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Abstract
Overfitting is a common and critical challenge for neural networks trained with limited dataset.
The conventional solution is software-based regularization algorithms such as Gaussian noise
injection. Semiconductor noise, such as 1/f noise, in artificial neuron/synapse devices, which is
often regarded as undesirable disturbance to the hardware neural networks (HNNs), could also
play a useful role in suppressing overfitting, but that is as yet unexplored. In this work, we proposed
the idea of using 1/f noise injection to suppress overfitting in different neural networks, and
demonstrated that: (i) 1/f noise could suppress the overfitting in multilayer perceptron (MLP) and
long short-term memory (LSTM); (ii) 1/f noise and Gaussian noise performs similarly for the
MLP but differently for the LSTM; (iii) the superior performance of 1/f noise on LSTM can be
attributed to its intrinsic long range dependence. This work reveals that 1/f noise, which is
common in semiconductor devices, can be a useful solution to suppress the overfitting in HNNs,
and more importantly, further evidents that the imperfectness of semiconductor devices is a rich
mine of solutions to boost the development of brain-inspired hardware technologies in the
artificial intelligence era.

1. Introduction

In the artificial intelligence (AI) era, brain-inspired deep neural networks have demonstrated substan-
tial potential in various neuromorphic tasks such as visual recognition, natural language processing, and
autonomous driving [1–7]. Despite the remarkable progress, those neural networks often encounter the under-
fitting and overfitting problems, both resulting in unsatisfactory accuracy: underfit leads to high prediction
errors for both training and test data, while overfit leads to a very low prediction error on the training data but
a very high prediction error on the test data [8–11], as schematized in figure 1.

Underfitting happens because the neural network is too simple to capture all the features in the training
data. The practical solutions can be simply training the network for a longer duration or just use a network
with higher complexity. Overfitting happens because the neural network is too complex for a limited training
data size, forcing the network to overly memorize the irrelevant detail and noise in the training data. Of course,
increasing the size of training data could be the most straightforward solution. However, in real-world situ-
ations, the training data size is often limited by time, budget or technical constrains [12], making overfitting
practically more difficult to deal with than underfitting [13].

Recently, a group of techniques, collectively referred to as ‘regularization’, which is the process of shrink-
ing the coefficients in neural networks, have been used to select the networks’ complexity by automatically
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Figure 1. (a)–(c) Schematics of (a) underfitting, (b) optimal training and (c) overfitting of neural networks.

penalizing features that make the network too complex. Using regularization, the learning algorithms of neu-
ral networks are modified to reduce its generalization error but not its training error [14]. The most common
regularization methods include [15]:

(a) Early stopping: stop training automatically when a specific performance measure stops improving;

(b) Weight decay: incentivize the network to use smaller weights by adding a penalty to the loss function;

(c) Dropout: randomly ignore certain nodes in a layer during training;

(d) Model combination: average the outputs of separately trained neural networks;

(e) Noise injection: allow some random fluctuations in the data through augmentation.

Among them, noise injection is a very popular method against overfitting [16]. The addition of noise dur-
ing training has a regularization effect and improves the robustness of the neural network [17]. In practice,
noise can be added in between training iterations and onto different parts of the neural networks, such as
input signal, weights and activation functions, to make it difficult for the network to find a solution that
fits precisely to the original training data, and thereby reduces overfitting. In software-based DNNs, noise
injection is normally realized with the addition of a separate zero-mean Gaussian noise layer, such as the
‘tf.keras.layers.GaussianNoise’ in TensorFlow [18].

The software-based neural networks, which are still based on the traditional von Neumann architecture
initially designed for sequential computing [19], are challenged by the proliferation of massive data in terms of
computing ability and power consumption, driving people to look for alternative solutions. Again, inspiration
comes from the brain: the power budget of the human brain is around 20 W, and its computation capabilities
range in the 1017 FLOPS, equivalent to the best supercomputers [20]: the world’s fastest supercomputer in
2021, Fugaku, has a computation capability is 4.42 × 1017 FLOPS, but with a power of 29 899.23 kW [21].

In recent years, there has been a large push toward a hardware implementation of artificial neural net-
works, i.e. hardware neural networks (HNNs), aiming to overcome the calculation complexity of software-
based implementations by using semiconductor technology to directly emulate the behaviour of neurons and
synapses [22–25]. Unlike the conventional von-Neumann architecture that is inherently sequential in nature
[19], HNNs profit from massively parallel processing, and various architectures, such as multilayer percep-
tron (MLP), convolutionary neural network, recurrent neural network (RNN) and long short-term memory
(LSTM) have been proposed using semiconductor devices (transistors, memristors, etc) and circuits.

Since HNNs are implemented with real-world devices, the natural-existing imperfectness of devices
inevitably affects the performance of HNNs. Previously, such imperfectness was considered as detrimental fac-
tors that bring undesirable disturbance to HNN’s parameters, causing variation and drift to the performance
[22–24]. However, as the brain is of high error tolerance and so should be HNN, what is more attracting is that
such intrinsic imperfectness of semiconductor devices might be utilized to, instead, improve the performance
of HNNs. For example, the stochastic memristive switching behaviour has been used to realize the dropout
function of HNN [25]. The intrinsic read noise of memristive devices has been used to prevent HNN from
getting trapped into local minima and thus converge to sub-optimal solutions [26, 27].

Motivated by the previous explorations, it is natural to link semiconductors noise to overfitting suppression
in HNNs. An obvious benefit is that the intrinsic noise in devices waives the necessity to design complex
circuitry specialized for Gaussian noise generation using Zener diodes or other devices [28]. Various types of
noise exist in semiconductor devices, such as thermal noise [29], random telegraph noise [30], 1/f noise [31],
etc [32, 33], but a comprehensive study on the overfitting suppression effect of noise, at least for one or two
types of noise, is still missing.

Among those noises, 1/f noise is the low frequency noise for which the noise power spectral density is
inversely proportional to the frequency [34, 35]. It can be observed in a wide range of semiconductor devices,
such as transistors [36] memristors [37–40], diodes [41], and photoelectric devices [42]. 1/f noise is also the
‘background noise’ of the brain [43]. For example, the channel noise in neurons, which is thought to arise
from the random opening and closing of ion channels in the cell membrane, is seen to be 1/f [44]. Similarly,
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Figure 2. (a) Frequency domain and (upper inset) corresponding time domain 1/f noise measured via electrical characterization.
(Lower inset) Schematic of the back-gated MoS2 FET device, from which the demonstrative 1/f noise is measured. (b) and (c)
Experimental frequency domain 1/f noise measured from this MoS2 device, under (b) various V gs and (c) various V ds. 1/f noise
can be easily tuned with V gs or V ds. (d) Schematic of time-domain 1/f noise generation in Matlab, using the pinknoise.m function.

it has been shown that both magnetoencephalography and electroencephalogram recordings of spontaneous
neural activity in humans displayed 1/f -like power spectra in the α, μ, and β frequency ranges [45]. 1/f noise
is also an optimal communication channel for complex networks as in art or language and may therefore be
the channel through which the brain influences complex process and is influenced by them [46]. This inspires
people to wonder if the 1/f noise in real semiconductor devices could be used to mimic some natural neural
behavior in human brains, and play a role in the HNN.

From the mathematical perspective, 1/f noise is well-known for its ‘memory’, or long-range dependence,
which basically refers to the level of statistical dependence between two points in the time series [47]. More
specifically, it relates to the rate of decay of statistical dependence between the two points if the distance between
them increases. For example, if a time series has a short memory, it is predictable from only its immediate
past. The memory of a time series can be expressed using the autocorrelation. Autocorrelation refers to the
correlation of a given signal with itself at various points in time [48]. For a time series with short memory, its
autocorrelations decay quickly as the number of intervening observations increases. 1/f noise is an intermediate
between white noise (a process without memory) and brown noise (a process with an infinite memory) [49].
The long-term memory of 1/f noise can be quantified using the autocorrelation function (ACF).

In this work, we proposed the idea of noise injection on HNNs by using the intrinsic 1/f noise in semi-
conductor devices. We demonstrated the overfitting suppression ability of 1/f noise in MLP and LSTM for
handwriting data recognition and weather prediction tasks, and attribute the superior performance of 1/f
noise on LSTM, which is used to process time series data, to the long range dependence of 1/f noise. This work
reveals that 1/f noise in semiconductor devices can be a useful solution to suppress overfitting in HNNs, and
inspires that the imperfectness of semiconductor devices is a rich mine of solutions to boost the development
of brain-inspired hardware technologies.

2. Noise measurement and simulation

For the purpose of demonstration, experimental 1/f noise is measured from the drain current in a back-
gated MoS2 field effect transistor (FET) (figure 2(a)), in both time domain and frequency domain. The
channel length is 5 μm, width is 19.4 μm and the MoS2 has nine layers. 1/f noise can be easily tuned with
Vgs (figure 2(b)) or Vds (figure 2(c)).
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Figure 3. (a) An MLP neural network with 784, 50, 50 and 10 neurons in the input layer, 1st hidden layer (tanh), 2nd hidden
layer (tanh) and output layer (relu). (b) Overfitting of the MLP showing increasing validation loss after the optimal point.

It should be emphasized that, due to the huge number of neurons and synapses in a neural network, in this
work, noise simulated with software was used instead of experimental data measured from practical devices,
to study the impact of noise injection on overfitting suppression. The ‘pinknoise.m’ function in Matlab [50],
which includes a random stream generator, a series of randomly initiated second-order section (SOS) filters
and a gain, was used to generate a time-domain 1/f noise, as schematized in figure 2(d). The Gaussian noise
was simulated using the ‘randn.m’ function in Matlab [51].

3. Multi-layer perceptron (MLP) simulation

Multi-layer perceptron (MLP) is a popular and practical neural network model consisting of three types of
layers—the input layer, output layer and hidden layer [52]. In a MLP the data flows in the forward direction
from input to output layer, while the synapses in the MLP are trained with the back propagation learning
algorithm. The major use cases of MLP are pattern classification, recognition, prediction and approximation.
The MLP is sometimes called a ‘memoryless’ classifier because if one presents a pattern on its input units, the
output units respond with an activation pattern, and those outputs depend only on the inputs at that moment,
regardless of the previous input history.

In this work, an MLP with two hidden layers was simulated using Python, with 784, 50, 50 and 10 neurons in
the input layer, 1st hidden layer (tanh), 2nd hidden layer (tanh) and output layer (relu), respectively. The MLP
was trained and validated using the Modified National Institute of Standards and Technology handwritten digit
database [53], in which 60 000 images were used for training and the other 10 000 were used for validation.
During training and validation, the batch size is 100 and the learning rate is 0.0005. The loss function is cross
entropy loss and the optimizer is Adam.

Overfitting is clearly realized in this MLP: after training starts, both the training loss and validation loss
decreases (underfit), until at around 10th epoch when the training loss keeps decreasing but the validation
loss reaches its lowest point (optimal) and started to increase. After that, the training loss keeps decreasing
while the validation loss keeps increasing, which is a typical feature of overfitting, as shown in figure 3(b).
To evaluate the impact of 1/f noise on overfitting suppression, a simulated time-domain 1/f noise, whose
amplitude is calculated according to

SNR = 10log(Psignal/Pnoise) (1)

where the SNR refers to a fixed signal-to-noise ratio (SNR) and the signal is the weight value updated after
back propagation in each epoch, is added to the weight before validation, as schematized in figure 4(a). For
comparison, Gaussian noise with the same SNR is injected in the same way.

The simulated 1/f noise is applied onto the three layers of weights, i.e. the weights between the input layer
and the 1st hidden layer (Wih1), between the 1st and 2nd hidden layer (Wh1h2) and between the 2nd hidden
layer and the output layer (Wh2o), respectively (figure 4(b)). Obviously, the location of noise injection makes
major differences: noise injection on Wih1 lead to converged training and validation curves but with higher
final loss for both. For noise injection on Wh1h2 the overfitting is even worse. For noise injection on Wh2o,
the training and validation curve are closer and the final validation loss is ∼50% lower than the initial level,
indicating that the overfitting has been suppressed with the injection of 1/f noise. The training and validation
loss after 100 epochs are summarized in figure 4(c). As shown in figure 4(d), Gaussian noise with the same
SNR, shows similar effect as the 1/f noise, probably due to the fact that since MLP is static and has a mem-
oryless network architecture [54], it does not respond differently to 1/f noise or Gaussian noise, as shown in
figure 5(b).

4



Neuromorph. Comput. Eng. 2 (2022) 034006 Y Du et al

Figure 4. (a) The flowchart of noise injection in the MLP. (b) 1/f noise is added onto the weights between input layer and 1st
hidden layer, between 1st and 2nd hidden layer, and between 2nd hidden layer and output layer, respectively. (c) The training loss
validation loss and accuracy of different weights after 100 epochs. (d) The training loss, validation loss and accuracy of 1/f noise
and Gaussian noise injection after 100 epochs. NJ is short for noise injection.

Figure 5. (a) Demonstration of noise sampling, with interval of 100. (b) Loss after using 1/f noise and Gaussian noise injection
in an MLP. Noise is injected on to the weights between the 2nd hidden layer and the output layer.

4. Long-short term memory (LSTM) simulation

Artificial neural networks are expected to mimic the architecture and performance of human thoughts which
have persistence. For example, the reader of this paper understands each word based on the understanding of
previous words, instead of throwing everything away and start thinking from scratch again. However, tradi-
tional neural networks, such as MLP, cannot do this, which is a major shortcoming. RNNs, which has loops
inside and allows information to persist, addresses this issue. In practice, it is found that RNN can learn to use
the past information well if the gap between the relevant information and the place that it is needed is small.
If such gap becomes large, which is entirely possible, RNNs become less capable of learning to connect the
information, due to some fundamental reasons, such as vanishing or exploding gradient.

LSTM networks are a special kind of RNN explicitly designed to avoid the long range dependency problem.
In standard RNNs, the repeating module has a very simple structure, such as a single tanh layer. For LSTMs,
the repeating module has a different structure, consisting of a cell, an input gate, an output gate and a forget
gate. The forget gate allows unneeded information to be erased and forgotten. The cell remembers values over
arbitrary time intervals and the three gates regulate the flow of information associated with the cell, thus solving
the long range dependence problem, as shown in figure 6(a). Since one of the key features of 1/f noise is its
long range dependence, 1/f noise might play a special role in suppressing the overfitting in an LSTM for time
serial data tasks such as weather prediction.

5
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Figure 6. (a) Schematic of LSTM structure. A cell contains an input gate, an output gate and a forget gate. (b) Visualization of
the selected dataset (temperature, pressure and air density) used to train the LSTM. (c) Demonstration of overfitting, in a LSTM.

In this work, the climate time-series dataset recorded by the Max Planck Institute for Biogeochemistry is
used to train the LSTM. The entire dataset consists of 14 features, which were recorded once per 10 minutes at
the Weather Station of Max Planck Institute for Biogeochemistry in Jena, Germany. Three features out of the
14 in the dataset, i.e. temperature, pressure and air density, are selected for a quick demonstration, as visualized
in figure 6(b). The data of those three features are recorded once per 10 minutes, and is collectively defined
as the data of ‘one moment’. In other words, each moment contains three data points: temperature, pressure
and air density. Ten consecutive moments are used for training and 500 consecutive moments for validation.
Specifically, the first ten moments for training and moments from the 20000th to the 20500th for validation, to
avoid overlap. Since every feature has values with varying ranges, normalization is carried out to confine feature
values to a range of [0, 1] before training the LSTM, by subtracting the minimum and dividing by the difference
between the maximum and minimum of each feature. During training and validation, the batch size is 7 and
497 respectively. Therefore, the 8th, 9th, and 10th moments of training will be used as training labels while
the 498th, 499th and 500th moments of validation will be used as validation labels. The optimizer is Adam
and the learning rate is 0.0001. The loss function is the mean square error loss. During training, a simulated
time-domain 1/f noise is applied onto the hidden state (ht) for overfitting suppression. The amplitude of noise
is calculated according to (equation (1)) where the SNR refers to a fixed signal-to-noise ratio (SNR) and the
signal is the hidden state value updated in each epoch. Gaussian noise is injected in the same way and of the
same SNR for comparison.

Without using noise injection, overfitting can be clearly observed in figure 6(c). After training starts, both
the training loss and validation loss decreases (underfit), until at ∼180th epoch when the training loss keeps
decreasing but the validation loss reaches its lowest point (optimal) and started to sharply increase. After that,
the training loss keeps decreasing while the validation loss keeps increasing. After ∼250th epoch, the training
and validation loss finally saturate at around zero and 0.5, respectively.

1/f noise and Gaussian noise with SNR = 0 dB is injected onto this LSTM for an initial demonstration
(figures 7(b) and (c)). It can be clearly observed that the loss is controlled at the optimal point between the
280th and 470th epoch, while for the Gaussian noise injection, the loss function reaches the lowest point at
the 270th epoch, sharply increases to a peak around 0.38 at the 380th epoch, and then gradually decrease
afterwards. This supports that for the LSTM, 1/f noise and Gaussian noise could both suppress overfitting, but
with different performance. Compared with the Gaussian noise case where although the loss is lower than the
‘without noise injection’ case, the loss fluctuates and could be as high as∼0.38, the 1/f noise could effectively fix
the loss at around the optimal point for around 200 epochs. The impact of SNR on loss is further demonstrated
in figure 7(d), showing that the optimal SNR for overfitting suppression is −1 dB.

The 1/f noise shows ∼100% stronger overfitting suppression effect compared with the Gaussian noise: 1/f
noise lowers the loss by 0.4 (from ∼0.5 to ∼0.1, which is the optimal level in figure 7(b)), while Gaussian
noise only lowers the loss by 0.2 (from ∼0.5 to ∼0.3), as shown in figure 7(c). This is very different from the
MLP and showing strong indication that there might be some ‘coupling effect’ that enhance the overfitting
suppression effect of the long-term memory of 1/f noise on the LSTM. At lower SNR below 10 dB, 1/f noise
shows stronger capability to suppress overfitting compared with Gaussian noise (figure 7(d)). For SNR below
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Figure 7. (a) Schematic of noise injection in the LSTM structure. Noise is applied onto the hidden state (ht) in each epoch.
(b) and (c) Comparison of overfitting suppression, using (b) 1/f noise and (c) Gaussian noise, with SNR fixed at 0 dB.
(d) Dependence of loss on the noise SNR.

Figure 8. (a) Overfitting suppression effect using 1/f noise injected with different interval, or sampling frequency. (b) and (c)
Comparison of overfitting suppression during 1000 epochs, using (b) 1/f noise and (c) Gaussian noise, with SNR fixed at −1 dB.

−5 dB, the noise will be far larger than the signal, and the network will be practically learning the noise instead
of the signal.

To evaluate if the memory ability of LSTM really makes a difference, the 1/f noise is sampled at a fixed
interval length to mimic the training time per epoch (default interval = 1). For comparison, a zero-mean
Gaussian noise is also simulated and added.

This assumption is further confirmed in figure 8(a) when the noises are sampled at different intervals,
i.e. using different sampling frequencies. For the 1/f noise, the loss is dependent in logscale on the sampling
frequency, while the loss is almost not dependent on the sampling frequency of the Gaussian noise. If the
interval is larger than 50, the loss of 1/f noise and Gaussian noise becomes similar. This is strong evidence, that
the autocorrelation of 1/f noise plays an important role in the overfitting suppression of LSTM. Considering
that LSTM’s sequential structure. We can predict that the autocorrelation of 1/f noise could make it a special
solution for the overfitting suppression in LSTM. However, for the Gaussian noise, which is memory-less, does
not have such benefit.

Figure 8(b) compares the loss during 1000 epochs using the optimal SNR of −1 dB. For the 1/f noise injec-
tion, the loss function remains at the lowest point during the 280th and 470th epoch, and starts to gradually
increase afterwards. For the Gaussian noise injection, the loss function reaches the lowest point at the 270th
epoch, sharply increases to a peak at 380th epoch, and then gradually decrease afterwards. Although the 1/f
noise injection does not eliminate totally the overfitting phenomenon, it still shows significant effect in sup-
pressing overfitting and keeping the LSTM at the optimal condition for 190 epochs (from the 280th to the
470th), much better than the Gaussian noise.

The different performance between 1/f noise and Gaussian noise can be explained by using the ‘xcorr’
function in Matlab to calculate the ACF of 1/f noise and Gaussian noise [55], as shown in figure 9. The 1/f noise
and Gaussian noise are sampled in the way as figure 5(a), with various intervals. Obviously, as the lag increases,
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Figure 9. ACF of 1/f noise and Gaussian noise after being sampled with different intervals.

the ACF of 1/f noise decays gradually, supporting that 1/f has long memory with autocorrelation. However,
for Gaussian noise, the ACF is almost independent from the lag, indicating that it does not have memory, or
long range dependence. It should also be noted that if 1/f noise is sampled using very large interval, say 50,
its ACF seems also independent from the lag, which is a strong indication that the long range dependence has
decayed and now the sampled 1/f noise is very similar to the Gaussian noise, which also lead to similar effect
in figure 8(a).

The aim of this paper is to give a preliminary demonstration that physics properties of materials, such
as 1/f noise, shows some advantage over the software based approach, in the development of HNNs based
on semiconductor devices such as transistors and memristors where implementing the software-based noise
injection could be difficult: complex peripheral circuitry need to be designed to generate and modulate the
Gaussian noise. For example, a conventional additive white Gaussian noise is to use a Zener diode in a reversed-
biased circuit to produce Gaussian noise. This will bring additional area and power consumption to the HNN.

On the other hand, the semiconductor devices that form the HNN are naturally great sources of different
noises, such as the thermal noise originated from the thermal agitation of the charge carriers, shot noise origi-
nated from the discrete nature of electric charge, random telegraph noise from the trapping of carriers, and 1/f
noise originated from the carrier number fluctuation, in addition to the Gaussian noise. This is a significant
advantage, as noise can be conveniently obtained from the semiconductor devices that form the HNN, with-
out using the Zener diode or other devices/circuits for noise generation. Furthermore, another advantage is
that those noises have different varies characteristics, such as the long-term memory/dependence of 1/f noise,
which provides even better overfitting results, if they are properly selected and modulated, for some special
architectures such as the LSTM.

5. Conclusions

In this work, we proposed the idea of using 1/f noise injection to suppress overfitting in different neural net-
works, and demonstrated that: (i) 1/f noise could suppress the overfitting in MLP and LSTM; (ii) 1/f noise and
Gaussian noise performs similarly for the MLP but differently for the LSTM; (iii) the superior performance of
1/f noise on LSTM can be attributed to its intrinsic long range dependence. This work reveals that 1/f noise,
which is common in semiconductor devices, can be a useful solution to suppress the overfitting in HNNs. This
work could also provide strong support that the imperfectness of semiconductor devices can be exploited to
provide solutions for the development of hardware AI technologies, mimicking the human brains which are
not always precise but have been used efficiently and accurately for millions of years.

8



Neuromorph. Comput. Eng. 2 (2022) 034006 Y Du et al

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 62104188), the Major
Key Project of PCL (Grant No. PCL2021A12) and the Engineering and Physical Sciences Research Council
(EPSRC) of U.K. (Grant Nos. EP/M006727/1 and EP/S000259/1).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Conflict of interest

The authors declare no conflict of interest.

ORCID iDs

Zheng Chai https://orcid.org/0000-0003-3446-7138
Tao Li https://orcid.org/0000-0002-3337-6202

References

[1] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436–44
[2] Shao W, Salim F D, Song A and Bouguettaya A 2016 Clustering big spatiotemporal-interval data IEEE Trans. Big Data 2 190–203
[3] Anthony M and Bartlett P L 2009 Neural Network Learning: Theoretical Foundations (Cambridge: Cambridge University Press)
[4] Shao W, Zhang Y, Guo B, Qin K, Chan J and Salim F D 2019 Parking availability prediction with long short term memory model

Green, Pervasive, and Cloud Computing vol 11204 (Berlin: Springer) pp 124–37
[5] Ren H, Shao W, Li Y, Salim F D and Gu M 2020 Three-dimensional vectorial holography based on machine learning inverse

design Sci. Adv. 6 eaaz4261
[6] Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz M A and Dally W J 2016 EIE: efficient inference engine on compressed deep

neural network ACM SIGARCH Comput. Architect. News 44 243–54
[7] Shao W, Nguyen T, Qin K, Youssef M and Salim F D 2018 BLEDoorGuard: a device-free person identification framework using

bluetooth signals for door access IEEE Internet Things J. 5 5227–39
[8] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 Dropout: a simple way to prevent neural networks

from overfitting J. Mach. Learn. Res. 15 1929–58
[9] Lever J, Krzywinski M and Altman N 2016 Model selection and overfitting Nat. Methods 13 703–4

[10] Samuel Y, Irene G, Matt F and Somesh J 2018 Privacy risk in machine learning: analyzing the connection to overfitting 2018 IEEE
31st Computer Security Foundations Symp. pp 268–82

[11] Bartlett P L, Long P M, Lugosi G and Tsigler A 2020 Benign overfitting in linear regression Proc. Natl Acad. Sci. USA 117 30063–70
[12] Carremans B 2018 Handling overfitting in deep learning models https://towardsdatascience.com/handling-overfitting-in-

deep-learning-models-c760ee047c6e
[13] IBM Cloud Education 2021 Underfitting https://ibm.com/cloud/learn/underfitting
[14] Shao W, Chan J and Salim F D 2020 Approximating optimisation solutions for the travelling officer problem with neural networks

Int. Joint Conf. Neural Networks
[15] Molchanov D, Ashukha A and Vetrov D 2017 Variational dropout sparsifies deep neural networks Proc. 34th Int. Conf. Machine

Learning
[16] Noh H, You T, Mun J and Han B 2017 Regularizing deep neural networks by noise: its interpretation and optimization 31st Conf.

Neural Information Processing Systems
[17] Matsuoka K 1992 Noise injection into inputs in back-propagation learning IEEE Trans. Syst. Man Cybern. 22 436–40
[18] Brownlee J 2018 How to improve deep learning model robustness by adding noise

https://machinelearningmastery.com/how-to-improve-deep-learning-model-robustness-by-adding-noise/
[19] Eigenmann R and Lilja D J 1999 Von Neumann computers Encyclopedia of Electrical and Electronics Engineering (Hoboken, NJ:

Wiley) pp 384–400
[20] Drubach D 2000 The Brain Explained (Englewood Cliffs, NJ: Prentice-Hall)
[21] Fujitsu 2021 Supercomputer Fugaku https://fujitsu.com/global/about/innovation/fugaku/
[22] Chai Z, Freitas P, Zhang W, Hatem F, Zhang J F, Marsland J, Govoreanu B, Goux L and Kar G S 2018 Impact of RTN on pattern

recognition accuracy of RRAM-based synaptic neural network IEEE Electron Device Lett. 39 1652–5
[23] Du Y, Jing L, Fang H, Chen H, Cai Y, Wang R, Zhang J and Ji Z 2020 Exploring the impact of random telegraph noise-induced

accuracy loss on resistive RAM-based deep neural network IEEE Trans. Electron Devices 67 3335–40
[24] Kang J et al 2017 Time-dependent variability in RRAM-based analog neuromorphic system for pattern recognition IEEE Int.

Electron Devices Meeting
[25] Huang H M, Xiao Y, Yang R, Yu Y T, He H K, Wang Z and Guo X 2020 Implementation of dropout neuronal units based on

stochastic memristive devices in neural networks with high classification accuracy Adv. Sci. 7 2001842
[26] Lu J, Wu Z, Zhang X, Wei J, Fang Y, Shi T, Liu Q, Wu F and Liu M 2020 Quantitatively evaluating the effect of read noise in

memristive Hopfield network on solving traveling salesman problem IEEE Electron Device Lett. 41 1688–91
[27] Cai F et al 2020 Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks Nat.

Electron. 3 409–18
[28] Yacoub M D 2019 Foundations of Mobile Radio Engineering (Oxfordshire: Routledge)

9

https://orcid.org/0000-0003-3446-7138
https://orcid.org/0000-0003-3446-7138
https://orcid.org/0000-0002-3337-6202
https://orcid.org/0000-0002-3337-6202
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/tbdata.2016.2599923
https://doi.org/10.1109/tbdata.2016.2599923
https://doi.org/10.1109/tbdata.2016.2599923
https://doi.org/10.1109/tbdata.2016.2599923
https://doi.org/10.1126/sciadv.aaz4261
https://doi.org/10.1126/sciadv.aaz4261
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1109/jiot.2018.2868243
https://doi.org/10.1109/jiot.2018.2868243
https://doi.org/10.1109/jiot.2018.2868243
https://doi.org/10.1109/jiot.2018.2868243
https://doi.org/10.1038/nmeth.3968
https://doi.org/10.1038/nmeth.3968
https://doi.org/10.1038/nmeth.3968
https://doi.org/10.1038/nmeth.3968
https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.1073/pnas.1907378117
https://towardsdatascience.com/handling-overfitting-in-deep-learning-models-c760ee047c6e
https://towardsdatascience.com/handling-overfitting-in-deep-learning-models-c760ee047c6e
https://ibm.com/cloud/learn/underfittin
https://doi.org/10.1109/21.155944
https://doi.org/10.1109/21.155944
https://doi.org/10.1109/21.155944
https://doi.org/10.1109/21.155944
https://machinelearningmastery.com/how-to-improve-deep-learning-model-robustness-by-adding-noise/
https://fujitsu.com/global/about/innovation/fugaku/
https://doi.org/10.1109/led.2018.2869072
https://doi.org/10.1109/led.2018.2869072
https://doi.org/10.1109/led.2018.2869072
https://doi.org/10.1109/led.2018.2869072
https://doi.org/10.1109/ted.2020.3002736
https://doi.org/10.1109/ted.2020.3002736
https://doi.org/10.1109/ted.2020.3002736
https://doi.org/10.1109/ted.2020.3002736
https://doi.org/10.1002/advs.202001842
https://doi.org/10.1002/advs.202001842
https://doi.org/10.1109/led.2020.3021593
https://doi.org/10.1109/led.2020.3021593
https://doi.org/10.1109/led.2020.3021593
https://doi.org/10.1109/led.2020.3021593
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1038/s41928-020-0436-6


Neuromorph. Comput. Eng. 2 (2022) 034006 Y Du et al

[29] Chen C-H 2021 Thermal noise measurement and characterization for modern semiconductor devices IEEE Instrum. Meas. Mag.
24 60–71

[30] Claeys C, Andrade M G C D, Chai Z, Fang W, Govoreanu B, Kaczer B, Zhang W and Simoen E 2016 Random telegraph signal noise
in advanced high performance and memory devices 2016 31st Symp. Microelectronics Technology and Devices (SBMicro) pp 1–6

[31] Fang W et al 2016 Impact of the effective work function gate metal on the low-frequency noise of gate-all-around
silicon-on-insulator NWFETs IEEE Electron Device Lett. 37 363–5

[32] Bonani F and Ghione G 2001 Noise in Semiconductor Devices (Berlin: Springer)
[33] Konczakowska B M W A 2011 Noise in Semiconductor Devices (Boca Raton, FL: CRC Press)
[34] Bak P, Tang C and Wiesenfeld K 1987 Self-organized criticality: an explanation of the 1/f noise Phys. Rev. Lett. 59 381
[35] Hooge F N 1994 1/f noise sources IEEE Trans. Electron Devices 41 1926–35
[36] Bloom I and Nemirovsky Y 1991 1/f noise reduction of metal-oxide-semiconductor transistors by cycling from inversion to

accumulation Appl. Phys. Lett. 58 1664
[37] Bae S-H, Lee J-H, Kwon H-I, Ahn J-R, Om J-C, Park C H and Lee J-H 2009 The 1/f noise and random telegraph noise

characteristics in floating-gate nand flash memories IEEE Trans. Electron Devices 56 1624–30
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