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ABSTRACT

We construct the halo mass function (HMF) from the GAMA (Galaxy And Mass Assembly) galaxy group catalogue over the
mass range of 10'>7-10'33 M, and find good agreement with the expectation from Lambda cold dark matter. In comparison
to previous studies, this result extends the mass range over which the HMF has now been measured over by an order of
magnitude. We combine the GAMA data release (DR) 4 HMF with similar data from the Sloan Digital Sky Survey (SDSS)
DR12 and REFLEXII (ROSAT-ESO Flux Limited X-ray Galaxy Cluster Survey) surveys, and fit a four-parameter Murray—

Robotham—Power function, valid at Z & 0.1, yielding a density normalization of log;o (¢, Mpc?) = —3.96f8j§2, a high mass
turnover of logjo (M, Mg') = 14.13%043, a low-mass power-law slope of @ = —1.68703}, and a high-mass softening parameter

of B = 0.63701;. If we fold in the constraint on Qy from the Planck 2018 cosmology, we are able to reduce these uncertainties
further, but this relies on the assumption that the power-law trend can be extrapolated from 10'>7 Mg, to zero mass. Throughout,
we highlight the effort needed to improve on our HMF measurement: improved halo mass estimates that do not rely on calibration
to simulations; reduced halo mass uncertainties needed to mitigate the strong Eddington bias that arises from the steepness of
the HMF low-mass slope; and deeper wider area spectroscopic surveys. To our halo mass limit of 10'>7 M, we are directly
resolving (‘seeing’) 41 £ 5 percent of the total mass density, i.e. 2y ~127 = 0.128 £ 0.016, opening the door for the direct
construction of three-dimensional dark matter mass maps at Mpc resolution.

Key words: surveys—galaxies: groups: general — galaxies: haloes —cosmological parameters —cosmology: observations —dark
matter.

as a near-mass-divergent power-law distribution, with a high-mass

1 INTRODUCTION cut-off correlated with the mass assembly time since the big bang.

One of the definitive predictions from the Lambda cold dark matter
(ACDM) paradigm is the form (shape and amplitude) of the underly-
ing dark matter halo mass function [HMF; see early works by Frenk
et al. (1988) and Brainerd & Villumsen (1992) for example], and its
evolution over time (see Reed et al. 2003; Luki¢ et al. 2007; Watson
et al. 2013). The HMF describes the number density of dark matter
haloes, either per mass interval or per log mass interval, with both
forms in common usage. At redshift zero, the HMF can be described

* E-mail: simon.driver@uwa.edu.au

The HMF form can be derived heuristically from the Press—
Schechter theory for the gravitational collapse of overdense con-
densates (Press & Schechter 1974). The theory of the HMF was
subsequently placed on a sounder basis via the random-trajectories
approach, which allowed an understanding of the fate of material in
underdense regions and a solution of the ‘cloud-in-cloud’ problem
(Peacock & Heavens 1990; Bond et al. 1991).

The initial HMF, established at the time of decoupling, then
evolves through the process of hierarchical assembly of smaller dark
matter haloes. This results in an HMF with both a time- and scale-
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Figure 1. (Left) Analytical predictions of the HMF over a very broad halo mass range (lines), its predicted evolution with redshift (red lines), and its dependence
on the dark matter particle mass (coloured lines). (Right) The same predictions as the left-hand panel, but now showing the contribution of each decade of halo
mass to the total matter density, and highlighting the mass range where most mass is predicted to reside. All the curves shown are taken from Murray et al.

(2013); see also Murray et al. (2021) for a recent revision and online tool.

invariant power law at masses below some time-dependent cut-off
mass (see e.g. Jenkins et al. 2001; Reed et al. 2007). The HMF
also emerges naturally from numerical simulations of the evolving
dark matter distribution, albeit with a 10-20 percent variation
within a particular simulation (Ondaro-Mallea et al. 2021) and a
10-20 percent variation between simulations (Murray, Power &
Robotham 2013).

Recently, Murray, Robotham & Power (2018) demonstrated that
the HMF can be described by a four-parameter function (hereafter,
the MRP function; see equation 3) to within 5 per cent accuracy at
any mass interval. The MRP function closely relates to the Schechter
function (Schechter 1976), which is commonly used for fitting galaxy
luminosity and/or stellar mass functions (e.g. Driver et al. 2022) and
which can be derived from the Press—Schechter formalism. The one
difference between the MRP and Schechter functions is the addition
of a parameter () to soften or sharpen the exponential cut-off at high
mass.

This exponential cut-off at the high-mass end of the HMF is
expected to evolve significantly (Reed et al. 2003; see red lines
in Fig. 1), as progressively larger haloes form over time from the
hierarchical merging of the dark matter haloes. This results in the
emergence of massive dark matter haloes (>10'*> M) hosting rich
clusters of galaxies around a redshift of unity (Allen, Evrard & Mantz
2011). Hence, the existence and evolving density of high-redshift
high-mass clusters is a key and stringent test of ACDM (Allen et al.
2011; Asencio, Banik & Kroupa 2021).

The dark matter particle mass can also influence the low-mass end
of the HMF, as illustrated in Fig. 1, with any low-mass cut-off directly
linked to the dark matter particle mass for some early-decoupling
weakly interacting massive particle (e.g. Murray et al. 2013). For
ACDM, this mass cut-off is around Earth mass, but in warm or hot
(neutrino) dark matter it can be as high as 10'3 M, for dark matter
particles of around 0.1 keV (see Fig. 1). This is due to the propensity
of hot or warm dark matter to free stream during the era in which the
particles are relativistic. If the dark matter consists of a very heavy
particle (> many keV), or even primordial black holes (0.5-100 M),
then no detectable low-mass cut-off would be expected.

The HMF is hence a critical probe of ACDM, with at least three
distinct testable facets:

(i) the high-mass cut-off and its evolution with redshift;

(ii) the power-law slope and amplitude of the HMF; and

(iii) the existence and location of any low-mass cut-off or per-
ceived flattening in the low-mass slope.

A slightly more subtle test is the first moment of the HMF, the
integration over all masses (see the right-hand panel of Fig. 1), which
should be consistent with the total matter density. For completely cold
dark matter, all dark matter particles should be accounted for when
summing over haloes down to infinitesimal mass; however, in the
case of Warm Dark Matter (WDM) or Hot Dark Matter (HDM), the
effects of free streaming mean that there will be a subset of mass
that is not associated with haloes, so that the integral of the local
HMF may lie below the density inferred at recombination by cosmic
microwave background (CMB) studies. Fig. 1 illustrates these two
tests and hence the importance of measuring the HMF. Fig. 1 (right-
hand panel) highlights how the majority of matter is predicted to
reside in intermediate- to low-mass haloes (i.e. ~60 per cent in the
range of 10'°-10"" My), hence demonstrating the importance of
establishing group catalogues to low halo masses.

On the observational side, the measurement of the HMF appears
tractable and relatively straightforward (see Bahcall & Cen 1993), but
does hinge critically on group/cluster identification, and especially
on robust halo mass estimates from group/cluster sizes and velocity
dispersions. In general, the observational and analysis pathway
is a simple task: construct a group catalogue, estimate masses,
and convert to a volume-limited space density. Comparison of the
observed and predicted HMF can be made in multiple redshift slices
and over as broad a mass range as the observations permit. Typically,
this direct approach has been pursued in two ways: (i) via X-ray
detection of galaxy clusters (e.g. Bohringer, Chon & Fukugita 2017)
and (ii) via group finding within large spectroscopic surveys (e.g.
Eke et al. 2004). Both Bohringer et al. (2017) and Eke et al. (2006)
show good agreement (~10-20 per cent), with the HMF predicted by
ACDM over the halo mass range of 10'*73-10'32> M, but also have
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significant subtleties, not least of which is a reliance on numerical
simulations of the matter (and plasma for the X-ray pathway) to
calibrate the mass estimates.

In the former, one has to rely on the correct calibration of the
Lx—M relation (Stanek et al. 2006; Hoekstra et al. 2011), or rather
the better understood Lx—T relation, and any variation with redshift
(Leauthaud et al. 2010). One also has to worry about virialization,
variance in the plasma properties (temperature especially in what
may well be a mixed multiphase medium), and the general bias
towards selecting denser and higher Ly clusters, given that detection
is inevitably subject to some X-ray flux and flux contrast limit.
The final amplitude of the predicted HMF is also dependent on the
underlying clustering strength, with lower og values giving rise to
higher than expected numbers of rich clusters. Moreover, as the X-
ray flux of intermediate-mass groups is minimal, either because the
plasma is much cooler or not present, this method may only be viable
at moderate to high group/cluster masses (i.e. M > 10'* M), hence
not capable of probing to lower halo masses (i.e. ~30 percent of
the total predicted dark matter content). Progress in this area may be
possible through the stacking of X-ray data at the locations of known
galaxy groups: see the promising results from using Sloan Digital
Sky Survey (SDSS)-selected galaxy samples to stack the ROSAT data
by Anderson et al. (2015) (see also more general discussion on this
topic in Driver 2021) or via stacking at millimetre wavelengths via
the Sunyaev—Zeldovich effect (Singari, Ghosh & Khatri 2020).

For the large wide-area spectroscopic surveys, e.g. two-degree
field galaxy redshift survey (2dFGRS; Colless et al. 2001), SDSS
(York et al. 2000), GAMA (Galaxy And Mass Assembly; Driver
et al. 2009, 2011), DEVILS (Davies et al. 2018), WAVES (Driver
et al. 2016, 2019), DESI (Dey et al. 2019), etc., one has to worry
about spectroscopic completeness that biases against lower mass
groups with fewer members, biases in the group-finding algorithm
(missed groups and/or false positives), and the inherent uncertainties
in converting the measured redshifts into velocity dispersions and
robust halo masses. The latter aspect becomes especially hard when
the multiplicity, i.e. the number of group members, is only a few.

These problems, inherent in both the X-ray and spectroscopic sur-
vey approaches, are tractable but the results are susceptible to strong
biases, some of which arise from the large random uncertainties.
Paramount among these is the Eddington bias that emerges from the
uncertainty in the halo masses, and whose impact is exacerbated by
the steepness of the HMF (see Fig. 1). Hence, a significant systematic
mass shift can arise as the haloes are scattered to higher or lower
masses during the measurement process.

One further aspect worth considering is the practice of calibrating
the group-finding algorithms to numerical simulations, i.e. linking
lengths, and the mass scaling factor (A). This calibration process
fundamentally links the empirical results to a specific semi-analytical
model built upon an underlying dark matter simulation (see Eke et al.
2004; Robotham et al. 2011). We note that the recent analysis of
Tempel et al. (2014) attempts to avoid this issue by calibrating the
tangential linking length to the mean observed galaxy separation
within redshift slices. Even more concerning are techniques that
involve abundance matching, in which halo masses are assigned
based on some rank order, and where the recovered HMF, by
construction, is required to match that of the adopted simulation
(see the review by Wechsler & Tinker 2018).

A more statistical approach to probing the HMF comes from weak
lensing studies (see e.g. Viola et al. 2015; Dong et al. 2019; Rana
et al. 2022), in which an adopted HMF combined with assumptions
of the DM profiles can be used to predict the lensing signature and
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compared to that measured. This method too has issues, mainly the
need for a calibration, or adoption, of a specific HMF form and
a universal DM profile shape that is poorly constrained especially
at intermediate halo masses. It also has the disadvantage of not
providing mass on a halo-by-halo basis, but the significant advantage
of not needing to provide mass on a halo-by-halo basis, mitigating
the concern over the Eddington bias.

Finally, a viable alternative to measuring and comparing the HMF
is to measure and compare the line-of-sight velocity dispersions
with the three-dimensional (3D) velocity dispersions from simula-
tions. This approach bypasses the additional uncertainties around
halo mass estimation (see e.g. Caldwell et al. 2016), but is not
without its own issues given the often limited number of velocity
dispersion measurements for each halo. However, perhaps a stronger
reason for pursuing the halo mass measurement pathway is that
fundamentally we are interested in the determination of masses
on a halo-by-halo basis, partly to not only study the variations of
galaxy properties (and evolutionary pathways) as a function of halo
mass, but also to investigate how 2y, as constrained by cosmolog-
ical measurements, is broken down into discrete self-gravitating
clumps.

Current and future spectroscopic surveys have, in varying degrees,
built their science cases around the measurement of both halo masses
and the HMF (GAMA, Driver et al. 2011; WAVES, Driver et al. 2016,
2019; DEVILS, Davies et al. 2018), and while in practice the pathway
looks straightforward the reality has proved more elusive.

Here, we attempt to construct an HMF from the GAMA survey
and in this work look to follow an empirical pathway, while
articulating the difficulties in doing so. Where possible, we explore
the dependence of our fitted HMF MRP parameters on some of
the issues raised above, and compare our HMF to the few existing
published measurements, which include 2PIGG (Eke et al. 2006),
SDSS (Tempel et al. 2014), and REFLEXII (ROSAT-ESO Flux
Limited X-ray Galaxy Cluster Survey; Bohringer et al. 2017). We
later combine these data to provide a joint constraint on the MRP
HMF parameters, and compare to the prediction from ACDM.
Throughout, we attempt to highlight key issues that need to be
addressed to produce precision HMF measurements as new surveys
that warrant such robustness come online (e.g. DESI and WAVES).
Future papers will address biases in more detail, and seek to improve
further on our halo mass estimates and more robust errors, as well as
using bespoke simulations to better understand the systematics that
emerge through the group-finding process and its calibration.

In Section 2, we describe the GAMA group catalogue (G>C), the
mass measurements, and the mass errors. In Section 3, we describe
our methodology for constructing the GAMA HMF, and show our
attempts to fit the MRP function. In Section 4, we combine the
GAMA data with that from the SDSS, 2PIGG, and REFLEX II data
sets, to provide a final joint HMF constraint, and discuss some of the
broader and ultimately more speculative implications.

We use the Planck 2018 cosmology throughout, namely
Qv = 03147 £ 0.0074, Q5 = 1 — Qy, and Hy = 67.37 £
0.54 km s*IMpc’1 (Planck Collaboration VI 2020, table 1, col. 6 —
combined). For comparison with studies that use other cosmologies
(especially the common units with explicit powers of /), our numbers
should be scaled as follows:

Halo masses:

M o Hy';ie. our units are Mg hps.

Space densities:

¢ o< Hy; i.e. our units are Mpc =2 3 g,

where hpig = Hy/(67.37kms™! Mpc™).
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Figure 2. Each panel shows a cone plot of the GAMA group (coloured circles) and galaxy (grey dots) distributions to a maximum redshift of 0.3, indicating
lookback time (lower cones), and in (upper panels) right ascension and declination for a narrow redshift slice indicated by the dashed rectangles in the lower
panels. The group circles are coloured according to multiplicity, with ‘blue’, ‘green’, ‘orange’, ‘red’, and ‘purple’ denoting multiplicities (Nror) of 3, 4, 5, 6,

and >6, respectively. Circle sizes are scaled according to logo (MFoF).

2 THE GAMA GALAXY GROUP CATALOGUE
(G°0)

The GAMA survey (see Driver et al. 2011, submitted; Liske et al.
2015) has provided over 300 000 spectroscopic redshifts from the
Anglo Australian Telescope’s AAOmega facility, combined with pre-
existing literature measurements. The GAMA survey covers 250
square deg of sky in five distinct regions (G02, G09, G12, G15, and
G23), and the three primary equatorial regions (G09 + G12 + G15)
cover 179.92 square deg. Within these equatorial regions, GAMA
achieved over 98 percent redshift completeness (see Liske et al.
2015), to the flux limit of rgpgs = 19.8 mag.

Using a friends-of-friends algorithm, calibrated to the GALFORM
semi-analytic model (Bower et al. 2006) built on to the Millennium
dark matter simulation (Springel et al. 2005), Robotham et al. (2011)
constructed the G*C. The reliance of the catalogue on the simulations
will be discussed at various stages below, but the final G*C catalogue
consists of 26 194 galaxy groups and pairs, of which 9718 groups
have a multiplicity of 3 or greater, and 3061 with a multiplicity of
5 or more. The catalogue identifies more massive groups to z >
0.4, but for the present analysis we impose an upper limit of z =
0.25 in order to reduce complications from evolution of the HMF
and also redshift-dependent systematics in mass estimation. This cut

yields 5241 groups with a multiplicity >3 and 1732 groups with a
multiplicity >5. The mean redshift of the latter subset is 0.153.

Fig. 2 shows the spatial distribution of the group catalogue
for multiplicity >5 systems. Each of the three equatorial GAMA
regions is shown independently, with the top panels showing the
right ascension and declination distribution for a narrow redshift
slice, while the lower panels show the light-cones in lookback
time and where the dashed line indicates the selected redshift slice.
Symbol sizes are linked to logjo Mr,r, and the underlying grey data
points show the full GAMA spectroscopic catalogue. Symbol colours
denote multiplicity (see the caption). The large-scale structure, which
traces the underlying dark matter distribution, is clearly evident, as
is the known general underdensity of the GO9 region. Fly-through
animations of these cones are available from the GAMA data release
(DR) 4 website.!

2.1 G*C velocity dispersion and total mass estimates

Total masses for the G*C sample were estimated from the velocity
dispersion (o), which in turn were derived from the group member

"http://www.gama-survey.org/dr4
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CMB frame redshifts using the GAPPER estimator (see Beers et al.
1990). This estimator includes consideration of: the magnitude
distribution of the objects contributing to the velocity dispersion; the
redshift of the cluster/group equalling that of the brightest member;
and the mean uncertainty in the redshifts from our intrinsic redshift
measurement error of £50km s~ (Baldry et al. 2014; Liske et al.
2015). For full details as to how the G3C velocity dispersions are
derived, see equations (16) and (17) from Robotham et al. (2011).

The total dynamical masses (Mp.r) are then determined, assuming
fully virialized haloes, via

A
Mror = — 0 Rsp, ey
G

where A is some normalizing factor (typically ~10), G is the gravi-
tational constant, o is the line-of-sight velocity dispersion, and Rsg
is the projected radius containing 50 per cent of the group members
(see section 4.2 of Robotham et al. 2011, for a discussion concerning
the optimal radius). In a virial equation such as equation (1), one
would normally write Rsy in proper units — but we choose to use
comoving units, so that all lengths in this paper are comoving
(although velocities are in physical units). The same choice was
made by Robotham et al. (2011), and it had no impact on the results
of that paper because the scaling factor was calibrated as a function
of redshift and richness using simulations: thus, any change in A(z)
from moving between proper and comoving lengths is automatically
accounted for. The values of A for the present updated catalogue were
determined similarly, by running the same group finder and mass
estimation algorithm on nine equivalent-volume mock catalogues
(see Merson et al. 2013) with identical properties to GAMA (i.e.
volumes, magnitude limits, redshift errors, and incompleteness). This
aspect is discussed further in Section 2.3.3.

The values for A were found to range from 10.7 to 19.2 de-
pending on group multiplicity, redshift, and the adopted magnitude
limits. Hence, the mass value, MASSAFUNC, in the G*C catalogue
(G3CFOFGROUPV10) uses an optimized A value for each group,
based on its redshift and multiplicity, whereas the MASSA masses
simply use the formula shown in equation (1) with comoving Rsg
values and a constant value of A = 10.

While the MASSAFUNC values are designed to be as correct as
possible in a ACDM universe, there may be some concern about
excessive reliance on inexact simulations. We therefore also consider
the simpler and less fine-tuned alternative of adopting a single typical
value of A. The mean ratio between MASSAFUNC and MASSA for
groups within our nominal limits (z < 0.25 and M > 103 My) is
Ma/M pgune = 0.72, and hence we will adopt A = 13.9 as the best
choice for the case of fixed A. We make the resulting mass estimates
our primary choice for the HMF analysis, although we also report
results based on the full MASSAFUNC estimates.

The robustness of the G*C halo masses has been independently
confirmed through comparison with weak lensing constraints from
the ESO VLT Survey Telescope’s Kilo Degree Survey (see Viola et al.
2015). Their equation (38) shows good consistency between KiDS
and GAMA (equation 1), in the mass normalization (1.00 £ 0.15)
around 10™ M, with an average scatter (i.e. mass error) of oog , 11 ~
0.20. However, the weak lensing does find evidence for non-
isothermal behaviour of the mass profiles and this is discussed further
in Section 2.3.1.

Chauhan et al. (2021) also tested the Robotham et al. (2011) mass
estimates against an independent semi-analytical model, SHARK
(Lagos et al. 2018), showing that the inferred Mg,z were in good
agreement with the intrinsic halo masses of the model for groups
containing >5 members. Hence, we will adopt Ng,z > 5 for our

MNRAS 515, 2138-2163 (2022)

baseline HMF measurement but also show results for a range of Ngop
cuts.

2.2 G® mass error estimates

Individual mass errors for each halo are not provided within the G*C
catalogue, although the weak lensing results do provide an indication
of the average mass error. Here, we derive an approximate mass error
as a function of group multiplicity, by identifying those groups with
more than 20 members, and for which the mass estimates should
be stable and reliable. This constitutes 154 groups and for each of
these groups we gradually remove group members, by removing the
system with the faintest flux, and recomputing the group’s o and Rs
values, and via equation (1) (with A = 13.9) the halo mass.

Fig. 3 shows as blue green lines a trail for each of the 154 groups
(with Nger > 20). These trace out the recovered-to-original mass
ratio, i.e. logio (Mn/Mpa.y), as the multiplicity decreases. The solid
red line shows the median of these trails, while the dashed red lines
show the limits that enclose 84 (upper line) or 16 (lower line) per cent
of the trails. These lines suggest a very small error at high multiplicity,
which grows significantly as the multiplicity is reduced. The trails
are colour coded by mass, as labelled, and no obvious trend with
mass is seen.

The dashed black horizontal lines represent the global mass
uncertainty seen by Viola et al. (2015) and are consistent with
the mean/median multiplicity of our sample of N = 7.6/5.0. The
dotted black lines are a transcription of the error estimate shown
in fig.8 from Robotham et al. (2011) and also defined by their
equation (20); these imply significantly greater uncertainty. The
difference between our estimate and those provided in Robotham
et al. (2011) is unclear, but we note that our results are consistent
with a recent analysis by Meyer (2021; UWA Master’s thesis), who
explored the robustness of G>C masses based on extensive numerical
simulations. We therefore adopt the mass uncertainty based on the
sum in quadrature of our multiplicity implied error and an error floor
of 1o,y » = 0.10 (motivated by the work of Meyer 2021). We also
implement, for our MASSA values only, the correction implied by
the median (solid red line from Fig. 3), which suggests some bias
towards lower masses at very low multiplicities (i.e. Alog;o M ~ 0.1
at NFoF ~ 6)

Fig. 3 raises an interesting question, as given the significance
of the mass error, its uncertainty, and the susceptibility to a severe
Eddington bias, it is not clear whether a more reliable HMF is built by
including low-multiplicity systems to maximize the sample size or by
selecting a smaller high-multiplicity high-fidelity sample. To address
this, we will explore a range of multiplicity cuts when generating the
GAMA HMF in Section 3 and adopt Ng,r > 5 as our primary cut
given the significant increase in uncertainty at Ngop < 5.

2.3 Some digressions

Before moving on to derive the GAMA HMEF, it is worth highlighting
a number of issues in the construction of the group catalogue to
maximize transparency and motivate future work.

2.3.1 The mass estimation formula

The functional form shown in equation (1) resembles that of a
singular isothermal sphere, where the mass within a radius R is
M = 20?R/G (see e.g. Binney & Tremaine 2008). A divergent mass
is generally circumvented by using a truncated isothermal sphere
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Figure 3. The determination of our mass error as a function of multiplicity. For all GAMA groups with more than 20 members, we calculate the change in the
mass as the multiplicity decreases (blue green coloured lines). The trail colour indicates the original halo mass (see the key). In red are the 16, 50, and 84 per cent
quantiles. The dotted black lines show the initial error estimate from Robotham et al. (2011), while the dashed black lines show the mean weak lensing error

estimate from Viola et al. (2015).

model (see e.g. Brainerd et al. 1996; Brimioulle et al. 2013), which
relies on introducing some limiting radius. This is typically taken as
the 09 value, which represents the radius within which the average
density is 200x the critical density. In this case, we expect the total
mass to scale ocR®, so that M oc o®. Any radius can be used in
combination with an appropriate [A, R] pairing; see equation (1).
However, generally some uncertain extrapolation is required from the
mass within the half-light radius (which can generally be measured
robustly: see Strigari et al. 2007) to the total mass.

Ultimately, the value of A and the choice of R are critical, and can
act to shift the entire HMF to higher or lower masses. The presence
of substructure can also bias masses high if not accounted for (see
e.g. Tempel et al. 2017; Old et al. 2018; Tucker et al. 2020).

Two lensing studies have looked to verify the G3C masses (Han
et al. 2015; Viola et al. 2015), and find consistency in the mean
mass at around 10'* Mg, but a shallower trend with o of M o o2
(so two-thirds of the expected slope). This shallower o dependence
would predict no groups/clusters above a mass of 10'*7 M, which
is contrary to observational constraints (e.g. the Coma cluster, Sohn
et al. 2017; or El Gordo, Jee et al. 2014; Asencio et al. 2014). It is
hard to know how much of a concern this is for this work, since the
slope of the M—o relation is hard to measure accurately given the few
extremely massive objects in the GAMA samples used for lensing
studies. We can take some reassurance from the fact that the weak
lensing masses scale very nearly linearly with total r-band group
luminosity, and this alternative mass proxy correlates very well with
our dynamical estimates.

Nevertheless, it would be desirable to improve the absolute
calibration of group mass estimates, preferably in a way that is
independent of simulations. A radical proposal by Caldwell et al.
(2016) is that we should move away from mass comparisons entirely,
and compare velocity dispersion distributions instead. This idea
clearly has some merit as it dispenses with the need for a scaling
parameter, i.e. A. This would, however, require careful consideration
of line-of-sight velocities versus 3D velocities, which is non-trivial
(see Elahi et al. 2018).

2.3.2 The value of the mass calibration scaling value, A

By adopting a constant value of A = 13.9 for our MASSA values,
we lessen our detailed reliance on simulations for mass calibration.
Ultimately, this parameter can be probed empirically, via logic that
goes back to Zwicky (1933) and his attempt to reconcile the measured
velocity dispersion of Coma (~1000 kms~!) with that predicted by
its visible mass alone of 80kms~'. Zwicky’s derivation of A was
based on the virial theorem, coupled with the assumption of an
isothermal mass distribution, and where he found A = 1.667 (Zwicky
1933), and that appeared to underpredict the mass content by a factor
of 400.

Since Zwicky (1933), our measurements of Coma have improved
substantially, including direct measurements of the total dynamical
mass. A robust total mass of Magy = 1.8879% x 10'5 h=! M, within

an ryg radius of 1.99703) A~ Mpc has been derived from gravita-
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tional lensing (Kubo et al. 2007). This mass and size are on the
whole consistent with a range of earlier estimates stretching from 0.8
to 1.9 x 10" 2~ Mg. As Coma’s line-of-sight velocity dispersion
is 947 & 31 kms~! (Sohn et al. 2017), and the projected half-light
radius is Rsg = 1.4 h~! Mpc (Doi et al. 1995), this implies a value of
A = 6 % 3 that is less than half of our adopted value of A = 13.9.
More precision and clarity over A are clearly required, and hopefully
as detailed studies of more clusters emerge one will eventually be
able to obtain a fully simulation-independent estimate of A and its
dependence on halo mass and other variables.

2.3.3 Comoving distance or proper (angular diameter) distance

As discussed earlier, we have chosen to base our mass estimate on
the comoving sizes of clusters, rather than using the angular diam-
eter distance to derive physical radii. This follows the convention
established by Eke et al. (2004) and Robotham et al. (2011), but over
a wide range of redshifts it might be considered problematic. If the
virial relation applied rigorously in proper coordinates, then the use
of comoving half-light radii would require a scaling A(z) o« 1/(1 + z).
This is not a concern for the current work, for a number of reasons.
First, the redshifts probed are relatively local (z < 0.25), so that there
is no real ability to probe evolution, and we are interested only in A at
a single effective redshift. Furthermore, the redshift-dependent group
selection effects complicate any simple virial relation, meaning that
it is better to work empirically rather than enforce a simplistic virial
relation.

However, this issue will be important in future deeper studies that
probe to significant redshifts. We can anticipate an increase in the
frequency of non- or partially virialized haloes as our surveys advance
to higher redshifts, and also as we probe to lower masses where the
systems may exhibit more structure (i.e. be less dynamically relaxed).

Note that by fitting for A(z) one effectively folds in this dependence
on A; however by opting for a fixed A we have removed this
dependence, perhaps reopening the issue as to which distance one
should use. As our Rsy values are inevitably well within the 0
radii, and very much within the bound region, the case for using
the angular diameter distance starts to looks stronger. Later, we will
report results from both but continue to adopt the convention defined
by Eke et al. (2004) and Robotham et al. (2011).

2.3.4 Linking lengths and overdensities

Critical to the operation of the group-finding friends-of-friends
algorithm are the linking lengths in the spatial and redshift directions
(see e.g. Duarte & Mamon 2014). These define whether a galaxy is
or is not a member of a group. The linking lengths are derived by
testing against a mock catalogue, and modifying the lengths until
one recovers the known haloes. This is typically done in a bijective
manner (Robotham et al. 2011), i.e. a false positive carries the same
penalty as a missing group or cluster, and one looks to find the
optimal lengths that minimize both.

At high mass, linking-length uncertainties are a relatively weak
concern, as the interloper density is relatively low. Increasing the
linking lengths has a fairly minimal impact at high masses and high
multiplicities, although it can lead to the merging of nearby groups
into superclusters.

Atlow mass, the addition of a single bogus member, or loss of areal
member, can introduce significant mass errors. Further investigation
is needed to explore this dependence in detail, and it is left for future
work.
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One possible advancement will be to fold in the expected group
profile shape into the friends-of-friends search algorithm, essentially
moving towards halo finding as used in numerical simulations (for
a summary of halo finders, see Knebe et al. 2013, and for an initial
attempt in this direction see Tempel et al. 2018). In due course, it will
be important to build complete end-to-end Monte Carlo simulations
that model the reliance that includes the linking-length uncertainty.

In all of this, we should bear in mind that there is an ambiguity
in defining the ‘true’ masses. We have calibrated to Mg, which
is the mass within the ryo radius. These values ultimately depend,
by their definition, on the critical density. An alternative convention
is to define rypp as the radius within which the mean density is
200 times the background value (only 63 times the critical density for
our fiducial cosmology). Defining My via the background density
would shift the HMF to higher masses. This shift can be estimated
using NFW halo profiles (Navarro, Frenk & White 1997): For a
typical NFW concentration of 5, the mass defined at 200 times the
background is 1.4 times the mass at 200 times critical, and this
correction factor is rather insensitive to mass. Since N-body halo
catalogues are computed using algorithms similar to FoF, which
scale with the mean particle density, it could be argued that defining
Mo with respect to the background would be a more consistent
approach. However, we continue to use the definition with respect to
the critical density, for consistency with the literature on gravitational
lensing.

3 THE GAMA HMF

The G>C catalogue contains mass estimates down to 10'° M, and
extends out to z ~ 0.6; however, masses below 10'2 Mg become
increasingly unreliable, due to low multiplicity, irregularity, and the
propensity to be impacted more significantly by an interloper. We
hence confine ourselves to z < 0.25 where the number of multiplicity
>3 groups is N, = 5246. As discussed later, we will construct
multiple HMFs with various Ngor selections, and show figures in
the main text based on the results from Ngor > 5 but with all results
reported in the tables, and all derived HMFs shown in the appendices.
Ultimately, Ngor > 5 represents a trade-off between sample size and
fidelity in our measurements, while the redshift limit ensures that
any evolution of the HMF will have a negligible impact on our
measurements.

For clarity, we first provide a summary of the method we
implement, and where Fig. 4 shows the resulting HMF:

(1) Construct the raw HMF (halo density per log mass interval),
using a 1/Vp,x estimator, where Vi, of the group is based on the
limiting z of the nth group member.

(i) Run a Monte Carlo of the following (1001 x):

(a) Perturb each group’s mass by its mass uncertainty assum-
ing a lognormal error distribution.
(b) Re-derive the HMF using the same 1/V/,,x estimates.

(iii) Determine the mean of the revised density estimated in each
mass interval, and the 16/84 per cent quantiles from the Monte Carlo
simulations.

(iv) Determine the multiplicative offset between the original HMF
and the median Monte Carlo HMF for each mass interval.

(v) Reduce the original HMF values by this multiplier to produce
the final HMF (thereby correcting for the Eddington bias inherent in
the original measurement).

(vi) Assign the quantile error in each mass interval from the Monte
Carlo simulation as the Eddington bias correction error.
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Figure 4. (Upper) The original histogram of the number of GAMA groups at z < 0.25. (main panel). The recovered HMF before (green arrows) and after (red
points) the Eddington bias correction. The black dashed line shows the expected MRP function from Murray et al. (2021), while the blue line shows the best
MRP function fit and the fainter blue lines are from the Monte Carlo realizations. Solid symbols denote where the data are complete and hence to which the
MRP function is fitted, and the open symbol the onset of incompleteness. The dashed line shows the ACDM prediction for our fiducial cosmology, evaluated at

the effective redshift zepr = 0.1.

(vii) Determine the Poisson and Cosmic Variance errors for the
original distribution assuming root-n statistics and the CV formula
from Driver et al. (2011).

(viii) Combine the Eddington bias uncertainty and the Poisson
error in quadrature to obtain the total error on the final HME.

In Section 3.1, we elaborate on this summary, to provide additional
details and highlight some of the subtleties, in Section 3.2 we describe
our MRP function, our fitting process and fitting errors, and in the
remaining sections some further digressions.

3.1 Determination of the GAMA HMF

We construct the GAMA HMEF via a standard 1/V..x method,
modified to operate on groups, i.e.

Ngrnup

w;

p(logy[M/Me]) = (7’) @
g1 / © ; Vé\axAIOglOM

where V/ is the maximum comoving volume over which the
ith group can be detected, w; is the multiplicative Eddington bias
correction for that mass interval (discussed later), Alogjo M is the
bin width, and Ny is the total number of groups. The Vi, values
represent the distance at which the nth brightest group member is no
longer detectable, and where 7 is the selected multiplicity limit for
acceptance as a group. These Vi (or rather z,,.) values for each

individual galaxy are reported in the STELLARMASSESV19 DMU as
z19pT18.

In practice, for each group we identify the members of the
group, using G3CGALS within the GroupFinding DMU, and rank
them by apparent r-band flux. We match this catalogue to the
STELLARMASSESV19 catalogue, and adopt the redshift limit of the
nth member. For any group whose redshift exceeds its nth galaxy
redshift limit, we reset the limit to its current redshift and for any
group whose zmax exceeds our redshift boundary we reset it to
Zmax = 0.25. We convert zyax to Vinax values using the Planck 2018
cosmology.

The raw HMF, ¢(log[M /Mg]) (see Section 1), is then determined
from the sum of the 1/V,,,x values within each mass interval (see
equation 2) and initially with w; = 1, resulting in the green points
shown in Fig. 4 (main panel).

Because of the steepness of the HMF, and the significant mass
errors, the Eddington bias is expected to be significant. We forward
evolve the measured HMF distribution via a set of Monte Carlo
simulations, to estimate the size of this bias (w;). To linear order,
w; = ¢(M)/dp(M) mcs, Where ¢p(M), is our initial measurement,
with w; = 1, and ¢(M)_pmc- is the average of our Monte Carlo
measurements, after perturbing the mass of each group indepen-
dently. This mass perturbation for each group is given by a lognormal
distribution with mean zero and a standard deviation given by the
group’s ojog,, m €rror. Hence, we are using a forward propagation
method to estimate the severity of the Eddington bias. We then use
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Table 1. The GAMA HMF values derived in this work adopting a multiplicity lower limit of Ngop = 5 and as
plotted in Fig. 4. Values above the horizontal bar should be considered credible and those below not. Hence, column
4 rows 1:16 represent our final GAMA HMEF. The errors are given as linear fractions.

logio (M/Mg) N logio ¢ logi0 Pcorr T Poisson 0 MonteCarlo O CosVar O Combined
(Bin centre) (Linear) Mpc’3 Mpc’3 (Frac.) (Frac.) (Frac.) (Frac.)
15.4 2 —6.943 —6.389 0.71 0.62 0.07 0.94
15.2 4 —6.717 —6.485 0.50 0.32 0.07 0.60
15.0 19 —6.038 —5.599 0.23 0.23 0.07 0.32
14.8 41 —5.702 —5.261 0.16 0.21 0.07 0.26
14.6 67 —5.454 —5.035 0.12 0.21 0.07 0.24
14.4 120 —5.163 —4.735 0.09 0.19 0.07 0.21
14.2 198 —4.791 —4.195 0.07 0.18 0.07 0.19
14.0 256 —4.528 —3.859 0.06 0.23 0.07 0.24
13.8 259 —4.360 —3.659 0.06 0.26 0.07 0.26
13.6 203 —4.250 —3.523 0.07 0.27 0.07 0.28
13.4 196 —4.266 -3.611 0.07 0.32 0.07 0.33
13.2 137 —4.082 —3.277 0.09 0.35 0.07 0.36
13.0 98 —4.181 —3.484 0.10 0.37 0.07 0.38
12.8 48 —4.062 —3.222 0.14 0.43 0.07 0.45
12.6 31 —4.599 —4.213 0.18 0.48 0.07 0.52
12.4 23 —4.171 —3.260 0.21 0.58 0.07 0.61
12.2 16 —4.876 —4.515 0.25 0.67 0.07 0.71
12.0 7 —4.526 -3.616 0.38 0.81 0.07 0.90
11.8 2 —6.148 —6.667 0.71 0.90 0.07 1.00
11.6 2 —5.146 —4.512 0.71 0.92 0.07 1.00
114 1 —6.290 —6.628 1.00 0.95 0.07 1.00

this empirically derived Eddington bias per mass bin to debias the
observed HMF and recover the intrinsic HMF.

An advantage of this method is that we can use the mass error
for each group, rather than an average mass error. The downside is
that the Eddington bias correction is only lowest order in the mass
errors, and it may be inaccurate for large biases. This is mitigated
by the uniform slope of the HMF, as the Eddington bias should
be mass invariant for any power-law distribution, except around
the ‘knee’ where the Eddington bias becomes more extreme or
incompleteness impedes. The Monte Carlo is repeated 1001 times to
minimize statistical noise. We also note here an interesting subtlety:
as detection is based on the nth members’ flux, yet mass is dependent
on the orbital velocity dispersions of the detected members, the
Eddington bias does not impact the sample selection but only the
masses of the selected systems. Hence, we do not need to apply any
mass-based Eddington bias to systems below our detection limit.
As detection is based on fluxes that are robust to relatively high
precision, we do not believe that an additional detection Eddington
bias will be significant.

Finally, we estimate the Poisson, Monte Carlo, and cosmic
variance errors for each log mass interval. The former is derived from
the square root of the number of groups and the Monte Carlo error
from the 16 and 84 per cent quantiles in the ¢(M) values within each
mass bin (due to the non-normal behaviour of the HMF distributions).
For the cosmic variance errors, we use equation (2) from Driver et al.
(2011), to determine a single cosmic variance value based on the
total volume surveyed (i.e. £7 per cent).

Fig. 4 (main panel, red circles) shows the GAMA HMF derived
using the method described earlier for a multiplicity limit of n > 5 (see
figures in Appendix A for a range of multiplicity cuts). In the upper
panel, we show the direct histogram that peaks at ~10'3° My and
information on the selection and final number of groups. In the lower
panel, we show the reconstructed HMF using the 1/Vy,,x weighting
(green arrows), and the final Eddington bias-corrected HMF (red
data points). The errors include the Poisson and Monte Carlo errors
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added in quadrature. The cosmic variance errors are not indicated
but are generally less than the Monte Carlo error (see Table 1 Col. 6
versus Col. 7).

The depth of our sample means that our estimate of the HMF
applies at an effective redshift that is substantially different from
zero: A simple estimate of this redshift can be derived from the
mean redshift of our group catalogue, which as stated earlier is zegr =
0.153. In practice, however, we will assume that our measurement
applies at the slightly smaller round figure of z.; = 0.1, and we show
theoretical models corresponding to that value. This choice is driven
by the desire to compare with other determinations of the HMF from
samples that are slightly more local than GAMA (see Section 4).
We did consider adjusting the different measurements to allow for
slightly different effective redshifts in each case, but the required
corrections would be small and within the noise. The evolution of
the HMF can be approximated by a shift to smaller masses at higher
z and a mass-conserving increase in comoving number density by the
same factor. For our fiducial cosmology, the shift between z = 0 and
0.1 is 0.08 dex, and the shift between z = 0.1 and 0.153 is 0.04 dex.

3.2 Fitting the GAMA HMF with the MRP function

In Fig. 4, the dotted black line shows the recommended MRP
function as defined in Murray et al. (2021) but adjusted to our
median redshift of Z ~ 0.1. This adjustment of —0.075dex in
(M/Mg) and 4-0.075 dex in ¢[logo (M/M)] is based on the predicted
evolution of the HMF from z = 0.1 to 0.0 (cf. Fig. 1). The definition
of the MRP function is repeated here for clarity, and in logarithmic
mass intervals, as

dn
d(log,((M /Mp))

M a+1 M B
= In(10)¢.B (ﬁ) exp | — (ﬁ) , 3)

p(log (M /Mp)) =
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Table 2. MRP function fits to various HMF data sets (as indicated) and where, for example, ‘GAMAS’ refers to the
GAMA-only sample with a multiplicity limit of 5. Note that the fits are only valid over the range of the data, i.e.
10127 Mg < My, < 1033 Mg, except for the final row, ‘Omega’, where the requirement to converge to the Planck
2018 Q) value is included. Note that the fits are for an effective redshift of Z ~ 0.1 and to convert to z = 0 one
should add 0.075 dex to logjo (M./Mg) and subtract 0.075 dex from logjq (¢x).

Sample logio (M+/Mo) logig () « B
Mpc 3 dex!
GAMA3 HestR  lsTeR —orhE 0y
GAMA4 104455 —24900  —047HE 024707
GAMAS5 13.51102 —3.191041 —127703% 0477003
GAMAG 1442403 —4.32%)9 —1.7570% 0571018
GAMAT 1451705 —4.45%072 168702 0.60709
GAMAS 1488700 —5.11+)20 —1.77704 0881022
OrigErr5 13.03709 —2.770% 112402 045100
AngDiam5 13.52+041 —3.2210%0 —1.60%028  0.407008
MassAS 1314707, —2.98%030  —145703 0377040
Masshfincs e B EL e
MassWLS 12.50%03 —3.117538 0.07%73 0.54100
SDSS3 Bty 2%tk s sy
sss4 BAYE 3000% 15999 0ashp
SDSS? BINE ae0y s 047y
SDSs6 14.574033 —4.9870%  —21350% 0.8070%
SDSS7 14.29%033 437109 178404 0731098
SDSS8 13.8270 70 -3.7019% —145700 054703
REFLEXI ®) e e et
GAMAS + SDSSS (GS) R BT A Lk
GAMAS + REFLEX I (GR) 13.7275% —3.4470:2¢ —1.297032 0551026
SDSS5 + REFLEX I (SR) 14.44702 —4.5279¢ —1.85%024 0.7979%3
GAMAS+SDSS5 + REFLEXII (GSR) 14137043 ~3.967033 ~1.68703) 0.6379%
FIXED-« (FIX) waThll asTR Ll osorh
Omegs wardll  —awnd sl orrl

where ¢, is the space density at the characteristic mass point that
acts as the vertical normalization, M, is the characteristic halo mass
that acts as the horizontal normalization, « is the low-mass slope
parameter, and $ is the high-mass exponential softening parameter
(see also Trevisan & Mamon 2017). This can also be expressed in
linear mass intervals as

pony = 2 9B (MY M )
=— = — ) exp|—| — .

am ~ M, \m,) P\ m,
Following from this, the total mass density, i.e. the integral of the

MREP to zero mass, can be given in terms of the complete I" function,
by

oy = M, T (2 + )/ ). (%)

Note that from equation (5) values of o > —2 are required for a
finite value for p.

We fit the MRP function to our data by minimizing the x> (see
equation 6), with the addition of an appropriate factor to account for
the empty high-mass bins (in which groups are visible across the full
survey volume should they exist), i.e.

2

i=n lOg (¢) _ log (d;) i=n+10 _
= 2]0 = +2 Z & VimiAlogg M, (6)
i=1 Adj Rant A% Mc P
(In(10)¢;)

where ¢; represents our binned measurements (Table 1, Col.4), ¢;
the expectation from equation (3), and o; is the data uncertainty of
the ith bin (Table 1, Col. 8). For the penalty factor, we calculate ¢;
for the first 10 unoccupied bins (as one increases in halo mass from
the highest detected group), where Vi is the maximum volume
surveyed and Alogg M is the bin width. The penalty factor derives
from the exact Poisson probability of finding an empty bin when
the expected number of system is non-zero, and it ensures that the
fit does not overpredict at the high-mass end where no groups were
detected.

The data and errors are shown in Fig. 4 and reported in Table 1.
Here, the errors are derived in a posterior fashion from either /()
statistics (0 poisson)> Where n is the number of groups in the bin, or
from the Monte Carlo refitting (0 MonteCarlo)- The errors shown in
Fig. 4 are the o combineq €rrors (see Table 1, Col. 8) that are the sum
in quadrature of o pojsson and O Montecarlo ONLy. The best-fitting MRP
values to these data, and for our other selections discussed later,
are shown in Table 2. Fig. 5 highlights the covariances of the fitted
parameters (as indicated).

From Fig. 4 (main panel), we see that the recovered HMF peaks
in the mass bin centred at M ~ 10" M, and adopt M = 10'?¥ M
as our mass completeness limit but see also the discussion below
in Section 3.3.5. Note that while 1/V,,,, corrects for the diminishing
volume, the method only works up to the point at which all subclasses
within the mass range are sampled; i.e. one cannot correct for
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Figure 5. The covariances of the fitted MRP parameters to the data shown in Fig. 4. The blue crosses and blue solid lines show the location of the best fit
within each panel. The red cross and lines show the mean of the fitted values, and the red dotted lines the +10 error ranges based on the standard deviation of
the distribution. Note that due to the correlation and complex shape of the error distribution the simple mean of the fitted data (red crosses) does not always
represent viable fits. Also shown are the parameters recommended by MRP adjusted to Z = 0.5 (black circles). The lower right quadrants show the 1o, 20, and
30 error contours (grey contours encircling green, yellow and orange shaded regions).

what one does not detect. Eventually, as groups with large flux
gaps between their brightest and nth brightest member become
undetectable, the mass function gradually becomes incomplete.
Here, we will take the empirical approach of only fitting to our
mass function up to the point at which this turn down becomes
apparent, and this is indicated by the solid (complete bins) and open
(incomplete bins) symbols in Fig. 4 (main panel). In due course,
this incompleteness needs to be modelled, but once again ties the
analysis tightly to simulations, which comes with its own issues (see
Section 3.3.5).

MNRAS 515, 2138-2163 (2022)

Overlaid on the main panel of Fig. 4 is the predicted HMF from
Murray et al. (2021) (dashed black line), also using the Planck 2018
cosmology. The data agree within the errors with the HMF prediction,
with a similar but slightly shallower low-mass slope and comparable
abundance at the characteristic mass. This is in part due to the size of
the error bars, which are very much dominated by the Monte Carlo
error (see columns 5, 6, and 7 in Table 1). Typically, the average halo
mass error in the Nrr > 5 sample is o1, ~ 0.25, i.e. a factor of
2.1, and essentially reflects the significant mass uncertainties acting
through the Eddington bias.
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The solid blue line shows the optimal MRP functional fit to the
GAMA data, while the fainter blue lines show a fraction of the Monte
Carlo refits. Note that we Monte Carlo by jostling each individual data
point by its allowed random error (6 combined) and additionally the en-
tire data set systematically by its cosmic variance error (o cosvar). We
then refit again using equation (6). The Monte Carlo MRP fits exhibit
arange of curves that encompass the MRP expectation from ACDM.
The range of the Monte Carlo MRP fitted values is represented in
Fig. 5, which shows the covariance of the fitted parameters. Clearly
apparent is the tight correlation between M, and ¢., but we also note
the trade-off between M, and the § parameter. At face value, the
range of the individual errors is quite broad, suggesting that the fit
is fairly poor; however, this belies the significant covariance of the
fitted parameters, which generally form fairly narrow distributions.
The black circle shows the ACDM expectation from Murray et al.
(2021), while the blue crosses our best-fit value. The red cross shows
the mean of the individual parameter distributions, which do not
necessarily combine to provide a sensible fit. The dotted red lines
show the standard deviation of each data set which do not necessarily
align with the 1o, 20, and 30 error contours (grey lines and colour
shading).

Hence, we can conclude that while the GAMA HMF data show
apparent consistency with expectation, formally the errors do suggest
some very mild tension. This is most easily seen in the apparent
excess of haloes in the intermediate-mass range in Fig. 4, generally
demanding a higher normalization. This tension could potentially
be released by modifying (i.e. fitting for) the mass calibration
parameter A. However, our preference is to keep this parameter fixed
for now, and in due course replace it with an empirically derived
value in future analysis. In the meantime, we look to improve our
constraint by incorporating literature data sets, in which different
fundamental mass calibrations are adopted, and hence averaging over
a range of mass assumptions/calibrations. However, before folding
in these external data sets, we first discuss some of the systematics
at play.

3.3 Some continued digressions

3.3.1 Severity of the Eddington bias

Our measured HMF has a strong dependence on the Eddington
bias correction. To emphasize this, we show, as the black line
with circles in Fig. 6, the global value for w; (vertical axis) if we
were to adopt the constant mass error indicated on the horizontal
axis. Hence, for a constant mass error of ojog,,» = 0.5 we find
an amplification, or multiplication of the derived HMF ¢ values
of a factor (w;) of ~5.5. To some extent, this is acceptable if
known and corrected for appropriately, but this approach fundamen-
tally relies on the precision to which the mass errors are known.
Ultimately, the smaller the mass uncertainty, the smaller is the
required Eddington bias correction, and the more robust the HMF.
The histogram in Fig. 6 shows the actual distribution of the mass
errors for the full sample (i.e. Ngop > 3), with an arbitrary vertical
scaling. Ultimately, to keep the Eddington bias manageable (i.e.
w; < 1.25 x) would require mass errors below ojog,, s ~ 0.1. The
difficulty in achieving this may well prove to be a fundamental
obstacle in advancing our empirical measurements of the HMF.
However, we once again note that it is not necessarily the size of
the Eddington bias that matters most but our ability to correct for it
robustly.
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Figure 6. A demonstration of the severe impact of the mass uncertainty
(O10g,, M) on the order of magnitude of the mean Eddington bias correction
(circles and connecting lines). Also shown, against arbitrary units, is the
histogram of the mass error distribution for the GAMA groups used to derive
our HMFE.

3.3.2 The impact of a larger mass error

As noted in Fig. 3, our adopted errors, while consistent with weak
lensing (Viola et al. 2015) and the studies of Old et al. (2014), are
a good deal smaller than those originally advocated by Robotham
et al. (2011). Here, we rerun our HMF calculation again with a
multiplicity limit of 5, but this time using the original errors. We
show the perturbations of the recovered HMF relative to the original
as a fraction in Fig. 7 (lower panel, dark blue line). In general,
the agreement is good (i.e. within the error bars), except at high
masses where the larger error gives rise to a systematic bias that
exceeds the Monte Carlo errors. We believe, for the reasons outlined
earlier, that the original mass errors were overestimated. Note that
Fig. A2 (centre right) shows the derived HMF using the original mass
eITors.

3.3.3 The impact of alternative mass estimates

Fig. 7 (lower panel) also shows the perturbations from a recalculation
of our HMF for Ng,r = 5 but now using MASSA with A = 10 (cyan
line), MASSAFUNC (orange line), and the masses derived via weak
lensing from equation (38) of Viola et al. (2015) (green). As can
be seen, the data move fairly minimally for MASSA (essentially the
scaling one would expected from moving from A = 10.0 to 13.9), and
MASSAFUNC (barely noticeable), but significantly with comparison
to the weak lensing masses and in particular the high-mass end
is dramatically impacted, with the green curve falling off the plot
at 10'*3 Mg It is hence possible that weak lensing may be less
sensitive to higher mass systems, possibly because of their relatively
low space density. In this case, the impact of trying to use the weak
lensing mass predictions becomes catastrophic at the high-mass end.

MNRAS 515, 2138-2163 (2022)
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Figure 7. (Both panels) The variation of the GAMA HMF based on different
underlying choices as indicated in the labels. The black data points show the
base GAMA HMF with associated errors and which is taken as the Ngop
> 5 case. The upper panel shows variation based on multiplicity cut while
the lower panel different choices in the analysis process. Generally, in both
panels the variation is enclosed within the errors with the exception of the
weak lensing masses (lower panel, green).

3.3.4 Multiplicity cuts

In Fig. 7 (upper panel), we show the perturbations to our mass
function if we adopt a range of multiplicity cuts from >2 to 7 (as
indicated). In each case, the sample size is significantly reduced but
so too are the mass errors. Above our completeness limits, we see
this impact as a systematic bias towards higher abundances at higher
masses but generally the data lie within the quoted errors, which
is reassuring. We also note that for very low multiplicity cuts we
start to see an excess at lower halo masses that might suggest either
contamination or incompleteness starting to impact high-multiplicity
cuts (or both).

3.3.5 The onset of incompleteness

At some point, the HMF turns down, despite the 1/Vp,,, correction.
This will typically occur when subsets within a bin are no longer
represented at all, for example, groups where the fifth brightest
member is fainter than our detection threshold at our lower redshift
limit. An obvious solution is to determine incompleteness via
comparison to simulations. The key issue here is that the precise
flux distribution of intrinsically faint galaxies within a halo is poorly
constrained within simulations. Essentially, this pathway requires the
simulations to be fundamentally correct at a level at or below the mass
resolution of the underlying numerical simulation. This is perhaps
best illustrated by considering a Milky Way halo, where the stellar
mass of the fifth most massive member is about 1000x below that
of the Milky Way, or ~10° M. At this level, the exact prescription
adopted for dynamical friction, which dictates merger time-scales,
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Figure 8. The dependence of the density of haloes in the range 10'>7-10'>°
Mg on the lower limiting redshift used for the derivation of the GAMA HMF.

etc., becomes important. Hence, by calibrating to a specific mock, one
ties one’s detection limit, or incompleteness correction, to a specific
semi-analytical prescription that may or may not match reality.

The alternative is to find an empirical pathway. Here, we pro-
pose that incompleteness becomes more apparent as one imposes
arbitrarily more stringent selection limits, e.g. by increasing our
lower redshift limit cut or by increasing our multiplicity constraint.
Fig. 7 (upper panel) shows how each of the density bins varies with
multiplicity cut. Here, we see that in the lowest bin used in our
fitting, i.e. 10'>7 < log;g)M/Mg < 10'2? is relatively stable, within
the quoted error, suggesting resilience to incompleteness. Similarly
Fig. 8 shows how the density in the same halo mass bin varies
as we increase the minimum redshift from 0.0 to 0.1. Once again,
one can see that as we increase the minimum redshift limit, the
density remains stable until a limit of 0.02 at which point the density
drops dramatically, and we interpret as the onset of irrecoverable
incompleteness.

While the empirical method has the advantage of not requiring
any knowledge of the intrinsic properties of the groups a priori, its
weakness is that it cannot correct for entirely dark haloes in which no
gas has been processed into stars. In this sense, our HMF is therefore
a measure of the ‘astrophysically active’ haloes only (i.e. haloes that
are purely plasma filled and where no star formation or gas cooling
has occurred). As the fraction of ‘astrophysically inactive’ haloes is
predicted to increase with decreasing halo mass, one might expect
that at some point our empirically measured HMF will underpredict
the HMF advocated by simulations.

3.3.6 The impact of switching to the angular diameter distance

Fig. 7 (lower panel, purple line) shows the perturbations when
defining group size using the angular diameter distance rather than
the comoving distance (as discussed in Section 2.1.2). At the redshifts
we are considering, this effect is fairly minimal and remains within
the errors.

For all of the variant HMFs, we report the fitted MRP HMF values
in Table 2 and show the figures in Appendix A. Overall, these results
are reassuring in that the errors from our favoured GAMA HMF
fit generally encompass the range of variation we see through the
different choices. The principal exception is at very high masses
where the use of the original errors or weak lensing mass constraints
would lead to a dramatically different and more sharply truncated
HME. We take GAMAS (i.e. the GAMA sample with Ngop > 5) as
being our optimal parameter set, and note the tendency for slightly
higher multiplicity cuts to favour higher M* and lower ¢ but also
note the strong degeneracy of these two parameters.
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Table 3. The values derived in this work for the SDSS group catalogue of Tempel et al. (2017) and plotted in
Fig. 11 (as purple data points). As for Table 1, column 4 rows 1:16 represent our derived SDSS HMF. The errors

are given as linear fractions.

logio (M/Mg) N logjo ¢ logio Pcorr O Poisson O MonteCarlo O CosVar O Combined
(Bin centre) (Linear) Mpc_3 dex ! Mpc_3 dex~!  (Frac.) (Frac.) (Frac.) (Frac.)
15.05 4 —6.889 —5.989 0.50 0.41 0.07 0.64
14.95 5 —6.792 —6.094 0.45 0.37 0.07 0.58
14.85 11 —6.450 —5.676 0.30 0.28 0.07 0.41
14.75 14 —6.345 —5.672 0.27 0.24 0.07 0.36
14.65 26 —6.055 —5.282 0.20 0.24 0.07 0.31
14.55 25 —6.093 —5.535 0.20 0.20 0.07 0.29
14.45 60 —5.708 —4.952 0.13 0.18 0.07 0.22
14.35 71 —5.638 —4.970 0.12 0.18 0.07 0.21
14.25 102 —5.460 —4.768 0.10 0.17 0.07 0.20
14.15 152 —5.246 —4.471 0.08 0.16 0.07 0.18
14.05 183 —5.057 —4.210 0.07 0.16 0.07 0.18
13.95 240 —4.985 —4.173 0.06 0.16 0.07 0.17
13.85 302 —4.755 —3.798 0.06 0.15 0.07 0.16
13.75 332 —4.650 —3.663 0.05 0.16 0.07 0.17
13.65 362 —4.586 —3.597 0.05 0.16 0.07 0.17
13.55 367 —4.529 —3.532 0.05 0.16 0.07 0.17
13.45 391 —4.456 —3.428 0.05 0.16 0.07 0.16
13.35 351 —4.393 —3.327 0.05 0.17 0.07 0.18
13.25 338 —4.359 —-3.270 0.05 0.17 0.07 0.18
13.15 302 —4.272 —3.103 0.06 0.19 0.07 0.20
13.05 258 —4.422 —3.398 0.06 0.20 0.07 0.21
12.95 217 —4.254 —3.041 0.07 0.21 0.07 0.22
12.85 182 —4.472 —3.447 0.07 0.22 0.07 0.23
12.75 152 —4.633 —3.713 0.08 0.23 0.07 0.24
12.65 111 —4.562 —3.518 0.09 0.25 0.07 0.27

4 INCLUDING EXTERNAL HALO MASS
FUNCTION CONSTRAINTS

Despite the importance of the HMF, there have been relatively
few attempts at direct empirical measurement, although we note
the efforts in measuring the velocity dispersion distributions. This
is primarily due to the difficulty and complexity in constructing
group catalogues that typically require large-scale spectroscopic
programmes or wide-area X-ray observations. Most notable are the
HMEFs derived by the 2dFGRS team (2PIGG; Eke et al. 2006), and
that derived from X-ray measurements with ROSAT (e.g. REFLEXII;
Bohringer et al. 2017). In addition, attempts have been made to study
the stellar—mass halo relation using the SDSS group catalogue. Here,
we attempt to briefly review and combine these external data sets to
improve our estimate of the MRP parameters.

4.1 2PIGG

The 2dFGRS team (Colless et al. 2001) measured the distances
to ~250000 galaxies at greater than 80 percent spectroscopic
completeness. From these data, a group catalogue was constructed
by Eke et al. (2004) using a Percolation Inferred algorithm. This is
in essence very similar to the friends-of-friends algorithm employed
by the GAMA team (Robotham et al. 2011), with linking lengths
calibrated to numerical simulations.

The 2PIGG catalogue resulted in ~29 000 pairs or groups, and over
7000 with 4 or more members, a median redshift of ~0.11, and a
median velocity dispersion (o) of ~260km s~!. In Eke et al. (2006),
the team published the 2dFGRS HMF and found good agreement
with the ACDM expectation, given the associated errors, over the
mass range of 10'33-10152 M.

The 2PIGG HMF data were derived for a cosmology with Qy =
0.3 and Q4 = 0.7 and with H, = 100kms~'. Here, we use the
reported 2PIGG HMF values (Eke et al. 2006), and modify the group
masses and number densities by 4~ and 43, respectively, but do
not attempt to correct for the small shift from the 2PIGG native
cosmology to the Planck 2018 cosmology. We note in our final
analysis we will not use 2PIGG results, but do include them in
our figures for completeness. In Figs 11 and 13, the 2PIGG data are
shown as grey data points and look to be consistent with the other
data sets albeit with a slightly flatter slope.

4.2 SDSS

Recently, Tempel et al. (2017) applied their friends-of-friends group-
finding algorithm to the SDSS DR12 (Alam et al. 2015). The final
catalogue contains a total of 88 662 galaxy pairs or groups, 37 365
with 3 or more members and 10 087 with 5 or more members. This is
derived from the SDSS DR12 parent catalogue of 584 449 galaxies
within a 7221 square deg area of the SDSS Main Survey footprint
(see also Tempel et al. 2014).

A particular focus of the work was the identification of merging
groups, which can often be mistaken for a single high-mass cluster,
and care was taken to disentangle these cases. The online catalogues
were downloaded from http://cosmodb.to.ee. The catalogue contains
My values that are derived from a combination of the velocity
dispersions, which are also based on the GAPPER method to convert
the redshift distributions to velocity dispersions, and the group sizes
given as R.;.. Old et al. (2014) conducted a fairly exhaustive study
of mass estimates and derived errors on the masses for three mass
intervals (see their table3). Old et al. (2014) report approximate
mass errors appropriate for the Tempel et al. (2014) group finder, i.e.
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Figure 9. As for Fig. 4 except now for the SDSS data of Tempel et al. (2017).

Ologm =~ 0.25 at 10'5 M, rising to ojog,, » = 0.35 at 1039 M, (our
cut-off for the SDSS data). However, these do not include the impact
of multiplicity that we see as the dominant error. It is worth noting
that Tempel et al. (2014) attempt to circumvent the mass calibration
issue by fixing A to the value implied from a pure NFW mass profile.

We now implement an identical method as described for GAMA
to determine the SDSS HMEF. The results of our derived SDSS HMF
are tabulated in Table 3 to the nominal mass limit of 10'>° Mg, and
plotted in Fig. 9 as the purple data points. Also shown in Fig. 9 are the
volume-limited (—18) results from Tempel et al. (2014). Contrary
to GAMA, the SDSS data at higher masses tend to fall marginally
below the ACDM expectation, and in general have a slightly lower
amplitude. We note that the data are also slightly inconsistent with
the SDSS DR 10 estimate of Tempel et al. (2014). This could be due to
the distinct methods applied, 1/Vy,.x with Eddington bias correction
versus a purely volume-limited sample (i.e. constant Vi, without an
Eddington bias correction). It could also be due to the effort invested
in the DR12 catalogue (Tempel et al. 2017), in identifying and
separating erroneously merged groups, leading to a modest reduction
of high-mass systems and a modest increase in intermediate-mass
systems.

Fig. 10 shows the covariance of the fitted parameters that are
generally better behaved than for GAMA (cf. Fig. 5). Again, we see
a slight offset in the M, parameter but note the degeneracy between
B and M,.. We also see a slightly steeper low-mass slope of between
o = —1.57%047 and closer to expectation (@ = —1.89).

MNRAS 515, 2138-2163 (2022)

4.3 ROSAT and REFLEX 11

Probably the most compelling HMF measurements to date come from
X-ray wavelengths, and in particular the ROSAT All Sky Survey data
set. From this data set, the ROSAT-ESO Flux Limited X-ray Galaxy
Cluster Survey (REFLEX II) was formed containing 910 clusters out
to z = 0.4 (Bohringer et al. 2013). These data were combined into
an X-ray luminosity function in Bohringer, Chon & Collins (2014)
and used to derive constraints on 2 and o for a specified halo
model. In Bohringer et al. (2017), a sample of 863 clusters from
the same sample were transformed into a mass function using the
luminosity—mass relation (Lx—M) (see Bohringer et al. 2017). These
data are shown in Fig. 11 as the green diamonds, and contain 20
clusters per bin except for the highest mass bin, which contains 3
clusters. The errors shown are simply /7. Uncertainty in the masses
is estimated to be 0jog,, i ~ 0.1 and hence an expected Eddington
bias of ~x1.25 (see Fig. 6). We do not correct for this. We also make
no allowance for the fact that the effective redshift for this sample
will be slightly lower than for GAMA.

4.4 Joint constraints

Fig. 11 shows the combined data set (as indicated). These form a
data set that scatters consistently around the expectation curve from
ACDM (dashed black line). This agreement now extends over a mass
range from 103 to 10'27 M, significantly expanding on previous
studies and providing strong corroboration of the ACDM prediction.
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Figure 10. As for Fig. 5 except now for the SDSS data of Tempel et al. (2017).

In general, the X-ray data (green data points) dominate the ‘knee’
region, providing the tightest error constraints, while the GAMA and
SDSS data (red and purple data points, respectively) provide leverage
on the low-mass slope. The lack of detections in all three surveys at
high mass, within their respective volumes, helps in constraining the
high mass turn-down.

We fit the combined GAMA, SDSS, and REFLEXII (GSR) data
(and all combinations thereof), with the MRP function as before (see
equation 3). We find a good fit given by the blue dashed line with
perhaps some greater scatter in normalization. This reflects both the
cosmic variance now acting independently on the three data sets and
the independent methodologies for absolute mass calibration (i.e.
the uncertainty in A). The fit has a convergent low halo mass slope
of —1.68f8ﬁ, just consistent with expectation (¢ = —1.89; Murray

et al. 2021). Integrating this curve to zero mass yields a total mass
density of about half the expected value (see Fig. 11 inset panel),
although the range of values from our Monte Carlo simulation (inset
panel red shading) does enclose the Planck 2018 value (vertical black
dashed line). The uncertainties on the MRP parameters were again
derived by independently perturbing each of the GAMA, SDSS and
REFLEXII data points by their errors, and each data set by their
cosmic variance error, and refitting to form the spread of blue lines,
showing the plausible range of fits. The uncertainty and covariances
of our final fitted parameters are represented in Fig. 12; in general,
these are well behaved with most values of « convergent (i.e. @ >
-2).

Fig. 13 shows (upper) our best-fitting MRP function over a broader
halo mass range; (centre) the same distribution but now expressed
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Figure 11. The combined empirical HMF data (as indicated). Shown as black and blue dashed lines are the ACDM prediction and the best MRP function fit
to the combined GAMA, SDSS, and REFLEX II data along with the spread of MRP fits in blue that show the results from our Monte Carlo refitting. The inset
panel shows the integral of the Monte Carlo MRP fits to zero mass (blue histogram) with the red band showing the 1o error range. The vertical black dashed

line shows the Planck 2018 value for 2.

in terms of the contribution to the mass density (rather than number
density); and (lower) the cumulative contribution, by integrating from
high mass to low mass, and expressed as a fraction of the Planck 2018
matter density (2 = 0.3147 4+ 0.0074). The MRP fit to the GAMA
data only (GAMAYS) is shown in red, and the fit to the final combined
GAMA + SDSS + REFLEXII data is shown in orange. The joint
fit has significantly tighter errors not represented here, but more
apparent in Figs. 14, which show all the MRP fitted parameters for
all data combinations explored in the main text and appendix.

We now consider two extensions: first, fixing «, and secondly,
incorporating the Planck 2018 2\ prior. We show in Fig. 13 in
green the optimal MRP fit if we fix the o parameter to the value
recommended by Murray et al. (2021). The red, orange, and green all
match the data reasonably well, but as can be seen in the lower panel,
all three either underpredict or overpredict the total matter density
when integrated to very low halo masses. Hence, we now fold in the
Planck 2018 €2 value as an additional constraint on the MRP fitting
process. To do this, we minimize the following expression:

1 [¢(Memp) - ¢(Mmod)]2
Nbins Uéombined
00 2
Lo~ (My- a4 o, yd M/ Peric) — m]
+ - . (7
QM

Implementing this strategy results in the cyan curve in Fig. 13,
which now very closely matches the expectation curve (black line)
and by construction integrates to the Planck 2018 matter density
value.

Note that to some extent this is not entirely surprising, as the data
now primarily constrain the shape of the high-mass end (i.e. M,, ¢,,
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and B), while the Q) constraint is then forcing the low-mass slope
parameter. That most data within their errors overlap with this fit
is reassuring, but does perhaps indicate some mild mass bias in the
G3C mass estimates at the lower halo masses. This is perhaps also
indicated in the weak lensing mass estimates, and it is noticeable that
the HMF based on the weak lensing masses, while fitting poorly at
the high-mass end, fits better in the 10'3~10'* M, range (see Fig. A2,
centre left).

Hence, it is plausible that at high halo masses, velocity dispersion
mass estimates are more robust, while at lower halo masses (where
interlopers may be more prevalent), weak lensing masses are more
robust. This does open a pathway to constructing HMFs from the
combination of both methods, which we leave for future study.
Nevertheless, it has become clear through this work that refining
our mass estimates and uncertainties is critical, even more so than
larger or lower halo mass samples.

The parameters of all the fits shown in Fig. 13 and in the
various plots throughout this paper are listed in Table 2. Our strong
recommendation is to adopt the values using the €2, constraint
when extrapolating to halo masses below 1027 Mg, and to use
the combined (i.e. GSR data) MRP fit when seeking to repre-
sent the data, which should be deemed valid over the range of
]012.7_]015.8 MO-

New survey programmes such as DESI and WAVES will soon
produce much larger group catalogues, but it is clear that the
following two factors will be critical if we are to advance our
empirical measurement of the HMF:

(1) High spectroscopic completeness (>90 per cent) is critical in
ensuring that low-mass haloes are detected and sparse haloes, or
those with mass gaps, are not biased against.
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Figure 12. The covariances of the final fitted parameters to the combined GAMA, SDSS, and REFLEX II data.

(2) Significant work needs to be done to improve our mass
estimates of galaxy groups especially at low multiplicity and low
masses, and this should include comparison of velocity dispersion,
weak lensing, and other mass estimates on a halo-by-halo basis as
well as for halo populations.

Overall from our work, and from studies based on simulations by
Chauhan et al. (2021), we see that it is important to sample at least
five members of a galaxy group in order to construct a credible mass
estimate and hence a robust HMF. It is sobering to note that for the
Local Group this implies probing down to NGC 3109, or the small
magellanic cloud, which are about 1000 fainter than the Milky Way
or Andromeda.

5 SUMMARY

In this work, we have attempted to reconstruct the HMF via a
predominantly model-free empirical pathway, and to highlight the
key areas for future consideration along the way. In general, we
conclude that over a broad range in halo mass we can confirm
the form and amplitude of the HMF, as predicted from numerical
simulations and analytical calculations. In particular, we find the
dominant error to be the Eddington bias, which arises from the
significant mass uncertainties inherent in group determination. To
second order, significantly larger samples are also required and over
broader local volumes to probe to lower halo masses with meaningful
statistics. In combination with X-ray data, we see good consistency,
and hence complementarity, between the GSR data. In combination,
these data sets are almost enough to constrain the functional form
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Figure 13. Various fits to the data (as indicated) and showing (top panel) the HMF from Fig. 11 but now over a broader range, (central panel) the contribution
of each mass interval to the total density, and (lower panel) the cumulative contribution of the various models to the Planck 2018 mass density. The vertical
dashed line in the lower panel indicates the halo mass limit to which our data extend.
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most fits are consistent with our final fitted parameters. Note also that the errors plotted in this fashion do not incorporate the strong covariances between the

four MRP parameters.

of the HMF, and we find an MRP function fit with the following
parameters:
log,, (¢ Mpc®) = —3.9670:33,
logo (M. Mg!) = 14.13508,
o =—1.68703},
B =0.6310%.
Note that the MRP fit is for an effective redshift (Z) of ~0.1 and to

convert to z = 0 one should add 0.075dex to log;o (M,./My) and
subtract 0.075 dex from log;o (¢x).

Fig. 14 shows graphically the complete set of all the MRP fits
shown in Table 2, and it generally portrays a consistent picture
(i.e. most error bars encompass the favoured values). Our final
MRP parameters that best represent the data are the third from top
value (GSR), and the red lines trace the final fitted values down
the figure. It is clear that the REFLEXII data are the dominant
data set and currently the X-ray pathway looks like the more
secure method to derive the HMF. Nevertheless, the inclusion of
the GAMA and SDSS data does significantly tighten the error
bars of the fit while remaining consistent with the REFLEX II-only
values.
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At this stage, it is worth noting that almost a// the fits are formally
convergent, but the error ranges include divergent solutions. In
general, the implied 2y values are consistent with expectation but
with relatively broad errors. For example, our combined GSR fit
returns the range of 2y values shown in Fig. 11 (inset panel) with
the median and 16/84 per cent quantiles as indicated by the vertical
red solid line and red band, respectively. Shown in black is the Qy
expectation from Planck 2018. If we use the Planck 2018 ) value
as a prior, then we can recover significantly more stringent MRP
fitted values, with quite modest errors, which by design converge to
the expected dark matter density. These values are

logq (¢ Mpc®) = —4.49703],
logjg (M. Mg') = 14.437(11,
o« = —1.8555;,

g =077t

Note that the MRP fit is for an effective redshift (Z) of ~0.1 and to
convert to z = 0 one should add 0.075dex to log;o (M./Mg) and
subtract 0.075 dex from logo (¢*).

We note that there is no real rationale for expecting the HMF to
observe a strictly power-law distribution to zero mass, but the test
does demonstrate plausible consistency between the preferred MRP
values, the Planck 2018 matter density value, and our combined GSR
data.

While a stringent independent constraint on 2y from an HMF
analysis alone is not yet viable, we can ask how much of the total
matter density predicted by Planck 2018 is resolved into haloes
down to our mass limit. Integrating down to M, = 10'>7 My, we
find approximately 41 & 5 percent of the expected matter content
(regardless of which fit is adopted). This is significant, as it supports
the notion that the majority of mass is contained within group
haloes, and suggests that it should be possible to build direct dark
matter maps from galaxy group catalogues. Such maps would have
significantly higher resolution than that achievable via weak lensing,
redshift space distortions, or peculiar velocity studies.

Finally, it is worth reiterating that our mostly empirically derived
HMF shows broad general agreement with the expectation from
ACDM, and in doing so provides some confirmation of ACDM.
However, it is also worth highlighting that this also represents a
coming of age of galaxy group catalogues. This is important, as most
simulations and observations highlight how the galaxy formation
process is strongly dependent on the underlying dark matter halo
mass. This is perhaps most obvious not only in the numerical studies
of star formation efficiency as a function of halo mass (Behroozi,
Wechsler & Conroy 2013; Wechsler & Tinker 2018), but also in
the transition from high-mass haloes dominated by hot plasma to
low-mass haloes dominated by cold gas and the ‘goldilocks zone’ in
which star formation is most efficient.

Paramount to capitalizing on a group-centric approach to extra-
galactic astronomy is the need for robust masses. In this work, as
with most studies, we rely on the viral theorem embodied in the very
simple equation (1) and the calibration of a simple constant A via sim-
ulations. This approach does raise concerns over non-orthogonality
between the measurements and the models (circularity?), but also the
simple virial mass estimate clearly does not use all the information at
hand, and does not acknowledge or incorporate factors such as partial
virialization, ongoing/lingering halo mergers, halo morphologies,
and the additional information encoded in the full spatial distribution
of the detected galaxy population, its velocity dispersion distribution,
and the combination thereof.
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There are two obvious and orthogonal pathways for addressing the
above issues. The first is to tie the construction of group catalogues
more closely to simulations and to incorporate this calibration
process into the mass error estimation for each individual group.
The second is to pursue a vigorous programme for deriving improved
empirical constraints on the group masses. One obvious starting point
is to use the 120 G>C groups for which 20+ members are known and
to undertake further study of these systems via X-ray, radio, strong
lensing, and Sunyaev—Zeldovich techniques. Such a project will be
critical if we aim to use galaxy groups as truly direct empirical probes
of the population of dark matter haloes.
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Figure A1. GAMA HMF derivations for different multiplicity cuts.
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Figure A4. Different MRP fits to the GSR data.
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