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Abstract  
This paper presents a desiccation crack monitoring campaign conducted on a full-scale, vegetated 
infrastructure embankment subjected to one-year of seasonally variable weather. The field survey 
involved direct measurement of naturally developed, annually reoccuring cracks in a heavily 
instrumented, clay fill embankment (BIONICS, Newcastle University). Transient crack morphology was 
captured in terms of opening width, length and depth, in addition to meteorological and near-surface soil 
hydrological conditions. In order to assess any correlation between crack development and weather-
driven changes in near surface soil conditions, the volume of cracks was estimated using an empirically 
derived equation. This work identified crack behaviour in four stages: initiation, expansion, contraction 
and closure. These stages and the distribution of cracks on the slope are closely related to prevailing 
atmospheric conditions, namely wind direction, relative humidity, precipitation and potential 
evapotranspiration. These ultimately govern the soil hydrological conditions in the near-surface, as 
manifested in the presented matric potential and volumetric water content data. Linearly descrete cracks 
are shown to form under such conditions in contrary to the polygonal patterns typically reported under 
laboratory conditions. Crack length growth terminates prior to full volumetric maturation with crack depth 
dominating the dynamic response regardless of overall crack size.  
 
Keywords chosen from ICE Publishing list 
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List of notations 
d1 is the depth of the first measurement point (mm) 
d2 is the depth of the second measurement point (mm) 
L is the length between two measurement points (mm) 
V is the volume of the crack (mm) 
w1 is the width of the first measurement point (mm) 
w2 is the width of the second measurement point (mm) 

ETo  is reference evapotranspiration (mm/day) 
Rn  is mean daily net radiation at the crop surface (MJ/m2) 
G  is mean daily soil heat flux density (MJ/m2) 
T  is mean daily air temperature at 2 m height (°C) 
u2  is mean daily wind speed at 2 m height (m/s) 
es  is mean daily saturation vapour pressure (kPa) 
ea  is mean daily actual vapour pressure (kPa] 
es - ea  is mean daily saturation vapour pressure deficit (kPa) 
  is mean daily slope vapour pressure curve (kPa/°C) 

  is mean daily psychrometric constant (kPa/°C) 
  



 

 

 

1. Introduction 
Cracking is a common phenomenon in unsaturated, 
cohesive soils subjected to drying and is of concern 
in a range of disciplines, including agriculture, 
geotechnical engineering, mining and resource 
management. The implications of cracking on the 
stability of infrastructure slopes has been well 
documented, including its contribution to the 
progressive deterioration of such assets (Stirling et 
al., 2020). In order to understand the mechanism of 
desiccation cracking, it is important to be able to 
adequately parameterise and characterise 
behaviour. There have been many approaches, 
including manual measurement (Zein El Abedine 
and Robinson, 1971; Dasog et al., 1988; Ringrose-
Voase and Sanidad, 1996; Rivera, 2008; Dyer et al., 
2009; Stewart et al., 2012), image analysis (Tang et 
al., 2008; Peron et al., 2009b; Costa et al., 2013; 
Sanchez et al., 2013; Gadi et al., 2017; Zhang et al., 
2019; Cheng et al., 2020a), fractal analysis (Vallejo, 
2009; Lu et al., 2016), X-ray computed tomography 
(Anderson et al., 1982; Viggiani et al., 2014; Tang et 
al., 2019; Julina and Thyagaraj, 2019), electrical 
resistivity tomography (Hen-Jones et al., 2017; Tang 
et al., 2018; An et al., 2020), ground penetrating 
radar (Benson, 1995; Levatti et al., 2017), distributed 
optical fiber sensing technique (Cheng et al., 2020b)  
and numerical modelling (Ayad et al., 1997; Peron et 
al., 2009a; AMARASIRI and KODIKARA, 2013; 
Sánchez et al., 2014; Stirling et al., 2017; Levatti et 
al., 2019; Tran et al., 2019). These approaches 
typically focus on crack production in a laboratory 
setting using processed clays, often from slurried 
states. Therefore, their scale is rarely representative 
of field conditions and cannot account for 
heterogeneity in full-scale structures and the 
influence of vegetation, fundamental considerations 

in stress-strain localisation. Furthermore, the 
existing literature from the field takes a snap-shot in 
time approach to addressing what is actually a 
transient behaviour that is highly dependent on 
seasonally variable conditions. This study presents 
for the first time, a prolonged, manual crack survey 
across the an embankment alongside 
contemporaneous soil water content, matric suction 
and meteorological data to provide evidence of field-
scale cracking behaviour over an annual timescale. 
The objectives are to: define cracking style on 
vegetated infrastructure embankments; present 
evidence of natural environmental factors that 
influence the distribution of cracking; outline the 
relationship between seasonally variable weather 
conditions, soil hydrological conditions and the 
transient response of cracks; and provide a 
comprehensive time series dataset which enables 
field cracking to be better understood. 
 
 
2. The Embankment 
The BIONICS embankment, located in 
Northumberland (UK), is 6 m high, 90 m long and 
orientated approximately east-west with a 1:2 slope, 
representative of typical UK infrastructure (Figure 1). 
The embankment comprises four panels with the 
central panels constructed to Highways England 
specifications (termed ‘well-compacted’) and two 
outermost sections built with reduced compaction to 
represent poorly constructed/heterogeneous rail 
embankments. Further details on the design and 
construction are provided in Hughes et al. (2009); its 
behaviour over a 4-year period is further discussed 
by Glendinning et al. (2014) and longer-term aspects 
by Stirling et al. (2020). 

 

Figure 1. Photograph of the BIONICS Research Embankment looking northeast. 



 

 

2.1 Slope vegetation 
The slopes were seeded immediately after 
placement of 300 mm topsoil in 2006, with a 
grassland/highways mixture. Vegetation surveys 
conducted in the period 2014-2015 indicated a shift 
towards wind-blown colonisation by additional 
species on the south facing slope. The northern 
aspect is characterised by lower plant diversity, 
predominantly grasses (e.g. Alopecurus pratense 
and Lolium perenne) while the southern aspect 
displays a higher diversity of wildflowers (e.g. 
Leucanthemum vulgare, Filipendula ulmaria, 
Achillea millefolium and Knautia arvensis). 
Excavations indicated an average rooting depth of 
approximately 400 mm, below which rooting density 
diminishes. 
 
2.2 Embankment fill 
The construction fill (Durham Lower Boulder Clay) is 
a glacial till, typical of many infrastructure 
embankments in the northern UK. It is a well-graded 
(>2 μm), intermediate plasticity sandy clay with liquid 
and plastic limits, 42% and 22%, respectively, and a 
shrinkage limit of 14%. The particle size distribution 
shows the material comprises gravel 12%, sand 
16%, silt 35% and clay 37%. A maximum dry density 
of 1.82 Mg/m3 at 15% optimum water content was 
established by normal Proctor (light) compaction 
testing. The dry density for poor-compacted and 
well-compacted panel are 1.6 and 1.7 Mg/m3, 
respectively. Results of quantitative XRD analyses 
on the <2 µm fraction indicate clay mineral 
assemblages comprising variable amounts of 
illite/smectite (ranging 42-54%, with a mean of 49%), 
chlorite/smectite (3–7% range, mean 5%), illite (16–
26% range, mean 19%) and kaolinite (23–31% 
range, mean 26%). 
 
2.3 In situ monitoring 
Instrumentation included buried soil hydrology 
sensors and dual aspect meteorological monitoring. 

The buried sensors employed were manufactured by 
Decagon Devices, namely the 5TE and MPS-1 and 
MPS-2/6 models. The 5TE measures volumetric 
water content, electrical conductivity and soil 
temperature (Decagon Devices, 2016). The MPS 
range of instruments measure soil water potential 
(matric suction) within the range -9 kPa to -100,000 
kPa, later models are also capable of measuring soil 
temperature (Decagon Devices, 2009, 2017). In the 
interests of brevity, full technical specifications may 
be accessed directly from the manufacture’s 
literature. These sensors are located at 0.5 m depth 
in the middle of the upper and lower sections on the 
presented western ‘poorly’ compacted panel (Figure 
2). A weather station is positioned on the crest of the 
embankment, with a further two, connected stations 
on the north and south slopes. Besides precipitation, 
the meteorological parameters recorded, and 
available from (Yu et al., 2020), also enabled the 
calculation of reference evapotranspiration using the 
Penman-Monteith estimation provided in Equation 1 
(Allen et al., 1998). 

𝑬𝑻𝒐 ൌ  
𝟎.𝟒𝟎𝟖∆ሺ𝑹𝒏ି𝑮ሻା𝜸
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𝑻శ𝟐𝟕𝟑𝒖𝟐ሺ𝒆𝒔ష𝒆𝒂ሻ

∆ା𝜸ሺ𝟏ା𝟎.𝟑𝟒𝒖𝟐ሻ
   (1) 

 
 

3. Crack measurement and characterisation 
Cracking has been observed since 2009 (2 years 
post-construction). This work presents manual crack 
surveying (approximately weekly) over a one-year 
study period. Crack observations include their 
location, length, width at regular intervals and 
approximate depth and were established using a thin 
flexible, graduated probe pushed in until refusal by 
light hand pressure (Eminue, 2018). This process is 
labour intensive and relies upon successful 
discovery of crack sites amongst dense vegetation-
cover, up to 0.5 m in height in Spring-Summer. This 
factor is particularly important in the discovery of new 
cracks. Once established, crack sites can be reliably 
returned to repeatedly.  
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MPS (Soil-water potential)

Panel A Lower Depth of 0.5 m
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Cross-section View
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Plan View
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Figure 2. Layout of sensors. 



 

 

In order to correlate crack development with 
weather-driven changes in near-surface hydrology, 
the volume of the cracks was estimated using an 
empirically derived geometric relation where volume, 
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In this equation, the shape of a crack section having 
width 𝑤 , depth 𝑑  and length 𝐿  between any two 
measurement points, is assumed as a triangular 
pyramid or fulcrum (Figure 3). This satisfies theorem 
522 and 524 (Holgate, 1901) relating cross-sectional 
volume of fulcrum to the area (i.e. product of the 
measured crack length and width) and altitude 
(depth). 
 

 
Figure 3. Geometry of crack section: Width (w1) and 
depth (d1) of first measurement point; Width (w2) and 
depth (d2) of second measurement point; Crack 
length (L) is the gap between the two measurement 
points; the pyramid volume (V). 
 
 
4. Results and discussion 
The full dataset presented herein is openly 
accessible via the Newcastle University data 
repository (Yu et al., 2020).  
 
The majority of cracking occurs on the poorly 
compacted Panel A, as shown in Figure 4a, with 11 
of the total 19 cracks present on the south slope 
(Figure 4b). Six cracks (#4-8 and #11) were found on 
the upper section and five cracks (#1-3 and #9-10) 
on the lower section. Cracks #4-11 had been 
identified by researchers from the same group prior 
to the start of this survey and are considered long-
standing features although are comparable in scale 
and behaviour to those identified at the start of this 
survey. Figure 5 illustrates the discrete, linear 

cracking style typically seen in this context which is 
hypothesised to be due to the presence of dense 
vegetation. This style of cracking is in contrast to the 
branching, connected polygonal style typically seen 
in laboratory experiments (Tang et al., 2008, 2011; 
Costa et al., 2013; Bordoloi et al., 2018; Cheng et al., 
2020a) and sparcely vegetated field sites (Dyer et 
al., 2009; Li and Zhang, 2011). The key mechanical 
difference between vegetated and non-vegetated 
soils is the permeation of roots which influences both 
the generation of suction (Ng et al., 2019) and tensile 
strength in the form of fiberous root reinforcement 
(Tang et al., 2012). The work of Bordoloi et al. (2018) 
investigated the influence of vegetation on cracking 
with a dedicated laboratory study. They found that 
grass species reduced the maximum crack intensity 
factor by 20% compared to bare soil. However, it is 
difficult to achieve the same maturity and density of 
vegetation as found in the field in small-scale 
laboratory experiments. Wind roses (Figure 4c & 4d) 
demonstrate the difference in exposure across the 
embankment. The prevailing wind direction is south-
westerly with maximum wind speeds between 10-12 
ms-1. The wind directions recorded on both sides 
display a sheltering effect due to the embankment 
orientation with maximum magnitudes on the north 
slope supressed. Besides wind exposure, the 
southern aspect will also experience greater solar 
radiation and longer daylight hours. Exposure to the 
prevailing wind and solar radiation will promote 
drying on Panel A south which together with a 
greater diversity of vegetation, may be responsible 
for the majority of cracking being observed on this 
slope.  
 
This study will focus on the most crack-active slope, 
Panel A south. Volumetric time-series data for all 11 
cracks are presented in Figure 6 alongside the 
respective meteorological and near-surface soil 
conditions. The daily reference evapotranspiration 
(ETo) trend shows a typical seasonal trend, peaking 
mid-summer and negligible mid-winter, this trend is 
inverse to mean daily relative humidity (RH). The 
maximum suction on the upper section (430 kPa) is 
greater than that on the lower section (102 kPa). 
Accordingly, the minimum volumetric water content 
(VWC) on the upper section (25%) is lower than that 
at lower section (28%), although both show a similar 
maximum (41%), approximating to full saturation. At 
the time of construction, core cutter samples taken 
from this panel provided an average porosity of 38% 
(Glendinning et al., 2014). A dry period is defined by 
suction generation between July and mid-
November, coinciding with peak ETo (minimum RH) 
and the onset of rainfall in the absence of ETo, 

L

d1
d2

w1

w2

V



 

 

respectively. During this dry period, water contents 
are lower, with correspondingly higher suctions, in 
the upper section. This is thought be the result of 
several factors: (i) the water table would be expected 
to lower from the top of the embankment under 

gravity; (ii) the upper secion is exposed to wind-
driven drying to a greater degree than the lower 
section (closer in elevation to the surrounding 
topography); (iii) the lower section receives a larger 
volume of runoff as the catchment above is greater; 
and (iv) there exists heterogeneity in the material 
and vegetative cover. The end of the dry period is 
marked by a net positive water balance entering the 
winter, leading to the rapid dissipation of suction 
followed immediately by the return to saturated 
water content, the lag being a result of the non-linear 
soil-water retention characteristics of the 
embankment fill material. 
 
Based on crack volumes in conjunction with 
meteorological and soil hydrological trends, the 
monitored period may be divided into 4 stages: 
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Figure 4. Embankment layout showing crack distribution and wind exposure with respect to slope aspect. (a) 
Overview of cracks at the BIONICS embankment; (b) Crack distribution on the upper and lower (6 m) halves 
of Panel A South; Wind exposure on (c) north slope and (d) south slope. 

Figure 5. Photograph of crack #10, a representative 
embankment crack. 



 

 

I. Initiation - AB (June - August): High ETo (low 
RH) leads to rapidly decreasing VWC and 
ultimately, increasing suction. Net drying 
leads to the initiation of crack opening on 
both sections.  

II. Expansion - BC (August - October): Suction 
continues to be generated in both sections, 
coincident with sustained low VWC. Crack 
volumes continue to increase to their 
maximum despite falling ETo and heavy 
rainfall events in early August. 

III. Contraction - CD (October - Mid November): 
Despite maintaining low VWC, falling ETo 
rates, increasing RH and consecutive days 
of rainfall lead to a minor reduction in suction 
and onset of decreasing crack volumes.  

IV. Closure - DE (Mid November - May): Rapid 
loss of suction is associated with re-
saturation as a result of sustained rainfall 
and negligible ETo.  Suction and VWC 
subsequently remain constant through this 
dominantly wet period.  Crack volumes 
continue to decrease until eventually 
reaching their initial, ‘closed’ state. 

Several cracks were observed to reach comparable 
depths to the buried sensors, as seen in Figure 8 and 
Figure 7. Measurements were taken at 0.5 m to 
avoid the initiation of cracking immediately above the 
instruments. This would invalidate measurements 
due to the accelerated infiltration of runoff from 
upslope to the monitored depth. Therefore, there 
may be assumed a lag between the generation of 
suction at the surface during drying, where crack 
widths and lengths are measured, and that recorded 
at 0.5 m. Partial saturation and the generation of 
suctions at the surface may be inferred from reduced 
atmospheric RH. It may be noted that only one crack 
was measured to reach 1 m (#10), all others do not 
extend below 0.5 m.  
 
To aid comparison, survey results presented in 
Figure 8 and Figure 7 are classified into small (< 500 
cm3), medium (500 < V < 3000 cm3) and large cracks 
(> 3000 cm3). Irrespective of crack size, width and 
depth are shown to be most dynamic and thus, 
influence the volume trend to the greatest degree. 
That is, steadily increasing crack volume to a peak 
occurring simultaneously with greatest depth and 
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width. Crack lengths are characterised by a stepwise 
trend and reach a sustained maximum while volume 
continues to increase, largely driven by increasing 
depth as widths remain small in magnitude. Closure 
of cracks is the reverse of this process with volume 
reduction driven by decreasing depth, and to a lesser 
extent width, prior to a reduction in length.    

The mechanism behind depth propagation 
dominating crack volume development remains an 
area necessitating further research and improved 
measurement techniques. A reducing root density, 
and thereby reinforcement, with depth may influence 
the ability of the crack tip to progress at the expense 
of limited surface aperture growth. Alternatively, 
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Figure 8. Crack dimension measurements (lengths, mean depth and mean width) from the lower slope: (a) 
Small cracks; (b) Medium cracks; and (c) Large cracks. 
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Figure 7. Crack dimension measurements (lengths, mean depth and mean width) from the upper slope: (a) 
Small cracks; (b) Medium cracks; and (c) Large cracks. 



 

 

drying at the surface leads to soil at depth being at a 
higher relative water content, leading to the crack tip 
favouring propagation into weaker material than at 
the surface. Stirling et al. (2015, 2017) showed that 
tensile strength increased exponentially with 
decreasing water content in the same clay fill, which 
supports the notion that cracks may preferentially 
extend downward at the expense of lengthening. 
 
 
5. Conclusions 
Desiccation cracking in a full-scale, vegetated 
embankment has been studied, which for the first 
time, presents long-term crack dimension monitoring 
in the field and contextual meteorological and soil 
hydrological data. Results show that the distribution 
of cracking was heavily related to prevailing wind 
direction (exposure) and crack response is driven by 
seasonal changes in meteorological and soil 
hydrological conditions. Crack behaviour over an 
annual cycle is impacted little by short-term weather 
events. Crack volume development has been 
observed to follow four stages: initiation, expansion, 
contraction and closure. Although driven by 
seasonal meteorological cycles, these behaviours 
have been linked to progressive drying and the 
generation, maintenance and eventual loss of matric 
suction over the 1-year monitoring period. The 
manual crack surveying has indicated that 
regardless of overall crack size, width and depth 
have the most dynamic response. Cracks tend to 
reach a terminal length at which depth propagation 
continues preferentially, and is reversed upon 
closure. Cracking under these conditions are linear 
features,  in contrast to polygonal patterns produced 
under non- or sparsely vegetated conditions. The 
data presented here is intended to aid the necessary 
transition of laboratory scale desiccation cracking 
research to more realistic, full-scale and natural 
conditions. Only in this way can the dynamic 
influence of cracking on infrastructure slope 
hydrology and stability under changing and ever 
more extreme weather be better understood. 
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