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ABSTRACT Discrete Hahn polynomials (DHPs) and their moments are considered to be one of the efficient
orthogonal moments and they are applied in various scientific areas such as image processing and feature
extraction. Commonly, DHPs are used as object representation; however, they suffer from the problem of
numerical instability when the moment order becomes large. In this paper, an operative method to compute
the Hahn orthogonal basis is proposed and applied to high orders. This paper developed a new mathematical
model for computing the initial value of the DHP and for different values of DHP parameters (¢ and f).
In addition, the proposed method is composed of two recurrence algorithms with an adaptive threshold to
stabilize the generation of the DHP coefficients. It is compared with state-of-the-art algorithms in terms of
computational cost and the maximum size that can be correctly generated. The experimental results show
that the proposed algorithm performs better in both parameters for wide ranges of parameter values « and

B, and polynomial sizes.

INDEX TERMS Hahn polynomials, Hahn moments, propagation error, numerical error.

I. INTRODUCTION

Moment theory and its variants are significant tools in
imaging and computer vision applications [1]-[3]. Moments
are scalar quantities used for characterization of the signal.
Moments are obtained by using a set of polynomial basis
functions. They are used to transform signal from time
domain (such as speech) or spatial domain (such as image)
into the transform domain [4], [5]. Geometric moments and
moments invariants were introduced by [6] to deal with the
problem of pattern recognition. They are not orthogonal [7],
what causes numerical problems.

Continuous moments are obtained using continuous
orthogonal polynomials (COPs), e.g. Zernike [8], [9]
or Chebyshev with transformed radius [10]. Continuous
moment functions are inaccurate because of two sources
of errors: coordinate transformation of the image and the
approximation of the continuous integral [11]. As a result,
during image reconstruction process, the image will be far
from perfect due to discretization and approximation [12].

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.
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In order to surmount these shortcomings, researches
oriented towards discrete orthogonal polynomials (DOPs).
They show better capabilities in image reconstruction
[11]-[13]. Beside, discrete orthogonal moments (DOMs)
have the ability to represent 1D and 2D signals without
redundancy, high energy compaction, and spectral resolution
properties [14]-[17]. Several types of DOPs have been
recently used for signal representation and feature extrac-
tion such as discrete Chebyshev polynomials [18], [19],
discrete Krawtchouk moments [20], [21], and discrete Hahn
moments [22]. In addition, DOPs are used to solve linear
functional differential equations [23].

The robustness of DOPs is essentially based on some
important properties such as energy compaction, efficient
data processing, numerical stability, robust data analysis,
extraction features from the signal, and localization [5], [24].
However, the remarkable properties of the most DOMs can be
applied only to medium size images, they are not applicable
for large size images or high moment orders [25]. This
limitation is determined by the DOP overflow, fluctuation
of the polynomial values, as well as the high computational
cost. Thus, new recurrence algorithms for generating the
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higher orders are still developed, e.g. for Chebyshev [19] and
Krawtchouk [20] polynomials. Recently, researchers have
discussed other DOPs such as Charlier polynomials [26] and
Hahn polynomials [25].

The recursive algorithms reduce the complexity of cal-
culating the coefficients of DOPs and the propagation of
errors [27], [28]. We can use either a single recursive formula
with respect to degree n or a double recursive formula also
with respect to spacial or time coordinate x. The problem
of numerical instability is solved by calculating the DOP
coefficients with respect to the variable n. However, this
calculation is not efficient, when the size of 1D or 2D signals
becomes large. For instance, the coefficients of Chebyshev
polynomials have numerical instabilities since the squared
norm of the scaled Chebyshev polynomials assumes small
values. Mukundan [12] propoesed the recurrence algorithm
in the x-direction to resolve this issue. After that, many
researches began to work on this problem such as [27].

In general, an attention has been paid to the computation
cost, which is considered to be an important point that
subjects to ill-conditioning, therefore it is taking a substantial
consideration in different researches [29], [30]. For Meixner
moment coefficients, this drawback is resolved via fast and
efficient calculation in [31]. For Chebyshev moments, a fast
and stable method is proposed by Abdulhussain et al. [19]
for higher polynomial degree by a combination of the
three-term recurrence relations in the n- and x-directions.
Daoui et al. [25] proposed a new method using a modi-
fied Gram-Schmidt orthogonalization process. This method
reduces the numerical error propagation during recursive
computations. However, it is relatively slow.

Motivated by this problem for the discrete orthogonal Hahn
moments, this study introduces a new algorithm to tackle this
issue through composing two recurrence algorithms (n- and
x-recurrence relations) and an adaptive threshold to stabilize
the generation of the DHP coefficients. Our main contribution
are as follows:

1) A stable computation of initial values is proposed.

2) A double recurrence both in order and in coordinate are

proposed.

3) A condition is utilized to prevent underflow in high
orders.

4) The proposed algorithm for Hahn polynomials preserves
the orthogonality condition for large signal sizes as well
as higher orders.

The present paper is organized as follows: in Section II,
the preliminaries and the existed three-term recurrence algo-
rithms are presented. In Section III, the proposed recurrence
algorithm is presented. In Section IV, the experimental
analysis is performed to evaluate the proposed recurrence
algorithm. Finally, conclusions are drawn in Section V.

Il. PRELIMINARIES

The mathematical definitions and fundamentals of DHP
and discrete Hahn moments (DHMs) are introduced in this
section.

48720

A. THE MATHEMATICAL DEFINITION OF DHP
DHPs of the nth degree ’Hg’ﬁ (x) are defined as the solution
of the difference relation [27], [32], which is given by

POAVHEP (x) + Y O)AHEF (x) + 1MHEP (x) =0, (1)

where ¢(x) and ¥ (x) are first and second order functions,
respectively, and A,, is a constant. A’HZ’ﬁ (x) and V’Hﬁ’ﬂ (x)
represent the forward and backward difference, respectively.
The values of ¢(x), ¥ (x), and A, are defined as follows [27]

o(x) =x(N +a —x) )
Yx)=@B+DWN -1 —(@+B+2)x 3)
A =nla+B+n+1), @

where o and g are the DHP parameters (¢ and 8 > —1 or also
o and B < —N). The values of A’Hg’ﬂ (x) and V’Hf;’ﬂ (x) are
defined as follows

AHEP (x) = HOP (x + 1 N) — HOP (1 N)  (5)
VHEE (1) = HEP (s N) = HEP (x — 1,N) . (6)

From Egs. (5) and (6), AVHZ? (x) can be written
AVHEP (x) = HEP (x + 1;N) — 2H2F (x)
+HEP (x = 1;N),  (7)

where n represents the polynomial degree, x is the signal
index, and N is the polynomial size (the number of samples).
The solution of Eq. (1) is
(=D"(B+ Dn(N —n)y
n!

—n,—x,n+14+a+p
X3F2< B+1,1-N 1), 3
where 3F>(-) represents the generalized hypergeometric
series which is given by

abe| ) o= @k O (O 4
3F2< 0 z)_k;—( ek @ ©

and (-); represents the rising factorial also known as
Pochhammer symbol. It is given by

(@r =ala+ Da+2)---(a+k—1). (10)

HEP (x; N) =

DHPs satisfy the orthogonality condition' as follows
N—1
D HLE (6 N)HGP (65 N) 034(x) = pp(mSum (1)
x=0
where 8., represents the Kronecker delta, w3y and pg; are
the weight and norm functions of DHP

N+ a—x)(B+x+1)
RO = TN T ore+ D (12)
Fae+n+DIB+n+Da+B+n+ 1)y

Cn4+a+p+DI'n+ 1HI'(N —n)

o) =
(13)

'We can find alternative definition with different range of the orthogonal-
ity from O to N [33] instead of that from 0 to N — 1 in (11). Then, all other
formulas are modified.
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FIGURE 1. Plot of DHP with different degree and a size of 150. Top row shows entire ?:Lﬁ’ﬂ (0; N), bottom left shows stable
values in the range of n =0, 1, ..., 104, and bottom right column shows unstable values and the starting point of instability
due to numerical errors in the range n = 104, 105, ..., 149. Note: the green arrow represents stable values of DHP coefficients,
while the red arrow represents unstable values.
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FIGURE 2. 2D plots of the DHP. (a) N = 1600 and « = 8 = 10, (b) N = 1600 and o« = 8 = 40, (c) N = 1600 and « = 8 = 80, (d) N = 2000 and « = 8 = 10,

(e) N =2000 and o« = 8 = 40, and (f) N = 2000 and o = 8 = 80.

The weighted DHP of nth degree is given by

’ﬂﬁ’ﬁ (x;N) = ’Hz’ﬂ (x;N) /w—ﬂ.
PH

B. THE DEFINITION OF DHM
DHMs are the signal (speech or images) projection on the
DHP basis. For two-dimensional signal (image), f (x, y), the
DHMs, nym, is computed as follows
Ni—1Ny—1
Nam = Y HZP (i N)HEP (03 No) f(x, y)
x=0 y=0
n=0,1,...,Ny—1; and m=0,1,...,No — 1, (15)

where N x N; is the size of the image f (x, ¥). The image can
be reconstructed from Hahn moment domain into the spatial

(14)

of the hypergeometric series in Eq. (8). In this section, the
existing recurrence algorithms and their analysis are briefly

presented.

1) THE THREE TERM RECURRENCE RELATION IN THE

n-DIRECTION (TTRRnd)

The DHP of the nth degree at the xth index is given by [27]
~ AB

HEP (x;N) = =

n=23...,N—1;

A CD -

HEP (e N) + 7%3232 (x; N)

and x=0,1,...,N—1,
(17)

where the parameters of the n-direction recurrence algorithms
are (18), as shown at the bottom of the next page, with initial

values

domain by
Ni-1M1 ) HEP (xi N) = @n() (19)
Foyy = 30 30 AL (6 N HL (55 N2) ) P10
=0 m=0 HP (¢, N) = [—(B+ DN — 1) +x(a + B +2)]
x=0,1,...,Ni—1; and y=0,1,...,N» — 1. w2 ()
(16) oD (20)

C. EXISTING RECURRENCE ALGORITHMS
The three term recurrence relations are employed because
of both the time consumption and the insufficient precision

48722

The limitation of the n-direction recurrence algorithm

arises from the initial values ’Hg’ﬁ (x; N) and ’f{‘f’g (x; N).
They are bounded to limited polynomial size N and DHP
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parameters « and B. The maximum polynomial size that
can be generated is 135 samples, when DHP parameters,
o and B, are 20 and 20, respectively. The limitation arises
from the nature of the formula used. Although this issue
can be solved by reducing the complexity of the formula
employed to compute the values of the initial sets, the n-
direction recurrence algorithm still suffers from the numerical
propagation error. It is taken place when the values of the
DHP coefficients (DHPCs) decrease in their values as shown
in FIGURE 1.

2) THE THREE TERM RECURRENCE RELATION IN THE
x-DIRECTION (TTRRxd)
DHP of nth degree at the xth index is computed as [27]
’H‘,’f’ﬁ (x; N)
= m AP @ = N+ P =2 ) |
x=23...,N=1; and n=0,1,...,N -1, (21)
where the coefficients of the x-direction recurrence algorithm

are (22), as shown at the bottom of the next page, with initial
values

At oy = -, (") 4RO 03)
n P (1)
F10b (1 Ny = PHPF DN —n— D —nN +a—1)
S B+ DN — 1)
1) -
ZZ((O)) HEP (0:N). 24)

To reduce the time required to compute the DHPCs, the
following symmetry relation [25] is employed

HEP (x; Ny=(—1)"HEP (N — 1 —x;N) fora=p. (25)

Using the symmetry relation, Eq. (25) reduces the com-
puted coefficients to 50%. However, there are two limitations
in the recurrence relation in the x-directions as follows:
1) the initial set ﬁzﬂ (0; N) becomes zero when the number

of samples or the parameter values becomes too big because
of the nature of the formula used in Eq. (23), and 2) the
coefficient values become underflowed as the degree of the
polynomial becomes large; this is because of the initial
values becomes less than 107324, which becomes zero in
various environments, such as Matlab and C++. FIGURE 2
shows DHP using different values of parameters o and B as
well as polynomial size using the recurrence relation in the
x-direction.

From FIGURE 2, the DHPCs become zero as the
polynomial degree increases. For instance, the maximum
non-zero coefficients occurred at n = 1423 when N = 1600
and o = B = 10 (see FIGURE 2a).

3) RECURRENCE RELATION BASED ON GRAM-SCHMIDT
ORTHONORMALIZATION PROCESS (RRGSOP)

Recently, Daoui et al. [25] presented an algorithm based
on Gram-Schmidt orthonormalization process (GSOP) and
the n-direction recurrence relation to compute DHP. The
GSOP is used to overcome the problem of the instability
in the DHPCs. The presented algorithm begins with the
computation of the initial sets ’}-Atg (x; N) and ’}-Attfﬁ (x; N).
Then, the recurrence relation in the n-direction is employed
to compute the coefficients for n > 1. Finally, the GSOP
is applied to minimize the numerical errors generated by the
n-direction recurrence algorithm. However, the GSOP-based
recurrence algorithm satisfies the orthogonality condition,
it has three drawbacks. First, the algorithm is not able to
correctly generate the coefficients of the DHP when o #
B, which is observed from the results in [25]. Second, the
algorithm is unable to generate DHP for a broad range
of parameters o and 8 because of the formula utilized to
compute the initial values. Third, the GSOP-based recurrence
algorithm has high computational cost due to the nested
loops of the employed GSOP to minimize the error for
each polynomial degree, which in turn increases the number
of operations required to compute the coefficients of the
DHP.

Aoy @Bt -2 (—=a2 + P + B +2N)
- 4 Ao + B +2n—2)(a + B +2n)
_ na+p+n)(a+p+2n+1)
VW —n)a+mB4+na+B+2n—1)a+B+N+n)

C =

_(a+n—1)(,3+n—1)(ot+ﬂ+N+n—1)(N—n+1)

(x+B+2n—2D(a+pB+2n—1)

_ nn—Dae+B+na+B+n—1)a+p+2n+1)
CV@+na@+n—DB+mB+n— DN —n+ HN —n)

1

X\/(a+ﬂ+2n—3)(a+,3+N+n)(a+ﬂ+N+n—1)

nla+p+n)

€= @+ B+2n— D+ p+2n)
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P1

P3

P6

FIGURE 3. Schematic diagram of the proposed algorithm. In parts P1 and
P2, the recurrences in the x-direction are utilized, while in parts P3 and
P4 the recurrences in the n-directions are utilized. In P6, a stabilizing
condition is utilized to prevent underflow in high orders.

lIl. PROPOSED RECURRENCE ALGORITHM

In this section, the design of the proposed algorithm is
presented. For simplicity DHP 7:[3[ (x; N) is denoted as
H%P (x). FIGURE 3 shows DHP for « # S, which is
considered to be more general than the case « = . The
plane of the DHP is partitioned into four parts labeled as
P1, P2, P3, and P4. In parts P1 and P2, the recurrence in
the x-direction are utilized. While, in parts P3 and P4, the
recurrence in the n and x-directions are utilized. In addition,
a stabilizing condition is utilized to prevent underflow in high
orders in parts P3 and P4.

A. INITIAL VALUE AND INITIAL SETS

The initial values are crucial and prerequisite for computation
of the DHPC values. The existing algorithms (TTRRnd,
TTRRxd, and RRGSOP) compute the initial sets. While
TTRRnd and RRGSOP utilize Egs. (19) and (20), TTRRxd
utilizes Eqs. (23) and (24) to determine the initial values.
These equations are problematic because of the gamma
and binomial functions. Thus, infinity (Inf) or not a
number (NaN) are occurred in different environments such
as C++, python, and MATLAB, i.e., the coefficients of
the initial sets are not correctly computed. In addition, the
existing algorithm computes the initial sets using the same
formula, which in turn leads to increase the computation time.

From Eq. (14), the initial values are

5P () = \/ Dt p+IOWN +0) 0

Fla@+DIN+a+B+1)

Py 1y = | T@+BLITW+B)
0 FB+DIWN+a+B+1)

They cannot be computed for a wide range of polynomial
size and parameters, o and 8, because of the gamma function
['(-) produces infinity for argument greater than 172 in the
standard double precision arithmetics. The gamma function
can be written as follows

[(a) = €@, (28)

27)

where logI'(-) represents the logarithmic gamma func-
tion [34]. Using Eq. (28), Egs. (26) and (27) can be expressed
in terms of logI"(-) functions

HoP (0)

— e[logl"(a+ﬁ+2)+10gF(N+O{)710gF(a+1)710gl"(N+ot+ﬂ+l)]/2

(29)

HP (N - 1)

1%rw+m+bgm+nA%rw+n4%rw+wy2¢%ﬂ(m.

(30)

:e[

These formulas can be used for« > —1 and 8 > —1.
The parameters can also be less than —N, i.e. « < —N and
B < —N. Then we must use slightly modified formulas

#;” (0)

— e[flogf‘(fozfﬂf1)710gF(7N701+1)+]0gl"(7a)+logr(7N7a7ﬂ)]/2
(€29)

AP (v - 1)

— o[—10gT (—a—f—D)—logl'(~N—p+1)+logT'(—p)+logl(~N—a—)1/2
(32)

These formulas are used for each part P1 and P2 in
FIGURE 3 separately.

It is noteworthy that the initial value 7:18’3 (N—=1) is
computed in terms of 7-23”5 (0), as given in Eq. (30), to reduce
the execution time. FIGURE 4 illustrates the plots for
the initial values using the proposed algorithm for large
polynomial size N = 8000 and different values of DHP
parameters « and 8. From the FIGURE 4, it can be observed
that the initial values can be computed without Inf or NaN

_ Vg (x) B
M= G- D+raop ‘W=WHe—n

_ 2 DT DA = (b O - ) - x(@ + B +2)
N D)) -

S ek ) PR
n = m Mn)=nla+B+n+1) o

48724
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FIGURE 4. Plot of the initial values of DHP coefficients by utilizing the proposed formula for N = 8000 and various parameter values of DHP (« and B).

values; thus, the proposed initial formulas for the initial
values can be used to compute the rest of the DHPCs.

It is well known that the initial sets are used with
the aim of the three term recurrence algorithm for the
polynomial computation. The initial sets for part P1 are
?A-LZ’/S (0) and 7%5’3 (1) and for part P2 are ’ﬂffﬂ N—-1)
and ﬁﬁﬂ (N — 2). These sets are computed using two term
recurrence algorithm. The initial sets for part P1 are computed
as follows

The initial sets for part P2 are computed as follows

B. UTILIZATION OF THE TTRRnd AND TTRRxd IN THE
PROPOSED ALGORITHM

The proposed recurrence algorithm is designed on merging
the TTRRnd and TTRRxd. For the parts P1 and P2, the
coefficients of the DHP are computed using TTRRxd with a
maximum degree of 40% of N. For the part P1, the modified
TTRRxd (mTTRRxd) is applied as follows

HEP (x) = (] + ) HEP (x = 1) + yHEP (x —2)
n=0,1,...,.M and x=2,3,...,N/2 -1, (37)
where M = 0.4N to ensure non-zero initial sets. The

parameters vy, vz, and v3 of the mMTTRRxd are defined by

2x>+CN+a—B+2x+(B—-1DN —a—1

v = >
noe+B+n+1)
vz:—f
o YEFX-DW—x+ Do - DN+ —x+1)
Vv
v =/ —x)(B+ XN +a—x)x. (38)

For the part P2, the mTTRRxd is applied backwardly as
follows

HEP (x - 2)
1
— o H 0 = PR (- 1)
3
=0 1....M: and x =N —2.N —3.....N/2. (39)

VOLUME 10, 2022

After computing the coefficients in parts P1 and P2, the
coefficients in parts P3 and P4 are computed using the
modified TTRRnd (mTTRRnd) and mTTRRxd.

The coefficients of part P3 are computed in the range n =
M,M+1,....N —landx = N/2—-1,N/2-2,...,0
x=WN-1)/2—-1,(N—-1)/2-2,...,0for odd N) and
the coefficients of part P4 are computed in the range n =

MM+1,....N—1landx = N/2,N/2+1,...,N — 1
x=WN—-1/2,(N=1)/2+1,...,N — 1) as follows
HP (x) = k1o P 0 + 1 HEE, (0. (40)

The parameters k1, k2, and k3 of the mTTRRxd are defined
by (41), as shown at the bottom of the next page

For each computed coefficient at the xth index in parts P3
and P4, when the previously computed coefficient is less than
the currently computed coefficient and less then 107, the
mTTRRxd is stopped, the rest of the coefficients (part P6)
is left zero and the computation continues by the next degree
n+ 1.

C. SUMMARY OF THE PROPOSED RECURRENCE
ALGORITHM
For more clarification, the procedure of the proposed
algorithm for « # B are shown in FIGURE 5 and can be
summarized as follows:
Step 1: Compute the initial values ﬁg’ﬁ (0) and
7 a’ﬂ (N — 1) using Eqgs. (29) and (30), respectively.
(Eqs (31) and (32) respectlvely)
Compute the initial sets ’Hn (0) and 7{3’3 (1)
using Eqs. (33) and (34), as shown at the bottom
of the next page. The initial sets ’Hn (N—-1)
and ?-Atzﬂ (N —2) are computed using Egs. (35)
and (36), as shown at the bottom of the next page.
Compute the coefficients of DHP in part P1 using
mTTRxd given in Eq. (37), while the coefficients
of DHP in part P2 are computed using backward
mTTRRxd given in (39).
Compute the coefficients of the DHP in parts P3 and
P4 using backward mTTRxd given in (40) for the
rangen =M +1,M +2, ..., N — 1. The coordinate

Step 2:

Step 3:

Step 4:
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FIGURE 5. Steps of the proposed algorithm.
x in P3 is in the range x = N2 — I, N2 —2,...,0 N2 = N/2 for even N and N2 = (N — 1)/2 for
and in P4 in the range x = N2, N2+ 1,...,N — 1. odd N.

~a, _ n+14+BWN—-1-n2n+3+B+a)n+B+a+1) o p
Ho O = \/(n+1)(oc+1+n)(n+1+ﬁ+a+N)(2n+ﬁ+a+1)H" ©
n=12...,N—1 (33)
2
o gy~ N =n=Dp—n?—@+DntN—1 [+ DN -1 1.5
™ (D B+DWN -1 arn—1 O
n=0,1,...,N —1. (34)

ﬁzfl(N_l)z\/(anJra+ﬁ)(n+a+ﬁ+1)(n+1+a)(1v—n—1)7%% VoD

m+B+Dn+1+a+B+N)2n+a+B+1Dn+1)

n=12,...,N—1 (35)

52 o — B — — N

n“+(—ae—B—n+ NN 1)(a+1)’HZ’ﬁ(N—1),
VB+N-—DWN —D+1)

n=0,1,...,N—1. (36)

HEP (N —2) =

(@+B+2n+Da+p+2n—1)
n(a@+ B +nWN —n)a+n)(B+na+B+N+n)
(B2 — o) + B+ 2N)

(a+/3+2n—2)(a+/3+2n):|
a+pB+2n n—Da+n—1D(B+n—-1)(N—-n+1)
a4+ p+2m—2 n(o + B + n)(@ +n)(B + n)(N — n)

" a+B+n—Da@+B+2n+Da+B+N+n—1)
(a+B+2n—3)a+B+N+n)

K1 :(a+,3+2n)\/

1
K2=x—Z|:a—,3+2N—2+

K3 =

(41)
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FIGURE 6. Part of the proposed algorithm for o« = .

Step 5: For each value computed at the xth index, if the abso-
lute value of the previously computed coefficient is
less than the currently computed coefficients and less
than 10_6, the process is terminated and moved to
the next value of n, i.e.,, n + 1. We call the zero
coefficients part P6.

It should be noted that for the case of @ = 8, the proposed
algorithm computes the coefficients in parts P1 and P3, while
the coefficients in part PS5 are computed using symmetry
relation given in Eq. (25).

For more elucidation, the flowchart of the proposed
algorithm is shown in FIGURE7

IV. EXPERIMENTAL RESULTS

The performance of the proposed algorithm is evaluated
against existing algorithms in this section. The evaluation is
performed in terms of the maximum size of the generated
polynomial, signal reconstruction, and computational cost.
The experiment was carried out using MATLAB environment
on MSI-GT60 laptop with a memory of 16GB and core
i7-4700MQ CPU.

A. ANALYSIS OF MAXIMUM SIZE

In this experiment, we searched maximum size of DHP
generated by the proposed and existing algorithms for
various values of parameters o and B. If R is the matrix
of values 7-2%’3 (x) with the size N x N, then R x RT
should be the identity matrix 1(N) of the size N x N.
So, mean(|L(N)—R x RT|) can be used as the average
orthogonality error. We searched maximum N satisfying two
criteria, average orthogonality error less than 10~ and the
computing time less than 1 minute.

The maximum size for each algorithm is reported in
TABLE 1. From it we can observe that the proposed algorithm
is able to generate DHP with different polynomial parameters
without propagation error. The main problem with existing
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Input polynomial size N
and parameters a and 3

|

No Yes

Q()mpllte the initial values
H3? (0) using Eq.(29) and
7:18"5 (N — 1) using Eq.(30)

|

Compute the initial sets K
HP (0) using Eq.(33), 7:[3’9 (0) using Eq.(33), and
HP (1) using Eq.(34), HP (1) using Eq.(34),
7-1‘;‘*3 (N —1) using Eq.(35), and l

HP (N — 2) using Eq.(36)

Compute the initial values
HoP (0) using Eq.(29)

Compute the initial sets

Compute the coefficients of DHP
in parts P1 using Eq.(37).

Compute the coefficients of DHP
in parts P1 and P2 using
Eqgs.(37) and (39), respetively

Compute the coefficients of DHP
in parts P3 using Eq.(40), and for each
value computed in the ath index, stop if
Compute the coefficients of DHP ‘H;’BA(I +1)|> [HeP (2)| &
in parts P3 and P4 using Eq.(40). [HoP (@ —1)| > 1e™®
For each value computed in the xzth ¥
index, stop if Compute the coefficients in part
|HeB (z+1)| > [HP (2)] & P5 are computed using symmetry
|’;-A{_z*’ (x—1)] >1e7© relation given in Eq. (25).

FIGURE 7. Flow chart of the proposed algorithm.

TABLE 1. Comparison between the ability of the proposed algorithm and
existing algorithms to generate maximum polynomial size N without
propagation error.

«aand TTRRnd | TTRRxd | RRGSOP | Proposed
a = 100; 8 = 50 35 1170 [ 9848
o = 100; 8 = 100 0 1309 1963 10749
a = 200; 8 = 100 0 1213 [] 10549
a = 200; 8 = 200 0 1414 1963 12037
a = 400; 8 = 200 1] 1266 [ 11624
a = 400; 8 = 300 0 1369 [ 12907
a = 400; 8 = 400 0 1540 1970 14066
o = 500; 8 = 250 [ 1285 [ 8747
a = 500; 8 = 400 1] 1422 [ 11685
a = 500; 8 = 500 0 1589 1954 13527

algorithms relies on: 1) the formula used to compute the
initial value, and 2) the propagation error generated when the
DHPCs becomes very small.

The TTRRnd maximum size is 35 for a very small range
of DHP parameters, while the TTRRxd is able to generate
a maximum size of 1589 and it works for wide range of the
DHP parameters. RRGSOP is able to generate the orthogonal
polynomials only when ¢ = B. The main problem is the
time of computation. All results # ¢ cannot be increased
because of the time limit 1 minute, while the typical time
of computation of the other algorithms is less than 2 s. The
proposed algorithm outperforms the existing algorithms in
terms of the maximum size and degree that can be generated.
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FIGURE 8. Restriction error of DHP (a) for « # $, and (b) « = 8.

FIGURE 9. The image used for the tests.

B. ANALYSIS OF THE ENERGY COMPACTION AND
RECONSTRUCTION ERROR

Discrete transforms are dissimilar because of their moments
distribution [26]. The sequence of moment indices is essential
for the reconstruction of signal information. Therefore,
the DHP distribution of the moment energy needs to be
investigated before the signal reconstruction analysis. The
procedure presented by Jian [35] has been followed to find the
distribution of moments. The procedure can be summarized
as follows

48728

1) A covariance matrix CM with length N and zero mean
is given by [35]

| o p? pV=17T
o :
CM=| ;2 : : o2 |- (42)
S T
LN e 1

2) The covariance matrix CM is transformed into the
discrete Hahn moment domain as follows

T =RxCM xR, (43)

where T is the transformed matrix that is utilized to
describe the transform coefficients 012, and R is the DHP
matrix generated with a size of N and degree N.

3) The diagonal coefficients of the matrix T are considered
in FIGURE 10.

The aforementioned procedure is carried out using two
values of covariance coefficients, p = 0.85 and p = 0.95,
different values of DHP parameters, and length N = 16.
The results are reported in TABLE 2. It can inferred from
TABLE 2 that the variance values 012 of the DHP are arranged
such that the maximum value is located at [ = 0 and
the variance values reduced as the variance index increased.
Thus, the DHP moment order, which is utilized to reconstruct
signal information, is given by: n =0, 1,...,N — 1.

One of the important properties of the orthogonal-
polynomial-based discrete transform is the energy com-
paction property. This property is employed to measure
the tendency of the DHP to reconstruct a large amount of
the signal information using a small number of moment
coefficients. To examine the impact of the DHP parameters
o and B on the energy compaction, the restriction error, 7,
is used as follows [35]

N—-1
> o;

a=m

In =37
> g

=0

c m=0,1,2,...,N—1, (44)

where %2 represents 012 ordered descendingly. FIGURE 8§
illustrates the restriction error using covariance coefficient
(p = 0.98) in terms of retained samples ¢q. From FIGURE 8,
the DHP parameters, « and 8, affect the restriction error. E.g.,
from FIGURE 8a, when parameter « = 10 and 8 = 0 shows
better energy compaction than other parameter values in the
range of m = 32, ..., 96. However, when « = 200 and 8 =
150 presents better energy compaction compared to other
DHP parameters in the range m > 192. On the other hand,
FIGURE 8b, the energy compaction for DHP parameters
o = f = 0and ¢ = B = 10 shows comparable energy
compaction as well as the best energy compaction in the range
of retained samples m = 32, ..., 96. It should be noted that as
DHP parameters increases, the energy compaction becomes
better in the range of m > 192.
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FIGURE 10. NMSE using the proposed algorithm for various parameters values (« and g).

For more evaluation of the proposed algorithm, the First, the reconstruction error analysis is performed for the
normalized mean square error (NMSE) is computed between case of « = B as shown in FIGUREs 10a, c, and e and also
the image and its reconstructed version. The formula for for the case of o # B as shown in FIGUREs 10b, d, and f.
NMSE, E, is given in [26] The image sizes utilized are 1024 x 1024, 2048 x 2018, and

) 4096 x 4096.
2 I, y) = Ir(x,y)) From FIGURE 10, it can be concluded that the proposed
X,y . . .
EU,I)= 7 3 45) algorithm is able to reconstruct the image remarkably for
X . . . .
ny (ICx, ) different polynomial size and different values of DHP

parameters. It should be noted that when the DHP parameters
The image “Fruits” shown in FIGURE 9 is used  increasetoa = 8 = 400, it shows better reconstruction error

as a test image for reconstruction error analysis. The than other values of DHP parameters. E.g., for image size
reconstruction error is performed for different values of 4096 x 4096 , the reconstruction error, NMSE, is reduced
DHP parameters, o and S, as well as different polyno- to minimum for « = B = 400, when the number of moments
mial size. For each polynomial size the image is resized used is greater than 1536 x 1536. In addition, for the case
accordingly. o # B, the best reconstruction error is occurred at « = 400
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TABLE 2. Transform coefficient values ur,z.

! p=0.85 0=0.95

a=20 | a=50 | a=100 | =100 | =200 | =200 | =20 | =50 | =100 | =100 | a =200 | a =200

B8 =20 | B=50 B =50 B =100 | =100 | B =200 | B=20 | B =50 B =50 B =100 | 8 =100 | B =200
0 9.145 8.635 8.031 8.437 7.896 8.331 6.729 6.458 6.121 6.350 6.046 6.292
1 2.713 2.850 2.672 2.886 2.679 2.902 2.622 2.434 2.214 2.359 2.157 2.318
2 1.336 1.255 1.260 1.332 1.291 1.372 2.228 2.267 2.140 2.274 2.135 2.276
3 1.053 1.215 1.141 1.167 1.100 1.142 1.287 1.333 1.291 1.343 1.282 1.347
4 0.676 0.705 0.779 0.711 0.768 0.713 0.986 1.104 1.128 1.148 1.140 1.170
5 0.346 0.472 0.603 0.530 0.638 0.563 0.586 0.673 0.780 0.708 0.793 0.727
6 0.290 0.346 0.527 0.369 0.538 0.380 0.409 0.494 0.633 0.533 0.656 0.555
7 0.107 0.139 0.315 0.162 0.339 0.176 0.253 0.299 0.453 0.323 0.478 0.337
8 0.098 0.136 0.259 0.151 0.289 0.160 0.183 0.211 0.338 0.227 0.363 0.237
9 0.047 0.054 0.144 0.058 0.165 0.061 0.138 0.148 0.237 0.154 0.258 0.159
10 0.041 0.047 0.093 0.051 0.108 0.054 0.117 0.120 0.170 0.123 0.185 0.124
11 0.033 0.034 0.055 0.034 0.062 0.034 0.105 0.104 0.128 0.105 0.135 0.105
12 0.031 0.031 0.038 0.031 0.041 0.031 0.097 0.096 0.105 0.096 0.108 0.096
13 0.029 0.029 0.031 0.029 0.031 0.028 0.091 0.090 0.093 0.090 0.094 0.090
14 0.027 0.027 0.028 0.027 0.028 0.027 0.087 0.086 0.087 0.086 0.087 0.086
15 0.026 0.026 0.026 0.026 0.026 0.026 0.083 0.083 0.083 0.083 0.083 0.083
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FIGURE 11. Comparison of NMSE between the proposed algorithm and existing works. (a), (b), and (c) image size 1024 x 1024, (d), (e), and
(f) image size 2048 x 2048, (a) and (d) « = B = 50, (b) and (e) « = B = 100, (c) and (f) « = g = 200.

and 8 = 200. For image size of 2048 x 2048, the NMSE
declined to minimum for DHP parameters « = 400 and
B = 200 before other DHP parameters when the moment
matrix used for reconstruction is greater than 896 x 896.
For comparison, the NMSE is computed using the
proposed and existing algorithms for different values of
DHP parameters and image sizes. FIGUREs 11a, b, and ¢
present the NMSE for image size of 1024 x 1024 with DHP
parameters « = 8 = 50, = B = 100, and ¢« = 8 = 200,

48730

respectively. In addition, FIGUREs 11d, e, and f illustrate the
NMSE for image size of 2048 x 2048 with DHP parameters
a = =50,a =g = 100,andx = g = 200,
respectively. It can be observed that the TTRRnd is unable to
reconstruct the image because of the nature of the recurrence
algorithm, where the coefficient value of DHP shows high
propagation error for all values of DHP parameters, while
for TTRRxd, it is able to reconstruct the image for small
values of DHP parameters « = g = 50, as shown in
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FIGURE 12. Comparison of execution time between the proposed
algorithm and existing works.

FIGURE 11a and FIGURE 11d, and unable to reconstruct
the image for large values of DHP parameters, as shown in
FIGUREs 11b, c, e, and f, where the TTRRxd is unable to
generate correct DHPCs for large values of DHP parameters
because of the formula used to compute the initial values.
Whereas for RRGSOP, the algorithm is able to reconstruct
the image correctly as the moment order increases up to
o = B = 100; however, it is unable to reconstruct the
image for DHP parameters greater than 100, as shown in
FIGURE 11c and FIGURE 11d, because of the formula used
to compute the initial values. On the other hand, the proposed
algorithm is able to compute DHPCs and to reconstruct the
image correctly for different values of DHP parameters and
image sizes.

C. COMPUTATIONAL COST ANALYSIS

In this section, the proposed algorithm is evaluated in terms
of computational cost. The execution time is performed for
the proposed algorithm and compared to that of the existing
algorithms. The execution time experiment is carried out
using different DHP sizes. It is performed 10 times and
the average time for each algorithm is reported as shows
in FIGURE 12. It can be observed from FIGURE 12 that
the execution time of the proposed algorithm for « = S
is less than that of the proposed algorithm for « # B in
FIGURE 12a. In addition, the proposed algorithm shows less
computation time than that of the TTRRnd because of the
proposed algorithm reduces the formula used for computation
as depicted in FIGURE 12a. Compared to TTRRxd, the
proposed algorithm shows higher execution time than that
of the TTRRxd. On the other hand, the execution time
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required to generate DHP using RRGSOP is higher than
that of the proposed algorithm. The average improvement
ratio computational cost for the proposed algorithm is ~0.76,
2.52, and 289.59 over TTRRxd, TTRRnd, and RRGSOP,
respectively.

V. CONCLUSION

In this paper, a new recurrence algorithm for DHP is
introduced. The proposed algorithm uses the logarithmic
gamma function for computation of the initial values so that it
is able to compute initial values for different DHP parameters
and the large number of samples. The proposed algorithm
combines recurrence in degree with recurrence in coordinates
and with a condition criterion, so that the propagation error
is suppressed. The experiments showed that the proposed
algorithm remarkably reduces the computational cost with
respect to the existing algorithms. It is able to eliminate
propagation errors for large polynomial size and a wide range
of DHP parameters. It achieves better signal reconstruction
results than other recurrence algorithms for high polynomial
degrees.

ACKNOWLEDGMENT
The authors would like to thank the University of Baghdad
and LIMU for general and financial support.

REFERENCES

[1] R. N. Hassan, H. S. Ali, and W. H. Wadee, “Computer simulation for
the effects of optical aberrations on solar images using Karhunen—Loeve
polynomials,” Iragi J. Sci., vol. 62, no. 7, pp. 2463-2473, 2021.

[2] S. H. Abdulhussain, S. A. R. Al-Haddad, M. I. Saripan, B. M.
Mahmmod, and A. Hussien, “Fast temporal video segmentation
based on Krawtchouk—Tchebichef moments,” IEEE Access, vol. 8,
pp. 72347-72359, 2020.

[3] J. Flusser, T. Suk, and B. Zitova, 2D and 3D Image Analysis by Moments.
Chichester, U.K.: Wiley, 2016.

[4] 1. M. Hameed, S. H. Abdulhussain, and B. M. Mahmmod, ‘““Content-
based image retrieval: A review of recent trends,” Cogent Eng., vol. 8,
no. 1, Jan. 2021, Art. no. 1927469. [Online]. Available: https://www.
tandfonline.com/doi/full/10.1080/23311916.2021.1927469

[5] B.M.Mahmmod, A.R. B. Ramli, S. H. Abdulhussain, S. A. R. Al-Haddad,
and W. A. Jassim, “Signal compression and enhancement using a new
orthogonal-polynomial-based discrete transform,” IET Signal Process.,
vol. 12, no. 1, pp. 129-142, Aug. 2018.

[6] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans.
Inf. Theory, vol. 8, no. 2, pp. 179-187, Feb. 1962.

[7]1 H.Zhu, H. Shu, J. Zhou, L. Luo, and J.-L. Coatrieux, “Image analysis by
discrete orthogonal dual Hahn moments,” Pattern Recognit. Lett., vol. 28,
no. 13, pp. 1688-1704, 2007.

[8] A.-W. Deng, C.-H. Wei, and C.-Y. Gwo, “Stable, fast computation of
high-order Zernike moments using a recursive method,” Pattern Recognit.,
vol. 56, pp. 16-25, Aug. 2016.

[9] L. K. Abood, S. M. Al-Hilly, and R. N. Hassan, “Describing the
wavefront aberrations of the hexagonal aperture using modified Zernike
polynomials,” Iragi J. Sci., vol. 54, no. 1, pp. 222-231, 2013.

[10] K. M. Hosny and M. M. Darwish, “New set of multi-channel orthogonal
moments for color image representation and recognition,” Pattern
Recognit., vol. 88, pp. 153-173, Apr. 2019.

[11] R. Mukundan, S. H. Ong, and P. A. Lee, “Discrete vs. continuous
orthogonal moments for image analysis,” in Proc. Int. Conf. Imag. Sci.,
Syst., Technol. (CISST), 2001, pp. 23-29.

[12] R. Mukundan, “Some computational aspects of discrete orthonormal
moments,” IEEE Trans. Image Process., vol. 13, no. 8, pp. 1055-1059,
Aug. 2004.

48731



IEEE Access

B. M. Mahmmod et al.: Fast Computation of Hahn Polynomials for High Order Moments

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

P. T. Yap, R. Paramesran, and S.-H. Ong, “Image analysis by Krawtchouk
moments,” [EEE Trans. Image Process., vol. 12, no. 11, pp. 1367-1377,
Nov. 2003.

J. Zhou, H. Shu, H. Zhu, C. Toumoulin, and L. Luo, “Image analysis by
discrete orthogonal Hahn moments,” in Image Analysis and Recognition.
Berlin, Germany: Springer, 2005, pp. 524-531.

B. M. Mahmmod, A. R. Ramli, T. Baker, F. Al-Obeidat,
S. H. Abdulhussain, and W. A. Jassim, “Speech enhancement algorithm
based on super-Gaussian modeling and orthogonal polynomials,” IEEE
Access, vol. 7, pp. 103485-103504, 2019.

A. C.D. Brinker, “Stable calculation of Krawtchouk functions from triplet
relations,” Mathematics, vol. 9, no. 16, p. 1972, Aug. 2021.

B. M. Mahmmod, S. H. Abdulhussain, M. A. Naser, M. Alsabah,
and J. Mustafina, “Speech enhancement algorithm based on a hybrid
estimator,” IOP Conf. Ser., Mater. Sci. Eng., vol. 1090, no. 1, Mar. 2021,
Art. no. 012102. [Online]. Available: https://iopscience.iop.org/article/
10.1088/1757-899X/1090/1/012102

C. Camacho-Bello and J. S. Rivera-Lopez, “Some computational aspects
of Tchebichef moments for higher orders,” Pattern Recognit. Lett.,
vol. 112, pp. 332-339, Sep. 2018.

S. H. Abdulhussain, A. R. Ramli, S. A. R. Al-Haddad, B. M. Mahmmod,
and W. A. Jassim, “On computational aspects of Tchebichef polynomials
for higher polynomial order,” IEEE Access, vol. 5, pp. 2470-2478, 2017.
B. M. Mahmmod, A. M. Abdul-Hadi, S. H. Abdulhussain, and A. Hussien,
“On computational aspects of Krawtchouk polynomials for high orders,”
J. Imag., vol. 6, no. 8, p. 81, Aug. 2020.

K. A. Al-Utaibi, S. H. Abdulhussain, B. M. Mahmmod, M. A. Naser,
M. Alsabah, and S. M. Sait, “‘Reliable recurrence algorithm for high-order
Krawtchouk polynomials,” Entropy, vol. 23, no. 9, p. 1162, Sep. 2021.
[Online]. Available: https://www.mdpi.com/1099-4300/23/9/1162

P. T. Yap, R. Paramesran, and S. H. Ong, “Image analysis using Hahn
moments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 11,
pp. 2057-2062, Nov. 2007.

A. K. E. Mizel, “Orthogonal functions solving linear functional differential
equations using Chebyshev polynomial,” Baghdad Sci. J., vol. 5, no. 1,
pp. 143-148, Mar. 2008.

S. H. Abdulhussain, B. M. Mahmmod, M. A. Naser, M. Q. Alsabah, R. Ali,
and S. A. R. Al-Haddad, ““A robust handwritten numeral recognition using
hybrid orthogonal polynomials and moments,” Sensors, vol. 21, no. 6,
p. 1999, Mar. 2021.

A. Daoui, M. Yamni, O. E. Ogri, H. Karmouni, M. Sayyouri, and H. Qjidaa,
“New algorithm for large-sized 2D and 3D image reconstruction using
higher-order Hahn moments,” Circuits, Syst., Signal Process., vol. 39,
no. 9, pp. 4552-45717, Sep. 2020.

A. M. Abdul-Hadi, S. H. Abdulhussain, and B. M. Mahmmod, “On the
computational aspects of Charlier polynomials,” Cogent Eng., vol. 7, no. 1,
Jan. 2020, Art. no. 1763553.

H. Zhu, M. Liu, H. Shu, H. Zhang, and L. Luo, “General form for
obtaining discrete orthogonal moments,” IET Image Process., vol. 4, no. 5,
pp. 335-352, Oct. 2010.

S. H. Abdulhussain, A. R. Ramli, B. M. Mahmmod, M. 1. Saripan,
S. A. R. Al-Haddad, and W. A. Jassim, “A new hybrid form of Krawtchouk
and Tchebichef polynomials: Design and application,” J. Math. Imag. Vis.,
vol. 61, no. 4, pp. 555-570, 2019.

I. M. Spiliotis and B. G. Mertzios, “Fast algorithms for basic processing
and analysis operations on block-represented binary images,” Pattern
Recognit. Lett., vol. 17, no. 14, pp. 1437-1450, Dec. 1996.

H. Shu, H. Zhang, B. Chen, P. Haigron, and L. Luo, ““Fast computation of
Tchebichef moments for binary and grayscale images,” IEEE Trans. Image
Process., vol. 19, no. 12, pp. 3171-3180, Dec. 2010.

S. H. Abdulhussain and B. M. Mahmmod, ‘“Fast and efficient recur-
sive algorithm of Meixner polynomials,” J. Real-Time Image Pro-
cess., vol. 18, no. 6, pp.2225-2237, Apr. 2021. [Online]. Available:
https://link.springer.com/10.1007/s11554-021-01093-z

S. H. Abdulhussain, A. R. Ramli, B. M. Mahmmod, S. A. R. Al-Haddad,
and W. A. Jassim, “Image edge detection operators based on orthogonal
polynomials,” Int. J. Image Data Fusion, vol. 8, no. 3, pp. 293-308, 2017.

48732

[33] R. Koekoek and R. F. Swarttouw, “The Askey-scheme of hypergeometric
orthogonal polynomials and its g-analogue,” Fac. Tech. Math. Inform.,
Technische Universiteit Delft, Delft, The Netherlands, Tech. Rep. 98-17,
1996.

[34] J.F. Hart, Computer Approximations. Melbourne, FL, USA: Krieger, 1978.

[351 A. K. Jain, Fundamentals of Digital Image Processing.
Upper Saddle River, NJ, USA: Prentice-Hall, 1989.

BASHEERA M. MAHMMOD received the Ph.D.
degree in computer and embedded system engi-
neering from UPM, in 2018. She is currently a
Lecturer at the Department of Computer Engineer-
ing, University of Baghdad. Her research interests
include signal processing, speech enhancement,
and computer vision.

SADIQ H. ABDULHUSSAIN received the Ph.D.
degree in computer and embedded system engi-
neering from UPM, in 2018. Since 2008, he has
been a Faculty Member with the University of
Baghdad. His research interests include image pro-
cessing, computer vision, and signal processing.

TOMAS SUK (Member, IEEE) received the M.Sc.
degree in electrical engineering from the Fac-
ulty of Electrical Engineering, Czech Technical
University in Prague, Czech Republic, in 1987,
the Ph.D. degree in computer science from the
Czechoslovak Academy of Sciences, in 1992, and
the D.Sc. degree from the Czech Academy of
Sciences, Prague, in 2018. Since 1991, he has
been a Researcher with the Institute of Infor-
mation Theory and Automation, Czech Academy
of Sciences. He has authored more than 35 journal articles and more
than 50 conference papers. He has coauthored the Monographs Moments
and Moment Invariants in Pattern Recognition. His research interests
include invariant features, pattern recognition, image filtering, digital image
processing, and moment-based and point-based invariants.

ABIR HUSSAIN (Member, IEEE) is currently
a Professor of machine learning with the
Department of Computer Science, Liverpool John
Moores University. Her research interests include
machine learning algorithms and their applications
to medical, image and signal processing, and data
analysis.

VOLUME 10, 2022



