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Abstract— A major challenge in delivering reliable and 

trustworthy computational intelligence for practical 

applications in clinical medicine is interpretability. This 

aspect of machine learning is a major distinguishing factor 

compared with traditional statistical models for the 

stratification of patients, which typically use rules or a risk 

score identified by logistic regression. 

We show how functions of one and two variables can be 

extracted from pre-trained machine learning models using 

anchored Analysis of Variance (ANOVA) decompositions. 

This enables complex interaction terms to be filtered out by 

aggressive regularisation using the Least Absolute Shrinkage 

and Selection Operator (LASSO) resulting in a sparse model 

with comparable or even better performance than the original 

pre-trained black-box.  

Besides being theoretically well-founded, the 

decomposition of a black-box multivariate probabilistic 

binary classifier into a General Additive Model (GAM) 

comprising a linear combination of non-linear functions of 

one or two variables provides full interpretability. In effect 

this extends logistic regression into non-linear modelling 

without the need for manual intervention by way of variable 

transformations, using the pre-trained model as a seed. 

The application of the proposed methodology to existing 

machine learning models is demonstrated using the Multi-

Layer Perceptron (MLP), Support Vector Machine (SVM), 

Random Forests (RF) and Gradient Boosting Machines 

(GBM), to model a data frame from a well-known benchmark 

dataset available from Physionet, the Medical Information 

Mart for Intensive Care (MIMIC-III). Both the classification 

performance and plausibility of clinical interpretation 

compare favourably with other state-of-the-art sparse models 

namely Sparse Additive Models (SAM) and the Explainable 

Boosting Machine (EBM). 

Keywords— Interpretability, Generalised Additive Neural 

Networks, Self-Explaining Neural Networks, Sparse Additive 

Model, Machine explanation, Multi-Layer Perceptron 

I. INTRODUCTION 

Artificial intelligence has radically increased the 
accuracy of inferences made from complex data. However, 
these algorithms are often difficult to understand by users 
from other domains and their operation can be opaque. This 
is of practical importance since models driven by 
observational data can be difficult to correct for bias and 

other artifacts that may be present in the data. In clinical 
decision support, there is a need for reliable and transparent 
non-linear models whose plausibility can be cross-checked 
against clinical expertise. Moreover, this requires more than 
local explanation e.g. by feature attributions. It involves 
interpretation in the sense the weight that individual input 
variables have on the response of the model needs to be 
apparent across the complete range of model inputs [1].  

This paper is concerned with clinical decision support 
where datasets are generally noisy and clinical reasoning 
often relies on independent effects of individual variables or 
pairwise interactions of the type routinely modelled by 
logistic regression using product terms. In fact, it has been 
claimed that linear models in the medical domain show 
comparable levels of classification performance to machine 
learning for tabular data [2]. That is the focus of this paper 
and we benchmark logistic regression against black-box and 
glass-box models in a benchmark clinical application to 
model mortality in the Medical Information Mart for 
Intensive Care (MIMIC-III). 

While rule-based models are used in medical 
applications [3] it is commonplace to apply logistic 
regression [2]. Both models are de facto standards for 
interpretability of algorithms for patient stratification and 
risk prediction, as they are generally accepted by clinicians 
and used in routine clinical practice. A major driver for 
clinical take-up is the transparency of the models, in the 
sense that the flow of information from input to response is 
transparent and immediately understood. This is a critical 
aspect of the software development lifecycle in particular 
the V&V framework which requires not just Verification of 
the model (is the model built right?) but also Validation (is 
it the right model?) [4]. The last step involves the 
plausibility of the algorithm when checked against the 
domain knowledge of the end-user, in this case, the 
clinician. And that, in turn, involves interpretability.  

A common set of criteria to evaluate interpretability 
involves the three “Cs”: completeness – coverage of the 
explanation for all possible instances; correctness – 
plausible validity to generate trust among end-users; 
compactness – using in some sense a minimal set of 
explanatory rules [5]. All of these criteria are met by sparse 
General Additive Models (GAMs) provided that the 
component terms involve only a small number of variables.  



1.1 Related work 
Formal methods to represent a function of several 

variables using sub-functions of fewer variables already 
exist. This can be achieved using a functional Analysis of 
Variance (ANOVA) Decomposition [6] of which there is an 
extension that is specific to Support Vector Machines using 
iterative re-weighing methods [7]. Unlike [6], we use a 
Dirac measure resulting in the so-called anchored ANOVA 
decomposition and we focus on classification rather than 
regression. 

Our method relates also to Generalised Additive Neural 
Networks (GANNs), sometimes also called Self-
Explanatory Neural Networks (SENN), which have a long 
history [8-11]. Models [8-10] have the structure of a GAM 
when applied to shallow neural networks, similar to our 
models. However, none of these papers deals with the 
derivation of the model structure. 

More recently, the interpretML project introduced the 
Explainable Boosting Machine (EBM) [12] which does 
include automatic identification of univariate effects and 
bivariate interactions. The EBM is a benchmark in our 
study. 

A further benchmark, from mainstream statistics, is 
Sparse Additive Models [13] which rely on splines rather 
than distributed processing. 

1.2 Novel contribution 
We propose a method that applies to any black-box 

probabilistic binary classifier including the Multi-Layer 
Perceptron (MLP), Support Vector Machine (SVM), 
Random Forests (RF) and Gradient Boosting Machines 
(GBM). The first innovative step is to use the ANOVA 
decomposition applied to a pre-trained black box to elicit 
the structure of a GAM/GANN/SENN. This step is essential 
to the method because the component terms in the ANOVA 
decomposition are required before model selection can take 
place, since it selects which components are correlated with 
the target class, with statistical significance.  The proposed 
method is then efficient for selecting not just univariate 
terms but also bivariate interactions. Having both first and 
second-order effects present in the model gives it much 
higher performance while maintaining full interpretability 
in the sense of the three “Cs” above. 

Secondly, we show that in the case of the MLP we can 
refine the interpretable model by mapping the weights of the 
pre-trained model onto a new model, structured as a 
GANN/SENN. This model is then further trained to 
optimise its performance. 

Third, we benchmark our method against state-of-the-
art interpretable models namely the SAM and EBM, which 
are examples of the two main classes of sparse models, 
parametric and non-parametric. Furthermore, we compare 
the classification performance also against the MLP, SVM, 
RF and GBM in their original black-box configurations. 

II. METHOD 

We start with the probability density function of the 
posterior distribution of class membership, P(C|x), which is 
the output of a pre-trained probabilistic model. In common 
with GAMs we focus on the logit, which is calculated from 
the model output using the inverse of the sigmoid link 
function.  

2.1 ANOVA decomposition 

The first novelty of the paper is to apply an anchored 
ANOVA decomposition [6] to extract component functions 
of fewer variables from the logit, which is a multivariate 
function. We call these component functions ‘Partial 
Responses (PR)’. These are orthogonal functions derived by 
setting the values of all variables except one or two at the 
anchor value, which in our case is the median of the data. 
These are numerically the same as the partial dependency 
plots for the univariate functions only but not for the 
bivariate functions. In the anchored decomposition the 
bivariate functions have the property that they are exactly 
zero when either variable takes the anchor value. In other 
words, this generalises the property of the usual interaction 
term in logistic regression ��. �� , which also vanishes 
whenever either term is 0. The terms in the anchored 
ANOVA decomposition form the functional components of 
an additive model, hence calling them Partial Responses. 

We can assume without loss of generality that the 
median of the data is mapped onto the origin, hence the 
median point corresponds to a vector with all 0s. Therefore 

the logit value then takes the value ����	
��|0��. 
Similarly, if all of the variables except ��  are set to their 
median values, then the corresponding values of 

����	 ��
|�0, . . , �� , . . ,0���  represent a function of just 

that one variable. The same principle applies when only two 
variables are not 0, then three, etc. 

In the following, eq. (1) is the constant term, eq. (2) 
calculates the sum of all the terms in the Taylor expansion 
involving only ��, so this is a non-linear function, and eq. 
(3) calculates the terms involving the interaction between �� 
and ��. 

��0� = ����	
��|0�� (1) 

������ = ����	 ��
|�0, . . , �� , . . ,0��� − ��0� (2) 

���
�� , ��� = ����	 �� �|
0, . . , �� , . . , �� , . .0���
− ������ − ��
��� − ��0� 

(3) 

The ANOVA decomposition anchored at 0 is as follows: 

����	
��|��� = log � ��|��
1 − ��|��!

= ��0� + # ������
�

+ # ���
�� , ��� + ⋯
�%�

+ # � �'… �)
��' , … , ��)� 
�'%⋯%�)

 

(4) 

where the general form of the terms in (4) is a recursive 
function of nested subsets of the covariate indices {��, … , �+}: 

� �'… �,
��' , … , ��,�
=  ����	 ��
|��' , … , ��,��
− # � �'… �,-'
��' , … , ��,-'� − ��0�

{�'%⋯%�,-'.
 

(5) 



Note that the decomposition (4) has a finite number of 
terms, each of which represents an infinite summation from 
the Taylor expansion. Furthermore, the summation (4) 

exactly matches the original ����	
��|���, therefore (4) is 

not an equation but an identity. At this point, there is no 
approximation, only the original multivariate function 
broken down into 2d component functions, all but one of 
which have fewer variables. The approximation comes in 
the next step. 

2.2 Model selection with the LASSO 

The second step in the proposed method is to retain, 
from the ANOVA decomposition of the logit of the pre-
trained classifier, only the terms that involve just one or two 
non-zero variables. This amounts to truncating the 
decomposition (4) followed by a re-calibration. To do this, 
the terms retained from (4) become input variables in a 
linear model which is the logistic regression Least Absolute 
Shrinkage and Selection Operator (LASSO) [14]. This is a 
powerful feature selection method that scales well for a 
large number of inputs. It uses L1 regularisation to carry out 
feature selection, as the coefficients of each input gradually 
slide towards zero to result in a sparse model. 

 

2.3 Additional step for the MLP  

If the original black-box model is an MLP, it is possible 
to construct a GANN/SENN to replicate the output of the 
logistic Lasso by replication of the weights from the MLP 
multiplied by the coefficients of the Lasso. The derivation 
of the Partial Response Network (PRN) proceeds as follows: 

1. Train an MLP for binary classification; 

2. Obtained the univariate and bivariate partial 

responses in Eqs. (1)-(4). 

3. Apply the Lasso to the partial responses; 

4. Construct a second MLP as a linear combination of 

the partial responses to replicate the functionality of 

the Lasso. Each partial response, whether univariate 

or bivariate, is represented by a modular structure 

comprising the same number of hidden nodes as the 

original MLP. The modules are assembled into a 

single multi-layer structure represented as a GANN, 

shown in fig. 1. 

5. Re-train the resulting multi-layer network by 

gradient descent. This results in the PRN. 

6. Orthogonal Partial Responses can be obtained from 

the PRN and fed into the Lasso, leading to the PRN-

Lasso. 
 
   The mapping of the partial responses onto the GANN 
requires matching the weights and bias terms as follows: 

• Univariate partial responses: /� →  1� ∗ /�   (6) 

/3 →  1� ∗ �/3 − ����	
��|0���   (7) 

• Bivariate partial responses comprise two 

univariate and a bivariate block: 

Univariate block weights: /� →  �14 − 145� ∗ /�     (8) 

/3 →  �14 − 145� ∗ �/3 − ����	
��|0��� (9) 

Bivariate block weights: /� →  145 ∗ /�     (10) 

/3 →  145 ∗ �/3 − ����	
��|0���   (11) 

The input weights are the same as for the original, pre-
trained MLP; the output weights correspond to the labels in 
fig 1, and the terms 14, 145  are the Lasso parameters for 
each partial response. 

 

III. EXPERIMENTAL RESULTS 

3.1 MIMIC III data  

The MIMIC-III clinical database [15] is a large, publicly 
available database of critically ill patients who stayed in the 
intensive care units of the Beth Israel Deaconess Medical 
Centre between 2001 and 2012. The database is 
comprehensive and includes vital signs measurements, 
patient demographics, medications, procedure codes, 
diagnostic codes, laboratory measurements, imaging 
reports, hospital length of stay, and survival data, among 
others [15]. The variables for our study have been chosen 
based on a previous publication [16]. 

Outliers were removed during data cleaning e.g. heart 
rate measurements below 0. We used information from the 
first 48 hours of the patients being admitted to ICU  to model 
in-hospital mortality, also including the hour before the ICU 
admission for any prior information recorded in the 
ambulance.  

In the cases where variables were time series, e.g. heart 
rate, we first calculated hourly means and then extracted the 
overall mean and standard deviation of each of these 
variables.  

The Glasgow Coma Scale (GCS) scores, which relate to 
the level of consciousness of patients with acute brain 
injuries were recorded following a standard clinical protocol 
[17]. GCS scores are treated as continuous since they are 
ordered from deep coma, at low scores, to fully conscious 
for high scores.  

Missing values are common in routinely collected 
clinical data. In this dataset, they were imputed with the 
same methods as [16] namely using mean values. Patient 

 
Fig.1 Structure of a Generalised Additive Neural Network (GANN), also 
known as a Self-Explanatory Neural Network (SENN). Each univariate 
effect, which we call a partial response, is modelled by a path with a 
separate block of hidden units. Bivariate terms involve three blocks of 
hidden units, one for each input and one receiving both inputs. The 
responses are added to make the input to the output node, i.e. the logit 
(P(C|x)). 



records where the level of missingness exceeded 30% were 
discarded. 

The overall mortality rate over the complete dataset is 
11.3%. This is used in this study to illustrate how the 
proposed methods are robust against class imbalance, which 
is a common feature in clinical datasets. Moreover, our 
study measures calibration since this is a critical feature for 
the interpretation of posterior probabilities for patient 
stratification by risk. We have not extended the study into 
actual stratification, but calculate the underpinning 
calibrated risk scores and correlate them with the additive 
response components for each statistically significant 
variable and pairwise interaction. To our knowledge, this 
level of analysis of this dataset is not available in the 
published literature, and it is also seldom published for 
clinical datasets generally, even though it is an essential 
component of performance validation for any probabilistic 
binary classifier for decision support in a high-stakes 
application. 

The final dataset contains 7,532 observations (ICU 
patient admissions), 14 predictor variables and one binary 
response (1 = death before discharge, 0 = alive at discharge).  

The study design involves splitting the data into three 
elements: a training dataset (n=4,519) and a validation 
dataset (n=1,506) which, together, form the model 
derivation database. This is used for model estimation and 
optimisation. However, the performance estimates may be 
optimistic on the validation dataset. Therefore, there is a 
third dataset, the test dataset (n=1,507).  

For each algorithm, a single model selected to be 
optimal as described in the next section was taken forward 
and applied to the out of sample dataset. This provides an 
unbiased estimate of generalisation performance. This 
aspect of our study is central to determining how well black 
boxes perform compared with the baseline models, Logistic 
Regression, SAM and EBM, and also with the interpretable 
models derived from pre-trained models. 

     The data are standardized by an affine transformation 
that consists of shifting the median to zero and scaling to 
unit variance. 

3.2 Application of ANOVA / Partial Response (PR) 

Methods  
  

This section benchmarks the classification performance 
of the PR models against two interpretable models, EBM 
[12] and SAM [13], as well as three state-of-the-art machine 
learning algorithms, GBM [18], SVM [19] and RF [20].  

For each partial response model, we include two variants 
labelled 1 & 2 according to the selection of Lasso 
parameters: 1) best AUC on the validation set and 2) best 
AUC minus 1 standard deviation, which results in a sparser 
model.  

Our results are shown in Tables I & II, with only mean 
values of each covariate, and using both the mean and 
standard deviation. The 95% confidence intervals of the 
AUC are shown in brackets. 

TABLE I.  CLASSIFICATION PERFORMANCE FOR MIMIC-III DATA 

WITH INPUTS AS MEANS ONLY. C: NUMBER OF COMPONENTS 

Model C Training AUC Validation AUC Test AUC 

LR 9 0.774 
(0.753, 0.796) 

0.790 
(0.752, 0.827) 

0.785 
(0.752, 0.818) 

SAM 9 0.735 
(0.711, 0.758) 

0.742 
(0.704, 0.780) 

0.739 
(0.702, 0.775) 

EBM 19 0.828 
(0.804, 0.850) 

0.805  
(0.764, 0.847) 

0.790  
(0.751, 0.829) 

Black box models 

SVM 9 0.729 
(0.705, 0.752) 

0.726 
(0.683, 0.768) 

0.713 
(0.674, 0.752) 

RF 9 0.945 
(0.935, 0.955) 

0.806 
(0.771, 0.841) 

0.782 
(0.747, 0.816) 

GBM 9 0.813 
(0.793, 0.833) 

0.802 
(0.767, 0.838) 

0.787 
(0.753, 0.820) 

MLP 9 0.809 
(0.786, 0.833) 

0.790 
(0.747, 0.833) 

0.802 
(0.763, 0.840) 

Partial response models 

prSVM1 34 0.771 
(0.747, 0.794) 

0.778 
(0.737, 0.818) 

0.763 
(0.727, 0.800) 

prSVM2 19 0.755  
(0.731, 0.779) 

0.769 
(0.730, 0.808) 

0.755 
(0.717, 0.792) 

prRF1 43 0.923 
(0.913, 0.934) 

0.774 
(0.735, 0.814) 

0.778 
(0.743, 0.813) 

prRF2 36 0.905 
(0.893, 0.917) 

0.769 
(0.728, 0.809) 

0.775 
(0.739, 0.811) 

prGBM1 10 0.809 
(0.789, 0.829) 

0.804 
(0.769, 0.838) 

0.785 
(0.751, 0.818) 

prGBM2 6 0.786 
(0.765, 0.807) 

0.795 
(0.761, 0.830) 

0.768 
(0.733, 0.803) 

PRN 11 0.795 
(0.771, 0.819) 

0.791 
(0.748, 0.834) 

0.805 
(0.768, 0.844) 

PRN-
Lasso 

11 0.795 
(0.771, 0.819) 

0.789 
(0.746, 0.832) 

0.807 
(0.768, 0.845) 

TABLE II.  CLASSIFICATION PERFORMANCE FOR MIMIC-III DATA 

WITH MEANS AND STANDARD DEVIATIONS. C: NUMBER OF COMPONENTS 

Model C Training AUC Validation AUC Test AUC 

LR 14 0.790 
(0.768, 0.812) 

0.801 
(0.765,0.837) 

0.797 
(0.763, 0.831) 

SAM 14 0.749 
(0.726, 0.773) 

0.753 
(0.716, 0.791) 

0.744 
(0.706, 0.782) 

EBM 24 0.858 
(0.837, 0.879) 

0.812 
(0.771, 0.853) 

0.793 
(0.754, 0.833) 

Black box models 

SVM 14 0.989 
(0.982, 0.995) 

0.767 
(0.724, 0.810) 

0.732 
(0.691, 0.772) 

RF 14 0.960 
(0.952, 0.968) 

0.814 
(0.779, 0.849) 

0.797 
(0.762, 0.832) 

GBM 14 0.827 
(0.807, 0.846) 

0.805 
(0.770, 0.841) 

0.791 
(0.756, 0.825) 

MLP 14 0.828 
(0.805, 0.850) 

0.810 
(0.769, 0.852) 

0.815 
(0.777, 0.853) 

Partial response models 

prSVM1 54 0.830 
(0.811, 0.850) 

0.797 
(0.759, 0.834) 

0.794 
(0.760, 0.828) 

prSVM2 31 0.806 
(0.785, 0.827) 

0.786 
(0.747, 0.825) 

0.782 
(0.746, 0.818) 

prRF1 21 0.855 
(0.839, 0.871) 

0.770 
(0.732, 0.808) 

0.770 
(0.733, 0.806) 

prRF2 16 0.841 
(0.824, 0.858) 

0.761 
(0.723, 0.799) 

0.767 
(0.731, 0.804) 

prGBM1 15 0.817 
(0.797, 0.837) 

0.811 
(0.777, 0.845) 

0.783 
(0.748, 0.818) 

prGBM2 7 0.787 
(0.766, 0.809) 

0.802 
(0.768, 0.836) 

0.771 
(0.734, 0.807) 

PRN 12 0.810 
(0.786, 0.833) 

0.799 
(0.756, 0.841) 

0.807 
(0.769, 0.845) 

PRN-
Lasso 

12 0.811 
(0.787, 0.834) 

0.797 
(0.755, 0.840) 

0.812 
(0.774, 0.850) 



Most models have comparable performance, but they 
differ significantly in their interpretability. In particular, 
while LR is restricted to linear dependence on the covariates 
it performs well for this dataset. This is explained by the 
partial responses which show that the dependence on the 
individual variables is close to linear in the main body of the 
histogram for that variable. However, the responses saturate 
either side of it and so flatten out, hence the marginally 
better performance of some of the partial response models. 

The results show that SVM is not ideally suited when 
non-linearities are weak, with overfitting that results in the 
prSVM sometimes outperforming the original back box on 
the out of sample data. In contrast, the GBM generates 
partial responses that generalise well. The RF model has the 
highest performance degradation when the ANOVA 
decomposition is truncated. This is likely because the partial 
responses for the RF are staggered and not smooth due to 
the internal structure of the black-box model. 

 

 

The PRN and PRN-Lasso perform very well for this 
medical dataset. Figs. 2-4 show three of the component 
responses that together add to make the logit(P(C|x)) for the 
PRN-Lasso model. Given a patient profile described by an 
input vector [GCS, RR, Temperature mean, etc.] the model 
prediction is calculated as follows: 

7. Take the value of each input variable, e.g. GCS, 

and find its contribution to the logit (P(C|x)). This 

is the y-axis in fig. 2. For RR it’s the y-axis in fig. 

3, for Temperature in fig. 4, etc. 

8. Include the contributions from all univariate terms 

and also bivariate terms e.g. z-axis in fig. 5. 

9. Add these contributions and also the 13 from the 

Lasso. This addition forms the risk index, which 

is the full logit (P(C|x)). 

10. Feed the logit into a sigmoid function, which is 

indicated by an S in the output node in fig. 1. 

The result is the predicted posterior probability of 

class membership, in this case, the probability of 

mortality, P(C|x). 
 

 
The predicted probabilities can be compared with the 

observed occurrence of mortality to produce the calibration 
curve. This is shown in fig. 6 for the out of sample dataset. 
Note as well the very good match between the predicted 
probability of mortality, in the x-axis, and the fraction of 
predicted cases in the same interval of predicted mortality, 
shown by the circles. 

Calibration is vital for clinical applications where the 
quantitative inference of the output must be numerically 
accurate. It is very much possible to have poor calibration 
with excellent classification performance measured by the 
AUC. This occurs when the predictions are in the right 
ranking order but their numerical values may be very 
skewed, for instance, due to class imbalance. Not all 
classifiers are well-calibrated, but the MLP is, even for 
extreme imbalances of the order of 1/100, as is the case for 
instance when predicting event rates for short time intervals 
in survival modelling.  

 

Fig. 2. Example univariate partial responses from the PRN-Lasso model 
on the MIMIC III data using means only. The Glasgow Coma Scale 
(GCS) score is the main indicator of consciousness and shows a 
monotonic decrease in mortality, as expected. The left had scale shows 
the contribution of this variable to the logit P(C|x), which corresponds 

directly to the score index 1. � in logistic regression. The dashed line is 
the initial partial response after the first iteration of the MLP and the 
solid line is the result after the second iteration using the GANN/SENN. 
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Fig. 3. Another important effect identified in the PRN-Lasso model is 
the Respiratory Rate (RR). This illustrates the non-linear nature of the 
partial responses. In this case, mortality increases away from the mean, 
but more sharply for higher values of RR. 
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Fig. 4. Mean core temperature also has a statistically significant effect 
that is quantified in the PRN-Lasso model by the curve shown. Mortality 
increases for lower temperatures. Note how the curve is approximately 
linear in the main body of the histogram of temperature values, pointing 
to why logistic regression does well overall for this dataset. 
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The AUC performance of the proposed approaches is in 

line with those reported in [16]. Nevertheless, the data 
structures used and precise experiments are not the same, 
and we used very simple compression of the time series. The 
paper makes the comment that “even a model with 0.91 
AUC-ROC can make trivial mistakes and there is a lot of 

room for improvement”. We agree and suggest that the 
interpretability element is helpful to identify the precise 
weight that each input variable, or pair of input variables, 
contributes to the prediction, hence finding out what, if 
anything, misled the model. 

 

The ability to diagnose the model, that is to say, to find 
out exactly why it was right or not, is important in order to 
improve it in a controlled manner or, even, to find issues in 
data collection e.g. artifacts or variables missing from the 
protocol, or unintended biases in the sampling process. 
Moreover, this also allows the clinician to integrate the 
machine learning model, including pre-trained black boxes, 
into the clinical reasoning process. 

Compared with the state of the art, our models perform 
better than SAM and similarly to EBM. Both of these 
approaches in principle support univariate and bivariate 
effects but in SAM the component additive elements are 
restricted to splines, which can be a limiting factor on 
performance.  

In the case of the EBM, its partial response for the GCS 
is shown in Fig. 7, alongside the corresponding functions 
derived from the SVM and GBM algorithms. These plots 
follow the same trend as Fig. 2, which is the expected 
decrease in mortality for higher GCS scores due to how it is 
calculated. Interestingly, while the plot for the prSVM is 
smooth, it shows a curvature that may be an artifact resulting 
from the width of the original radial basis functions. A 
similar effect is present in all of the component functions 
from this model. 

The component function for the GBM is noticeably 
noisy and for the EBM it is staggered. This may lead to a 
loss in classification performance compared to a better 
estimate of the partial response. The example in Fig. 2 is 
consistent with the smooth interpolation of the curves in Fig. 
7 (a) & (c). 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Two-way interaction between the GCS score and Systolic Blood 
Pressure from the PRN-Lasso model. This graphic shows a) & b) views 
along the main axis to show that the bivariate partial response vanishes 
along each axis; Note that the axes in the modelled data correspond to 
the values of the median in the original data, prior to standardisation by 
median centering and scaling to unit variance. c) a 3D view. This graphic 
shows that a correction is required to ensure good calibration of the 
posterior probability for cases where the GCS score and Systolic BP are 
both low. In common with the other figures of the partial responses, the 
graphs show histograms of the original variables. 

 
Fig. 6. Calibration of the PRN-Lasso model. This is nearly perfect 
given the histogram of output predictions, which is heavily skewed to 
lower values on account of the prevalence of mortality in this dataset 
being 11.1% for the training data, 10.6% for the validation data and 
12.7% for the out of sample dataset. The circles represent the 
proportion of mortality among the predictions made within the 
interval of the width of the histogram bar. They are very close to the 
ideal line for the vast majority of predictions. 
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TABLE III.  COMPONENT FUNCTIONS SELECTED BY THE SPARSE 

MODELS AND PARTIAL RESPONSE MODELS FOR MIMIC-III DATA WITH 

INPUTS AS MEANS ONLY.  

Model SAM EBM prGBM1 PRN-Lasso 

#Components 9 19 10 11 

Univariate components 

Diastolic BP mean ✓ ✓ ✓ ✓ 

Systolic BP mean ✓ ✓ ✓  

GCS Total mean ✓ ✓ ✓ ✓ 

Glucose mean ✓ ✓ ✓  

Heart Rate mean ✓ ✓ ✓ ✓ 

O2 Saturation mean ✓ ✓ ✓ ✓ 

Respiratory Rate mean ✓ ✓ ✓ ✓ 

Temperature mean ✓ ✓ ✓ ✓ 

Weight ✓ ✓ ✓ ✓ 

Two-way interactions 

Systolic BP mean X 
GCS Total mean 

 ✓  ✓ 

GCS Total mean X 
Heart Rate mean 

 ✓  ✓ 

GCS Total mean X 
Respiratory Rate mean 

 ✓  ✓ 

GCS Total mean X 
Temperature mean 

 ✓  ✓ 

O2 Saturation mean X 
Weight 

  ✓  

Diastolic BP mean X 
GCS Total mean 

 ✓   

GCS Total mean X 
Glucose mean 

 ✓   

GCS Total mean X O2 
Saturation mean 

 ✓   

GCS Total mean X 
Weight 

 ✓   

Systolic BP mean X 
Heart Rate mean 

 ✓   

Heart Rate mean X 
Temperature mean 

 ✓   

The variables selected by the best performing 
interpretable models and the benchmark models are listed in 
Tables III & IV. While we have already noted that SAM 
supports bivariate effects in principle, we were unable to 
find any reference to these in the software used. The EBM 
and prGBM1 models, like the SAM, select all univariate 
components as well as several bivariate components. 
Glucose does not appear in any univariate or bivariate term 
of the PRN-Lasso.  

The partial response models are sparser than the EBM, 
containing a similar number of terms to the SAM, while also 
including bivariate terms. The bivariate components 
selected by the PRN-Lasso suggest that they are corrections 
to the calibration of the  GCS Total Mean. In contrast, the 
EBM utilises more than double the number of bivariate 
terms. 

The additional step for the MLP of mapping the Lasso 
model onto a SENN and continuing training to result in the 
PRN model, led to only a small improvement in 
performance. This is apparent also from the small changes 
observed in the shape of the partial responses. This indicates 
that for real-world data sets such as MIMIC the noise 
present in the data limits performance to the extent that the 
significant predictive factors are well represented by just the 
univariate and bivariate terms in the ANOVA 
decomposition.  

TABLE IV.  COMPONENT FUNCTIONS SELECTED BY THE SPARSE 

MODELS AND PARTIAL RESPONSE MODELS FOR MIMIC-III DATA WITH 

MEANS AND STANDARD DEVIATIONS.  

Model SAM EBM prGBM1 PRN-Lasso 

#Components 14 24 15 12 

Univariate components 

Diastolic BP mean ✓ ✓ ✓  

Diastolic BP st dev ✓ ✓ ✓  

Systolic BP mean ✓ ✓ ✓ ✓ 

Systolic BP st dev ✓ ✓   

GCS Total mean ✓ ✓ ✓ ✓ 

GCS Total st dev ✓ ✓ ✓  

Glucose mean ✓ ✓ ✓  

Glucose st dev ✓ ✓ ✓  

Heart Rate mean ✓ ✓ ✓ ✓ 

O2 Saturation mean ✓ ✓  ✓ 

O2 Saturation st dev ✓ ✓ ✓ ✓ 

Respiratory Rate mean ✓ ✓ ✓ ✓ 

Temperature mean ✓ ✓ ✓ ✓ 

Weight ✓ ✓ ✓ ✓ 

Two-way interactions 

Systolic BP mean X 
GCS Total mean 

 ✓  ✓ 

Systolic BP st dev X 
GCS Total mean 

 ✓  ✓ 

GCS Total mean X 
GCS Total st dev 

 ✓  ✓ 

GCS Total mean X 
Temperature mean 

 ✓  ✓ 

Systolic BP mean X 
Heart Rate mean 

  ✓  

Systolic BP mean X 
O2 Saturation st dev 

  ✓  

GCS Total mean X 
Weight 

  ✓  

GCS Total mean X 
Glucose st dev 

 ✓   

Diastolic BP st dev X 
GCS Total mean 

 ✓   

GCS Total mean X 
Heart Rate mean 

 ✓   

GCS Total mean X O2 
Saturation st dev 

 ✓   

Diastolic BP mean X 
GCS Total mean 

 ✓   

GCS Total mean X 
Respiratory Rate mean 

 ✓   

 

IV. CONCLUSION 

We show that it is possible to open any black-box model, 
including pre-trained models, in cases where significant 
noise is present, without losing much predictive power, if 
any, but making the model transparent to the non-linearities 
in the data. 

This involves the application of the ANOVA 
decomposition, anchored on the median of the data followed 
by the Lasso as a computationally efficient method to derive 
the structure of a GAM using the component functions 
derived from the ANOVA. The application of the LASSO 
to the univariate and bivariate terms in the ANOVA 
decomposition carries out the functions of model selection 
and re-calibration, resulting in a globally interpretable 
model with comparable performance to the original black-
box model. In this way, we buck the 
accuracy/interpretability trade-off for tabular data. 



  
 

Furthermore, the performances of the resulting GAMs 
compare favourably with state-of-the-art sparse models 
from the statistical literature, SAM, and from machine 
learning, the EBM. The derived Partial Responses are 
consistent across the range of models and have plausible 
clinical interpretations. 

 The interpretability of the model by end-users is at the 
level of nomograms [7]. Nomograms are familiar to 
clinicians as graphical implementations of logistic 

regression. GAMs are interpretable in the same way, except 
that the score for each variable is read from what we call the 
partial response plot, where the height of the plot directly 
measures the contribution to the logit, which is the 
nomogram score for that variable.   
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Fig. 7. Example univariate responses for GCS score from the a) 
prGBM, b) prSVM, c) EBM and d) SAM models. Similarly to Fig. 
2, these plots show a decrease in mortality as the GCS score 
increases. 


