10,000 patients, the best delay is 7.74 min, which points out that the
utilised resources were overloaded. In the other cases the system managed the patients’

Markus et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.651 22/27

https://aws.amazon.com/blogs/compute/low-latency-computing-with-aws-local-zones-part-1/
https://aws.amazon.com/blogs/compute/low-latency-computing-with-aws-local-zones-part-1/
https://aws.amazon.com/blogs/compute/low-latency-computing-with-aws-local-zones-part-1/
https://aws.amazon.com/blogs/compute/low-latency-computing-with-aws-local-zones-part-1/
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Results and number of events during the second scenario.

Actuator strategy Healthcare
Fog/cloud node ratio 3/1 2/1 1/1 0/1
Patient (pc.) 10,000 1,000 100 10,000 1,000 100 10,000 1,000 100 10,000 1,000 100
VM (pc.) 21 11 12 17 8 9 12 5 5 6 2 2
Generated data (MB) 251 27 2 231 27 2 197 27 2 145 27 2
Fog + Cloud cost ($) 48.1 25.1 278 420 19.7 22.7 352 153 149 37.1 10.8 9.9
Delay (min.) 7.74 1.41 1.06 9.51 1.46 1.07 9.50 1.79 1.05 14.8 2.44 1.22
Runtime (sec.) 8 1 1 8 1 1 8 1 1 11 1 1
Increase frequency (pc.) 132,125 14,687 1,431 119,954 14,192 1392 98,975 14,127 1,468 71,153 13,927 1,399
Decrease frequency (pc.) 750,751 80,718 8,068 684,829 80,845 8104 563,198 80,295 8,023 406,155 81,105 8,115
Restart/stop device (pc.) 0 0 0 0 0 0 0 0 0 0 0 0
——10 000 patients -=-1000 patients —+-100 patients
16
14
12
— 10 .
£ M
\E/ s /
>
@©
o 6
o

2 _.._—————“’-

— —

3/1 2 /1 171 0/1
Ratio of the fog and cloud nodes

Figure 9 Delay values of the second scenario. Full-size Kal DOI: 10.7717/peerj-cs.651/fig-9

data with less than three minutes delay, but decreasing the number of usable fog nodes can
continuously increase the delay.

Lastly, we can observe that no failure happened during the evaluation (Restart/stop
device), because of the reliability of medical sensors and the short time of simulation.
We can also realise that our simulation tool is able to model thousands of smart objects
(e.g. IoT devices and sensors), and their one day long simulated operation could be done in
11 s of elapsed time (Runtime) in the worst case.

Large-scale experiments of the smart healthcare scenario
In this section our goal was to point out the possible limitations of DISSECT-CF-Fog using
the previously detailed smart healthcare scenario. The runtime of DISSECT-CF-Fog
largely depends on the used execution environment and its actual hardware resources
(mostly memory), similarly to any other software.

Our findings are presented in Table 6, in which we used the same metrics as before.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 23/27

http://dx.doi.org/10.7717/peerj-cs.651/fig-9
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Results and number of events in the scalability studies.

Actuator strategy Healthcare

Fog/cloud node ratio 31 7/1 55/1
Patient (pc.) 170,000 180,000 190,000 190,000 190,000
VM (pc.) 24 24 Out of memory 48 336
Generated data (MB) 1,196 1,261 1,513 1,679
Fog + cloud cost ($) 197.6 208.5 244.9 674.9
Delay (min.) 6,256.0 6,796.0 5,886.0 9.9
Runtime (sec.) 186 256 159 163
Increase frequency (pc.) 624,860 657,725 790,999 810,153
Decrease frequency (pc.) 3,557,783 3,751,754 4,498,906 4,049,325
Restart/stop device (pc.) 0 0 0 0 0

For this scalability study, we also applied the earlier used topology with three fog nodes
and a cloud node. To determine the exact number of IoT devices that can be modelled by
the simulator is not possible, because our system takes into account random factors.
Nevertheless, we can give an estimate by scaling of the number of IoT devices, in our case
the amount of active devices (i.e. patients).

In this evaluation we increased the number of patients with 10,000 for the test cases, and
examined the memory usage of the execution environment. The results showed that
even for cases of 170,000 and 180,000 IoT devices, the fog and cloud nodes can process the
vast amount of data generated by the modelled IoT sensors, however the Delay value
also increased dramatically to 6 256 min, in the first case, and 6,796 min, in the second
case. It is worth mentioning that besides such a huge number of active entities, the Runtime
values are below 5 min. When we simulated 190,000 IoT devices, the simulator consumed
all of the memory of the underlying hardware.

In the fourth test case, we applied seven fog nodes. Our findings showed that the Delay
value decreased spectacularly to 5,886 min, however it is far from what we experienced in
the second scenario, therefore our further goal was to define how many computational
resources (i.e. fog nodes) are required to decrease the Delay parameter below 10 min,
similarly to what we expected in the second scenario.

We can clearly seen in the fifth test case that at least 55 fog nodes are required for
190,000 IoT devices to process and store their data. In this case, the Delay value is 9.9 min,
but because of the higher number of computational nodes, both numbers of the utilised
VMs (336 pieces) and these costs (674.9%$) increased heavily. The Java representation
of the fog and cloud nodes hardly differ, therefore we could reach similar results, if we
increased the number of cloud nodes as well.

It can be clearly seen that the critical part of DISSECT-CF-Fog is the number of IoT
devices utilising in the system, however if we also increase the number of the simulated
computing resources (i.e. fog and cloud nodes), we can reach better scalability (i.e. the
delay and simulation runtime would not grow). The reason for this is that the actual Java
implementation of DISSECT-CF-Fog stores the references of model entities of the devices

Markus et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.651 24/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

and the unprocessed data. To conclude, the current DISSECT-CF-Fog extension is capable
of simulating even up to 200 thousand system entities. Limitations are only imposed

by the the hardware parameters utilised, and the wrongly (or extremely) chosen ratio of the
number of IoT devices and computing nodes set for the experiments.

CONCLUSION

In this paper, we introduced the extended version of DISSECT-CF-Fog to support
actuators and mobility features. Concerning our main contribution, we designed and
developed an actuator model that enables broad configuration possibilities for
investigating IoT-Fog-Cloud systems. With our extensions, various IoT device behaviours
and management policies can be defined and evaluated with ease in this simulator.

We also evaluated our proposal with two different case studies of frequently used IoT
applications, and we extended the smart healthcare scenario with large-scale experiments
to determine the limitations of our approach. These IoT scenarios utilise the predefined
actuator events of the simulator. We also presented how to use different actuator strategies,
in order to define specific application (and sensor/actuator) behaviour. In essence, our
solution ensures a compact, generic and extendable interface for actuator events, which is
unique among state-of-the-art simulators in the area.

Our future work will address more detailed and extended mobility models for migration
and resource scaling decisions. We also plan to extend the actuator strategies to model
various types and behaviour of IoT entities.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was supported by the Hungarian Scientific Research Fund under the grant
number OTKA FK 131793, by the Hungarian Government under the grant number
EFOP-3.6.1-16-2016-00008, and by the UNKP-21-3 New National Excellence Program of
the Ministry for Innovation and Technology from the source of the National Research,
Development and Innovation Fund. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Hungarian Scientific Research Fund: OTKA FK 131793.

Hungarian Government: EFOP-3.6.1-16-2016-00008.

National Research, Development and Innovation Fund: UNKP-21-3.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
e Andras Markus performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, and approved the final draft.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 25/27

http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

e Mate Biro performed the experiments, performed the computation work, prepared
figures and/or tables, and approved the final draft.

e Gabor Kecskemeti conceived and designed the experiments, performed the computation
work, authored or reviewed drafts of the paper, and approved the final draft.

o Attila Kertesz conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:
The source code of the extension is available at GitHub:
https://github.com/andrasmarkus/dissect-cf/tree/actuator.

REFERENCES

Bonomi F, Milito R, Zhu J, Addepalli S. 2012. Fog computing and its role in the internet of things.
In: Proceedings of the MCC workshop on Mobile Cloud Computing. New York: Association for
Computing Machinery DOI 10.1145/2342509.2342513.

Brogi A, Forti S, Ibrahim A. 2018. Deploying fog applications: how much does it cost, by the way?
In: 8th International Conference on Cloud Computing and Services Science (CLOSER). 68-77
DOI 10.5220/0006676100680077.

Camp T, Boleng J, Davies V. 2002. A survey of mobility models for ad hoc network research.
Wireless Communications and Mobile Computing 2(5):483-502 DOI 10.1002/(ISSN)1530-8677.

Cheng B, Solmaz G, Cirillo F, Kovacs E, Terasawa K, Kitazawa A. 2018. Fogflow: easy
programming of IoT services over cloud and edges for smart cities. IEEE Internet of Things
Journal 5(2):696-707 DOI 10.1109/J10T.2017.2747214.

Gupta H, Dastjerdi A, Ghosh S, Buyya R. 2016. Ifogsim: a toolkit for modeling and simulation of
resource management techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience 47(9):1275-1296 DOI 10.1002/spe.2509.

Jha DN, Alwasel K, Alshoshan A, Huang X, Naha R, Battula S, Garg S, Puthal D, James P,
Zomaya A, Dustdar S, Ranjan R. 2020. Iotsim-edge: a simulation framework for modeling the
behavior of internet of things and edge computing environments. Software: Practice and
Experience 50(6):844-867 DOI 10.1002/spe.2787.

Kecskemeti G. 2015. Dissect-cf: a simulator to foster energy-aware scheduling in infrastructure
clouds. Simulation Modelling Practice and Theory 58(1):188-218
DOI 10.1016/j.simpat.2015.05.009.

Lera I, Guerrero C, Juiz C. 2019. Yafs: a simulator for IoT scenarios in fog computing. IEEE Access
7:91745-91758 DOI 10.1109/ACCESS.2019.2927895.

Mahmud R, Kotagiri R, Buyya R. 2018. Fog computing: a taxonomy, survey and future directions.
In: Di Martino B, Li KC, Yang L, Esposito A, eds. Internet of Everything: Algorithms,
Methodologies, Technologies and Perspectives. Singapore: Springer
DOI 10.1007/978-981-10-5861-55.

Marjani M, Nasaruddin F, Gani A, Karim A, Hashem IAT, Siddiqa A, Yaqoob I. 2017.

Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access
5:5247-5261 DOI 10.1109/ACCESS.2017.2689040.

Markus A, Gacsi P, Kertesz A. 2020. Develop or dissipate fogs? Evaluating an IoT application in
fog and cloud simulations. In: 10th International Conference on Cloud Computing and Services
Science (CLOSER) DOI 10.5220/0009590401930203.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 26/27

https://github.com/andrasmarkus/dissect-cf/tree/actuator
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.5220/0006676100680077
http://dx.doi.org/10.1002/(ISSN)1530-8677
http://dx.doi.org/10.1109/JIOT.2017.2747214
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1002/spe.2787
http://dx.doi.org/10.1016/j.simpat.2015.05.009
http://dx.doi.org/10.1109/ACCESS.2019.2927895
http://dx.doi.org/10.1007/978-981-10-5861-55
http://dx.doi.org/10.1109/ACCESS.2017.2689040
http://dx.doi.org/10.5220/0009590401930203
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

PeerJ Computer Science

Markus A, Kertesz A. 2020. A survey and taxonomy of simulation environments modelling fog
computing. Simulation Modelling Practice and Theory 101:102042 DOI 10.1016/j.simpat.2019.102042.

Motlagh NH, Mohammadrezaei M, Hunt J, Zakeri B. 2020. Internet of things (iot) and the
energy sector. Energies 13(2):494 DOI 10.3390/en13020494.

Nahrstedt K, Li H, Nguyen P, Chang S, Vu L. 2020. Internet of mobile things: Mobility-driven
challenges, designs and implementations. In: IEEE First International Conference on Internet-of-
Things Design and Implementation (IoTDI). Piscataway: IEEE DOI 10.1109/I0TDI.2015.41.

Ngai ECH, Lyu MR, Liu J. 2006. A real-time communication framework for wireless sensor-
actuator networks. In: IEEE Aerospace Conference. Piscataway: IEEE
DOI 10.1109/AER0O.2006.1655885.

Pisani F, de Oliveira FMC, Gama ES, Immich R, Bittencourt LF, Borin E. 2020. Fog computing
on constrained devices: paving the way for the future IoT. Advances in Edge Computing: Massive
Parallel Processing and Applications 35:22-60 DOI 10.3233/APC200003.

Puliafito C, Gongalves DM, Lopes MM, Martins LL, Madeira E, Mingozzi E, Rana O,
Bittencourt LF. 2020. Mobfogsim: simulation of mobility and migration for fog computing.
Simulation Modelling Practice and Theory 101(1):102062 DOI 10.1016/j.simpat.2019.102062.

Qayyum T, Malik A, Khan M, Khalid O, Khan S. 2018. Fognetsim++: a toolkit for modeling and
simulation of distributed fog environment. IEEE Access 6:63570-63583
DOI 10.1109/ACCESS.2018.2877696.

Ranjan R, Villari M, Shen H, Rana O, Buyya R. 2020. Software tools and techniques for fog and
edge computing. Software: Practice and Experience 50(5):473-475 DOI 10.1002/spe.2813.

Sheltami TR, Al-Roubaiey AA, Mahmoud ASH. 2016. A survey on developing publish/subscribe
middleware over wireless sensor/actuator networks. Wireless Networks 22:2049-2079
DOI 10.1007/s11276-015-1075-0.

Sonmez C, Ozgovde A, Ersoy C. 2018. Edgecloudsim: an environment for performance
evaluation of edge computing systems. Transactions on Emerging Telecommunications
Technologies 29(11):e3493 DOI 10.1002/ett.3493.

Svorobej S, Endo PT, Bendechache M, Filelis-Papadopoulos C, Giannoutakis KM,

Gravvanis GA, Tzovaras D, Byrne J, Lynn T. 2019. Simulating fog and edge
computing scenarios: an overview and research challenges. Future Internet 11(3):55
DOI 10.3390/£111030055.

Taylor R, Baron D, Schmidt D. 2015. The world in 2025 - predictions for the next ten years.
In: 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference
(IMPACT). Piscataway: IEEE DOI 10.1109/IMPACT.2015.7365193.

Tychalas D, Karatza H. 2018. Simulation and performance evaluation of a fog system. In: Third
International Conference on Fog and Mobile Edge Computing (FMEC). Piscataway: IEEE
DOI 10.1109/fmec.2018.8364041.

Markus et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.651 27/27

http://dx.doi.org/10.1016/j.simpat.2019.102042
http://dx.doi.org/10.3390/en13020494
http://dx.doi.org/10.1109/IoTDI.2015.41
http://dx.doi.org/10.1109/AERO.2006.1655885
http://dx.doi.org/10.3233/APC200003
http://dx.doi.org/10.1016/j.simpat.2019.102062
http://dx.doi.org/10.1109/ACCESS.2018.2877696
http://dx.doi.org/10.1002/spe.2813
http://dx.doi.org/10.1007/s11276-015-1075-0
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.3390/fi11030055
http://dx.doi.org/10.1109/IMPACT.2015.7365193
http://dx.doi.org/10.1109/fmec.2018.8364041
http://dx.doi.org/10.7717/peerj-cs.651
https://peerj.com/computer-science/

	Actuator behaviour modelling in IoT-Fog-Cloud simulation
	Introduction
	Related work
	The actuator and mobility models of dissect-cf-fog
	Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

