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Abstract: Maladaptive endoplasmic reticulum (ER) stress is associated with modified reactive oxygen
species (ROS) generation and mitochondrial abnormalities; and is postulated as a potential mechanism
involved in muscle weakness in myositis, an acquired autoimmune neuromuscular disease. This study
investigates the impact of ROS generation in an in vitro model of ER stress in skeletal muscle, using
the ER stress inducer tunicamycin (24 h) in the presence or absence of a superoxide dismutase/catalase
mimetic Eukarion (EUK)-134. Tunicamycin induced maladaptive ER stress, which was mitigated by
EUK-134 at the transcriptional level. ER stress promoted mitochondrial dysfunction, described by
substantial loss of mitochondrial membrane potential, as well as a reduction in respiratory control
ratio, reserve capacity, phosphorylating respiration, and coupling efficiency, which was ameliorated
by EUK-134. Tunicamycin induced ROS-mediated biogenesis and fusion of mitochondria, which,
however, had high propensity of fragmentation, accompanied by upregulated mRNA levels of
fission-related markers. Increased cellular ROS generation was observed under ER stress that was
prevented by EUK-134, even though no changes in mitochondrial superoxide were noticeable. These
findings suggest that targeting ROS generation using EUK-134 can amend aspects of ER stress-induced
changes in mitochondrial dynamics and function, and therefore, in instances of chronic ER stress,
such as in myositis, quenching ROS generation may be a promising therapy for muscle weakness
and dysfunction.

Keywords: ER stress; mitochondria; reactive oxygen species; antioxidant; EUK-134

1. Introduction

The endoplasmic reticulum (ER) is a specialised organelle, which is the key site of protein
folding in the cell. The reducing environment of the ER contributes to the high fidelity needed to
correctly fold newly synthesised peptides and proteins into their biological active conformation [1,2].
The accumulation of misfolded or aggregated proteins within the ER, termed ER stress, initiates the
unfolded protein response (UPR), a ubiquitously expressed network of cellular processes, responsible
for restoring protein homeostasis [3]. The UPR induces ER-associated degradation via the ubiquitin
proteasome pathway (26S proteasome) to facilitate clearance of misfolded proteins, inhibits protein
assembly via translation attenuation, and increases protein folding capacity via chaperones release
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(glucose-regulated protein (GRP) 78 and 94). However, failure of establishing protein homeostasis and
sustained ER stress lead to UPR-induced cell death, through caspase 12 (autophagy) and cholesterol
oxidase-peroxidase C/EBP homologous protein (CHOP) activation (apoptosis) [4,5].

It is well established that chronic or prolonged activation of the ER stress response is implicated
in a wide range of diseases, such as neurodegenerative diseases (e.g., Alzheimer’s disease), chronic
metabolic diseases (e.g., diabetes), and muscle diseases (e.g., Duchenne muscular dystrophy and
myositis) [6–9]. The observation that aberrant activation of the ER stress pathway in the muscles of
patients with myositis, a rare neuromuscular disorder of autoimmune origin, has directed our research
interest at the understanding of the downstream mechanisms of ER stress in skeletal muscle.

The close approximation of ER and mitochondria permits bi-directional crosstalk via the
mitochondrial-associated ER membranes and Ca2+ signalling, and highlights the potential impact of
the sarcoplasmic reticulum (ER in skeletal muscle) on mitochondrial function. Reactive oxygen species
(ROS) are generated as an upstream and a downstream component of the UPR pathway. Hydrogen
peroxide (H2O2) is generated via the thiol/disulphide (-SH/-SS) exchange mechanism during protein
folding in the ER, as well as from superoxide (O2

•−) generated from mitochondrial complexes I and III
following Ca2+ influx. In addition to H2O2, peroxynitrite (ONOO−) is also generated as a by-product
of the reaction between O2

•− and nitric oxide (NO), and its generation depends on Ca2+-stimulated
nitric oxide synthase [5,10]. Prolonged activation of the ER stress response can influence mitochondrial
function, resulting in aberrant ROS generation, from both the ER lumen and mitochondria, and
oxidative damage [10,11].

Numerous studies have focused on the impact of acute/chronic ER stress on mitochondria
bioenergetics, but less is known about the mediators of this ER–mitochondrial crosstalk [12–14].
In this study, we aimed to investigate the role of ROS accumulation in ER stress-induced changes in
mitochondrial bioenergetics, biogenesis, and biodynamics, as described by mitochondrial respiration,
mass/volume, and morphology. We examined those changes and the impact of ROS generation in
human skeletal muscle myoblasts using the ER stress inducer tunicamycin and a synthetic antioxidant,
Eukarion (EUK)-134, which has both superoxide dismutase and catalase activity [15].

2. Materials and Methods

2.1. Cell Culture and Treatments

An immortalised human skeletal muscle cell line (donor age, 25 years; sex, male) was provided as
a gift to our group from the Institute of Myology, Paris [16]. Skeletal muscle cells were cultured in
growth medium containing Dulbecco’s modified eagles medium (DMEM, Lonza, Nottingham, UK)
and Medium-199 with Earle’s BSS (1:5, v/v) (Sigma-Aldrich, Dorset, UK), supplemented with 20% (v/v)
heat inactivated foetal bovine serum (Gibco, Loughborough, UK), 1% (v/v) penicillin/streptomycin, 1%
(v/v) L-glutamine (Lonza, Nottingham, UK), 10 µg/mL gentamicin, 25 ng/mL fetuin from foetal bovine
serum, 0.2 µg/mL dexamethasone, 5 µg/mL recombinant human insulin (Sigma-Aldrich, Dorset, UK),
0.5 ng/mL recombinant human basic fibroblast growth factor, 5 ng/mL recombinant human epidermal
growth factor, and 2.5 ng/mL recombinant human hepatocyte growth factor (Gibco, Loughborough,
UK). Skeletal muscle myoblasts were incubated at 37 ◦C in a humidified atmosphere of 5% CO2 until
80% confluence, and sub-cultured using 0.05% Trypsin/0.53 mM EDTA (1×) (Lonza, Nottingham, UK).
Myoblasts were treated with the pharmaceutical ER stress inducer tunicamycin (0.1 µg/mL) in the
absence or presence of EUK-134 (10 µM) for 24 h. Data from our laboratory (not shown) and others
have determined a dose of 10 µM EUK-134 and 0.1 µg/mL tunicamycin (24 h) to show efficacy in the
absence of apoptosis/cell death—therefore, these concentrations were chosen for this study [17].

2.2. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (PCR)

Following 24 h of treatment, myoblasts were harvested using Dulbecco’s Phosphate-Buffered
Saline (Lonza, Nottingham, UK) and stored at −80 ◦C. RNA of treated cells was isolated using EZ-RNA



Antioxidants 2020, 9, 710 3 of 19

isolation kit (Biological Industries, Beit Haemek, Israel) and cDNA was synthesised using iScript cDNA
synthesis kit (Bio-Rad, Watford, UK). Real-time qPCR analyses were performed on a StepOnePlus™
real-time PCR system (Applied Biosystems, Warrington, UK) using QuantiNova SYBR Green PCR Kit
(QIAGEN, Manchester, UK); 10 ng of cDNA per reaction was used in a total volume of 10 µL PCR
reaction mixture. Three amplifications, consisted of an initial denaturation cycle at 95 ◦C for 2 min,
followed by 40 cycles of 20 s at 95 ◦C (denaturation), 20 s at optimal annealing temperature, and 20 s at
72 ◦C (extension), were performed for each primer, followed by a melt curve analysis. Threshold cycle
for each target gene of interest was normalised to the housekeeping gene 18S (annealing temperature,
55.7 ◦C), which has been extensively used in muscle [18–20], and analysed using the delta-delta
(2−∆∆Ct) method [21]. The sequences and annealing temperature of all mitochondrial- and ER stress
pathway-associated primers used are provided in Tables 1 and 2, respectively.

Table 1. The sequences and annealing temperature of mitochondrial-associated primers.

Target mRNA Annealing
Temperature (◦C)

Forward Primer Sequence
(5′-3′)

Reverse Primer Sequence
(5′-3′)

MFN2 58 AGTTGGAGCGGAGACTTAGC ATCGCCTTCTTAGCCAGCAC
HSP60 58 GAACAGCTAACTCCAAGTCAGA CAGCCGCTCTGAGAACTTCA
TFAM 58 CTGCACTCTGTCCCTCACTC GGGTAACCGAAGCATTTCTGC
DRP1 58 TCACCCGGAGACCTCTCATT TCTGCTTCCACCCCATTTTCT

Citrate Synthase 58 TGATGAGGGCATCCGTTTCC GTTCTTCCCCACCCTTAGCC
FIS1 58 AGGCCTTAAAGTACGTCCGC TGCCCACGAGTCCATCTTTC

UCP3 55.7 GGGTCAACCTGGGATGTAGC TCCCTAACCCTCCCCATCAG
HSPA9 58 AGAAGACCGGCGAAAGAAGG TGTTGCACTCATCAGCAGGT

Abbreviations: MFN1, mitofusin 2; HSP60, heat shock protein 60; TFAM, transcription factor A, mitochondrial
precursor; DRP1, dynamin-related protein 1; FIS1, fission 1; UCP-3, uncoupling protein 3; and HSPA9, heat shock
protein family A member 9.

Table 2. The sequences and annealing temperature of endoplasmic reticulum stress-associated primers.

Target mRNA Annealing
Temperature (◦C)

Forward Primer Sequence
(5′-3′)

Reverse Primer Sequence
(5′-3′)

GRP78 59.3 TGACATTGAAGACTTCAAAGCT CTGCTGTATCCTCTTCACCAGT
Total XBP1 59.3 GGCATCCTGGCTTGCCTCCA GCCCCCTCAGCAGGTGTTCC

ERDJ4 59.3 TCGGCATCAGAGCGCCAAATCA ACCACTAGTAAAAGCACTGTGTCCAAG
CHOP 59.3 GGAGCATCAGTCCCCCACTT TGTGGGATTGAGGGTCACATC

GADD34 59.3 CCCAGAAACCCCTACTCATGATC GCCCAGACAGCCAGGAAAT

Abbreviations: GRP78, glucose-regulated protein 78 kDa; total XBP1, total X-box-binding protein 1; ERDJ4,
ER-DnaJ-like 4; CHOP, cholesterol oxidase-peroxidase C/EBP homologous protein; and GADD34, growth arrest and
DNA damage-inducible gene 34.

2.3. Measurement of Mitochondrial Bioenergetics Using Seahorse Extracellular Flux Analyser

Real-time oxygen consumption rate (OCR) in skeletal muscle myoblasts was measured with a
Seahorse XFp Extracellular Flux Analyser (Agilent Technologies, Manchester, UK). Cells were seeded
in an 8-well XFp cell culture microplate at a density of 7 × 103 cells/well in 100 µL growth medium, and
after adhesion, myoblasts were incubated with TN+/-EUK-134 under standard conditions. The Seahorse
XFp Mito Stress Test was performed according to manufacturer’s instructions. Specifically, 1 h prior
the experiment, growth medium was replaced with unbuffered DMEM (pH 7.4) supplemented with
1 mM pyruvate, 2 mM L-glutamine, and 10 mM glucose, and the plate was equilibrated at 37 ◦C in
a non-CO2 incubator. Parameters of the cell bioenergetic phenotype were determined following the
sequential addition of oligomycin (1 µM), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone
(FCCP, 2 µM), and rotenone/antimycin (0.5 µM). OCR and extracellular acidification rates, normalised
using the bovine gamma globulin assay, were automatically calculated by Seahorse XFp software
version 2.2.0.
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2.4. Quantification of Mitochondrial Morphology Parameters Using Confocal Microscopy

Skeletal muscle myoblasts were seeded on a 35 mm glass-bottom µ-Dish (ibidi®, Martinsried,
Germany), treated as previously described, incubated with the cell-permeant MitoTracker Red CMXRos
(5 µM, 30 min, 37 ◦C) (Molecular Probes, Invitrogen, Paisley, UK) selective for living mitochondria,
and fixed in 4% paraformaldehyde. Nuclei were counter-stained with 4′,6′-diamidino-2-phenylindole
dihydrochloride (DAPI; 1/5000) (Sigma-Aldrich, Dorset, UK). Imaging was performed on a Leica TCS
SP5 confocal microscope (Leica Microsystems, Milton Keynes, UK), using a 63×/1.4 oil immersion
objective. Parameters of mitochondrial morphology were quantified using a macro on NIH ImageJ,
created by Dagda et al. (2009) [22]. Briefly, following background subtraction and local contrast
enhancement, region of interest (individual cell) was selected, and macro was activated to subject the
images to threshold and transform them to binary.

2.5. Measurement of ROS Generation and Oxidative Damage Markers

To quantify ROS generation and oxidative damage, skeletal muscle cells were seeded at
7 × 103 cells/well in a black, clear bottom microplate (96 wells) and cultured in growth medium.
After 24 h treatment with TN+/-EUK-134, myoblasts were washed once with warm DPBS and
incubated with different fluorophores in phenol red-free DMEM medium, in the dark at 37 ◦C.
Total intracellular ROS were determined using 2,7-dichlorofluorescein diacetate (DCFH-DA, 10 µM,
30 min) (Sigma-Aldrich, Dorset, UK). Intracellular and mitochondrial superoxide generation was
measured using dihydroethidium (DHE, 5 µM, 20 min) (Sigma-Aldrich, Dorset, UK) and MitoSOX
Red mitochondrial superoxide indicator (5 µM, 30 min) (Molecular Probes, Invitrogen, Paisley, UK),
respectively. Following incubation with fluorophores, myoblasts were washed three times with DPBS
and maintained in Seahorse assay medium. Endpoint fluorescence was measured using a SynergyTM
multi-detection microplate reader (BioTek Instruments, Swindon, UK) with the following excitation
and emission wavelength: DCFH-DA, 485/20 and 590/35 nm; DHE, 320/40 and 460/40 nm; and MitoSOX
Red, 530/25 and 590/35 nm. Total protein thiols (sulphydryl) were quantified as per the manufacturer’s
guidelines (Abcam, Cambridge, UK). Briefly, treated myoblasts were incubated with Thiol Blue sensor
for 30 min on a shaker and samples were run through spin column. Absorbance was measured using a
microplate reader at A280 and A680 nm.

For each experiment, the mean value derived from blank wells was subtracted to correct for
background fluorescence/absorbance. All microplate reader measurements were normalised to total
protein content per sample using the Pierce™ BCA Protein Assay and Bovine Gamma Globulin assay
(Thermo scientific, Loughborough, UK).

2.6. Assessment of Mitochondrial Membrane Potential

Mitochondrial membrane potential (∆Ψm) was interrogated using the JC-1 fluorophore
(5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimi-dazolylcarbocyanine iodide; 5µM, 30 min, 37 ◦C) (Abcam,
Cambridge, UK), MitoTracker Red CMXRos (5 µM, 30 min, 37 ◦C) (Molecular Probes, Invitrogen, Paisley,
UK), or TMRM (Tetramethylrhodamine, methyl ester; 10 nM, 37 ◦C) (Molecular Probes, Invitrogen,
Paisley, UK). Following treatment, myoblasts were incubated with and maintained in TMRM solution,
and endpoint fluorescence was read at excitation 530/25 and emission 590/35 nm. JC-1 normally forms red
fluorescent aggregates. Red to green fluorescent shift occurs when mitochondrial membrane potential
decreases, because of the presence of the green fluorescent monomeric form of JC-1 [23]. Following
washing with DPBS, myoblasts were maintained in Seahorse assay medium and endpoint fluorescence
from aggregate and monomer form was recorded on the microplate reader at excitation 530/25 and
485/20 nm, respectively, and emission 590/35 nm. Similarly, for MitoTracker Red CMXRos fluorescence
staining, myoblasts were maintained in Seahorse assay medium and endpoint fluorescence was read at
excitation 590/20 and emission 645/40 nm. Measurements were normalised to total protein content per
sample using the Pierce™ BCA Protein Assay and Bovine Gamma Globulin assay.
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2.7. Measurement of Mitochondrial Mass/Volume

Human skeletal muscle myoblasts were incubated with 100 nM MitoTracker Green FM (Molecular
Probes, Invitrogen, Paisley, UK) prepared in a phenol red-free DMEM and incubated for 30 min at 37 ◦C.
Then, cells were washed once with DPBS and read by a fluorescence microplate reader (excitation
485/20 and emission 528/20 nm) or imaged using a LEICA DMI6000 B inverted microscope at 40×
magnification (CTR6000 laser, Leica Microsystems). Fluorescence intensity was normalised to total
protein content or nuclei number (using DAPI staining), respectively.

2.8. Immunofluorescence Staining

Human skeletal muscle myoblasts were washed twice with DPBS and fixed using 4% (w/v)
paraformaldehyde. After 15 min fixation at room temperature, cells were washed and permeabilised
using 0.5% (v/v) Triton X-100 for 15 min at room temperature. Then, cells were washed and blocked
with 3% (v/v) goat serum supplemented with 0.05% (v/v) Tween-20 for 1 h at room temperature. After
washing, cells were incubated with rabbit anti-GRP78 (1/1000) (ab213258; Abcam, Cambridge, UK)
at 4 ◦C overnight. Secondary antibody conjugated with Alexa Fluor 488 (goat anti-rabbit IgG; 1/800;
Invitrogen, Paisley, UK) and DAPI (1/5000; Sigma-Aldrich, Dorset, UK) were added to the cells for
1 h at room temperature in the dark. Cells were maintained in DPBS and images were taken using a
LEICA DMI6000 B inverted microscope at 20×magnification (CTR6000 laser, Leica Microsystems).

2.9. Western Blotting

Human skeletal muscle myoblasts were lysed using RIPA buffer protease/phosphatase inhibitors
and the total protein in each sample was quantified using the Bovine Gamma Globulin assay. Twenty
micrograms of protein were separated by 4–15% Mini-PROTEAN TGX Precast Gels (PAGE) (Bio-Rad,
Hertfordshire, UK) and transferred to a nitrocellulose membrane. The membranes were blocked with
5% (w/v) fat free milk dissolved in Tris-phosphate buffer with 0.0125% (v/v) Tween 20 for 1 h and
incubated with primary antibodies anti-GRP94 (ab3674), anti-MFN2 (ab56889), anti-SOD1 (ab13498),
and anti-SOD2 (ab13533) (1/1000), as well as anti-β-actin (ab8226) (1/5000) as a loading control, at 4 ◦C
overnight. Secondary antibodies were added for 1 h at room temperature and visualised using
chemiluminescent substrate (Thermo scientific, Loughborough, UK) and LI-COR Odyssey Fc Imaging
System (LI-COR Biosciences, Cambridge, UK).

2.10. Statistical Analyses

Data were assessed for normality of distribution by Shapiro–Wilk test. Data assessed to be
normally distributed were analysed using one-way ANOVA, with Tukey post hoc test. Data not
normally distributed were analysed using Kruskal–Wallis test, where appropriate. Data were analysed
using GraphPad Prism version 8. A p-value ≤ 0.05 was considered to be statistically significant.

3. Results

3.1. ER Stress Pathway Activation

Significantly increased expression (fold change) of the UPR genes, GRP78, growth arrest
and DNA damage-inducible gene 34 (GADD34), total X-box-binding protein 1 (XBP1), cholesterol
oxidase-peroxidase C/EBP homologous protein (CHOP), and ER-DnaJ-like 4 (ERDJ4), were observed
in human skeletal muscle myoblasts treated with tunicamycin, as expected. Combination treatment
with EUK-134 resulted in significantly attenuated expression of all genes, except GADD34 (Figure 1A).
ER stress activation following tunicamycin treatment was further confirmed by significantly increased
protein levels of GRP94, which, however, were not inhibited by EUK-134 (Figure 1B). GRP78 fluorescence
intensity increased upon ER stress activation. However, there was no change in the presence of EUK-134
(Figure 1C,D).
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Figure 1. ER stress activation in tunicamycin-treated cells with or without EUK-134. (A) Relative fold
changes in gene expression for ER stress markers. Data represent the mean fold change normalised to
18S housekeeper gene ± SEM of ∆Ct values (n = 3). (B) Cropped representative Western blot image
and quantification of GRP94 protein levels relative to β-actin (loading control). Data represent the
mean ± SEM (n = 3). (C) Representative images of human skeletal muscle myoblast stained for GRP78
(green) and DAPI (blue). Images captured at 20×magnification. Scale bar = 100 µm. Brightness was
adjusted equally in each image to enhance visualisation. (D) Quantification of total GRP78 fluorescence
intensity normalised to nuclei number, relative to control (%). Data represent the mean ± SEM (n = 26).
* p ≤ 0.033, ** p < 0.002, and *** p < 0.001 against vehicle control or tunicamycin alone (#).

3.2. Mitochondrial Oxygen Consumption and Mitochondrial Unfolded Protein Response

Tunicamycin-induced ER stress showed an overall increase in mitochondrial and
non-mitochondrial respiration, which was attenuated in the presence of the antioxidant EUK-134
(Figure 2A,D). Basal OCR values were plotted versus the ECAR values to distinguish the metabolic
profile of tunicamycin-treated myocytes in the presence or absence of EUK-134, showing significantly
increased basal OCR levels compared to the control group, with no change in basal ECAR levels
(Figure 2A,B) [24]. EUK-134 was able to significantly inhibit tunicamycin-induced increase in basal
respiration (Figure 2B). Decreased spare respiratory capacity (%, also called as reserve capacity)
observed after ER stress induction was significantly increased following EUK-134 treatment, even
compared to the vehicle control (Figure 2E). Consistently, depressed ATP-linked OCR was observed
following tunicamycin treatment, (Figure 2F), which was further enhanced by a substantial increase
in leak respiration, with more than half of oxygen consumed not being used for ATP production
(Figure 2G). Importantly, ER stress-induced proton leak was inhibited by EUK-134 treatment.
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Figure 2. Cellular bioenergetics of tunicamycin-treated cells with or without EUK-134. (A) Bioenergetic
status presented by basal oxygen consumption rate versus basal extracellular acidification rate, and
real-time oxygen consumption rate measured under basal conditions followed by the sequential
addition of oligomycin, FCCP, and rotenone/antimycin A mix. (B–G) Individual parameters of
mitochondrial function; basal respiration, maximal respiration, non-mitochondrial respiration, spare
respiratory capacity, ATP production, and proton leak, normalised to protein content. (H) Normalised
respiratory flux control ratios, respiratory control ratio, phosphorylating respiration, and coupling
efficiency (%), derived from the individual mitochondrial parameters. Data represent the mean ± SEM
(n = 5). * p ≤ 0.033, ** p < 0.002, and *** p < 0.001 against vehicle control or tunicamycin alone (#).
(I) Relative fold change in mRNA expression of UCP3. (J) Relative fold changes in mRNA expression
of mitochondrial unfolded protein response markers, HSP60 and HSPA9. Data represent the mean fold
change normalised to 18S housekeeper gene ± SEM of ∆Ct values, (n = 3). * p ≤ 0.033, ** p < 0.002,
and *** p< 0.001 against vehicle control or tunicamycin alone (#). OCR, oxygen consumption rate;
ECAR, extracellular acidification rate; RCR, respiratory control ratio.



Antioxidants 2020, 9, 710 8 of 19

To further evidence ER stress-induced mitochondrial dysfunction and investigate the impact
of EUK-134, normalised respiratory flux control ratios were determined using the six parameters
of mitochondrial function [24]. A significant decline was found in respiratory control ratio (RCR),
phosphorylating respiration, and coupling efficiency under ER stress, which were inhibited by
antioxidant treatment (Figure 2H). ER stress impaired the efficiency of mitochondrial respiration and
decreased the potential ATP turnover leading to proton leak, and these effects were ROS-mediated.
ROS-mediated decreased coupling efficiency and increased leak respiration, both indicative of
proton leak-driven oxygen consumption, were also attributable to changes in the expression of
the mitochondrial uncoupling protein 3 (UCP3), which were significantly decreased by EUK-134,
but not to control levels (Figure 2I).

ER stress-induced activation of the mitochondrial unfolded protein response was also evident.
Real-time qPCR results showed an ROS-dependent increase in heat shock protein (HSP) Family A
Member 9 (HSPA9) following tunicamycin treatment, but also ER stress-induced HSP60 expression,
which was upregulated in the presence of EUK-134, as well (Figure 2J).

3.3. Mitochondrial Membrane Potential and Mitochondrial Mass

Changes in mitochondrial membrane potential following ER stress induction in the presence
or absence of EUK-134, as an additional marker of mitochondrial dysfunction, were next examined
using different fluorophores. MitoTracker Red showed TN-induced hyperpolarisation, which was
significantly inhibited by EUK-134 (Figure 3A). These results were also seen when assessing the
accumulation of JC-1 polymers (red signal), indicative of increased number of hyperpolarised
mitochondria (Figure 3B). Interestingly, JC-1 polymers to monomers ratio (red to green signal),
showed TN-induced depolarisation which was prevented by EUK-134. This may be due to changes in
mitochondrial mass or the existence of a pre-autophagic pool following asymmetrical mitochondrial
fission [25,26]. To examine whether the increase in MitoTracker Red and JC-1 polymers fluorescence
intensity was attributable to a rise in mitochondrial mass/volume, TMRM was employed with or
without MitoTracker Green to normalise to mitochondrial mass/volume. Indeed, TMRM showed
mitochondrial hyperpolarisation after tunicamycin treatment (Figure 3D), while mitochondrial content
normalisation produced a substantial loss of mitochondrial membrane potential by tunicamycin
with no changes observed in the presence of EUK-134 (Figure 3E). In other words, tunicamycin
induced increase in mitochondrial mass/volume that seems to have affected our initial interpretation;
importantly this effect was inhibited by EUK-134 (Figure 4A,B). These results were further confirmed
by increased expression (fold change) of Citrate Synthase and transcription factor A and mitochondrial
precursor (TFAM), the initial enzyme of the citric acid cycle and a regulator of mitochondrial DNA
transcription, respectively; both prevented by EUK-134. (Figure 4C,D). Collectively, data suggest
that biogenesis is induced in response to ER and mitochondrial stress to compensate for changes in
energetic demand.
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Figure 3. Mitochondrial membrane potential of tunicamycin-treated cells with or without EUK-134.
Relative change (%) in (A) MitoTracker Red CMXRos fluorescence intensity (n = 4), (B) JC-1 red
fluorescence (polymers) intensity (n = 8), (C) JC-1 red to green fluorescence (polymers/monomers)
intensity (n = 8), (D) TMRM fluorescence intensity (n = 4), and (E) TMRM per MitoTracker Green
(mitochondrial mass/volume) fluorescence intensity (n = 4), normalised to protein content. Data
represent the mean ± SEM, * p ≤ 0.033, ** p < 0.002, and *** p < 0.001 against vehicle control or
tunicamycin alone (#).
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Figure 4. Mitochondrial biogenesis of tunicamycin-treated cells with or without EUK-134.
(A) Representative graph of mitochondrial mass/volume showing the relative change (%) in MitoTracker
Green fluorescence intensity, normalised to protein content. Data represent the mean ± SEM (n = 12).
* p ≤ 0.033, ** p < 0.002, against vehicle control or tunicamycin alone (#). (B) Representative images of
mitochondrial staining in human skeletal muscle myoblast using MitoTracker Green acquired under cell
culture conditions. Images captured at 40×magnification. Scale bar = 75 µm. Brightness was adjusted
equally in each image to enhance visualisation. (C,D) Relative fold changes in mRNA expression of
Citrate Synthase and TFAM. Data represent the mean fold change normalised to 18S housekeeper gene
± SEM of ∆Ct values, (n = 3). * p ≤ 0.033, ** p < 0.002, and *** p < 0.001 against vehicle control or
tunicamycin alone (#).

3.4. Mitochondrial Morphology: Fusion and Fission Events

Mitochondrial network structure was visualised using MitoTracker Red to explore mitochondrial
dynamics, including fusion and fission processes, in response to ER stress and antioxidant intervention.
Tunicamycin induced a significant increase in mitochondrial interconnectivity and elongation, indicative
of mitochondrial fusion events, which can be associated with increased mitochondrial mass [27,28].
These results were accompanying with an increase in the percentage of cytosol occupied by mitochondria.
EUK-134 was able to drop TN-induced changes in mitochondrial interconnectivity and content
to control levels, but not in elongation (Figure 5A,B). These findings were further confirmed by
tunicamycin-induced upregulation of mitofusin-2 (MFN2), a gene associated with mitochondrial
fusion; even though EUK-134 substantially decreased MFN2 expression compared to tunicamycin
treatment, it was still significantly upregulated compared to the control (Figure 6A).

It has been described that mitochondrial perimeter and area are positively correlated with
mitochondria about to undergo a fission event, which can result in increased mitochondrial
number [27,29]. MitoTracker Red staining showed increased tunicamycin-induced average
mitochondrial perimeter and area, which were inhibited by EUK-134 (Figure 5C). These results
are indicative of ROS-mediated fragmentation propensity in response to ER stress. This finding was
further supported by increased expression changes in fission protein 1 (FIS1) and dynamin-related
protein 1 (DRP1) genes, which are fission mediators. Overall, those results suggest that although the
cell attempts to respond to ER stress-induced mitochondria dysfunction by increasing mitochondrial
mass/volume, cells retain a propensity for fission.
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Figure 5. Mitochondrial morphological parameters of tunicamycin-treated cells with or without
EUK-134. (A) Representative images of fixed human skeletal muscle myoblast stained with
MitoTracker Red CMXRos. Images captured using 63×/1.4 oil immersion objective. Scale bar = 25 µm.
(B) Mitochondrial content as % of cytoplasmic area, mitochondrial interconnectivity expressed by
the ratio of mitochondrial area/perimeter, and mitochondrial elongation expressed by 1/circularity.
(C) Mitochondrial fragmentation propensity described by mitochondrial area and perimeter. Data
represent the mean ± SEM (n = 100 cells per group). * p ≤ 0.033, ** p < 0.002, and *** p < 0.001 against
vehicle control or tunicamycin alone (#).
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Figure 6. Mitochondrial dynamics of tunicamycin-treated cells with or without EUK-134. (A) Relative
fold changes in mRNA expression of MFN2 fusion-associated gene. Data represent the mean fold change
normalised to 18S housekeeper gene ± SEM of ∆Ct values (n = 3). * p ≤ 0.033, ** p < 0.002 against vehicle
control or tunicamycin alone (#). (B,C) Cropped representative Western blot image and quantification
of MFN2 protein levels relative to β-actin (loading control). Data represent the mean ± SEM (n = 3).
(D,E) Relative fold changes in mRNA expression of FIS1 and DRP1 fission-associated gene. Data
represent the mean fold change normalised to 18S housekeeper gene ± SEM of ∆Ct values (n = 3).
* p ≤ 0.033, ** p < 0.002, and *** p < 0.001 against vehicle control or tunicamycin alone (#).

3.5. ROS Generation

Since previous findings emphasised the importance of ROS in ER stressed-induced mitochondrial
dysfunction, we aimed to further investigate ROS generation in our model.TN-treated cells exhibited
higher levels of total cellular ROS (DCFH-DA fluorescence intensity) (Figure 7A) and specifically,
superoxide levels (DHE fluorescence intensity), compared to the control group, which were decreased
by EUK-134 treatment (Figure 7B). However, no changes were found on mitochondrial superoxide
levels in the presence of tunicamycin (Figure 7C), which might be because of its rapid conversion
to hydrogen peroxide or peroxynitrite [10,30,31]. The observation of decreased thiols content is also
indicative of elevated ROS generation and specifically, hydrogen peroxide release in the ER lumen
through GSH oxidation to GSSG; EUK-134 was able to restore thiols levels (Figure 7D). We also
examined the protein levels of superoxide dismutase (SOD) 1 and 2 as markers of ROS generation
(Figure 7E). Results showed that tunicamycin induced a substantial increase in SOD1 as an adaptive
response to ROS generation, but no changes observed in SOD2 protein levels (Figure 7F,G).
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Figure 7. Markers of ROS generation in tunicamycin-treated cells with or without EUK-134. Relative
change (%) in (A) total cellular ROS levels (DCFH-DA, n = 8), (B) total cellular superoxide levels (DHE,
n = 4), (C) mitochondrial superoxide levels (MitoSOX Red, n = 20), and (D) total thiol content (n = 6),
normalised to protein content. Data represent the mean ± SEM, * p ≤ 0.033, ** p < 0.002, and *** p < 0.001
against vehicle control or tunicamycin alone (#). (E–G) Cropped representative Western blot image and
quantification of SOD1 and SOD2 protein levels relative to β-actin (loading control). Data represent the
mean ± SEM (n = 3–5).

4. Discussion

Crosstalk between ER and mitochondria is a key cellular process and there is a strong link
between chronic ER stress and mitochondrial dysfunction [10]. Based on the existing evidence of ER
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stress activation as a mechanism involved in skeletal muscle weakness in patients with myositis [9],
and the little knowledge on the role of ROS generation on ER stress downstream effects, this study
aimed to determine the impact of the antioxidant EUK-134 in an in vitro model of ER stress-induced
mitochondrial dysfunction in skeletal muscle, focusing on various aspects including mitochondrial
function, biogenesis, and dynamics. EUK-134 was selected in the present study as it has been
previously reported to exert beneficial effects on muscle atrophy and dysfunction induced by oxidative
stress [32–35].

Tunicamycin is an inhibitor of the n-glycosylation step of protein folding, leading to accumulation
of unfolded glycans within the ER [36]. Tunicamycin has been extensively used in numerous studies
to activate the ER stress pathway in mouse and human skeletal muscle cells [37–39]. In this study,
tunicamycin-induced ER stress, validated by an increase in UPR pathway markers, was partially
ameliorated by EUK-134, with inhibitory effects on mRNA levels of GRP78, ERDJ4, and total XBP1.
Even though the dose of tunicamycin was relatively lower compared to other studies [12,39,40],
the 24 h incubation has been used to induce later phase of ER stress [12,41], and the expression of
CHOP, a pro-apoptotic transcription factor, as a marker of prolonged/maladaptive ER stress [42].
Importantly, this study showed that EUK-134 diminished ER stress-induced upregulation of CHOP
mRNA expression, protecting the cells from apoptosis initiation.

Previous studies have reported an increase in mitochondrial respiration and mass as an
adaptive response to ER stress, which, when unresolved, leads to mitochondrial dysfunction and
cell death [12,28,41]. A major finding of this study is that prolonged tunicamycin administration
induced impaired mitochondrial function that was mediated by ROS generation. In agreement
with previous findings, prolonged tunicamycin treatment promoted basal mitochondrial respiration
upon ER stress [13], which can be considered as an attempt of the cell to meet ATP demand [43],
as they showed inability to shift to glycolysis. However, elevations in OCR were not correlated with
ATP production, as previously described, with total cellular ATP levels substantially reduced under
prolonged ER stress (20 h, 0.5 µg/mL) compared to early ER stress (1–4 h) and the control group [12].
Diminished ATP turnover and impaired oxidative phosphorylation were also evident by suppression
of reserve capacity, coupling efficiency, RCR, and phosphorylating respiration induced by prolonged
ER stress, showing the inability of the cell to respond to energetic demands. Importantly, those changes
induced by ER stress were mitigated by EUK-134, highlighting the important role of ROS generation
in ER stress-induced mitochondrial dysfunction. Increased basal respiration can also be associated
with other sources of oxygen consumption, including ROS generation [43]. In accordance with this,
the present study showed substantial rise in non-mitochondrial OCR upon ER stress, which was
further supported by elevated changes in the markers of oxidative stress. Specifically, tunicamycin
increased total cellular ROS generation, including superoxide levels, and reduced thiol content, which
were inhibited by EUK-134. However, no changes were noticeable in mitochondrial superoxide
levels. This finding can be likely explained by the presence of nitric oxide production that has been
previously shown to compete with superoxide dismutase and reduce superoxide availability to produce
peroxynitrite [30,44]. Further supporting this hypothesis, a study on prostate cancer cells revealed that
prolonged ER stress induced by tunicamycin is highly correlated with endothelial nitric oxide synthase
upregulation and nitric oxide production [45]. A previous study has shown that EUK-134 can reduce
nitric oxide, and subsequently, peroxynitrite production in proximal tubular cell injury [46]. It is also
known that thiols are oxidised by peroxynitrite into disulphide bonds [47]. Consistently with these
findings, the present study showed that EUK-134 increased thiol content under ER stress conditions,
potentially by inhibiting peroxynitrite production.

Mitochondrial dysfunction with noticeable increase in proton leak, as observed in the current
study, has been correlated with changes in mitochondrial membrane potential [48]. Initial investigation
showed tunicamycin-induced mitochondrial membrane hyperpolarisation. However, a previous study
has emphasised the importance of normalising this parameter to not only protein content, but also,
mitochondrial content [26]. Normalisation to mitochondrial mass/volume showed mitochondrial
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membrane depolarisation under ER stress, supporting its effects on mitochondrial biogenesis.
Specifically, this study showed stimulation of mitochondrial biogenesis by tunicamycin as a response
to increased ATP demands induced by ER stress, which was not noticeable in the presence of EUK-134.
This finding was consistent with another study showing increased mitochondrial mass in an animal
model of mitochondrial myopathy, induced by respiratory chain deficiency [49].

Mitochondrial biogenesis has also been associated with an increase in HSP60 levels in skeletal
muscle [50]. Specifically, HSP60 showed to upregulate proliferator-activated receptor gamma
coactivator 1 α1 expression, a chief regulator in mitochondrial biogenesis process [51,52]. Furthermore,
ER UPR has been suggested to activate mitochondrial UPR [53,54]. These findings are in agreement
with our study that showed tunicamycin-associated increases in mitochondrial mass, as well as in the
expression of HSP60 and HSPA9 mitochondrial UPR mediators, with HSPA9 being completely inhibited
by EUK-134. However, it should be noted that HSP60 and HSPA9 upregulation might be attributable
to the increased tunicamycin-mediated mitochondrial mass to further support mitochondrial protein
translocation, folding, and refolding [50].

Previous studies have shown a distinct impact of oxidative stress on mitochondrial structural
network. In consistent with our study, high respiration rates but decreased reserve capacity, as well
as loss of mitochondrial membrane potential were induced by hydrogen peroxide and preceded
mitochondrial fragmentation in mouse skeletal muscle myocytes [55]. Specifically, it has been found
that prior to mitochondrial fragmentation, mitochondria elongate and fuse as an adaptive response to
cellular insults, including ER stress and ROS generation [28,56]. Changes in mitochondrial structure
have shown to determine cell fate when autophagy is stimulated, with elongated mitochondria being
able to escape from degradation and maintain cell viability [57]. Similarly, in our model, it was found
that 24 h incubation with tunicamycin maintained fusion processes, which were partially suppressed
by EUK-134. Fusion processes were described by elongated and interconnected mitochondria, which
can be positively correlated with increased mitochondrial mass [27]. Even though MFN2 mRNA
expression was upregulated under ER stress conditions, protein expression levels remained unchanged.
This finding might indicate (a) that increased mitochondrial mass/volume, interconnectivity, and
elongation are potentially MFN1-dependent, with outer mitochondrial membrane fusion occurring
mostly through the homotypic MFN1-MFN1 manner, or (b) the activation of other processes that
require MFN2 protein expression, including Parkin-mediated mitophagy [25]. Taken together, these
findings suggest ROS-mediated increase in mitochondrial fusion events, which are MFN2 independent,
and accumulation of dysfunctional mitochondrial mass under maladaptive ER stress conditions.

Since it is known that mitochondrial dysfunction precedes mitochondrial fragmentation, we
examined the propensity of mitochondria to fragment in our ER stress model, as suggested by Westrate
et al. [29]. Tunicamycin increased morphological parameters predictive of future mitochondrial
fragmentation, including perimeter, the most prominent one, as well as mitochondrial area. These
results were further supported by our findings of increased changes in mRNA levels of fission
markers, FIS1 and DRP1. Importantly, those events were mitigated by EUK-134, indicating that ER
stress-associated fragmentation events are mediated by ROS. Further supporting this finding, in mouse
skeletal muscle myoblasts, ROS induced mitochondrial depolarisation and fragmentation, resulting in
stimulation of the ER UPR [54].

This study presents novel findings on the role of ROS in ER stress-induced mitochondrial
dysfunction. However, some limitations should be noted and further examined. Firstly, even though
this study examines mitochondrial fusion and fission processes through investigating mitochondrial
morphological parameters and changes in mRNA expression levels, it lacks analysis on potential
changes in MFN1, FIS1, and DRP1 protein expression levels, which would provide further insights
into the physiological changes induced by tunicamycin. Secondly, the present study was conducted
using a single immortalised human myoblast cell line, which represents an appropriate cell line in
relation to the properties of the model. However, we acknowledge the importance of evaluating other
myoblast cell lines and primary cells when considering the wider applicability of these findings.
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5. Conclusions

EUK-134 can protect against aspects of ER stress-induced mitochondrial dysfunction, biodynamics,
and biogenesis in human skeletal muscle cells, highlighting a role of ROS in instances of prolonged ER
stress, such us in myositis. Overall, this work provides a possibility of quenching ROS generation as
an avenue for beneficial impact for ER stress-related diseases.
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