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Abstract

Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle
atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor
to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population
(estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated
with neuromuscular ageing, will inevitably increase. Despite the importance of this ‘epidemic’ problem, the primary
biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been
fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources,
and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of
muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and
disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing.
The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic
manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of
RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox
homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in
murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
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Introduction

Ageing is characterized as the time-dependent functional
decline of cells, organs and tissues throughout the body1

and is the primary risk factor for major human pathologies,
including cancer, diabetes, cardiovascular disorders and
neurodegenerative/neuromuscular diseases. Loss of skeletal
muscle mass and force inherent with ageing has a profound
effect on the quality of life of older people. Human
investigations have shown that by the age of 70, there is a
25–30% reduction in the cross-sectional area (CSA) of skeletal
muscle and a decline in muscle strength by 30–40%,2

associated with neurological impairments including loss of
motor units,3,4 neuromuscular junction (NMJ) instability,5 a
decline in motor nerve function6 and increased fibre-type
grouping due to continual cycles of denervation and
reinnervation7 (Figure 1). The reduction in muscle strength
with age is associated with an increased mortality risk,8 an
increased susceptibility to risk of falls and, subsequently, an
increased need for residential care. According to the World
Health Organization, the global population of elderly people
aged >60 years was 600 million in 2000 and is expected to
rise to around 2 billion by 20509; thus, increased demand
for medical and social care will inevitably increase, rising
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the financial costs of healthcare systems.10 Physical activity
can undoubtedly delay the progression of ageing muscle
affects,11,12 but even physically active older individuals
experience age-associated muscle atrophy and weakness.13

Age-dependent myofibre atrophy is a life-long process with a
complex and multifactorial aetiology that involves both
intrinsic and extrinsic factors7; despite the importance of this
area, elucidation of the primary biochemical and molecular
mechanisms underlying the prominent age-associated decline
in muscle mass and function has proven to be difficult.

Oxidative damage has been suggested to be among the
factors involved in the loss of tissue function that occurs
during ageing, and experimental evidence in humans14–16

and rodents17–19 has shown that skeletal muscle exhibits
age-dependent increases in the products of oxidative
damage to biomolecules including proteins, lipids and
nucleic acids. Recent reports have attributed the positive
correlation between age and oxidative damage to age-
related changes in reactive oxygen and nitrogen species
(RONS), with skeletal muscle fibres from old rodents
exhibiting elevated intracellular RONS levels compared with
young/adult rodents.20,21 The hypothesis that an increased
generation of oxidants in vivo plays a key role in age-related
deficits in muscle mass and function has been examined in
several transgenic and knockout studies with inconsistent
results.

Many reports19,22–35 have examined skeletal muscle of
rodents lacking and/or overexpressing various key regulatory
enzyme systems (in homo/heterozygotic and tissue-specific
models) involved in the reduction and/or generation of
oxidants to determine whether specific defects in antioxidant
protection and the resultant changes in redox homeostasis

influence the onset and/or rate of age-related muscle
atrophy and functional deficits.

Although the skeletal muscle fibre-type profile differs
between murine and human skeletal muscle (myosin heavy
chain isoform IIB is not expressed in humans),36

neuromuscular ageing in both humans and rodents share
similar features. These include, but are not limited to, loss
of muscle fibres37 and reduced myofibre CSA21,38,39

associated with degeneration and structural alterations of
the NMJ,40–42 a decline in functional innervation (partial
denervation)41,43,44 and loss of motor units.3,44,45 Although
it is not justified to extrapolate results from transgenic
animal models to human muscles (i.e. to assume that each
fibre type exhibits similar age-related phenotypic changes
with ageing in different species), the similar characteristics
observed during neuromuscular ageing in both rodents and
humans suggest that murine models can provide useful
experimental models to explore the processes and
mechanisms that contribute to skeletal muscle atrophy and
weakness.

An understanding of the underlying causes of muscle
atrophy and functional deficits inherent to ageing is critical
for the development of strategies and targeted interventions
to preserve the age-related decline in neuromuscular
integrity and function. This review summarizes the
transgenic approaches that have been undertaken in rodent
models to assess whether redox homeostasis is implicated in
the processes of sarcopenia, unravel potential mechanisms
involved in skeletal muscle ageing and identify areas where
further research is warranted. We begin with a brief
overview of the chemistry of RONS, sites of production and
the antioxidant defence systems expressed in skeletal
muscle, followed by a discussion of the redox sensitive
pathways and cellular functions controlled by redox
homoeostasis. This will be followed by a detailed discussion
of the implication of redox homeostasis in neuromuscular
ageing and the genetic modifications that have been
undertaken to examine the potential link between redox
control and age-related deficits in skeletal muscle mass and
function. Although we will discuss a broad range of topics
related to the muscle redox environment, it is impossible
to address all aspects of this expansive field of study in the
present review. For topics not covered in detail in this
article, we provide references of review articles where
necessary.

Skeletal muscle produces reactive
oxygen and nitrogen species

Molecular oxygen (O2) is one of the most abundant
elements in the atmosphere (nearly 21% by volume), and
its ability to accept electrons makes it vital for a variety of

Figure 1 Schematic representation of the morphological neuromuscular
alterations/impairments that occur with the advance of age. Ageing
skeletal muscle is associated with increased fibre-type grouping due to
continual cycles of denervation and reinnervation. Axonal degeneration
and motor neuron death, inherent with aging, leads to reduced number
of motor axons innervating myofibres. These events inevitably result in
loss of motor units and atrophy of the remaining muscle cells.
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physiological processes. Aerobic organisms including humans
have adapted well to the atmosphere, using atmospheric O2

by respiration and to obtain energy efficiency.46 Although O2

plays a key role in aerobic cellular metabolism, studies in the
1950s showed that O2 could cause cellular damage47 by the
generation of reactive species (Figure 2), derivatives of O2.

48

The ‘free radical theory of O2 toxicity’ sparked the interest of
many research laboratories in the field of redox homeostasis
in biological systems and the first studies to report that
skeletal muscle produces reactive species appeared in the
late 1970s49 and early 1980s.50 Over the past three decades,
the field of redox biology has expanded rapidly, and with the
development of high throughput ‘Omics’ technologies and
sensitive analytical approaches, it is now widely accepted
that resting and contracting skeletal muscle produces RONS
both in vivo and in vitro.

Reactive oxygen and nitrogen species generation by
myofibres has been detected and quantified by a variety of
methods including high-performance liquid chromatography
techniques,30,51 electron-spin resonance spectroscopy (also
known as electron paramagnetic resonance),52,53 fluorescence-
based microscopic assays,54,55 spectrophotometry,56,57

chemiluminescence58,59 and transfection methods including
in vivo60,61 and in vitro.62 It is widely accepted that superoxide
and nitric oxide (NO) are the primary radical species
generated by skeletal muscle.46,63 Table 1 depicts the
molecular formulas, half-lives and intracellular concentrations
of the major RONS produced by skeletal muscle. A discussion
of the primary and ‘secondary’ RONS follows.

Chemistry of reactive oxygen and
nitrogen species produced by skeletal
muscle

Superoxide

Superoxide is one of the main radical species produced by
skeletal muscle and is derived either from incomplete
reduction of O2 in electron transport systems or as a
specific product of enzymatic systems.75 Resting and
contracting skeletal muscle produces superoxide via
different pathways, and schematic Figures 3 and 4 depict
the various sites and mechanisms that have been proposed
for RONS generation in skeletal muscle. Briefly, superoxide
is generated by the mitochondrial electron transport chain
including complex I, complex III76,77 and, recently, complex
II78–80; the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase enzymes including NOX2, NOX4, DUOX1
and DUOX255,56,59,81; xanthine oxidase82,83; and the
lipoxygenases (LOXs),84 which are linked to arachidonic acid
released by the phospholipase A2 enzymes85,86 (for a
detailed review, see Ref. [46].

Superoxide anion carries a negative charge and cannot
diffuse through membranes. However, it can cross
membranes through anion channels including the inner
membrane anion channel and the voltage-dependent anion
channels55,87,88 (Figure 4). Nonetheless, it has been argued
that superoxide can be protonated at physiological pH to

Figure 2 Reactive oxygen derivatives produced by the sequential reduction of O2 to H2O. Superoxide (O2∸), hydrogen peroxide (H2O2) and hydroxyl
radical (●OH).

Table 1. Major RONS detected in skeletal muscle, estimates of half-lives and cellular concentrations

Species Formula Biological half-life(s) Estimate cell conc. (M) References

Superoxide O2∸ 10�6 1–10�12 64–66

Hydrogen peroxide H2O2 10�5 1–10�8 64,67,68

Hydroxyl radical ●OH 10�9 ND 64,69

Nitric oxide NO 1–10�1a 1–10�9 66,70,71

Peroxynitrite ONOO� 10�2 2�9 72–74

Not determined (ND).
aNO half-life depends on its concentration.
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produce the hydroperoxyl radical, enabling the transfer of
superoxide across biomembranes.89 Although superoxide
anion has a relatively long half-life, it has a limited oxidizing
ability as it does not react directly with polypeptides, sugars
or nucleic acids but can interact with other molecules to
generate secondary RONS either directly or through enzyme
or metal-catalysed processes.65 In aqueous solutions,
dismutation of superoxide into hydrogen peroxide (H2O2)
can occur spontaneously or catalysed by superoxide
dismutases (SODs)90 with a rate constant
(k = 2 × 109 M�1 s�1),70 a reaction considered to be very
slow as superoxide radicals electrostatically repel each
other.91

Hydrogen peroxide

Hydrogen peroxide (H2O2) is a relatively stable molecule with
a long half-life and can diffuse across biomembranes.92 H2O2

has been suggested to be a redox signalling molecule93 that
can interact with redox-sensitive components or pathways,
activating various transcription factors in skeletal muscle.94

In addition to SOD-dependent production of H2O2, a number
of enzyme systems also generate H2O2 including NOX4,95,96

urate and amino acid oxidases.97 Moreover, recent evidence
supports endoplasmic reticulum (ER) H2O2 generation
in vivo98 via thiol-disulfide exchange mechanisms.99 Elevated
concentrations of H2O2 have shown to alter the catalytic

Figure 3 Schematic representation of the non-mitochondrial sites for nitric oxide and superoxide production in skeletal muscle. Superoxide (O2∸) is
produced by multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), xanthine oxidase and the lipoxygenases (LOX),
which activity is regulated by the phospholipase A2 enzymes (PLA2). Arachidonic acid (AA) release by the membrane bound calcium-dependent PLA2
(sPLA2) facilitates extracellular O2∸ release by the membrane bound LOX. It is uncertain whether the cytosolic LOX enzymes contribute to intracellular
O2∸ changes, which substrate availability might be regulated by the cytosolic calcium-independent PLA2 (iPLA2). NAD(P)H oxidase 4 (NOX4) also
contributes to ROS changes, although the primary ROS product, O2∸, or hydrogen peroxide (H2O2) of NOX4 is uncertain. Cytosolic and extracellular
O2∸ is dismuted into H2O2 by superoxide dismutase (SOD), SOD1 and SOD3, respectively, or reacts rapidly with membrane permeant nitric oxide
(NO) produced by the endothelial and neuronal nitric oxide synthase (eNOS and nNOS) to form peroxynitrite (ONOO�). H2O2 formed within the
extracellular space is reduced into H2O by the action of glutathione peroxidase 3 (GPX3) or peroxiredoxin IV (PRX4), while cytosolic H2O2 is reduced
into H2O by glutathione peroxidase 1 (GPX1), catalase (CAT) or peroxiredoxins (PRXs). Reduced glutathione (GSH) provides the electrons to GPX to
catalyse the reduction of H2O2; GSH is oxidized to glutathione disulfide (GSSG). Reduction of GSSG is catalysed by glutathione reductase (GR), where
NADPH is used as the reducing agent. Cytosolic PRXs utilize thioredoxin 1 (Trx1Red) for their reducing action. Oxidized form of Trx1 (Trx1Ox) is reduced
by thioredoxin reductase 1 (TR1) by utilizing electrons from NAD(P)H. ONOO� can be reduced predominantly into nitrite (NO2�) by peroxiredoxin V
(PRX5). Sarcoplasmic reticulum (SR).
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activity of enzymes by oxidizing thiol groups of essential
amino acids100; cytotoxicity of H2O2 in skeletal muscle occurs
through the generation of hydroxyl radicals via metal-
catalysed reactions.101

Hydroxyl radical

Hydroxyl radicals have a strong oxidizing potential with a half-
life in aqueous solution of less than 1 ns69 and can react

rapidly with almost any biomolecule close to their site of
production. Hydroxyl radicals occur in skeletal muscle fibres
from the reductive decomposition of H2O2 with reduced
transition metal ions, iron (Fe) or copper (Cu), through a
reaction called the Fenton reaction.102 There is some
controversy over the Fenton reactions particularly in vivo
due to the concentration of reactive transition metal ions
being very low103 and its small rate constant (k = 109–
1010 M�1 s�1).104 There is, however, evidence that disrupted
redox homeostasis can lead to oxidation of Fe cluster-

Figure 4 Schematic representation of the mitochondrial sites for nitric oxide and superoxide production and the channels that mediate the release of
superoxide to the cytosolic compartment in skeletal muscle. Superoxide (O2∸) is produced by complex I, complex II and complex III of the
mitochondrial electron transport chain of the inner mitochondrial membrane (IMM) and released into the matrix and the mitochondrial
intermembrane space (MIS). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) also contributes to ROS changes, although the
primary ROS product, O2∸, or hydrogen peroxide (H2O2) of NOX4 is uncertain. Arachidonic acid (AA) release by the calcium-dependent phospholipase
A2 enzymes (sPLA2) interacts with complex I and enhances superoxide generation by this complex. O2∸ released into the matrix, and MIS is dismuted into
H2O2 by superoxide dismutase (SOD), SOD2 and SOD1, respectively, or reacts rapidly with nitric oxide (NO) produced by the endothelial nitric oxide
synthase (eNOS) to form peroxynitrite (ONOO�). H2O2 is reduced into H2O by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxins (PRXs).
Reduced glutathione (GSH) provides the electrons to GPX4 to catalyse the reduction of H2O2; GSH is oxidized to glutathione disulfide (GSSG). Reduction
of GSSG is catalysed by glutathione reductase (GR), where NADPH is used as the reducing agent. Mitochondrial PRXs utilize thioredoxin 2 (Trx2Red) for their
reducing action. Oxidized form of Trx2 (Trx2Ox) is reduced by thioredoxin reductase 2 (TR2) by utilizing electrons from NADPH. ONOO� can be reduced
predominantly into nitrite (NO2�) by peroxiredoxin V (PRX5). O2∸ is essentially membrane impermeant, while H2O2 is readily diffusible. Matrix O2∸
can diffuse to the cytosol through the inner membrane anion channel (iMAC) that spans the IMM and the outer mitochondrial membrane (OMM) or
via the mitochondrial permeability transition pore (mPTP) composed of the voltage-dependent anion channels (VDAC) on the OMM, the adenine-
nucleotide translocator (ANT) located on the IMM and cyclophilin D (Cyclo D) located in the matrix. Channels of the OMM including VDAC, BAX and
possibly the translocase of outer membrane 40 (TOM40) can also mediate the release of O2∸ from the MIS to the cytosol.
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containing enzymes, thus releasing ‘free Fe’ enabling
hydroxyl radical formation.105 Hydroxyl radical generation is
also facilitated by the Haber–Weiss reaction that makes use
of Fenton chemistry, in which Fe or Cu is maintained in a
reduced form by superoxide, thus capable of catalysing the
generation of hydroxyl radicals from H2O2.

106 Hydroxyl
radicals are membrane impermeant, and evidence has shown
enhanced generation of hydroxyl radicals in vivo during
muscle contractile activity.107 Enhanced generation of
hydroxyl radical formation can affect calcium (Ca2+)
sensitivity and maximum force of skeletal myofibres102;
further reports have identified increased generation of
hydroxyl radicals in neuromuscular disorders including
glucocorticoid-induced myopathy101 and immobilization-
induced skeletal muscle atrophy.108

Nitric oxide

Nitric oxide, also known as nitrogen monoxide, is a primary
radical and arises through the conversion of L-arginine to
citrulline by the NO synthases (NOS), utilizing NADPH as a
cofactor.109 NO is a weak reducing agent, with a relatively long
half-life70 and reacts with O2 to form nitric dioxide and
superoxide to produce peroxynitrite.110 There are three
different isoforms of NOS expressed in skeletal muscle; the
neuronal NOS (nNOS or type I), the inducible NOS (iNOS or type
II) and the endothelial NOS isoenzyme (eNOS or type III).46,111

nNOS, originally discovered in neuronal tissue, is expressed
along the sarcolemma of skeletal muscle fibres and interacts
with the dystrophin–glycoprotein complex via a linkage to
α1-syntrophin.112 Type III NOS isoenzyme, originally described
in the endothelium through association with caveolin-1, is
localized in the muscle mitochondria and is activated through
association with heat shock protein 90.113 Inducible NOS
isoenzyme is involved in the immune response and is primarily
expressed in skeletal muscle in response to inflammatory
conditions or a septic challenge.114,115 NO has shown to
regulate cytoskeletal proteins,116 and nNOS isoform, strongly
expressed in glycolytic muscle fibres,117 has been reported as
the prime source of NO release from skeletal muscle.118 The
importance of NO signalling in muscle physiology is highlighted
in mdx mice119 and humans with Duchenne muscular
dystrophy.112,120 NO responses are largely mediated via
cysteine (Cys) S-nitrosylation or by coordinated interactions
with heme or non-heme Fe and Cu.121

Peroxynitrite

Peroxynitrite, a powerful oxidant with a relatively long half-
life, is produced through the reaction of NO with
superoxide.122 Evidence in skeletal muscle has shown
in vivo intracellular generation of peroxynitrite in myofibres

of transgenic murine models in which the levels of
superoxide and/or NO were up-regulated.30 The chemical
reaction of superoxide with NO to generate peroxynitrite
has a reaction rate (k = 7 × 109 M�1 s�1),70 which is
approximately three-fold higher than the SOD catalysed
conversion of superoxide to H2O2 (k = 2 × 109 M�1 s�1) as
previously discussed. Peroxynitrite can react with thiol
compounds to form disulfides123 and, along with its
protonated form, peroxynitrous acid, can deplete thiol groups
and induce protein, phospholipid oxidation and DNA
damage.92,122 Peroxynitrite leads to nitration of tyrosine
residues,124 and S-nitrosylation of Cys residues,125 the list of
proteins being nitrated and nitrosylated in skeletal muscle,
is continuously growing. Under circumstances where
peroxynitrite is generated at high concentrations, it can not
only cause oxidative damage to cellular compartments of
myofibres18,30 but also alter the structure and function of
proteins resulting in altered catalytic activity of enzymes,
altered cytoskeletal organization and impaired cell signal
transduction.122

Redox regulation in skeletal muscle

Over the last three decades, it has become clear that RONS can
act as mediators of contraction-induced damage to skeletal
muscle.68 Muscle cells contain a network of antioxidant
defence mechanisms to control the cellular production of
RONS and maintain the redox environment. The antioxidant
network includes enzymatic and non-enzymatic systems, and
the potential role of redox homeostasis as the underlying
factor implicated in neuromuscular ageing has been the
subject of intensive research in a variety of model organisms.
The important technological advances that have occurred in
the last few decades have allowed research groups to utilize
genetic engineering techniques to alter specific genes or
crucial redox components of the antioxidant network and
assess whether age-related deficits in neuromuscular integrity
and function are mediated by defective redox signalling.
Figures 3 and 4 depict the subcellular RONS protective systems
expressed in skeletal muscle. Description of the antioxidant
mechanisms follows.

Regulatory reactive oxygen and
nitrogen species enzymes expressed in
skeletal muscle

Superoxide dismutase

Superoxide dismutase found in all O2-utilizing organisms
catalyses the dismutation of superoxide to H2O2 and O2.

126

Three isoforms of SOD that exist are mammalian skeletal
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muscle depending on cellular location and the redox active
transition metal bound to its active site to accomplish the
catalytic breakdown of superoxide30,46; copper–zinc SOD
(SOD1 or CuZnSOD), localized within the mitochondrial
intermembrane space (MIS) and cytosol, requires Cu–Zn as
a cofactor; and manganese (Mn) SOD (SOD2 or MnSOD)
requires Mn as a cofactor and is expressed in the
mitochondrial matrix.92 Extracellular SOD isoenzyme
incorporates Cu–Zn as a cofactor and is present in
extracellular fluids and interstitial spaces of tissues.127

Evidence has shown that exercise can induce an increase in
both SOD1 and SOD2 activities in skeletal myofibres.128

SOD1 protein has a half-life of 6–10 min, whereas SOD2,
5–6 h.129 Fifteen to thirty-five per cent of the total SOD
activity resides within the mitochondria of skeletal muscle,
with the SOD2 isoenzyme accounting for 15–20%,130 and
the remaining 65–85% remains within the cytosolic
compartment of muscle cells.131 SOD1 and SOD2 protein
expression and activity are higher in oxidative muscle fibres
compared with those of fast glycolytic fibres.103

Glutathione peroxidase

Glutathione peroxidase (GPX) catalyses the reduction of H2O2

or organic hydroperoxide to H2O and alcohol, respectively,
using reduced glutathione (GSH) or in some cases
glutaredoxin (GRX) or thioredoxin (TRX) as an electron
donor.92 Five GPX isoforms are reported in mammals, which
differ in cellular localization and substrate specificity with
GPX1 localized predominantly in the cytosol and a small
proportion in the mitochondrial matrix. Seleno-protein
GPX4, a membrane-associated enzyme, is partly localized to
the MIS, while GPX3 is present in the extracellular space.132

Although the GPX antioxidant system has not been as
extensively described as other antioxidant systems (e.g. SOD
redox network), GPX gene expression is controlled by a range
of mechanisms including toxins, O2 tension, metabolic rate
and growth and development.65 The relative amounts of
GPX expressed in skeletal muscle are higher in oxidative fibres
compared with fibres with low oxidative capacity,75 and
exercise has shown to up-regulate the protein expression
and activity of both cytosolic and mitochondrial GPX in
skeletal muscle fibres.131

Catalase

Catalase (CAT) is distributed within the cytosolic compartment
of myofibres and catalyses the breakdown of H2O2 into H2O
and O2.

133 Fe is a required co-factor, bound at the enzyme’s
active site for its catalytic function.134 Although GPX is also
an H2O2 regulator in skeletal muscle and they share common
substrates, CAT has a lower affinity for H2O2 at low

concentrations (Km = 1 mM) compared with GPX
(Km = 1 μM).135 In situations where H2O2 is significantly
elevated, CAT becomes an important H2O2 reducing system,
and its enzymatic activity prevails because there is no
apparent Vmax and cannot be saturated by H2O2 at any
concentration.136 CAT enzymatic activity is higher in oxidative
myofibres compared with fast glycolytic fibres137 and does not
require reducing equivalents to function as a H2O2 reducer;
thus, CAT is considered an energy-efficient enzyme.138

Peroxiredoxins

The family of peroxiredoxins (PRXs) initially known as
thiol-specific antioxidants139 are Cys-dependent TRX
peroxidases that are capable of reducing both H2O2 and
organic hydroperoxide.140 In two Cys peroxiredoxins (2-Cys
PRXs), on reaction with H2O2, the redox-sensitive Cys residue
of each subunit of the PRX homodimer is oxidized to Cys-
SOH, which then reacts with a neighbouring Cys-SH to form
an intermolecular disulfide.141 It is noteworthy that PRXVI
possesses only one Cys residue in the active site, while other
PRXs contain 2-Cys PRXs.142 The intramolecular disulfide of 2-
Cys PRXs is reduced specifically by electrons provided by
TRXs, which are then regenerated by TRX reductase at the
expense of NADPH,143 thus restoring the catalytic activity.

Six isoforms of PRX are expressed in skeletal muscle; PRX I,
II and VI are localized in the cytosolic compartment, PRXIII
exclusively in skeletal muscle mitochondria, PRXIV in the
extracellular space and ER and atypical 2-Cys PRXV in the
cytosol, mitochondria, nuclei and peroxisomes.46,142 All of
the six mammalian PRX proteins act to degrade H2O2. PRXV
has also reported to have peroxynitrite reductase activity,144

and PRXVI has shown to facilitate NOX1145 and NOX2146

optimal activities. PRX isoforms are highly abundant in skeletal
muscle and have a high catalytic efficiency as peroxidases.147

However, a number of these isoforms can be inactivated,
mediated by the oxidation of the catalytic site Cys to Cys-
sulfinic acid (SO2H) by high levels of H2O2. PRXs that have
formed SO2H acids can be reduced by sulfiredoxin, and it has
been proposed that this initial inactivation by its substrate
plays a cellular signalling role by a ‘floodgate mechanism’.148

It is particularly interesting that there are a number of protein
families and isoforms within those families that have either
peroxidase activity (GPXs, PRXs and CAT) or regulatory
proteins that are sensitive to oxidation (Keap1, aconitase
and PTP1B). It is important to recognize that the rate
constants within these protein families and isoforms can vary
by up to 106 M�1 s�1,149 suggesting that the concentration of
H2O2 and the enzymes that regulate it play a significant role in
redox signalling. PRX proteins have been shown to play a role
in transmitting redox signals into a dynamic biological
response and to have subtle changes in both abundance and
oxidative state with age.52,150,151 PRXII has recently been
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found to form an interdisulfide with STAT3 in response to
cytokines, suggesting that it plays an important regulatory
role.152

Thioredoxins

Thioredoxins are ubiquitous antioxidant enzymes that contain
a canonical dithiol-disulfide active site (Cys-Gly-Pro-Cys),153

originally discovered in 1964 in Escherichia coli as an electron
donor for ribonucleotide reductase.154 It has become clear
that TRXs play multivalent cellular roles by serving as electron
donors for enzymes such as ribonucleotide reductases, PRXs
and methionine sulfoxide reductases (MSRAs),155 protecting
proteins from oxidative aggregation and inactivation.156

Skeletal muscle expresses TRX1 (expressed in cytosol and
nucleus) and TRX2 located within the mitochondrial
compartment.157 The Cys residues of the Cys-Gly-Pro-Cys
motif are the key players used by TRXs to reduce disulfide
bonds in oxidized substrate proteins and upon completion
of a catalytic cycle; these two Cys residues are oxidized and
form a disulfide.156 Oxidized Cys residues are converted back
to the reduced state by TRs with TR1 isoform present in the
cytosol and nuclei and TR2 in the mitochondria, at the
expense of NADPH. TRXs have also been implicated in various
cellular processes including protein structure/folding energy
utilization, transcription factor regulation and
immune/inflammatory response.156

Glutaredoxins

Glutaredoxins are a family of thiol-disulfide oxidoreductases
that utilize the reducing power of GSH to catalyse disulfide
reductions in the presence of NADPH and glutathione
reductase (GR).158 Depending on the number of active site
Cys residues, GRXs are divided into dithiol (Cys-X-X-Cys) and
monothiol (Cys-X-X-Ser) GRXs.159 Dithiol GPXs conduct similar
functions to the TRX system; they can participate in the
regulation of H2O2 via PRX pathways,160 transcription
regulation via modulating the activity of nuclear factor κB
(NFκB),161 proliferation and differentiation162 and
apoptosis.163 Monothiol GRXs function primarily both in the
biosynthesis of FeS proteins and Fe homeostasis.164 GRX1 is
mainly localized in the cytosol but can be found in the MIS;
it can be translocated into the nucleus and exported from
the cell.159 GRX2 is expressed in the mitochondria,165 GRX3
in the cytosolic and nuclear compartment, and monothiol
GRX5 has a mitochondrial translocation signal and shares the
active site motif of GRX3.166 Evidence has also shown that
the GRX system can also catalyse reversible protein
glutathionylation,167 which is an important redox regulatory
mechanism, and control the redox state of thiol groups168 in

situations where the redox environment is being
compromised.

Additional enzymes expressed in skeletal muscle including
isocitrate dehydrogenase and glucose-6-phosphate
dehydrogenase are also involved in the antioxidant defence
system by providing reducing power in the form of NADPH
to the antioxidant enzymes.169 Although these enzymes do
not directly scavenge RONS, their contribution to maintain
the redox environment in myofibres is significant.

Non-enzymatic key antioxidants that
contribute to the maintenance of
muscle cellular redox state

A variety of non-enzymatic antioxidants, endogenous and
exogenous (through diet), are found in skeletal muscle and
have shown to contribute to the maintenance of muscle redox
status. These include not only GSH, bilirubin, uric acid and
coenzyme Q10 that endogenously produced antioxidants but
also dietary antioxidants including carotenoids, vitamin C and
vitamin E. A detailed description of the non-enzymatic defence
mechanisms in skeletal muscle goes beyond the scope of this
review; for a detailed description, see Refs [170,171]. However,
we provide a short overview of the main endogenously
produced antioxidant, GSH, which plays an important role in
maintaining the redox environment in skeletal muscle cells
by directly reacting with RONS through a hydrogen atom
donation or indirectly during GSH-dependent peroxidase-
catalysed reactions,172 as previously discussed.

Glutathione

The tripeptide GSH (L-γ-glutamyl-L-cysteinyl-glycine) is
synthesized in a two-step process catalysed by glutamate-
Cys ligase (L-glutamate:L-Cys γ-ligase) and glutathione
synthetase (γ-L-glutamyl-L-Cys:glycine ligase).65 GSH is
consumed in various ways, such as by oxidation, conjugation
and hydrolysis. GSH can be directly oxidized by RONS, act as a
substrate for GSH-dependent enzymatic reactions and
conjugate with endogenous and exogenous electrophiles.172

GSH is distributed to intracellular organelles including the
ER, nucleus and mitochondria.173 GSH can react directly with
a variety of radicals by donating a hydrogen atom and has
shown to reduce vitamin E and C radicals derived in chain-
breaking reactions with lipid peroxyl or alkoxyl radicals.171

Mitochondrial organelles lack CAT; the reduction of H2O2 is
accomplished mainly by GSH, with the participation of either
GPX or PRX and by the later conversion of glutathione
disulfide (GSSG) back into GSH by GR. Moreover, the GSH
system is also associated with the GRX system and the
removal of xenobiotics by glutathione S-transferases. Under
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impaired redox homeostasis, a significant number of proteins
can be altered in their function by formation of mixed
disulfides and the GSH-dependent disulfide oxidoreductase
GRX system catalyses dithiol reactions, reducing GSH-protein
mixed disulfides in a coupled system with GR.173 Oxidative
muscle fibres contain a higher GSH content compared with
fast glycolytic fibres,130 although the ratio GSH/GSSG appears
to be consistent across various fibre types.174 Myofibre GSH
levels increase in response to exercise,175,176 and high
intracellular levels of GSSG have shown to inactivate enzymes
and induce glutathionylation in skeletal muscle.177

Skeletal muscle cysteine redox modifications and
oxidative damage are regulated by reactive oxygen
and nitrogen species

The first human study to report that exercise enhanced oxidative
damage appeared in the late 1970s.49 This study instigated
intensive research in the field or redox biology, and the first
article to demonstrate that skeletal muscle augmented reactive
species in response to contractile activity appeared in 1982.50

These studies cited the mitochondrial organelle as the major
source of reactive species in muscle cells,50,178 but over the past
35 years, the development of analytical approaches has been
instrumental in the discovery of additional redox sites in various
subcellular compartments of skeletal myofibres.46,55 RONS
produced by skeletal muscle were initially considered as ‘toxic’
by-products of metabolic processes inducing cellular damage
and since these initial reports, a substantial amount of evidence
suggests that redox homeostasis plays an underlying role in
various human myopathies, neurodegenerative and metabolic
diseases including muscular dystrophies, amyotrophic lateral
sclerosis, Alzheimer’s disease, Parkinson’s disease and diabetes;
for detailed reviews, see Refs [112,179–181].

The magnitude and species of RONS generated by skeletal
muscle have downstream effects on specific protein targets
and cellular redox signalling. Recent application of novel redox
proteomic approaches has identified and quantified reversible
and irreversible modifications of susceptible Cys residues of
redox-sensitive proteins expressed in skeletal muscle.81,151,182

An extended coverage of these goes beyond the scope of this
review; for a detailed description, see Refs [183–185]. Briefly,
the type of redox modification on Cys residues depends on
the concentration and species of RONS as well as the amino
acids surrounding the Cys residue. Reversible modifications of
Cys residues include glutathionylation, nitrosylation,
sulfenylation (─SOH) and inter/intradisulfide bond formation.183

The largely irreversible modifications include SO2H and sulfonic
(SO3H) acids.

184

Contraction-induced RONS by skeletal muscle has shown
to contribute to muscle fatigue186; induce oxidative damage
including lipid peroxidation, protein oxidation and DNA
damage66; and alter the function of redox-sensitive proteins

within myofibres.151 The sensitivity of a particular target is
defined by the intrinsic sensitivity of the molecule to
oxidation–reduction and the local redox state,103 and
evidence has shown that RONS produced by skeletal muscle
can alter myofilament structure and function.187 Several
myofilament proteins including actin, α-actinin,151,187

troponin C188 and myosin heavy chains189–191 are susceptible
to RONS-induced oxidative modifications, thus affecting Ca2+

dynamics and Ca2+ sensitivity192 and, inevitably, cross-bridge
kinetics,188 which may result in contractile dysfunction.

Abundant evidence further indicates that altered muscle
redox environment due to elevated RONS production by skeletal
muscle fibres is implicated in muscle atrophy induced by muscle
disuse193 and disease.194 The causative links between redox
homeostasis and muscle atrophy induced by skeletal muscle
inactivity were recently reviewed195–197 and include reduced
anabolic signalling and protein synthesis via inhibition of
Akt/mTORC1 signalling, elevated proteolytic pathways including
enhanced autophagy, activation of calpains and caspase-3 and
increased protein breakdown via the proteasome system.

Skeletal muscle reactive oxygen and nitrogen
species are required for multiple intracellular
signalling pathways and cellular functions

Although it is widely accepted that RONS produced by skeletal
muscle can induce oxidative damage and alter muscle
physiology, in situations when the antioxidant system is
compromised or when RONS are excessively augmented,
abundant evidence indicates that the redox environment
plays an important role in modulating multiple signalling
pathways and muscle cellular functions.112,198–203 The
advantageous biological effects of RONS in muscle physiology
contradict early reports that RONS are by-products of
metabolism, inevitably damaging to muscle cells. A detailed
discussion of RONS-dependent signal transduction pathways
is beyond the scope of this review, but examples of key
biochemical pathways and cellular processes that require a
particular ‘optimal redox state’ in skeletal muscle are provided
in Table 2. The findings depicted in Table 2 highlight that
physiological levels of RONS are essential and play crucial roles
in regulating skeletal muscle metabolism and physiology.
Deciphering the mechanisms that underlie the divergence
between adaptive and maladaptive responses to RONS in
skeletal muscle remains an active area of research.226

Age-related deficits in skeletal muscle mass and
function are associated with altered redox
homeostasis

Identification of the mechanisms underlying the structural
and functional changes that occur in skeletal muscle during
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ageing has stimulated the interest of many laboratories with a
goal of identifying pharmaceutical targets to combat physical
frailty and mobility impairment that affect up to half the
population aged 80 or older.32 It has been 60 years since
Denham Harman proposed the ‘free radical theory of
ageing’.227 Although it is now recognized that this theory and
its various derivatives do not exclusively explain the ageing
process,228,229 disrupted redox signalling has been suggested
to be implicated in the processes of loss of neuromuscular
integrity and function that occurs during ageing.230

Skeletal muscle decline with advancing age has been linked
to an altered oxidative status of redox-responsive proteins,183

a positive correlation between tissue concentration of
oxidized macromolecules and lifespan including an increase
in DNA damage,14,231 accumulation of oxidized proteins15,16

and increased levels of lipid peroxidation232,233 in both
humans and rodents. Recent quantitative proteomic
approaches have further provided evidence that muscle
ageing is associatedwith altered catalytic activity of regulatory
enzymes and a reduction in detection of redox-sensitive
proteins involved in the generation of precursor metabolites
and energy metabolism,151,183 implying age-related redox
changes as an underlying cause of skeletal muscle ageing.

Based on findings in the early 1970s that mitochondria can
generate reactive species,234 a variant of the free radical theory
of ageing, the ‘mitochondrial free radical theory of ageing’ was
proposed.235 Consistent with a role of mitochondria as a
contributor to age-related muscle redox changes, reports have
shown that isolated213,236 and intact mitochondria21 in skeletal
muscle fibres exhibit an age-dependent increase in H2O2

generation. Considerable evidence has shown that age-related
mitochondrial oxidative damage can alter mitochondrial
integrity and function in ageing skeletal muscle. Several key
features have been observed in ageing skeletal muscle,

including a reduction in mitochondrial abundance237 and
oxidative-phosphorylation,19 accumulation of mutated
mtDNA238 associated with impaired mitophagy,21,38 increased
mitochondrial permeability transition pore sensitivity54 and
increased mitochondrial-mediated apoptosis,239 which
collectively may contribute to age-related loss of
neuromuscular integrity and function. Together, these findings
may support the conclusion that age-related muscle atrophy
and functional deficits are associated with increased oxidative
damage and defective redox signalling.

The relationship between redox homeostasis and
neuromuscular ageing has been further examined in several
mammalian models that have undergone genetic
manipulations, to enable the study of aberrant redox
homeostasis on the ageing process.

Redox homeostasis and age-related deficits in
neuromuscular integrity and function, insights
from transgenic animal models

In the last two decades, the field of redox biology has
advanced significantly with the development of new
analytical approaches and techniques in genetic
manipulation. The impact of altered redox homeostasis in loss
of neuromuscular integrity and function with ageing has been
investigated in several murine models, which have undergone
genetic modifications of redox signalling/homeostasis
components.19,23,25,29–34,240–242 Transgenic murine models have
provided insight into the importance of RONS regulatory systems
in lifespan and neuromuscular ageing, and it has been reported
that SOD2�/�,243 GRX3�/�,244 GPX4�/�,245 TRX1�/�,246

TRX2�/�,247 TR1�/�248 and TR2�/�249 murine models are
embryonically lethal. Although the embryonic lethal phenotypes

Table 2. Redox sensitive pathways/processes in skeletal muscle metabolism and physiology

Redox-sensitive cellular functions and biochemical pathways References

•Regulation of Ca2+ release from the sarcoplasmic reticulum (SR) via a ryanodine receptor Ca2+ release redox mechanism. 56,81

•Ca2+ sensitivity of myofilaments via oxidative modifications of the amino acids in the Ca2+ binding sites of cytoskeletal
proteins that alter optimum troponin Ca2+ binding and actin myosin interactions.

204,205

•Regulation of muscle force production. 202,206,207

•Activation of redox sensitive transcription factors including NFκB, AP-1 (activator protein 1), HSF-1 (heat-shock factor
1), Nrf2 (nuclear factor erythroid 2-related factor) and gene expression.

208–211

•Modulation of contractile activity-dependent increase in RONS regulatory protein expression and HSP content. 212–214

•Activation of key signalling molecules such as PGC1α (peroxisome proliferator-activated receptor α), AMPK (AMP-
activated protein kinase) and MAPK (mitogen-activated protein kinase), which regulate cellular mechanisms for
muscle adaptation (e.g. oxidative metabolism and mitochondrial biogenesis/function).

198,211,215,216

•Induction of signalling cascades for autophagy or apoptosis under physiological conditions. 198

•Modulation of gene expression of mitochondrial transcription regulators, Sirtuin 1 and mitochondrial biogenesis. 217

•Regulation of ion channels, protein phosphatases and kinases that modulate the activity of various enzymes involved
in oxidative phosphorylation, tricarboxylic acid cycle and glycolysis.

121,218,219

•Regulation of contraction-stimulated glucose uptake in skeletal muscle via RONS signalling. 220–223

•Modulation of protein synthesis via the IGF-1 (insulin-like growth factor 1) signalling pathway. 224,225
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observed in these specific knockout models do not facilitate
our understanding on whether defects in redox signalling
affect age-dependent deficits in neuromuscular integrity
and function, these findings, however, highlight the
fundamental importance of the redox systems mentioned
in the preceding text during embryonic development.

SOD1�/�,27 PRX1�/�,250 PRX2�/�,251 TRX2+/�252 and
MSRA�/�253 rodent models show a reduction in lifespan; in
contrast, more recent studies have reported no effect of
MSRA�/� on rodent lifespan.254 GPX1�/�,28,252 SOD2+/�,240

extracellular SOD�/�255,256 and MSRB�/�257 knockout murine
models show no effect on lifespan. Similarly, transgenic animal
models overexpressing RONS protective enzymes including
SOD1Tg,26 SOD2Tg,24 MSRATg,258 mice overexpressing human
CAT in nuclei (nCATTg)259 and peroxisomal targeted CAT (pCATTg)
(the natural site of CAT)260 have failed to provide evidence of
increased lifespan, indicating that RONS are not the
fundamental determinants of lifespan. However, GPX4+/�,261

TRX1Tg262 and the mitochondrial CAT overexpressing
(mCATTg) mouse model263 showed ~7%, ~14% and ~21%
increases in lifespan, respectively, which may provide
support for the theory of oxidative damage in ageing.

It is noteworthy that the majority of genetic interventions
in mice has been undertaken in C57BL/6, the most widely
used inbred strain. Recently, it was suggested that this
particular strain might not be suitable to study the effect of
redox homeostasis in ageing due to a missense mutation in
the nicotinamide nucleotide transhydrogenase protein that
links the NAD/NADH to NADP/NADPH pool, providing
reducing equivalents for TRX reductase and GRX redox
enzymes.264 Table 3 summarizes the genetically engineered
rodent models that have been developed to assess the
implication of redox homeostasis in age-related deficits in
neuromuscular integrity and function.

Genetic modification of mitochondrial redox
systems to study the role of mitochondrial redox
homeostasis in sarcopenia

Homozygotic mice lacking mitochondrial PRX3 isoform are
viable with no signs of muscle atrophy, although this mouse
model showed an increase in skeletal muscle mitochondrial
ROS, altered mitochondrial morphology and decreased
muscle fatigue resistance.272 These observations indicate that,
although lack of PRX3 does not induce atrophy, it plays a
crucial role in the contractile function of skeletal muscle by
regulating the mitochondrial redox environment.272

Additional recent studies undertaken in the field of
metabolomics have shown that, although homozygotic mice
lacking either mitochondrial TRX2247 or TRX1246 have
embryonic lethal phenotypes, specific deletion of TRX-
interacting protein in muscle specific knockout mice induces
a reduction in exercise tolerance279 by maintaining the redox

balance during exercise and preserving mitochondrial capacity
to switch substrates during glucose deprivation.

Targeted overexpression of the human CAT gene to
mitochondria in the mCATtg model has shown to protect
against age-induced deficits in muscle mitochondrial
function, improve skeletal muscle respiratory function with
age,19,242 improve voluntary exercise and decrease the
intracellular Ca2+ leak and the level of oxidized ryanodine
receptor 132. This occurs likely due to the attenuation of
mito-H2O2 which potentially reduces the reliance on
antioxidant coupled NADPH-driven reduction of oxidants in
the mitochondria, thereby maintaining a higher availability
of NADPH for exogenous antioxidant reduction.280

Increased oxidative damage and mitochondrial dysfunction
have been proposed to contribute to the sarcopenic
phenotype that occurs with ageing, and the findings in the
preceding texts may suggest that scavenging of H2O2

specifically within skeletal muscle mitochondria may
potentially rescue age-related myofibre atrophy. However,
studies have reported that the mCATtg model exhibits similar
fibrosis levels and loss of muscle fibre size to age-matched
old wild-type (WT) mice,32 indicating that reduced
mitochondrial oxidative damage and improved mitochondrial
function failed to rescue age-associated muscle wasting.
Similarly, heterozygous knockout of MnSOD241,266–269 and
conditional knockout of MnSOD targeted to type IIB skeletal
muscle fibres25,270 showed no major effect on age-related loss
of muscle mass and structural changes. However, both these
models showed mitochondrial functional deficits associated
with elevated mitochondrial oxidative damage25,266,269 and
reduced skeletal muscle aerobic capacity,265,270 which support
a role for MnSOD in regulating mitochondrial function and,
subsequently, the aerobic capacity of skeletal muscle.

Moreover, recent studies using not only mice
overexpressing the mitochondrial matrix SOD isoform
(SOD2Tg)24 but also a double transgenic mouse model, SOD2Tg

combined with mCATTg,35 failed to preserve skeletal muscle
mass with ageing 24 and showed no further improvements in
insulin resistance in skeletal muscle of mice when fed on a
high fat diet, indicating that increased mitochondrial
superoxide scavenging does not improve muscle insulin action
in mice fed on high fat diet alone or when coupled to
increased H2O2 scavenging.35 Targeted disruption of the
mitochondrial GPX4 isoform caused infertility in male mice,
yet mitochondrial GPX4 isoformmousemodel was fully viable,
healthy in appearance, normal in behaviour and showed no
difference in body size compared with WT siblings.271

In summary, data obtained from the available knockout
and transgenic rodent studies, with a focus on mitochondrial
redox systems, appear to support that the mitochondrial
redox environment is critically important for embryonic
development and plays an important role in regulating age-
related mitochondrial dysfunction, impaired mitophagy and
aspects of skeletal muscle function. However, based on the
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Table 3. List of studies that have manipulated RONS regulatory systems to investigate the effect of redox homeostasis in age-related deficits in
neuromuscular integrity and function

Model Neuromuscular phenotype and function References

Mitochondrial redox systems
SOD2+/�

•No effect on age-related neuromuscular ageing •increased RONS generation in skeletal muscle
and elevated mitochondrial oxidative damage •defective signalling in the PI3-Akt pathway
•impaired phosphorylation of Akt at Ser473 and Thr308 and decreased differentiation
potential •reduced treadmill endurance capacity.

24,265–269

TnIFastCre SOD2fl/fl •No effect on age-related neuromuscular ageing •increased mitochondrial RONS and oxidative
damage •complex II-linked mitochondrial dysfunction •reduced contractile muscle function
and aerobic exercise capacity.

25,270

SOD2Tg •No effect on age-related muscle atrophy •preserved mitochondrial mass and function •preserved
the differentiation potential • no changes in RONS production in resting skeletal muscle myotubes.

24,268

mGPX4-KO •No effect on age-related neuromuscular ageing. 271

PRX3�/�
•No effect onmuscle atrophy or skeletalmuscle isometric force •increasedmitochondrial RONS and
altered mitochondrial membrane potential and network •decreased mitochondrial DNA, ATP
production, mitofusin 1 and 2 protein levels • increased muscle fatigue resistance.

272

mCATTg •No effect on age-relatedmuscle atrophy or fibrosis •reducedmitochondrial oxidative damage and
insulin resistance •preserved mitochondrial respiration and ATP synthesis •prevented age-related
reduction in AMP-activated protein kinase •improved complex I respiratory dysfunction
•improved voluntary exercise and increased skeletal muscle specific force and tetanic Ca2+

transients •decreased intracellular Ca2+ leak and increased sarcoplasmic reticulum Ca2+ load.

19,32,242

Other redox systems
nNOSTg •No effect on age-related muscle atrophy or muscle weakness •prevented muscle membrane

injury and reduced muscle inflammation following a hindlimb muscle unloading and reloading
protocol •increased protein nitration.

30,273

GPX1�/�
•No effect on age-related neuromuscular ageing •increased RONS generation in skeletal muscle. 268

5LOX�/�
•No effect on surgical denervation-induced muscle atrophy. 22

12/15LOX�/�
•Protected against surgical denervation-induced muscle atrophy •prevented NADPH oxidase
activity, protein ubiquitination and ubiquitin-proteasome-mediated proteolytic degradation.

22

TgSOD1+/o
•No effect on age-related neuromuscular ageing •increased resistant to H2O2 cytotoxicity. 26

TgCAT+/o
•No effect on age-related neuromuscular ageing •increased resistant to H2O2 cytotoxicity. 26

TgSOD1/CAT+/o
•No effect on age-related neuromuscular ageing •increased resistant to H2O2 cytotoxicity. 26

SOD1�/�
•Accelerated neuromuscular ageing phenotype •loss of muscle fibres and CSA and increased
number of centronucleated fibres •partial degeneration of NMJs, loss of innervation and
motor function •impaired neurotransmitter release, reduced occupancy of the motor
endplates by axons, fragmented postsynaptic endplates, terminal sprouting and axon thinning
and irregular swelling •sciatic nerve demyelination and changes in neuron structure •reduced
contractile force and grip strength •increased levels of oxidative damage and a constitutive
activation of redox-sensitive transcription factors •loss of mitochondrial integrity and function
•elevated mitochondrial mediated apoptosis and caspase-3 activity.

27,29,30,33,34,274–278

mitoSOD1 SOD1�/�
•Prevented the biochemical and morphological defects in the SOD1�/� model •rescued axon
outgrowth and normalized mitochondrial density in primary motor neurons in vitro
•prevented motor neuropathy and preserved NMJ integrity and grip strength.

23

mSOD1KO •No effect on age-related muscle atrophy •increased GTN skeletal muscle mass •increased
degenerative-regenerative phenotype and number of centronucleated fibres •reduced
maximum isometric specific force.

34

SynTgSOD1�/�
•Prevented the neuromuscular ageing phenotype in the SOD1�/� model •rescued age-related
muscle atrophy and muscle weakness •prevented degeneration of NMJ structure and function
•no evidence of oxidative damage and adaptations in stress responses •no evidence of up-
regulated NFκB signalling.

29

nSOD1KO •No effect on age-related muscle atrophy of GTN, AT and EDL muscles •quadriceps and soleus
showed a reduction in muscle mass •reduced maximum isometric specific force in GTN and
EDL muscle •no effect on oxidative damage and adaptations in stress responses •altered NMJ
morphology and increased expression of genes associated with denervation.

31

Knockout mice heterozygous for the MnSOD gene (SOD2+/�), mice with conditional knockout of MnSOD targeted to type IIB skeletal
muscle fibres (TnIFastCreSod2fl/fl), mice overexpressing MnSOD (SOD2Tg), mice deficient in mitochondrial GPX4 (mGPX4-KO), mice
deficient in PRX3 (PRX3�/�), transgenic mice with targeted overexpression of the human CAT gene to mitochondria (mCATTg), transgenic
mice with muscle specific over-expression of rat nNOS (nNOSTg), mice deficient in GPX1 (GPX1�/�), mice deficient in 5LOX (5LOX�/�), mice
deficient in 12/15LOX (12/15LOX�/�), hemizygous transgenic mice that overexpress CuZnSOD (TgSOD1+/o), CAT (TgCAT+/o) and combined
CuZnSOD and CAT (TgSOD1/CAT+/o), mice deficient in CuZnSOD (SOD1�/�), transgenic SOD1�/� mice that exclusively expressed human
SOD1 within the MIS (mitoSOD1,SOD1�/�), muscle-specific CuZnSOD knockout mice (mSOD1KO), transgenic SOD1�/� mice with
neuron-specific expression of CuZnSOD (SynTgSOD1�/�), neuron-specific CuZnSOD knockout mice (nSOD1KO), gastrocnemius (GTN),
anterior tibialis (AT), extensor digitorum longus (EDL), Akt–mammalian target of rapamycin (mTOR), neuromuscular junction (NMJ),
mitochondrial intermembrane space (MIS).
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available literature, there is limited evidence to suggest that
the age-related changes in mitochondrial redox potential
contribute to the loss of muscle mass inherent with ageing.
In support of this, recent ageing studies with use of
mitochondria-targeted antioxidants failed to provide
evidence that defective mitochondrial redox signalling
inherent with ageing is the key regulator of age-related
myofibre atrophy and weakness.21,39

Deletion of CuZnSOD in SOD1�/� mice leads to
accelerated neuromuscular ageing and functional
deficits

Reduced lifespan observed in SOD1�/�,27 PRX1�/�,250

PRX2�/�251 and TRX2+/�252 models is much more prominent
in the SOD1�/� rodent model,281 indicating that specific key
RONS regulatory systems and redox signalling pathways are
implicated in the processes of ageing. Moreover, although
indistinguishable from WT mice at birth, by 5–8 months of
age, SOD1�/� mice show an accelerated neuromuscular
ageing phenotype associated with myofibre atrophy
(Figure 5), neurological impairments (Figure 6) and functional
deficits.275 The features of the SOD1�/� mouse model mimic
those observed in 30 month old WT mice27,277 and in older
humans.6,277 In addition, in common with old WT mice,
skeletal muscle from SOD1�/� rodents exhibits increased
levels of oxidative damage27,29–31,33,34,276,277 and a
constitutive activation of redox-sensitive transcription
factors33; hence, it has been suggested that this knockout
murine model represents a useful model for the study of
chronic oxidative damage in the context of neuromuscular
ageing in an effort to identify potential mechanisms and
pathways that underlie sarcopenia in humans. It is noteworthy
that hemizygous transgenic mouse models that overexpress
CuZnSOD (TgSOD1+/o), CAT (TgCAT+/o) and combined
(TgSOD1/CAT+/o) show no increase in lifespan and fail to
rescue age-related muscle wasting and functional deficits.26

The exacerbated neuromuscular ageing phenotype
observed in the SOD1�/� model implies that failure of redox
homeostasis in specific subcellular compartments and/or
tissues plays an important role in skeletal muscle ageing. As
previously discussed, SOD1 is localized within the MIS and
cytosol and catalyses the dismutation of superoxide to H2O2

and O2. Thus, the neuromuscular ageing phenotype observed
in the SOD1�/� model is likely associated with disrupted
redox signalling within both the cytosolic and mitochondrial
subcellular compartments. Elevated levels of oxidative
damage and atrophy shown in skeletal muscle of SOD1�/�

are accompanied by increased mitochondrial generation of
reactive species, impaired mitochondrial bioenergetic
function and mitochondrial release of proapoptotic factors,
which ultimately lead to apoptotic loss of myonuclei.276

These findings imply that the mitochondrial redox
environment plays a central role in regulating skeletal muscle
mitochondrial function. In support of this, the physiological
and functional importance of maintaining redox homeostasis
within the MIS was recently highlighted in a transgenic model
that exclusively expressed SOD1 within the MIS (mitoSOD1,
Sod1�/�) from SOD1�/� mice.23 The transgenic approach
used in the mitoSOD1,Sod1�/� model prevented the
morphological and biochemical defects associated with
progressive motor axonopathy in skeletal muscle of the
SOD1�/� rodents,23 highlighting the importance of SOD1
redox regulatory enzyme expression in the MIS, and
implicated oxidative damage initiated at mitochondrial sites
in the pathogenesis of motor axon degeneration.

The accelerated muscle ageing phenotype observed in
SOD1�/� rodents may imply that excess levels of superoxide
within the muscle cells are the underlying reactive species,
responsible for the initiation and progression of muscle
atrophy that occurs in this model. However, it is plausible
to speculate that alternative RONS may play important roles
in degeneration of neuromuscular integrity in the SOD1�/�

model, such as peroxynitrite or a change in NO bioavailability
reacting with excess levels of superoxide. Studies using a

Figure 5 Gross morphology of skinned hindlimb muscles of SOD1�/� and WT mice at 20 months of age. Redrawn from Jang et al. 2010.276
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combination of immunoblotting, high-performance liquid
chromatography and real-time fluorescence microscopy
methods have monitored specific intracellular RONS in single
myofibres isolated from skeletal muscle of SOD1�/� rodents.
These studies carried out in resting and contracting skeletal
muscle have demonstrated that genetic ablation of SOD1
does not induce the anticipated increase in cytosolic
superoxide availability, but instead induced a substantial
increase in peroxynitrite formation.30 These findings may
provide important information of the RONS that are
implicated in the processes of skeletal muscle ageing and
highlight peroxynitrite formation as the important RONS
mediator of the exacerbated neuromuscular ageing
phenotype observed in the SOD1�/� model. In support of
these findings, ageing studies have provided evidence for
increased peroxynitrite generation in skeletal muscle of old
mice compared with adult mice, indicated by an increase in
3-nitrotyrosine content of muscle proteins, suggesting that
peroxynitrite might play an important role in the processes
of neuromuscular ageing.282

Transgenic mice overexpressing nNOS isoform (nNOSTg)
also exhibit increased peroxynitrite formation in skeletal
muscle.30 However, this model is not associated with
changes in skeletal muscle morphology and function, in
contrast to the SOD1�/� murine model.30 A potential
explanation might be due to the extent and the

subcellular sites of peroxynitrite generation; nNOS is
expressed along the sarcolemma of skeletal muscle fibres,
whereas SOD1 is expressed in the cytosol and MIS. In
support of this, skeletal muscle from SOD1�/� mice (but
not in nNOSTg mice) is associated with increased PRXV
protein expression,30 an enzyme with a high peroxynitrite
reductase activity,144,283 predominantly localized in
mitochondria.147 Hence, the increase in PRXV expression
seen in muscle of SOD1�/� mice supports a substantial
increase in peroxynitrite in the mitochondrial organelles
and highlights that specific RONS formed in specific
subcellular compartments and/or tissues are implicated in
the processes of neuromuscular ageing in the SOD1�/�

model. Additional research based on scavenging of the
apparent age-related increase in peroxynitrite generation is
warranted to assess the role of peroxynitrite in the loss of
neuromuscular integrity and function that occurs with the
advance of age.

CuZnSOD gene deletion targeted to skeletal muscle
alone does not cause myofibre atrophy

Deciphering the key pathways and mechanisms underlying
neuromuscular ageing has been challenging, in part because
of the difficulty in unravelling the association between loss

Figure 6 NMJ immunofluorescence images from AT muscle of SOD1
�/�

and WT mice at 10 months of age. Left panels: morphology of presynaptic
motor neurons stained with antibodies to synaptotagmin-2 and neurofilaments (green staining). Middle panels: morphology of postsynaptic AChRs
labelled with bungarotoxin (red staining). Right panels: merged images of presynaptic motor neurons and AChRs. Redrawn from Sakellariou et al.29

Original magnification: 60X (scale bar = 10 μm).
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of motor units and loss of muscle mass, both of which occur
with the advance of age.284 Motor nerves and muscles are
well known to play a symbiotic role in maintenance of the
neuromuscular system; specifically, the viability of motor
neurons is recognized to be dependent upon continued
exposure to neurotrophic factors released by myofibres.94

The prominent muscle ageing phenotype described in the
SOD1�/� model is associated with a number of neurological
impairments, including gross alterations in NMJ morphology,
reduced occupancy of the motor endplates by axons,
fragmented postsynaptic endplates, terminal sprouting and
axon thinning and irregular swelling, loss of motor function
and contractility,276 impaired neurotransmitter release278

and loss of contractile force.27 In addition, induction of
contraction by using direct muscle stimulation of muscle
tissue, circumventing the NMJ, partially rescues the deficit
in force, which indicates a loss of functional innervation in
the SOD1�/� model.277 Collectively, these observations may
suggest that the age-related deficits in muscle mass and force
might be initiated by disrupted motor neuron redox
signalling. However, whether the degenerative changes are
initiated by altered redox homeostasis proximal and/or
distal to the neuromuscular synapses remained inconclusive
in these studies. In relation to this, reports have shown that
age-related changes in NMJ integrity285 and reduced muscle
strength286 precede myofibre atrophy, highlighting the
importance of the motor neuron system in neuromuscular
ageing.

‘Conditional knockout models’, genetically engineered to
lack or inactivate a gene of interest in a specific tissue or cell
type, provide a valuable tool to examine the site-specific
importance of the function of that particular gene. Recent
work has used Cre-Lox targeted approaches to examine
whether specific SOD1 gene deletion targeted to skeletal
muscle (mSOD1KO) is sufficient to initiate the SOD1�/�-
associated sarcopenic phenotype.34 Surprisingly, mSOD1KO
mice maintained muscle masses at or above those of WT
control mice. Moreover, no detectable increases in global
measures of oxidative damage or fibre RONS changes, no
reduction in mitochondrial ATP production or adaptive stress
responses were observed in muscle from mSOD1KO model.34

However, specific lack of SOD1 in skeletal muscle of mSOD1KO
lead to a reduction of maximum isometric specific force and
potentiated muscle regenerative pathways as shown by
elevated Akt-mTOR signalling and the presence of extensive
central nucleation of muscle fibres.34 Collectively, these data
reveal that, although SOD1 gene deletion targeted specifically
to skeletal muscle induced specific functional deficits, loss of
SOD1 protein expression restricted to skeletal muscle alone
was not sufficient to cause muscle atrophy.34 These findings
suggest that the altered muscle redox environment observed
in SOD1�/� is likely not the driving factor for the degeneration
of NMJs and loss of muscle mass observed during ageing of
the SOD1�/� model.

Neuron-specific expression of CuZnSOD prevents
the loss of muscle mass and function that occurs in
SOD1�/� mice

To unravel whether the muscle decline and weakness shown
in the SOD1�/� model is initiated by defective redox
signalling within motor neurons, a recent study generated a
transgenic SOD1�/� model in which human SOD1 was
expressed under the control of the synapsin 1 promoter
(SynTgSOD1�/�), termed ‘nerve rescue’ mice.29 The
experimental work undertaken in this study revealed that
sciatic nerve SOD1 content in SynTgSOD1�/� was 20% of
control WT mice. Partial rescue of SOD1 expression in motor
neurons of the nerve rescue mice reversed all aspects of the
accelerated neuromuscular ageing phenotype observed in
the SOD1�/� model including the multiple biochemical and
physiological changes associated with the exacerbated ageing
phenotype.29 Increased oxidative damage and compensatory
up-regulation of redox regulatory enzymes, stress responses
and adaptive signalling pathways observed in muscle from
SOD1�/� mice30,33 were not present in the neuron-specific
transgenic SynTgSOD1�/� model. Moreover, the accelerated
degeneration in NMJ structure, including both presynaptic
and postsynaptic NMJ features,23,276 failure of neuromuscular
transmission29,278 and impaired in situ muscle-force
generation34,277 that occur in the whole body SOD1�/�

model were completely rescued in the nerve rescue model.29

Expression of CuZnSOD in tissues that contain synapses,
including brain, spinal cord, sensory and motor nerves in
the SynTgSOD1�/� model, excluded any role for other tissues
and cell types, which may be anticipated to play an essential
role in maintenance of NMJs (e.g. Schwann cells) or muscles
(e.g. satellite cells). These findings highlight that failure of
redox homeostasis in motor nerves alone is sufficient to
generate an ageing phenotype in skeletal muscle and NMJs.
This model provided a powerful approach to help elucidate
the roles of tissue-specific defects in redox status and
highlights that redox homoeostasis in motor neurons plays
a key role in neuromuscular ageing.

Neuron-specific reduction of CuZnSOD is not
sufficient to initiate a full sarcopenia phenotype

The neuromuscular changes observed in the SOD1�/� model
of ageing have been further assessed in a model with
targeted deletion of CuZnSOD specifically to neurons
(nSOD1KO) by using Sod1-floxed mice crossed to transgenic
mice expressing Cre recombinase driven by the nestin
promoter.31 The significant neuronal loss of CuZnSOD activity
and protein expression in the nSOD1KO model was not
sufficient to replicate the muscle atrophy and weakness
observed in the SOD1�/� model. Muscle mass from
nSOD1KO mice was not altered in the gastrocnemius (GTN),
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anterior tibialis (AT) or extensor digitorum longus (EDL)
muscles as opposed to the 30–45% reduction observed in
adult SOD1�/�27,277,278 and 30–33 month old WT mice.287

Despite no change in mass, EDL and GTN showed a small
but significant reduction in maximum isometric specific force
(8–10% vs. ~30–40% in the SOD1�/� model). Interestingly,
quadriceps (~14%) and soleus (<10%) muscle of nSOD1KO
mice showed a small but significant reduction in mass,
associated with a trend for a reduction in myofibre size.31

Muscle mitochondrial reactive species generation and altered
redox homeostasis and changes in protein expression on
RONS regulatory enzymes were not increased in muscle from
the nSOD1KO model. Moreover, although there was no
evidence of denervation in the nSOD1KO model, NMJ
morphology was altered (reduced endplate area) and the
expression of genes associated with denervation
acetylcholine receptor subunit alpha (AChRα), the
transcription factor, Runx1 and GADD45α was increased,
supporting a role for neuronal loss of CuZnSOD initiating
alterations at the NMJ.31 The observed changes in NMJ
structure/function were much less severe in the nSOD1KO
compared with the SOD1�/� model, with no evidence of
NMJ fragmentation or denervation, which explains why the
nSOD1KO model did not exhibit a similar neuromuscular
ageing phenotype shown in the whole body SOD1�/� model.

Collectively, based on the available data with use of
conditional knockout and transgenic models, it appears that
CuZnSOD deficits in either the motor neuron or muscle alone
are not sufficient to initiate a full sarcopenic phenotype and
that deficits in both tissues are required to recapitulate the
loss of muscle and function observed in the SOD1�/� model.
The current evidence further suggests that alterations in NMJ
morphology and function due to compromised redox
homeostasis in motor neurons appear to be the prime event
that potentiates muscle mitochondrial dysfunction and
oxidative damage that triggers a retrograde response leading
to further NMJ damage and dysfunction. Overall, these
changes ultimately result in NMJ degeneration, failure of
neuromuscular transmission, denervation, loss of muscle
fibres, fibre atrophy and, eventually, sarcopenia.

Genetic removal of 12/15-lipoxygenase in
12/15-LOX�/� mice protects against
denervation-induced muscle atrophy

Denervation-induced muscle atrophy, previously shown to
not only stimulate the autophagy-lysosome pathway288 but
also up-regulate several atrogenes that function as ubiquitin
ligases to identify proteins for degradation by the
proteasome,289,290 has been further assessed in the
12/15LOX�/� mouse model.22 Previous reports have shown
that denervation-induced muscle atrophy is associated with
activation of cytosolic PLA2,

291 an enzyme that regulates AA

release from membrane phospholipids that act as a
substrate for lipid metabolic pathways catalysed by LOXs,
cyclooxygenase and cytochrome P450.46 Genetic ablation
of 12/15-LOX but not 5-LOX showed protection against
surgical denervation-induced muscle atrophy,22 implying a
selective role for the 12/15-LOX pathway in neurogenic
muscle atrophy. Removal of 12/15-LOX (but not 5-LOX)
reduced NADPH oxidase activity, protein ubiquitination and
ubiquitin-proteasome-mediated proteolytic degradation that
were associated with neurogenic-induced muscle atrophy.22

The findings from this study reveal a novel pathway for
neurogenic muscle atrophy and suggest that 12/15-LOX
system may have important implications for neuromuscular
diseases and neuromuscular deficits inherent with ageing.

Further murine models have been recently developed that
resemble many key aspects of neurological impairment in
muscle ageing and are also associated with muscle atrophy
and contractile dysfunction. These models explore different
mechanisms and have been described in recent reviews.7,292

Potential therapies to combat the age-related
deficits in skeletal muscle function

There is significant academic and commercial interest in the
development of therapies, of both pharmacological and non-
pharmacological origin, to combat the loss of skeletal muscle
mass and function, in the context of neuromuscular ageing
and a wide range of myopathies.293 Physical activity is one of
the most effective interventions known to delay the
progression of several aspects of muscle ageing. Similar to
rodent models,41,294 human studies have shown that physical
activity is beneficial in promoting survival of motor units,11

facilitating reinnervation of muscle fibres that become
denervated secondary to impaired NMJ stability,12 in
attenuating age-related genotoxic stress14 and preserving
redox regulated adaptive responses.15 However, there is also
evidence that the plasticity of the NMJ to physical activity is
attenuated with ageing and denervation may become
exacerbated by exercise training in very old age.7 Specifically,
aged rats subjected to long-term exercise training exhibited
greater muscle atrophy and myocyte oxidative damage
compared with aged-matched sedentary controls.295,296 The
potential for physical activity to induce adverse effects when
initiated in old age has not been addressed in humans. Further
studies (including also adjunct nutritional interventions) are
needed to assess the plasticity of the neuromuscular human
system in response to physical activity in advanced age, where
the remodelled surviving motor units may be further
compromised by increased muscle activation.

Antioxidants appear to be a logical intervention in
combating the age-related loss of muscle mass and function;
however, to date, there have been no robust, longitudinal
human studies carried out to address this. The use of
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broad-spectrum antioxidants (i.e. vitamins C and E) initially
seems a rather attractive proposition, as their mode of action
is well established, their efficacy as antioxidants well
described and are overall generally well tolerated. However,
several studies, primarily from an exercise perspective, have
investigated the impact of broad-spectrum antioxidants on
skeletal muscle, with the prevailing finding that RONS are in
fact crucial components of the adaptive mechanisms within
muscle—suggesting that antioxidant intervention in this
context may have adverse effects.297 In addition, despite
the causal role of aberrant redox homeostasis in the
development of muscular dystrophy,112 early clinical trials
using antioxidants such as vitamins B and E and penicillamine
did not show any statistically significant clinical benefits.298

Similarly, use of pentoxifylline, a phosphodiesterase inhibitor
with potent antioxidant and anti-inflammatory activity, failed
to provide any improvements on muscle strength and
function in Duchenne muscular dystrophy patients,299

despite showing significant muscle strength restoration on
mdx mice.300 The use of antioxidant therapies in muscular
dystrophy has been described in a recent review.293

Calorie or dietary restriction has shown to promote survival
in mammals and delay the onset of numerous age-related
phenotypes including sarcopenia.301,302 At a biochemical
level, calorie restriction interventions have shown to increase
sirtuin 1 (a member of the sirtuin family linked to lifespan
extension and enhanced mitochondrial biogenesis), the
expression of peroxisome proliferator-activated receptor α
(PGC1α) (a master regulator of mitochondrial biogenesis and
RONS defence system), thus reducing oxidative damage and
preserving mitochondrial structural and functional integrity
in metabolically active tissues of rodents and humans.303–305

A direct link among mitochondrial dysfunction, oxidative
damage and neuromuscular innervation was recently
established in which calorie restriction reversed or attenuated
impaired muscle function, loss of innervation and the
profound muscle atrophy exhibited in the SOD1�/� mouse
model.287 Specifically, dietary reduction improved
mitochondrial function as evidenced by enhanced Ca2+

regulation, attenuated mitochondrial oxidative damage,
reduced mitochondrial ROS production, increased MnSOD
content and sirtuin 3 protein expression.287

Similarly, the use of branched-chain amino acids (BCAAs)
has also been shown to extend chronological life of rodents
and promote muscle efficiency in mammals.217 Evidence has
revealed that BCAA supplementation is coupled to sirtuin 1
expression, increased mitochondrial biogenesis and enhanced
RONS protective pathways in middle-aged mice, which
ultimately improve the functional capacity of skeletal muscle
including physical endurance and motor coordination.217 It is
important to mention that the BCAA supplementation effects
were attenuated in eNOS null mutant mice, indicating that
BCAA-mediated responses appear to be regulated by redox
signalling pathways.217 Further longitudinal cohort

investigations are needed to assess the potential effect of
both calorie restriction and BCAA interventions on aspects of
neuromuscular ageing in humans.

Recent development of novel antioxidant compounds,
with a more specific mode of action (e.g. SS-31 and MitoQ),
has allowed researchers to assess specific mechanisms that
may potentially alter the age-related loss of muscle mass
and function. Treatment of aged mice with SS-31 peptide, a
mitochondria-targeted antioxidant, resulted in an overall
decrease in markers of oxidative damage and improved
specific aspects of skeletal muscle mitochondrial function,
mitophagic potential and organelle integrity.21 However, SS-
31 drug treatment showed no impact on the features of
sarcopenia including age-related loss of myofibre CSA and
muscle function.21 Another study in aged mice treated with
SS-31 reported improved mitochondrial energetics and
increased resistance to fatigue.306 Collectively, these findings
provide evidence that mitochondria-derived ROS play a role
in some of the aspects of musculoskeletal ageing.

The novel mitochondrial-targeted antioxidant MitoQ has
been a compound of significant interest that has undergone
phase 1 and 2 clinical trials,307 to target the RONS-mediated
aspects of several pathologies (Parkinson’s/multiple sclerosis)
and for its potential impact on skeletal muscle. Although
there is a large amount of evidence to suggest that MitoQ
administration provides beneficial effects, recent studies in
the field of muscle metabolism have shown that MitoQ was
found to have no effect on exercise-induced adaptations in
muscle oxidative capacity in humans.308 Similarly, in the
context of musculoskeletal ageing, MitoQ intervention in
old mice failed to rescue the loss of muscle mass and function
associated with ageing of skeletal muscle.39 Overall, targeted
antioxidant compounds such as SS-31 and MitoQ are clearly
useful from a mechanistic perspective; however, the ability
to translate these findings in a human context remains less
clear. Additional research is warranted to facilitate our
understanding on key areas of defective redox homeostasis
and maintenance of neuromuscular integrity in humans.
Longitudinal studies of ageing models and humans will help
clarify the cause and effect relationships and thus identify
relevant therapeutic targets to combat the age-related
deficits in skeletal muscle mass and function.

Perspectives and future directions

Multiple theories have been proposed to explain the ageing
process,309 but none has yet received wide acceptance.
Nevertheless, the free radical theory of ageing seems to be
the theory receiving the widest acceptance as a plausible
explanation of the primary biochemical reactions at the basis
of the ageing process, and during the last four decades, there
has been an enormous increase of information on the effects
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of oxidants with age. There is considerable evidence in
support of the free radical theory of ageing that comes from
a series of studies with invertebrates. The recent
technological advantages in the field of molecular genetics
have enabled investigators to utilize genetic engineering
techniques to alter specific redox genes or processes and
examine whether redox homeostatic regulation plays a key
role in mammalian ageing (including maximum lifespan,
median lifespan and tissue/organ ageing).

Age-relatedmuscle atrophy andweakness, characterized by
loss of leanmusclemass and reduced neuromuscular function,
is amajor contributor to frailty and loss of independence in the
elderly, which has a major economic burden on the healthcare
systems. Age-dependent loss of muscle mass and strength is a
multifactorial process involving a complex interaction of a
variety of metabolic processes, and the primary biochemical
and molecular mechanisms underlying this process have not
been fully determined. Considerable evidence in both humans
and various organisms has shown that skeletal muscle decline
with advancing age is linked to an altered oxidative status of
redox-responsive proteins and increased oxidative
modifications of macromolecules. Age-related changes in
redox homeostasis have been proposed to play-a key role in
sarcopenia as it underlies many age-related human diseases
including neurodegenerative disorders, neuromuscular
diseases, skeletal muscle pathologies, ischemia-reperfusion
injury and diabetes. Over the past two decades, a series of
knockout (whole body and tissue specific) and transgenic
models have been generated to study whether the redox
environment is linked to age-related deficits in neuromuscular
integrity and function. In the present review, we have outlined
the genetic approaches that have been undertaken in rodent
models and provide insights on the role of redox homeostasis
in age-related atrophy and weakness.

The majority of knockout and overexpressing mouse
models failed to alter the neuromuscular ageing processes,
which argue for a role of defective redox signalling in age-
related skeletal muscle loss and function implying that the
free radical theory of ageing is not as simple and straight
forward. Mice deficient in CuZnSOD show a reduction in
lifespan and an accelerated neuromuscular ageing phenotype
that resembles the biochemical and physiological changes
observed in old WT mice and humans indicating that specific
RONS regulatory enzymes and/or reactive species are
implicated in the processes of muscle ageing. The striking

alterations in NMJ integrity/function and loss of innervation
observed in the SOD1�/� mouse model highlight the
implication of motor neuron integrity in myofibre atrophy
and functional deficits. Compromised redox homeostasis of
motor neurons as a potential mechanism of sarcopenia in
CuZnSOD deficient mice has recently been underlined in a
model with specific loss of CuZnSOD targeted to skeletal
muscle alone but also in a ‘nerve rescue’ SOD1�/� mouse
model with neuron-specific expression of CuZnSOD, suggesting
that failure of redox homeostasis in motor neurons appears to
be the prime event initiating sarcopenia during ageing. These
studies have shed light on understanding (i) the redox
mediated cross-talk between skeletal muscle and motor
neurons and (ii) the defective redox signalling events that
underlie neuromuscular ageing.

To fully understand the key mechanisms through which
redox homeostasis regulates age-related neuromuscular
integrity and function, further conditional knockout and
transgenic models but also targeted interventions are
warranted. Additional research will facilitate our understanding
on key areas of defective redox homeostasis and maintenance
of neuromuscular integrity. Collectively, this work highlights the
important role of the redox environment in maintenance of
neuromuscular integrity and function and suggests that
defective redox signalling in motor neurons may contribute to
age-related deficits in skeletal muscle mass and function.
Understanding fully the mechanisms through which the redox
environment regulates neuromuscular integrity, muscle mass
and function may uncover potential targets/sites for
intervention for preventing sarcopenia in humans with the
aim to improve the quality of life in the elderly.
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