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ABSTRACT 

 

The advent of 5G and the adoption of digitalization in all areas of industry has resulted in the exponential 

growth of the Internet of Things (IoTs) devices, increasing the flow of data that travels back and forth to 

a centralized Cloud data centre for storage, processing, and analysis. This in turn puts pressure on the 

intermediate edge and core network infrastructure as traditional Cloud Computing is not ready to support 

this massive amount and diversity of devices and data. This need for faster processing, low latency and 

higher network consistency makes a case for Edge Computing solutions. 

However, applying Edge Computing as a solution to overcome the network performance limitations that 

exist on an “IoT to Cloud” architecture while continuing to use Virtualization technology for system 

utilization is a bit of an oxymoron. Virtualization increases performance overheads, while sharing network 

resources among users and applications creates further bandwidth limitations and latency since 

communications are still served through the same physical network interfaces. The demand for network 

and system consistency, finer security and privacy has led to the deployment of Bare metal instances. Bare 

metal instances are nothing more than traditional servers that lack the virtualization layer offering native 

performance to the user. Furthermore, the rise of the ARM processors and the introduction of cheap low 

power architectures targeted to the Edge introduce a compelling new candidate platform especially on 

Bare metal instances. 

Live migration is a valuable tool for increasing applications and users’ mobility, service availability offering 

workload balancing and fault tolerance. However, live migration is tied to the existence of a virtualization 

layer therefore implementing a live migration process on Bare metal instances is very challenging. To the 

best of our knowledge, there is no existing proposal for a Bare metal live migration scheme on ARM based 

systems. Therefore, this thesis presents a novel design, implementation, and evaluation of an ARM based 

live migration scheme for Bare metal instances suitable for modern Edge Computing Micro Data Centres. 

Our experimental evaluation confirms the effectiveness of our novel design as well as highlighting the 

importance on identifying the number of registers that describe and are critical for the reconstruction of 

the CPU state at the destination.  

  



7 
 

LIST OF FIGURES 

 

Figure 1-1 Data processing layered architecture from Edge to Cloud ........................................................ 17 

Figure 2-1 IoT and IIoT ................................................................................................................................ 24 

Figure 2-2 Digitalization in the Business Industry ....................................................................................... 25 

Figure 2-3 Big Data characteristics .............................................................................................................. 28 

Figure 2-4 Data road path from Edge to Cloud backend ............................................................................ 30 

Figure 2-5 Edge to cloud networking layers ................................................................................................ 33 

Figure 2-6 Edge Computing architecture deployment models ................................................................... 35 

Figure 2-7 IoT to Cloud model ..................................................................................................................... 36 

Figure 2-8 Adoption of a Mirco DCs architecture diagram ......................................................................... 40 

Figure 2-9 Adopting Zone triangle architecture on the edge ..................................................................... 41 

Figure 3-1 Cloud data centre ...................................................................................................................... 45 

Figure 3-2 Xen and KVM hypervisor architecture ....................................................................................... 48 

Figure 3-3 Virtualization performance degradation areas ......................................................................... 49 

Figure 3-4 Virtualization threats considerations ......................................................................................... 52 

Figure 3-5 Metal as a Service part of the Cloud service suite ..................................................................... 53 

Figure 3-6 Availability sets of VMs and Bare metal instances .................................................................... 57 

Figure 3-7 Bare metal Micro DCs edge architecture implementation ........................................................ 58 

Figure 4-1 Live migration among micro DCs on an Edge network .............................................................. 59 

Figure 4-2 Pre-copy vs Post-copy memory migration process .................................................................... 64 

Figure 4-3 BLMVisor and BitVisor architecture ........................................................................................... 68 

Figure 5-1 ARMv8 processors supported CPU modes ................................................................................. 77 

Figure 5-2 TrustZone Normal and Secure worlds ........................................................................................ 78 

Figure 5-3 x86 Ring privileges architecture ................................................................................................. 79 

Figure 5-4 Intel VT-x CPU Operations .......................................................................................................... 80 

Figure 5-5 Available CPU modes on Normal and Secure world respectively .............................................. 81 

Figure 5-6 ARMv8 Exception model ............................................................................................................ 81 

Figure 5-7 ARM normal boot process.......................................................................................................... 82 

Figure 5-8 Example of ARM Banked registers mechanism ......................................................................... 84 

Figure 5-9 ARM List of registers per CPU mode .......................................................................................... 85 



8 
 

Figure 5-10 ARMv8 Special Registers .......................................................................................................... 86 

Figure 5-11 ARMv8 2-stage table translation management ...................................................................... 88 

Figure 5-12 ARMv8 2-stage memory translation system ........................................................................... 88 

Figure 5-13 Intel’s x86 privileges ring scheme ............................................................................................ 89 

Figure 5-14 Intel’s x86 VMCS packet structure ........................................................................................... 90 

Figure 5-15 List of general-purpose registers on ARMv7 and ARMv8 architecture .................................... 92 

Figure 5-16 Banked registers and special registers .................................................................................... 93 

Figure 5-17 Accessing system registers on ARMv7 and ARMv8 ................................................................. 93 

Figure 5-18 Interrupt handling process ....................................................................................................... 97 

Figure 6-1 Adoption of a cluster of RPIs architecture at the edge ............................................................ 100 

Figure 6-2 Microservice orchestration cluster architecture composed of RPIs ......................................... 101 

Figure 6-3 Xvisor high level system architecture ....................................................................................... 107 

Figure 6-4  Xvisor Guest Logical Architecture ........................................................................................... 108 

Figure 6-5 Xvisor vCPU structure ............................................................................................................... 108 

Figure 6-6 Block diagram of RPI networking infrastructure ..................................................................... 110 

Figure 6-7 Xvisor memory address scheme mapping on RPI physical addresses ...................................... 112 

Figure 6-8 Example of RPIs addressing map diagram ............................................................................... 114 

Figure 6-9 ARM memory management unit architecture for devices and CPU ........................................ 114 

Figure 6-10 ARM SMMU system architecture ........................................................................................... 115 

Figure 6-11 ARM GIC architecture diagram .............................................................................................. 116 

Figure 6-12 List of registers compose a CPU state .................................................................................... 118 

Figure 7-1 CPU live migration implementation steps ............................................................................... 124 

Figure 7-2 Code integration for CPU migration into Ping menu ............................................................... 126 

Figure 7-3 List of the available sub-commands of the ping command ..................................................... 126 

Figure 7-4 Enabling Network Stack Options ............................................................................................. 127 

Figure 7-5 Enabling the support of Ethernet drivers ................................................................................. 127 

Figure 7-6 Enabling the support of USB drivers ........................................................................................ 128 

Figure 7-7 LwIP API calls setting up a UDP server – client channel........................................................... 129 

Figure 7-8 Code structure .......................................................................................................................... 131 

Figure 7-9 Code structure defining a vCPU on Xvisor ................................................................................ 132 

Figure 7-10 Increase or Decrease the number of the assigned vCPUs per Guest Instance ...................... 133 

Figure 7-11 Structure of calling ARMv8 registers     Figure 7-12 Structure of calling ARMv7 registers .... 134 



9 
 

Figure 7-13 Defining the pointers of the architecture registers ................................................................ 134 

Figure 7-14 Output of the vCPU normal list execution command ............................................................ 134 

Figure 7-15 Storing registers’ values into a data structure ....................................................................... 135 

Figure 7-16 Define globally Networking configuration details ................................................................. 135 

Figure 7-17 Setting up timer for performance evaluation ........................................................................ 136 

Figure 7-18 Passing arguments validation function ................................................................................. 136 

Figure 7-19 Conversion of IP address from string to integer format ........................................................ 136 

Figure 7-20 Validation process of the given vCPUs ................................................................................... 137 

Figure 7-21 Store registers into a data array ............................................................................................ 137 

Figure 7-22 Creation of a network socket ................................................................................................. 139 

Figure 7-23 Socket interface configuration ............................................................................................... 139 

Figure 7-24 Socket data reception function .............................................................................................. 139 

Figure 7-25 LwIP API calls setting a UDP client/server socket .................................................................. 140 

Figure 7-26 Main code of the data receiver function ................................................................................ 141 

Figure 7-27 Validation of the passing vCPUs IDs ...................................................................................... 142 

Figure 7-28 Temporary storage for the received registers ....................................................................... 142 

Figure 7-29 Source code for the execution of the adaption process ......................................................... 144 

Figure 8-1 Lab topology ............................................................................................................................ 146 

Figure 8-2 Experiment Milestones ............................................................................................................ 147 

Figure 8-3 Xvisor net debugging menu ..................................................................................................... 150 

Figure 8-4 Xvisor networking information ................................................................................................ 150 

Figure 8-5 Xvisor ipconfig debugging menu .............................................................................................. 151 

Figure 8-6 Xvisor IP address configuration ............................................................................................... 151 

Figure 8-7 Xvisor load Guest environment ............................................................................................... 152 

Figure 8-8 Xvisor Guest Linux environment............................................................................................... 152 

Figure 8-9 Xvisor list of the available Guest machines ............................................................................. 153 

Figure 8-10 Xvisor list of normal vCPUs .................................................................................................... 153 

Figure 8-11  Xvisor ping debugging menu ................................................................................................ 154 

Figure 8-12 Execution of Ping command, testing connectivity ................................................................ 154 

Figure 8-13 Raspbian Network interface configuration ............................................................................ 155 

Figure 8-14 RPI system information ......................................................................................................... 155 

Figure 8-15 Checking network connectivity between source and destination .......................................... 156 



10 
 

Figure 8-16  Start receiver function on the destination ........................................................................... 157 

Figure 8-17 Call of CPU live migration function ........................................................................................ 158 

Figure 8-18 RPI - Receiving CPU register values ........................................................................................ 158 

Figure 8-19 Wireshark Main window - UDP packet .................................................................................. 159 

Figure 8-20 Wireshark Packet List Pane .................................................................................................... 159 

Figure 8-21 Wireshark Packet Details Pane .............................................................................................. 160 

Figure 8-22 Wireshark Hexadecimal packet inspection panel .................................................................. 160 

Figure 8-23 PC and PSTATE registers values ............................................................................................. 161 

Figure 8-24 Xvisor - Call of CPU register adoption function .................................................................... 161 

Figure 8-25 Number of migrated CPU registers a) 4, b) 8, c) 12, d) 17, e) 20, f) 34 .................................. 164 

Figure 8-26 Graphical representations of CPU registers migration in relation to time ............................ 165 

Figure 8-27 Graphical representation of the total time migration of 34 registers ................................... 166 

Figure 8-28 Host CPU load without a Guest instance ............................................................................... 168 

Figure 8-29 Host CPU load with a Guest instance .................................................................................... 168 

Figure 8-30 Host CPU load with Guest workload ...................................................................................... 168 

Figure 8-31 Host CPU load during the CPU live migration ........................................................................ 169 

Figure 8-32 CPU load during the four states ............................................................................................. 170 

Figure 9-1 Storing register values based on XEN VCPU structure ............................................................ 174 

Figure 9-2 ARMv7 architecture registers structure definition .................................................................. 176 

Figure 9-3 ARMv8 architecture registers structure definition .................................................................. 176 

Figure 9-4 Live migration on a multicast network .................................................................................... 177 

 

  



11 
 

LIST OF TABLES 

 

Table 1 ARM CPU supported execution modes ........................................................................................... 86 

Table 2 ARM-based Type 1 and 2 Hypervisors ............................................................................................ 95 

Table 3 Overview of the available generations of RPIs ............................................................................. 109 

Table 4 Lab configuration overview .......................................................................................................... 147 

Table 5 Correlation of migrated registers with the time completion of CPU state migration .................. 165 

 

 

 

 

 

  



12 
 

LIST OF ABBREVIATIONS 

 

AaaS  Analytics as a Service 

ARM  Acorn RISC Machine 

AI  Artificial Intelligence 

APIPA   Automatic Private Internet Protocol Addressing 

CCA   Confidential Compute Architecture 

CDCs  Cloud Data Centres 

CDNs   Content distribution networks 

CPU  Central Processing Unit 

CSPs  Cloud Service Providers 

DCs   Data Centres  

DTB   Device Tree Blob (Binary) 

DMA  Direct Memory Access 

DMZ  Demilitarised Zones 

ENs  Edge Nodes 

GDPR  General Data Protection Regulation 

IaaS  Infrastructure as a Service 

ID  Identification Number 

IoT   Internet of Things 

IIoT  Industrial Internet of Things 

IT  Information Technology 

ΙοΕ  Internet of Everything 



13 
 

ISA  Instruction set Architecture 

IANA   Internet Assigned Numbers Authority 

IOMMU Input Output Memory Management Unit 

KVM  Kernel-based Virtual Machine 

LCD   Liquid-Crystal Display 

LTE  Long Term Evolution 

LwIP  Lightweight TCP/IP stack 

MaaS  Metal as a Service 

MB  MegaByte 

MEC  Mobile Edge Computing 

ML  Machine Learning 

MMIO  Memory Mapped Input Output 

NAS  Network Array Storage 

NIC  Network Interface Card 

OS   Operating System 

PaaS  Platform as a Service 

PIC  Programmable Interrupt Controller 

RDP  Remote Desktop Protocol 

RPI   Raspberry Pi  

RTT  Round-trip Time 

SaaS  Software as a Service 

SAN  Storage Array Network 

SD  Secure Digital  



14 
 

SSH  Secure Shell 

SLAs  Service Level Agreements 

TCP  Transmission Control Protocol 

UART   Universal Asynchronous Receiver/Transmitter 

UDP  User Datagram Protocol 

VMs  Virtual Machines 

VMCS  Virtual Machine Control Structure 

VMM  Virtual Machine Manager 

VMX  Virtual Machine Extensions 

VPN  Virtual Private Network 

VT  Virtualization Technology 

QoS  Quality of Service 

WAN  Wide Area Network 

 

 

 

 

 

 

 

 

  



15 
 

LIST OF PUBLICATIONS 

 

CONFERENCE PAPER 

I. Avramidis, M. Mackay, F. P. Tso, T. Fukai and T. Shinagawa, "Live migration on ARM-based 

micro-datacentres," 2018 15th IEEE Annual Consumer Communications & Networking 

Conference (CCNC), Las Vegas, NV, 2018, pp. 1-6. 

URL: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319241&isnumber=8319155 

The paper gives a high-level overview of the components that take place during a Bare metal 

live migration as well as an overview of our proposed approach on implementing that. The 

information on this paper is linked and related to the literature review as covered in the thesis 

(Chapters 2 to 5). 

II. Avramidis, M. Mackay, F. P. Tso, R. Pereira, “CPU Live Migration on ARM Based Bare metal 

Edge Nodes”, 2021 (Pending submission) 

The paper gives a high-level design overview of our CPU state live migration implementation 

as well as presents the experimental results and evaluation of the experiment that we 

conducted. The information on the paper covers mostly the Chapters 6 to 8 of the thesis. 

POSTER 

III. Avramidis, M. Mackay, F. P. Tso, T. Fukai and T. Shinagawa, “Live migration on ARM-based 

Micro-datacenres”, Department of Computer Science, Liverpool John Moores University, 

Byrom Street, Liverpool, L3 3AF, UK 

 

  

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319241&isnumber=8319155


16 
 

1 Introduction 

1.1 Motivation 

The Cloud is undeniably now the most preferred hosting environment for business workload and 

applications, delivering a wide range of IT resources on demand. Recent surveys have shown that 90 per 

cent of businesses prefer to use Cloud services, hosting approximately 60% of their workload in 2019 while 

this trend is expected to reach up to 94% in 2021 [223, 225, 227]. Nowadays, more and more businesses 

are being converted to data businesses; this transformation has increased the data volume by up to 63% 

of the overall business workload [223, 228]. The handling and management of that amount of data is a 

challenging and demanding task, which requires huge amounts of computing and processing power. 

Therefore, companies are adopting one or a combination of the Cloud computing deployment methods 

to support this. Furthermore, the rapid growth of the Internet of Things (IoT) and Industrial Internet of 

Things (IIoT) devices, as well as a wide range of smart technologies, remarkably increases the amount of 

data produced on a network. Based on current surveys, the number of IoT and other smart devices will 

also increase from 17 billion this year, up to 29 billion by 2022 while the world population was only 7.5 

billion in 2019 and is predicted to reach approximately 8.5 billion by 2030 [227, 228, 229]. This further 

highlight how the number of Internet-connected devices per person that require cloud processing is likely 

to increase. 

Although until now the Cloud has been ubiquitous, promising durability, high rates of availability, and 

redundancy, but the rapid growth of these internet-connected and interconnected devices in a network 

producing a massive variety, volume and velocity of data may expose some of the weaknesses in Cloud 

Computing. These mainly focus on the degradation of the intermediate network performance like poor 

bandwidth performance and latency that leads to high round-trip delays and network bottlenecks. 

Therefore, current centralised cloud architectures cannot scale to support and efficiently cover these 

upcoming future trends. The answer and solution to this impending issue is the adoption of modern 

decentralised IT architectures, shifting from a centralised plan to a distributed scheme which replaces the 

all-to-Cloud model with multi-locations and Micro Data Centres. There is where Edge and Fog computing 

architecture solutions find their ultimate expression. Although Edge and Fog computing principles are not 

new, with the rise of IoT technologies, such design schemes may see massive implementation in future 

network environments. 
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Both Edge and Fog computing technologies provide an enhanced architectural solution that enables fast 

and efficient processing, computation, and analysis of the data produced by IoT and Smart technologies 

[51]. Figure 1.1 illustrates a high-level overview of a communication scheme and the coexistence of Cloud, 

Fog and Edge technologies in a layered architecture. In this model, Fog computing acts like an 

intermediate layer that connects Edge Computing devices to the Cloud. Fog computing also works as a 

management mediator between the Cloud infrastructure and the Edge devices in a network 

infrastructure. Edge Computing describes a decentralised, distributed IT processing architecture that 

enables mobile computing, IoT, and a variety of smart services to coexist and interact in an efficient 

manner. As the name Edge implies, data processing, computation and storage is happening at the Edge 

of a network, near to the source where the data are produced. In that way, Big Data and latency sensitive 

services achieve faster, efficient, real-time processing and analysis, saving network bandwidth and round-

trip delay times.  

 

 

Figure 1-1 Data processing layered architecture from Edge to Cloud 

However, some data produced by multi-edge networks where multi-edge networks is considered several 

independent networks managed by individuals or CSPs, may still need to be gathered on a centralised 

Cloud backend location for further data processing, storage, and analysis which does not work efficiently 

especially when it relates to Big Data, real-time, or mission critical sensitive applications that demand 

computation in a timely manner. However, these applications are very sensitive to system and network 
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performance degradation like latency where tasks such as processing, analysis and computation need to 

be achieved in a timely manner.  

The emergence of Micro DCs has made Edge Computing implementation much easier and more attractive 

than ever before [17]. Modern Edge network schemes will utilise Micro DCs as the core infrastructure of 

processing, computation and storage of the data. Micro DCs are effectively miniature versions of 

traditional data centre infrastructures that are implemented as a modular, containerised, grid of small 

racks. They can therefore be deployed in strategic locations as near as possible to the source of the data 

on a variety of distributed locations, collecting, processing and analysing data, thereby eliminating the 

need for transmission to a centralized Cloud data centre. 

Moreover, this data often contains sensitive or private information that is important to the user, so data 

integrity and privacy are also of high importance. Due to these factors multi-tenant infrastructures such 

as virtualised Cloud data centres, or even virtualised Micro DCs, may be exposed to security threats and 

are vulnerable to security holes putting not only customer’s information but the availability of services at 

risk. Therefore, Cloud vendors are introducing a new hardware platform as a service, named Bare metal 

instances. More and more Cloud providers are including Bare metal servers in the Cloud infrastructure 

service suite, delivering it as a service to customers. These Bare metal servers, or Metal as a Service (MaaS) 

as it is also called, are nothing more than traditional, powerful hosting server towers with the only 

difference being that they are dedicated to a single customer, eliminating the demand for a virtualization 

layer, providing native, high computing performance, higher levels of security and privacy.  

Although the deployment of Micro DCs, through the implementation of Edge Computing architectures in 

combination with Bare metal instances meets the core IoT requirements of low latency, fast convergence 

and data processing with enhanced data privacy, there are some parameters that still need to be 

considered like redundancy and high availability. Bare metal instances do not utilise virtualization, which 

has an impact on the redundancy, failover and fault tolerance attributes offered by live migration 

techniques which are tightly bonded with the existence of virtualisation technology. Live migration in 

particular is a powerful tool that finds extensive implementation in virtualized environments among 

servers, offering a high degree of workload redundancy and availability, quality of service and load 

balancing. Therefore, recent research work has been done on the development of a live migration scheme 

on Bare metal instances. Fukai’s [37, 38] research introduces a novel live migration model taking place on 

Bare metal instances. Based on that novelty, a live migration scheme is feasible even with the lack of a 

virtualisation layer on systems running an x86 processor architecture.  
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Moreover, modern ARM architecture processors, focusing on Edge-to-Cloud data centres, are attracting 

a lot of interest in this arena. The characteristics of small-footprint design, power-efficiency and low price 

make them an ideal alternative implementation for Bare metal Micro Data Centre infrastructures, 

achieving both performance and lower overheads. The implementation of ARM in data centre 

infrastructures is an emerging concept with a lot of interest from the academic and research community. 

However, there is a lack of support for performing live migration on ARM systems, especially when it 

comes on Bare metal instances where the virtualization layer is eliminated. To the best of our knowledge, 

live migration is possible to support only among x86 Bare metal instances but there is currently no 

implementation under development to perform such a task on the ARM architecture. 

In this research, we explore a novel experimental approach for how to develop and perform a live 

migration process on ARM based Bare metal instances, which could be used to support Edge Computing 

through Micro DC deployments. 

 

1.2 Aims and Objectives 

Key aim of this research is the design and implementation of a CPU live migration process as this takes 

place among ARM based Bare metal instances where CPU live migration is considered the group of 

registers that composes and describes the CPU state at a specific time where the migration is performed.  

Current Cloud Computing solutions, created to support and provide efficient, on-demand processing and 

high availability, are limited in providing improved responsiveness and low latency as the growth of smart 

and electronic devices increases rapidly. Therefore, modern Edge Computing solutions through the 

utilization and deployment of Micro Data Centres can better interact and serve the needs of the Internet 

of Things technologies. This thesis aims to provide a better understanding of how the implementation of 

Bare metal Micro Data Centres at the edge can be embedded within current structures; explore the 

parameters required for their successful adoption and use; design and develop a model to provide higher 

availability, consistency, and fault-tolerance through a live migration mechanism. Additionally, modern 

ARM processors targets at the edge, offering high compute performance and power efficiency in 

affordable prices. Therefore, in this thesis for the first time, we aim to investigate and integrate an ARM 

based live migration scheme evaluating the migration time in comparison to the required state as well as 

its impact on the wider system performance.  

To fulfil these aims, the following list of objectives have been carried out. 
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1. To review current Cloud Computing architectures looking at the limitations and drawbacks of the 

adoption of an ‘all-to-Cloud’ architecture model which lead us to the adoption of Edge Computing 

2. To assess the value and the role of virtualization in modern IoT environments as well as the 

performance limitations that modern real-time, high-performance applications face caused by 

virtualization overhead. 

3. To identify computational architecture solutions such as Bare metal instances along with their 

contribution to delivering an efficient architecture at the edge improving the network and system 

performance. 

4. To analyse ARM architecture virtualization extensions and ARM based hypervisors and the lack of 

delivering a high available, consistent fault tolerance infrastructure. 

5. To design an ARM based CPU live migration scheme applicable to Bare metal instances in order 

to cover the existing gap for provide a reliable infrastructure. 

6. To identify the essential group of registers to implement a CPU live migration. 

7. To develop a CPU live migration model between ARM based instances. 

8. To conduct computing simulations, testing host CPU load performance and migration system 

metrics.  

9. To point out the lack of definition as Guest state on an ARM system in relation to the required 

CPU registers in order to perform optimum performance during a CPU state live migration. 

 

1.3 Novel Contributions 

Live migration is a valuable tool, especially on the edge where all the intense processes such as real time 

data processing and computation take place. However, live migration on Bare metal instances is a very 

challenging task, especially on ARM based systems with few available solutions. This research aims to 

deliver the following novel contributions: 

• In Chapter 6, is given a novel design and approach to discover and capture ARM processor state 

on an ARM based host system. Through this novel contribution we cover our 5th aim and objective 

as explained above. 

• In Chapter 7, a novel approach and code implementation to preserve, store and migrate processor 

state at the source host and receive the migrated registers at the destination host. That novel 

contribution covers our both 6th and 7th aims and objectives.  
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• Also, in Chapter 7, a novel approach and code implementation to adapt the migrated registers at 

the destination host. That novel contribution focuses on performing the 7th aim and objective. 

• In Chapter 8, is given a novel point for research and evaluation as far as concern the definition of 

Guest state in relation to the required group of migrated registers in order to successfully re-

assemble the Guest state on a destination system. Through that novel contribution we cover our 

8th and 9th aims and objectives as described above.  

 

1.4 Thesis Structure 

The following is the structure of the remaining chapters of this thesis: 

Chapter 2 presents the challenges that emerge due to the rapid growth of the IoT and digitalization in the 

business industry as well as the adoption of Edge Computing architecture solutions through the 

emergence and installation of Micro Data Centres at the edge. Chapter 3 then describes the performance 

limitations of Virtualization in the data centre infrastructure as well as the rise of Bare metal instances 

delivering higher end-user performance, while Chapter 4 discusses the importance of live migration on 

virtualized systems, highlighting the existing lack of support on Bare metal instances. Chapter 5 discusses 

the rapid shift in adoption of ARM processors in data centre infrastructure, the benefits, and the 

differences from the x86 architecture. In Chapter 6 we introduce our high-level design for the support of 

an ARM based CPU live migration scheme for Bare metal instances as well as the components and phases 

which are part of it, while in Chapter 7 we provide a thorough explanation of the source code for our novel 

proof-of-concept implementation. Chapter 8 provides an illustration of our implementation, presenting 

our lab environment experimental results and outcomes. Lastly, Chapter 9 gives a conclusion of the thesis 

and identifies areas for future work. 
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2 The revolution of IoT and IIoT in the industry 

2.1 The Rise of Smart Technologies drive to Business Digitalization. 

The advent of 5G technology is driving an increase in digitalization and digital transformation, forming an 

increasingly connected society with ultra-fast connection speeds, low latency and high bandwidth, 

radically changing the flow, process and utilization of data. The International Data Corporation (IDC) as 

many other official research institutes, according to recent estimates, predict that the number of 

connected electronic devices and objects to the internet forming the Internet of Things (IoT) will reach 

approximately 40 billion in 2020 while it is expected to increase up to 72 billion devices in the next few 

years, ten times more than the global population [28, 34, 248].  

The Internet of Things is a consequence and outcome of digitalization. While digital transformation is all 

about data, IoT is the link between the devices that generate and produce those data. The IoT is a huge 

ecosystem of connected and interconnected "things" where the word "things" refers to a wide range of 

digital devices, physical objects, and people that communicate through the Internet. Nowadays, digital 

sensors and micro-chips transform objects and devices to a smart version of them, making them active 

members of the IoT ecosystem. Smart devices are considered to be any electronic device or object capable 

of getting assigned an IP address and connecting to the Internet sharing data with each other. We can 

simply visualise the IoT as a giant network of advanced digital technologies that share and exchange digital 

data. 

The IoT completely transforms day to day operations, affecting the way that people access resources and 

services as well as the way that they communicate and interact with modern, smart digital technologies. 

It is estimated that people now spend almost 80% of the day in interaction with IoT devices like 

smartphones, tablets, and laptops [28, 34]. However, the IoT is not just about smartphones, tablets and 

TV sets anymore. The range of the IoT is enormous covering most modern technologies.  The emergence 

of innovative digital technologies like Smart Cities, Smart Homes and Home Automation makes IoT an 

integral part of our life.  

Smart homes are becoming the revolution in the field of commercialization where in cooperation with 

Artificial Intelligence (AI) and Machine Learning (ML) they give life and voice to home appliances like home 

assistance and smart housekeeping like smart hoovers. People are able through wearable and embedded 

devices like smartwatches and smartphones to control, manage, monitor and even schedule 

housekeeping tasks and other daily jobs. Consumers communicate and control those smart devices 
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remotely using an app or by accessing a web-based interface. Additionally, consumers can schedule to 

turn on/off the lights, or the thermostat, they can monitor and protect their properties through smart 

security cameras and even control the doors with smart video doorbells. Moreover, a variety of wearable 

health devices like fitness bracelets help on monitoring, measuring and reporting of the health status of 

the consumer.  

The emergence of IoT technologies has completely transformed cities’ infrastructure converting them to 

smart cities to significantly improve the quality of citizens’ and visitors’ life. A wide range of digital 

technologies covering every layer from the air to the street to the underground, affecting cities’ 

infrastructure through many aspects like environmental, social and financial. This urbanization trend is a 

significant factor that plays a core role in the digitalization process of cities. Surveys have shown that more 

than half of the global population is becoming more urban while this is expected to be increased to 68% 

of the global population in the next two decades [230, 231]. Urbanization increases the investments in 

the adoption of smart digital technologies which are expected to grow up to 135 billion US dollars on 

investments by 2021 according to reports from the International Data Corporation institute (IDC) [248].   

Smart cities are taking advantage of the digital and information technologies in such a manner that objects 

and people connected at the public network can communicate, having as their primary scope the 

improvement of the urban life. The core attribute in the success of a smart city ecosystem is ubiquitous 

Internet connectivity, known as hotspots. Cities hotspots work via Access Points that offer connectivity 

and enable access to the Internet almost everywhere. Cities are transformed into huge hotspots where 

inside that “dome” of connectivity people and objects are sophisticated enough to communicate, 

exchanging important digital information making cities a better place to live where citizens gain access to 

the Internet by using a variety of connectivity mediums. 

As more and more businesses follow the digitization evolution, business digitalization becomes a priority 

in most industrial sectors like manufacturing, healthcare, agriculture, farming etc in order to stay 

competitive in the business industry. Each sector needs to think and act differently, to be adjusted in this 

new digitalization era. Digitization is the key to the door leading to business digitalization as well the 

driving force in this rapid spread of IoT digital technologies that have been massively adopted both by 

industrial and corporate sectors as well as by individuals, improving our daily life in many aspects. 

Digitization is the migration process of transforming all analogue, physical assets in business to a digital 

format [28]. Through that conversion process, several digital data are produced, requiring appropriate 
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treatment for the business to benefit. There is where digitalization finds application, through the adoption 

of smart digital technologies used to improve the business operations and frameworks in order to increase 

efficiency, business productivity, revenue and the quality of the end-user product.  

The Industrial Internet of Things (IIoT) helps to manage that rapid shift, offering a link between the 

physical and the modern, digital world, making smooth the transition to business digitalization. Surveys 

have shown that the IIoT digital technologies will be adopted by 80% of the industrial businesses, 

particularly in manufacturing, healthcare and agriculture [230, 231]. 

As Figure 2.1 illustrates, the IIoT is a subset of the broader IoT ecosystem. Consumer IoT devices aim to 

improve the quality of a person's everyday life such as the smart homes and smart cities digital 

infrastructures, while IIoT on the other hand, focuses on industrial sectors’ productivity and internal 

operations that take place providing increased visibility on how users interact with products, services, or 

applications like Figure 2.2 illustrates. 

 

Figure 2-1 IoT and IIoT  

Under the scope of an IIoT ecosystem, machines, devices and people communicate, intelligently 

connected through the network, sharing actionable information optimizing strategies across several 

departments. On production, digital sensors and many other digital objects become the source of 

meaningful data where advanced, sophisticated data analytics formulas take place giving valuable insights 

into internal operations of the business. Sensors do self-monitoring, reporting in real-time progress of the 

product state, identification of potential errors as well as stock capacity of warehouses. In that way, smart 

factoring helps on proactive maintenance, avoiding downtimes or production outages, automating, and 

speeding up the supplies actions increasing production rates and avoiding human errors. Smart factoring 
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limits the need for human presence while enabling the ability of remote monitoring and management of 

production systems and processes through smart IoT technologies. 

Furthermore, the application of IoT in agriculture allows farmers to get precious insights on the growing 

status of the fields, greenhouses or the vehicles. Digital sensors installed throughout the fields collect data 

about the growing rates, or weather-related information, allow farmers to make fast adjustments based 

on given conditions.   

 

Figure 2-2 Digitalization in the Business Industry 

 

2.2 Limitations in the IoT to Cloud model  

Nowadays, the IoT is spanning everywhere we look, from devices that people own and carry with them, 

home supplies, to being embedded in factory equipment and even part of a city's infrastructure.  

As the volume of IoT devices connected to the Internet increases rapidly, the amount of raw data 

generated by those devices is also growing remarkably fast. In a recent report of IDC [248], is estimated 

that the number of the connected “things” will be 42 billion generating approximately 80 zettabytes of 

data by 2025. Some of these can be small chunks of data, indicating real-time measures gathered by 

sensors while others can be large data generated by streaming sources like voice and images.  

The world of IoT devices is composed of a diversity of device platforms where hardware and system 

specifications vary. In most of the cases, IoT devices are embedded systems with a microchip installed 

offering limited performance capabilities where most can perform some basic on-device processing tasks 

such as to execute compression and encryption mechanisms. They are not enhanced with enough 

compute power, storage, memory or network capacity in order to accomplish intensive, real-time 
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processing tasks like type conversions, sorting mechanisms, execution of advanced queries or the support 

of advanced analytic mechanisms. IoT devices deal with an immense amount of real-time digital 

information that needs to be stored, analysed, processed and be accessible anywhere from other digital 

devices and services, tasks that the IoT devices themselves are not capable of performing. Moreover, it is 

logical and consequent that individuals and businesses cannot afford an investment to build and form a 

local, on-premise data centre, in order to manage, maintain, and handle the processing of that massive 

amount of collected information. On-premises processing and maintenance tasks of both underlying 

infrastructures as well the hosted workload is very demanding, costly, time- and high energy-consuming 

procedures. So, the real question when it comes to the IoT is, where data will be stored and how fast it 

will be processed.  

There is where the Cloud-IoT model finds application where IoT serves as the source of data and the Cloud 

serves as a centralised information hosting centre. During the last decade, Cloud computing has proved 

to be the most preferred choice as a hosting environment, dominating in the IT industry, delivering an 

efficient, flexible, durable and scalable hosting environment suitable for both application development 

and deployment. Following that IoT growth, CSPs offers a broad range of services and powerful tools, 

designed to collect, store, process and manage data of any type, size and kind. Recent surveys indicate 

that 60% of businesses utilise a Cloud data centre hosting up to 90% of workloads while approximately 

90% of the business industry trust and utilise a Cloud service deployment method that Cloud Service 

Providers support [224, 225, 230]. 

Below is an overview of the reasons that make the cloud indispensable to the success of the IoT: 

• Diversity of hardware. 

• Diversity on Operating system and software requirements. 

• Storage capacity. 

• Remote processing and compute power. 

• Cloud-based development. 

• Big Data analytics. 

• Mobility. 

As we have already explained, the IoT is a massive, complex network of diverse systems that expand 

beyond traditional devices like laptops and smartphones, including a broad range of daily objects such as 

vehicles, TV sets, thermostats, smoke detectors, surveillance cameras and more. Each of them supports a 
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different type of operating system, software and data types which increases the complexity of the 

required underlying management infrastructure. Online users through mobile and web applications are 

connected to distinct Cloud-based backend platforms each of which is configured to support and cover a 

different kind of request and need. On the other hand, businesses start adjusting their workload, 

processes and services based on Cloud principles, by developing Cloud-based applications. The Cloud, 

thanks to abstraction (virtualization layer), offers a pallet of cross-platform development tools while 

supporting a wide range of storage options satisfying all kinds of tastes and needs. 

Big data uses them to apply advanced analytics which is referred to as the Artificial Intelligence 

implementation. Big data analytics are advanced sophisticated models applied on an ocean of data in 

transit meaning real-time ingested data or data at rest ingested by storages and warehouse locations. Big 

data analytics is a science in high demand delivering valuable information to the business industry and 

society. Businesses try to convert data into actionable insights that will in turn help to discover and unlock 

business potential; and understanding more about the business context makes the use of big data analytic 

tools help in making better decisions about internal operations which leads to a more efficient system in 

the future. Companies adjust, improve and optimize business operations, day-to-day processes and 

actions in order to increase business revenue and quality of the end product. Big data helps in identifying 

or predicting potential faults, preventing future failures in production while completely transforming 

business frameworks and working methods. 

An essential problem when dealing with Big Data is the resource issue. Businesses need to be very careful 

on architectural choices when dealing with Big Data, advanced analytics, and artificial Intelligence on the 

design of the underlying network and server infrastructure, database architecture options. The higher the 

volume of the data, the more resources are required like memory, processors, and disk performance to 

analyse them. The need for a durable infrastructure, that can handle an enormous amount of real-time 

data led businesses and organizations to turn to the Cloud. Most known CSPs (Amazon, Microsoft, Google) 

due to increased demand of Big Data analytics, now offer their own Big Data solutions (Dataflow, 

BigQuery) which deliver Analytics as a Service (AaaS).  

Making the most of Big Data requires not just having access to the right big data analytic tools but also to 

maintain a scalable, resilient, high-performance infrastructure capable of fulfilling the following elements: 

data collection, data storage, data analysis and data visualization as Figure 2.3 illustrates. Ideally, such an 

infrastructure must cover the following performance characteristics: 
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• Maximum usage and high available memory capacity 

• Storage capacity (petabytes) 

• Fast I/O disk performance 

• Solid network performance 

• Parallel processing  

 

Figure 2-3 Big Data characteristics 

The rising volume, velocity and variety of data generated by IoT technologies, as well as the need for data-

intensive processing applications such as big data analytics, AI and ML exert pressure and test the limits 

and strengths of the current IoT to Cloud infrastructure to the fullest from processing, memory, and 

storage to networking data access. Modernized infrastructures need to be capable of handling intensive 

processing and big data in real-time analytical tasks particularly as more and more businesses tend to 

combine these advanced technologies and workload with the Cloud. 

The IoT to Cloud architecture has established a centralised client-server model where most of the traffic 

ends up in a Cloud Service Provider datacentre backend. Although the Cloud is self-sufficient on resources 

offering an advanced palette of big data analytical tools as well as integrated artificial intelligent 

environments for machine learning developers, however, that centralised, "all in one" architecture model 

does not work efficiently and beneficially for all kinds of workload and preferences in the digital age that 

govern us. Such an architecture suffers from vulnerabilities that affect and have a major impact on the 

networking and processing performance.  

A number and variety of hardware digital devices and sensors produce an enormous amount of data. Data 

that represent information, requests or multimedia access the public network (internet) via different 

types of medium such as wireless, Ethernet, fibre, or a cellular network that serve on different speeds and 
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bandwidth. A packet that accesses the Internet is routed through several networks known as "hops" until 

reaching the destination, routing and switching mechanisms taking place and performed on that packet 

during that journey. 

As data reaches a Cloud data centre premises, the trip does not end there. Data need to traverse through 

the internal CSP network. In practice, a Cloud data centre consists of a number of internal regions, 

distributed around the world in well-designed locations. Each region communicates with each other 

through a private network owned by the Cloud Service Provider. That means that the traffic inside that 

network remains private and does not mesh with other public, widely used networks. However, data 

needs additionally to traverse through that network in order to find the right region and server where the 

required backend service is running and hosted.  A backend refers to any service, application, website, or 

big data analytic tool that consumers try to access for personal use. 

A Cloud data centre is composed of several racks of servers shared among multiple users as Figure 2.4 

illustrates. This task is performed by the adoption and use of Virtualization Technology and with a 

virtualization layer called Hypervisor. The hypervisor is responsible for managing all the inbound and 

outbound traffic. So, once the data reaches that physical resource, the physical server, then a number of 

virtualization mechanisms are applied to that data to get it routed to the right destination virtual 

environment. Virtual switching, routing, packet and schedule processes and many other mechanisms are 

applied to packets on the way in and out of the physical server.  

In order to evaluate and discuss the performance limitations of a Cloud model architecture, we first need 

to define some factors based on affecting the performance such as:  

• Network capacity 

• Number of I/o request 

• Average response time 

• Workload 

• Throughput 

• Number of connections 

• Multi-tenancy 

So, through the process as described we can also identify the following major limitations strictly related 

to performance degradation: 
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• Network latency 

• Bandwidth limitations 

• Packet switching  

• Process Scheduling 

 

Figure 2-4 Data road path from Edge to Cloud backend 

Network performance is based on three factors, latency, bandwidth, and throughput where all three are 

related and affect each other. Latency is depending on the distance and bandwidth of the transmission 

channel. Latency is another way to describe delay on a network which is measured as the time it takes for 

data to reach the destination from the source. This is usually called round-trip time (RTT) that determines 

the time taken for data to reach their destination and back to the source. RTT measurement is very 

important to TCP/IP applications where frequent acknowledgement packets must be exchanged between 

the source and destination peers. 

As we mentioned, data on an edge network accesses the Internet through a variety of ways, where 

medium bandwidth speeds vary. Moreover, the distance from an edge network to the entry point of a 

CSP data centre infrastructure vary. Any traffic that passes through the Internet there is no guarantee of 

successful and fast communication. Based on those facts, latency-sensitive applications should be aware 

and take into consideration those limitations. Network latency can be noticed in both public and private 

networks of CSPs premises. Imagine that data on average passes through up to five intermediate public 

networks, making use of at least two medium types (cellular, fibre) where different packet conversions 

are applied on the data to match and meet the requirements of each medium. Those processes produce 

quite a delay on packet transmission. Furthermore, bandwidth speed plays an important role in the 



31 
 

simultaneous transmission of data allowing the initiation of multiple user connections. Common 

enterprise networks support from 25Mbps up to 10GB of speeds. Low speed affects the total migration 

time of the systems’ state especially during the memory migration from source to destination where the 

amount of memory can reach up to 32Gbs [265].  

Modern networking architectures take advantage of network-based storage solutions adopting either a 

storage area network (SAN) or network-attached storage (NAS) implementation. Both network-based 

storage architectures can be implemented locally on-premises or on Cloud. Low network speed in relation 

to data large in size affects the data storage and disk I/O requests causing bottlenecks and delays in data 

processing. Network performance degradation issues are not the only limitations on an IoT to Cloud 

architecture. Multi-tenant Cloud infrastructures also suffer by significant performance vulnerabilities.  

 

2.3 From the Cloud back to Edge Computing 

 We are living in the digital age of the Internet of Everything (IoE) as first defined by Cisco, [34] where 

people, data, things, and processes communicate in a sophisticated manner and come into interaction 

through the Internet, which has transformed information into actionable, useful insights more than ever 

before. In a recent forecast from IDC the number of generated data produced by an enormous number of 

IoT and IIoT devices is estimated to reach the volume of 79.4 zettabytes until 2025 [230, 231]. In addition, 

Cisco predicts that by 2021, 90% of the Internet traffic and workload will be Cloud-based and only 10% 

will be hosted on-premises [230, 231]. As the volume of data sources and the data generated from those 

sources increasing rapidly, a centralised IoE to Cloud model faces lots of limitations especially in terms of 

network performance degradation and slow convergence of the information. Adopting such a centralised 

Cloud model, all data from a variety of sources flow to a Cloud data centre through the Internet taking 

advantage of the great benefits that Cloud computing provides [2], offering a pool of unlimited resources 

with high-performance computing power and storage capacities. However, in the case of IoT, that 

extreme amount of digital information puts tremendous pressure on the network and on the Cloud 

backend infrastructure while processing and storing all data on the Cloud increases the cost. In order to 

tackle the performance limitations from which an IoT to Cloud model suffers, businesses and vendors 

need to adopt durable, sustained, robust solutions, capable of handling and processing that massive 

volume of information. Those attributes create a case for the Edge Computing approach. 
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Although Edge Computing is not a new concept, it has started becoming popular again as an architecture 

implementation in modern networks due to the rapid and exponential growth of the IoT. Sending data 

back and forth to a centralised Cloud data centre puts pressure on the Internet and cloud infrastructure. 

As the number of connected devices increases the amount of data is rising extremely fast. Latency and 

higher roundtrip times become major problems for administrators. In that scale of digital information 

adopting a Cloud model is not any more efficient. The need for faster processing, lower latency and higher 

network consistency makes a case for Edge Computing solutions. 

Edge Computing brings data processing, computation, analysis and storage closer to the source where 

data are being generated and gathered instead of relying on a centralised Cloud computing model where 

data need to be transmitted thousands of miles away [8, 12, 17]. Edge Computing solutions work 

efficiently for many smart technologies and modern applications which are latency-sensitive and based 

on real-time processing.  

In general, Edge Computing is defined in the literature as “the application of a distributed computing 

architecture model where information processing takes place closer to the edge of a network where things, 

people, objects and services access and consume that information” [29, 42].  

2.3.1 Fog and Edge Computing deployment architecture models 

Although Edge and Fog computing are used interchangeably in industry there are some major 

implementation differences [51]. Both technologies are governed by the same principles in terms of 

processing data and information locally, closer to where the data originated from rather sending them to 

a centralised Cloud data centre. By maintaining data locally, we leverage the compute power of a local 

network to carry out a variety of administrative tasks that traditionally would be handled by a Cloud 

Service Provider. However, the key difference between the two is mainly focused on the location where 

those tasks find implementation.  

In order to understand more about the differences between Edge and Fog computing, we need to describe 

what it is that we call “edge” in computing. The word “edge” describes a logical layer rather than a specific 

physical location of where the edge devices and end users take place and exist. It is the logical layer where 

all kinds of devices and things are connected to the same network. In industry, the location of the edge 

depends on where data processing is by design to take place in order to deliver and fulfil business 

requirements. In Edge Computing, data processing takes place either on devices itself or on edge nodes 

(ENs). On the other hand, Fog computing handles the data as passing in and out through network devices 
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with sufficient processing power such as switches, firewalls, and routers of the network. For convenience, 

we treat those two technologies as one logical layer, called the edge layer as illustrated in the following 

Figure 2.5. 

 

Figure 2-5 Edge to cloud networking layers 

A Fog computing architecture works as a mediator tier that extends the Cloud computing operation closer 

to the edge of a network, closer to the source of data. Fog computing maintains Cloud features like 

networking, virtualisation, storage, and redundancy while meeting the requirements of the sensitive 

applications that reside in an edge network offering Quality of Service (QoS), higher service level 

agreements (SLAs) and low latency. A Fog architecture is described as a decentralisation model where 

resources take place in distributed locations between the edge network and the Cloud. The goal of such 

implementation is to improve the overall network performance bringing computing power closer to 

where it is needed, reducing latency and network delays which occur during the long transmissions back 

and forth to a centralised Cloud data centre backend. Additionally, a fog infrastructure allows us to apply 

a higher level of security by implementing several demilitarized zones (DMZs), filtering the configuration 

of grouping patterns of the same type of data and deploy firewall rules for finer security. 

Edge and Fog computing are interconnected. The first one introduces a management layer which 

efficiently handles data generated by edge devices forwarding results and core operations to the fog layer, 

while the second one is responsible for the transmission of data to the Cloud. The adoption and 

deployment of both technologies has radically changed and transformed the traditional IoT to cloud 

model opening the road for modern IoT technologies to benefit from low latency, higher bandwidth 

capacity, and faster processing and improved network consistency. 
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As we mentioned, the term Edge Computing describes a logical layer that brings data computation closer 

to the user rather than a specific location where Edge Computing should be applied and deployed. 

Deploying an Edge Computing architecture depends on several factors and varies from infrastructure to 

infrastructure. In the case of large scale IoT networks a variety of devices are connected using Wi-Fi, 4G 

or the latest 5G technologies producing data that varies in processing and transmission requirements and 

needs, something that makes Edge Computing architecture deployment very challenging in order to 

provide full network coverage. 

Gopika et al. [251, 252, 253] classify Edge Computing architecture designs in three implementation models 

however, from our point of view and understanding of the term edge we focus on two of them as 

illustrated in Figure 2.6. The first deployment model is by utilizing resource rich edge nodes where user-

applications connect while the second model is by utilizing a heterogeneous group of edge devices. On 

the left side the figure describes a model consisting of a number of resource rich edge nodes installed in 

a distributed way. Those nodes could be powerful, high-performance servers capable of hosting, 

processing and interact with end-user applications while on the right side, a variety of computing and 

networking resources act as processing and computation point such as routers, switches, access points 

and embedded devices capable of processing data. 

Based on the experiments that Gopika et al. [251, 252, 253, 254] were conducting, taking as use cases 

gaming and other resource intensive applications, the necessity of the Edge Computing paradigm is shown 

in order to meet the latency and delay requirements of modern real-time applications providing great 

performance to the end user. Even in cases where Edge Computing is deployed through limited computing 

resources, it remarkably improves the overall system and network performance experience giving positive 

feedback on adopting Edge Computing architectures on several application scenarios. 
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Figure 2-6 Edge Computing architecture deployment models 

2.3.2 What are the benefits of Edge Computing? 

Edge Computing completely transforms the way of handling, processing and analysing data coming from 

a variety of IoT devices and a diversity of IoT technologies. It is letting us achieve workload decentralisation 

helping on offloading network traffic. In that way, even with the rapid growth of IoT technologies that 

require real time processing, no impact should be noticed on the network performance. By adopting such 

a distributed architecture model, computational tasks and needs can be delivered at the edge as data are 

collected and where they are produced, eliminating the need for sending data long distances to a 

centralised Cloud data centre location. Some of the great benefits that Edge Computing implementation 

is offering are mainly focused around the following areas:  

• Improved performance 

• Data privacy and security 

• Reduction of operational expenses 

 

2.3.3 Improved Performance 

Edge Computing enables the ability of accurate, faster processing by improving the network performance 

while remarkably reducing the latency. Reduction of latency is one of the driven, key benefits of Edge 

Computing, making it attractive to many businesses. Latency is an important attribute for most latency-

sensitive, real-time applications and modern IoT technologies with strict network performance 

requirements such as video streaming, online gaming, autonomous vehicles, and artificial intelligent and 

big data analytics. The edge is located closer to the end-user and IoT devices rather than a hundred miles 
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away like a Cloud data centre. The Edge Computing layer reduces the distance between edge devices and 

the Cloud. It achieves that through the relocation of where processing takes place on a network. Placing 

computational tasks at the edge of a network, closer to where data initially was generated, helps to 

prevent data from travelling long distances, crossing a variety of unknown networks until they reach a 

centralised Cloud data centre. Shorter distance means lower roundtrip times, lower latency, speeding up 

data processing and system communications.  

On a traditional IoT to Cloud model, data follows two-way processing streaming paths, an upstream and 

downstream. As Figure 2.7 points out, upstream is the stream where data flow from IoT devices to the 

cloud, while downstream is defined as the data flows from the Cloud to end devices. IoT devices not only 

consume data and information by making requests on Cloud-based services and applications but at the 

same time become an active source of information, producing data. Users when accessing web-based 

applications or login on a mobile application, send identification data back to the application backend 

while after data pass processing, a reply with access permitting or denying goes back to the user. Instead, 

a well-designed Edge Computing architecture solution can perform a variety of administration tasks, data 

storage, processing, analysis, caching and computation, offloading the traffic and requests heading to the 

Cloud.  

 

Figure 2-7 IoT to Cloud model 

Latency increases according to the distance. The longer the distance that data need to traverse to get 

processed, the higher the latency of the network. We measure latency in relation to the round-trip time 
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(RTT) which is the time it takes for data from a source to reach a destination and back again. RTT is one of 

the most widely used measurements in order to determine or diagnose the reliability and efficiency of a 

network connection. In some cases, network latency can prove a threat not only for the smooth operation 

of applications but also to human life. In case of autonomous vehicle technology, vehicles like cars and 

public transportations exchange information constantly with a centralised system that controls and 

manages vehicle's route through a satellite. Network Latency or any delay of a command reaching to a 

vehicle can be proved vital putting human lives in danger. 

In addition, low latency helps in achieving higher throughput, freeing faster the available bandwidth. In 

that way, more open connections can be established in a shorter period and higher throughput which is 

a significant factor and attribute of applications that make use of TCP/IP connections, which means longer 

battery life for IoT devices. Most IoT devices are embedded systems, with low hardware specifications 

and limited power capabilities. Intensive processes in combination with long term connections and the 

effort to maintain those connections for a long period consumes a lot of energy, exhausting the device's 

battery life in a short time. Therefore, by implementing connections for shorter periods of time due to 

short distances, we achieve longer battery life which is a very important aspect especially in agriculture 

where digital sensors monitoring the field need to get removed in order to recharge, causing downtimes. 

Below are some more real-life examples where the Edge Computing architecture solution makes a 

difference compared with a traditional Cloud-based implementation. 

Autonomous vehicles and self-driving transportation are a huge part of modern Smart Cities 

infrastructures. Automation combines different technologies like image and video processing, GPS 

navigation control systems, live tracking and traffic management (ATM) systems that demand sub second 

response times. Vehicles send real-time information like video and image footage feeds to a backend 

service hosted on a centralised Cloud data centre. Once data gets processed and decisions made then 

instructions return to the vehicle. If autonomous vehicles must exchange information with a Cloud data 

centre each time a movement is made, vitally important seconds are added to the overall computation 

process. A slight delay of the information can prove vital to both passengers and pedestrian life. As we 

know, it only needs a few seconds of a vehicle deviating from its course to put people's lives in danger.  

Reduced latency is not the only benefit of an Edge Computing infrastructure. Increased capacity and 

availability of network infrastructure and higher bandwidth speeds are some other aspects of the  
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Edge Computing model. Consider the case where building surveillance cameras transmit live footage of 

high analysis that needs to be stored and analysed for future use. Streaming that continuously raw data 

of video, sound data and motion signal to a cloud server puts a significant strain on the Internet and Cloud 

data centre infrastructure where thousands of cameras are doing the same thing. Gigabytes of data, from 

a number of sources consume network bandwidth, creating bottlenecks and latency on their way to the 

Cloud. By relocating storage and processing of image and motion analysis workload to the edge of the 

network, we achieve offload and distribution of the massive workload, and significant reduction of 

bandwidth.   

Furthermore, Edge Computing works beneficially in cases like video and sound streaming, online gaming 

platforms, real-time image processing, video surveillance etc. Prior to Edge Computing, face recognition 

applications were running advanced algorithms on Cloud-based services which would take a lot of time. 

With the adoption of an Edge Computing model, those algorithms could run locally on the edge saving a 

lot of power, cost, and bandwidth. 

Completing some administrative tasks on data such as conversions, filtering, prioritising help us to manage 

the information efficiently maintaining a high quality of data at the edge avoiding transferring unnecessary 

data to the Cloud for further computation and analysis tasks. Edge Computing provides a great fit with 

data analytics and artificial intelligence processes that demand fast response times, and low latency real-

time processing, tasks would be inefficient if data should be transmitted to a centralised cloud data centre. 

Edge Computing can also be proved efficient to CDN implementations where reduced RTT and latency are 

the primary goals. Caching data closer to end-users but also with data crossing lower distances achieves 

less congestion and fewer bottlenecks that lead to more core bandwidth. 

2.3.4 Data privacy and security 

In the case of an IoT to Cloud model, data flows through several unknown networks, crossing many 

networking devices. Once data reaches a Cloud backend server, the virtualization layer is in place. From a 

security standpoint the virtualization layer hides a lot of security threats. Storing and maintaining data 

and other sensitive information in a shared environment like a Cloud data centre, exposes data to several 

security threats [82]. 

Now more than ever before, with the massive growth of IoT devices and the adoption of Cloud solutions, 

virtualization on the Cloud will face a lot of challenges around data protection and data rights. 

Furthermore, with the updated rules as defined by the European Union’s General Data Protection 
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Regulation (GDPR) finding implementation on everything, data integrity and privacy becomes a major 

concern for businesses and organizations. 

By leveraging the computing power of a local network, under specific region boundaries, we can more 

easily achieve a finer security definition and control the policies, security rules and regulations that need 

to be followed up, offering better privacy in order to keep data safe and consistent. In that way, we 

minimize the potential of network attacks since individual edge networks can be monitored more easily 

while data and information are exposed on fewer shared users and devices.   

2.3.5 Reduction of operational expenses 

Another important driving factor that leads to Edge Computing is the operational costs. As the size of a 

network grows due to the increased demand and growth of IoT devices, the need for higher bandwidth 

speed and high availability, remarkably increases business expenses. Although the bandwidth is sufficient, 

ubiquitous and easily accessible, it comes with a cost. Furthermore, storing, retrieving, and accessing data 

frequently to a cloud storage service increases the costs more than many businesses expected.  

Edge Computing reduces the bandwidth costs by applying data processing within the LAN network before 

data reach the WAN layer. Taking as an example, video surveillance cameras that produce data of HD 

quality that can reach 1,000GB in a month, streaming that amount of data over an LTE network or a fibre 

network remarkably increases the cost.  

Implementing that intermediate layer of Edge Computing we can distribute the load, performing most 

processing and storage tasks at the edge and forward the core information or an aggregation of the data.  

 

2.4 The utilization of Micro DCs at the Edge 

Τhe demand for instant access to data and information at anytime from anywhere, as well as the need for 

faster, latency-free processing, leads more and more businesses onto the adoption of the Edge Computing 

paradigm. Edge Computing describes a topology in which data and information processing, storage and 

analysis are placed closer to the source of the information, reducing the latency while increasing the 

available bandwidth of a network. The goal of such an architecture is to avoid long-distance data 

transmissions back and forth to a centralised cloud data centre. IT administrators have the flexibility to 

choose and decide whether applications should be more efficient to be hosted on the Cloud or on the 

edge of the network.   
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As we described in Section 2.3.1, one of the edge deployment architectures is based on the utilisation of 

resource rich edge nodes (ENs). In such implementation, edge nodes are expected to be high performance 

servers fully equipped with all the required resources which are necessary in order to cover network needs 

such as compute power, storage, and networking infrastructure. The number of ENs varies and depends 

on several factors such as the number of IoT devices that are connected to a network, the communication 

medium as well as the type of the IoT devices. The emergence of Micro Data Centres (Micro DCs) could 

meet the challenges and demands of such an implementation. Micro Data Centres can be a core part of 

an Edge Computing implementation, sitting along the route between the IoT edge devices and the Cloud. 

Micro DCs installed in various distributed locations can be configured to gather, store and process data of 

a single site or branch while they can be a great fit serving as content delivery network (CDN) servers 

helping in caching data and content at the network edge like Figure 2.8 illustrates. 

 

Figure 2-8 Adoption of a Mirco DCs architecture diagram 

 

CSPs install data centre facilities in various locations around the globe, named regions, where each region 

is sub-divided by two or more availability and redundancy zones. A zone is a distinct, separate, fully 

equipped data centre having its own power supply and cooling systems, computing power, and storage 

[263]. Inspired by and adopting that architecture as Figure 2.9 illustrates, Micro DCs could play the role of 

a zone, formatting a Micro DC triangle on the edge providing high redundancy and availability of services.  
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Figure 2-9 Adopting Zone triangle architecture on the edge 

A Micro Data Centre as the name implies, is a small footprint of a traditional data centre, typically having 

the size of a rack, capable of support up to 10 servers and 100 VMs. It is a pre-designed, pre-built, pre-

configured, self-contained containerized data centre that aims to provide solutions on a different set of 

challenges which traditional data centre infrastructures are unable to handle. As a standalone, self-

contained system, is fully equipped with all the features that a traditional data centre contains, including 

networking connectivity, security, cooling, environmental monitoring, power protection and distribution 

supply, Micro Data Centres play a key role in the Edge Computing implementation. We can think of the 

Micro Data Centre as a tooling or “medium” of “how” Edge Computing is intended to work and succeed. 

Through the adoption of a Micro DC it is easier to understand how Edge Computing serves and supports 

all those benefits that it is promising to provide. 

The driving factor that brought the development and rise of Micro Data Centres was the desire for 

workload distribution to several locations through the adoption of an Edge Computing architecture where 

processing and a variety of administration tasks would be handled locally instead of transferring data and 

information thousands of miles away to a centralised Cloud data centre. 

Maintaining a data centre on premises is a costly, time-consuming process that requires the need for 

specialised IT staff and a support department as well the need for a well-designed, secure hosting space 

for all the server infrastructure. The emergence of Micro DCs came to change the view of hosting a data 

centre on premises.  

Micro DCs are designed to eliminate the limitations and restrictions that a traditional data centre deals 

with, offering the benefits of reducing of upfront capital investments and utilization costs, reduced 

footprint and energy consumption rates, while increasing the speed of deployment of an additional data 

centre offering flexibility and scalability. Micro DCs can be easily deployed and get “repeated” on a site 
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when and where needed in a cost-efficient, flexible manner. They have the capability to perform intense 

data processing functions such as big data analytics, machine learning and artificial intelligence. Once one 

is fully utilized; another Micro Data Centre can be added either on the same facilities or at a different site 

based on the current requirements. Micro Data Centres are shipped fully equipped with all the necessary 

infrastructure resources, offering a plug and play solution, ready to go as powered on.  The standardized 

model and the compact, containerized style help with fast deployment, increasing scalability, while it can 

fit anywhere, easily deployed in various locations and situations where a traditional data centre would be 

impractical or even impossible to fit. The speed of deployment of a Micro Data Centre varies. The more 

standardized model the more likely to be available ready to be delivered.  

Micro DCs offer the following key benefits: 

• Low latency: The communication distance of people and devices with a Micro Data Centre edge is a 

significantly shorter path than communication with the Cloud. Less distance means lower round-trip 

delay time and low latency. Consequently, achieving faster data transmission and processing times. 

• Communication channels: Data makes use of and pass through different type of networks on their way 

to reach a Cloud edge cluster. Mobile networks make use of satellite communications and 

infrastructure which significantly increase the latency which causes remarkable degradation 

performance. Utilizing a Micro DC’s architecture, people and devices connected to the Internet by 

using wireless and local network connections spanning a smaller number of networks through optical 

fibre infrastructures, make faster and more reliable the interconnection among computing and digital 

nodes to a server edge cluster. 

• Data governance: Most parts of today’s business world depend on digital data. Businesses depend on 

the availability, durability, security, quality, and fast processing of data. Big data analytics models 

require fast response times, like the stock exchange and any trader company.  

• Security: Each Micro Data Centre has a limited amount of computing resources, although enough to 

perform big data processing and analysis functions. However, the amount of the interconnected 

computing resources is enough to achieve malicious attacks like a DDoS attack. 

2.5 Summary 

The increasing pace of IoT devices connected to the Cloud reveals some of its architectural limitations 

adding extreme pressure on the network and backend infrastructure of the data centres. Network 

bottlenecks, latency and delays are some of the degradation performance issues that nowadays the 

centralised all-to-Cloud model must deal with. The demand for low-latency, fast responsiveness and 
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access to data processing, computation and storage brings the need for Edge Computing architecture 

solutions. Relocating data operations closer to the user, we achieve offload of the global network while 

offering higher stability, consistency, better data management and finer security. 

The emergence of Micro Data Centres, fully equipped, modular, small in scale, easy to be installed and 

deployed almost everywhere, make them the best solution in such use cases.  Micro DCs allow the 

adoption of a decentralised architecture solving the network performance issues in a cost- and power- 

efficient way. 

In the next chapter we will discuss the performance issues that virtualization technology introduces in 

computing and the emergence of Bare metal instances as hosting platforms offering higher performance 

than virtualized. 
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3 Virtualization Technology 

3.1 Overview of Virtualization 

Virtualization Technology (VT) plays a key role in the operation and implementation of Cloud computing 

offering higher utilization performance of the underlying infrastructure on data centre facilities through 

the performance of server and workload consolidation techniques while remarkably reducing the need 

for capital investments on hardware resources. Although both VT and Cloud are two independent, distinct 

technologies we could say that they are strictly bonded together in order to deliver a Cloud-based 

functionality in an economic, efficient, flexible and reliable way. In its broader sense, Virtualization is the 

art of science that enables the ability to create multiple virtual entities of an IT object or resource like 

storage, network and server resources. A single piece of an IT object operates and acts as if it were 

multiple instances of it [3, 7, 9, 40]. As we described in a previous section, Cloud operation is delivered 

through the public network (Internet) to the end user, through the form of the three main services, IaaS, 

PaaS and SaaS. One of the core components in the architecture of all those services is the virtualization 

layer. Although VT is not visible to Cloud consumers, it is a fundamental part of the Cloud architecture 

finding implementation through a suite of forms covering a broad range of the IT resource at the backend 

of a Cloud datacentre infrastructure. Some of those forms which we can discern, and mention are, Storage 

virtualization, Network virtualization, Data virtualization and Hardware virtualization while Server 

virtualization has become the most well-known form of deployment not only in cloud data centre 

infrastructures but in the IT industry in general.   

Server virtualization is the biggest trend of all the forms of virtualisation in the IT industry finding extensive 

implementation in any kind and size of business providing great benefits. One could say that is a 

combination of forms, merging characteristics of both operating system and hardware virtualization 

methods. It is the concept of the partitioning of a physical computing system (desktop, server, and laptop) 

into several distinct, individual virtual environments, simulated computing entities called Virtual Machines 

(VMs), capable of running and hosting their own operating systems. Each VM is unaware of the existing 

virtualized infrastructure or the existence of the rest of the VMs. Server virtualization permits the 

simultaneous installation and execution of multiple OSs and any kind of workloads on the same physical 

computing system. The most vital role on a virtualized architecture is played by the hypervisor, also known 

in literature as the VMM (Virtual Machine Monitor). A virtualized server system is divided into four major 

components following a layered structure where the layers each depend on one another. Starting from 

the bottom up, the physical hardware called host environment, is the collection of the actual amount of 
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physical hardware resources of the server, like CPU cores, memory, storage, and I/O peripheral devices. 

On top of that, based on the type of hypervisor that finds implementation on each topology depending 

on current needs each time, stands either the operating system where the hypervisor layer resides and is 

equipped with a number of VMs, called host OS (Type 2 - Hosted hypervisor), or directly the hypervisor 

layer (Type 1 – Bare metal hypervisor) [33]. Finally, at the top stands the operating system running inside 

a VM called Guest OS. 

From a technical perspective, taking a closer look inside a CSP data centre infrastructure as the Figure 3.1 

shows, each physical server system is hosting several Virtual Machines that share the same physical 

hardware resources. Each VM is part of a virtualised private network which is able to communicate with 

other VMs members of the same virtual network as well with the external world, through the Internet. 

On each VM is assigned a virtual port attached to a virtual switch where that virtual switch is part of a 

wider virtual network composed of additional virtual switches and virtual routers that are responsible for 

passing and routing the traffic from the virtualised infrastructure to the physical networking 

infrastructure. Furthermore, a cluster of storage devices is available to users, in order to store system 

information as well as any kind of structured and unstructured data they want.  

 

Figure 3-1 Cloud data centre 

3.1.1 Types of Hypervisors 

The most essential role on a virtualized system is played by the hypervisor, also known as virtual machine 

monitor (VMM).  A hypervisor is a software-based, abstraction layer that has multidimensional roles. The 

primary scope of a hypervisor is to abstract and isolate the hardware resources from the upper operating 

system and applications running on it. In that way, a hypervisor allows the simultaneous execution of 
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multiple operating systems on a single physical server by creating virtual machines named Guest machines 

or Guest OSs while the physical server that a hypervisor is running on is called the Host machine. Each 

Guest machine runs its own workload. A hypervisor works as an orchestrator tool which manages, controls 

and monitors access to the VM and the underlying hardware resources. Through the hypervisor, system 

administrators can perform several actions like to create, stop, delete, and modify a virtual machine or 

even migrate to another host system, all the VMs are hosted upon the same host machine, meaning that 

all are sharing the same physical resources. The hypervisor is responsible for the proper allocation of those 

resources to each Guest machine in order to provide smooth operation and support. A hypervisor is also 

used as an extra security layer that protects from unauthorised access of the hardware resources from 

rogue applications or software running on a system. 

A hypervisor has four main functionalities, emulation, isolation, allocation, and encapsulation. The 

hypervisor offers an emulated environment of a fully operational computing system. Each Guest operating 

system can’t tell the difference between a virtual machine and a physical machine, nor can applications 

or other computers on a network. They have traditionally no idea or sense of the existence of other VMs 

or the virtualized and shared hardware infrastructure. From a VM point of view, it behaves exactly like a 

physical computer able to execute and host any kind of workload. A high importance functionality is 

isolation. The hypervisor must create and keep each VM’s environment and processes running alongside 

them in isolation. Operations and activities executed by a VM must not interfere with or affect the 

operation of the rest of the VM’s or host’s operating system functionality. Furthermore, the hypervisor is 

a management tool that is able to control and allocate the amount of the virtual resources like, processing, 

memory, storage and networking resources.  

There are two supported types of hypervisors, Type 1 also known as a Bare metal hypervisor and Type 2 

also known as a hosted hypervisor. The former stands directly upon hardware having full control of the 

hardware infrastructure and resources while the latter is installed upon a hosted operating system 

running on a host machine as Figure 3.2 illustrates. The main differences between those two types of 

hypervisor are mainly noticed around the performance and security. A Bare metal type of hypervisor 

typically is faster offering higher efficiency because it has direct access to the hardware resources and 

does not need to pass through an operating system layer. Since there is not an OS layer or host 

applications to compete for access to hardware resources, which gives freedom for the hypervisor to take 

control of all the available hardware resources and properly allocate them to the VMs as needed. 

Furthermore, Type 1 hypervisors offer higher security since the absence of an operating system layer 
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limits the surface for potential attacks and compromises. The most well-known and common 

implementations of Type 1 hypervisors are VMWare ESXi, Xen, Microsoft Hyper-V while major interest 

has been raised on ARM based hypervisors like Xvisor and BitVisor, which will be explained further in 

Section 6.3 and 6.4.  

Before choosing a Cloud Service Provider for hosting their services and applications cloud consumers need 

to take under consideration which hypervisor each provider uses and pick wisely depending on their 

requirements. Amazon holds the most shares in the Cloud IaaS market, and recently announced the shift 

from a Type 2 hypervisor (KVM) to a customized version based on the open-source Xen. Google Cloud 

Platform, although new in the IaaS market has managed to gain an important share in the last two years. 

Google makes use of a customized version of the KVM hypervisor while Microsoft with the Azure cloud 

platform utilizes Hyper-V hypervisor [261, 262]. Although each of them has developed their own custom 

version of a hypervisor, the performance penalty that the virtualization layer introduces on a server 

system is unavoidable. Therefore, Cloud consumers should also consider Bare metal instances for 

intensive workloads that need dedicated performance which neither Type 1 nor 2 of hypervisors can offer.  

3.1.2 KVM and Xen Overview 

Xen is a member of the Type 1 hypervisor family also known as a Bare metal hypervisor that allows the 

creation of several Guest machines running on the same physical host machine. The Xen architecture is 

composed of a hypervisor layer, a specialised Guest operating system named Domain-0 or Dom0 and 

several Guest machines called Domain-U or DomU. Once it is booted up it creates the specialised 

environment Dom0 which is executed on the most privileged layer having direct access to the underlying 

hardware resources and the rest of the infrastructure. Dom0 like each DomU Guest machine has a 

dedicated vCPU and virtual memory while containing device drivers to I/O devices.  

Xen offers two operation modes, para-virtualized (PV) and hardware-assisted virtualization (HVM) modes. 

PV mode requires the modification of the Guest operating system making it aware of running upon a 

virtualized environment. However, modern processors are enhanced with Virtualization Extensions (VT) 

like Intel VT and AMD-V offering the capability of executing a Guest operating system without any kernel 

modifications, achieving full virtualisation [57, 59, 75]. Xen uses QEMU to perform full hardware 

emulation including BIOS, IDE disk controller, VGA graphic adapter, USB controller, network adapter etc. 

for HVM Guests. CPU virtualization extensions are used to boost the performance of the emulation. 
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KVM (Kernel Virtual Machine), on the other hand, is a Type 2 hypervisor offering full virtualization meaning 

that Guest operating systems do not need to get modified in order to execute on a Guest machine 

environment. KVM like Xen is based on the same hardware-assisted virtualization extensions support 

(Intel-VT, AMD-V). KVM consists of a sophisticated, advanced kernel module, kvm.ko that provides the 

core functionality in addition to specific CPU modules like kvm-intel.ko or kvm-amd.ko. KVM does use a 

customized version of QEMU to perform hardware emulation while making use of para-virtualization to 

access I/O devices through VIRTIO. Figure 3.2 illustrates the architecture operational differences between 

Xen and KVM hypervisors as well as the flow of access to and from the hardware resources. 

 

Figure 3-2 Xen and KVM hypervisor architecture 

3.1.3 Challenges of Virtualization 

Virtualization technology no doubt has changed the system architecture a lot and even more a data centre 

infrastructure. Through server and workload consolidation techniques, we can achieve higher CPU 

utilization and reduction of the overall operational and maintenance costs. However, virtualization 

introduces significant challenges related to delivering consistent performance, security and privacy among 

virtual machines and applications running on top of them. Although VT helps in maximizing utilization of 

hardware resources, a lot of research evaluations have shown that virtualization comes with shortcomings 

on the performance of a system that significantly affects the operation of the hosted applications [7, 259, 

260].  

Although in the last decade advanced enhancements on the hardware and software layer have reduced 

the performance overhead associated with virtualization, the performance gap with a native, non-

virtualized system remains. Some of the major problems of virtualization right now are performance 

guarantees and consistency while privacy and security concerns that can appear based on the 

configuration. If you deal with requirements of milliseconds processing it is difficult to fulfil that in a 

virtualised environment, more if we talk about centralised Cloud facilities hosted thousands of miles away 
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where the latency factor is added. Based on experimental measurements, the overhead in virtualized 

environments can reach up to 20% [7, 259]. 

Several performance evaluations have been conducted by many researchers looking at identifying the 

performance metrics that most affect the performance of a virtual system. Although conducting an 

evaluation of performance on cloud infrastructures is often not possible, many experimental studies have 

proven that the virtualization layer adds a performance barrier no matter what the hardware or software 

it runs upon. There are many aspects to take into consideration in order to address this performance 

degradation, like networking I/O requests, network throughput, CPU utilization, I/O disk speed, I/O 

peripheral requests etc. [260]. 

The degradation performance on a virtualized infrastructure can be noticed in different areas. As the 

schematic diagram illustrated in Figure 3.3 shows, three of the most important areas are the Hypervisor 

layer, the management of Guest resources and the network. Let us give a brief description of each area 

and how it actually affects the system's performance. 

 

Figure 3-3 Virtualization performance degradation areas 

A hypervisor plays the role of the orchestrator; a management software that controls the operation of the 

virtual machines. It is responsible for the proper allocation of the hardware resources while performing a 

variety of administrative tasks like creation, suspension, and deletion of a virtual machine. The hypervisor 

is responsible for performing CPU scheduling of the processes running on each virtual machine in order 



50 
 

to provide a parallel execution, causing degradation of performance while caching and storing the state 

of a VM in memory or storage based on the infrastructure. Physical hardware resources are dynamically 

shared among Guest users by the hypervisor when and as is needed. In that way, virtualized shared 

environments suffer by the phenomenon called "noisy neighbour" where virtual machines compete with 

each other. A neighbour creates "noise" when a VM monopolizes most of the portion of the available 

hardware resources. In that way, resources are shared unequally, while it exhausts the hardware 

infrastructure at the expense of the other VMs resident on the same host system. 

Multiple types of Kernel may be running on the same host server, sharing the same physical hardware 

resources as processors and memory. Each time that a process raises an exception request in order to 

access or perform a more privileged function where the user's privileges are not enough to do that, the 

hypervisor needs to save, preserve and restore back the state of the VM in/from a portion in memory. 

This is a very intensive and CPU consuming process.  

However, the network performance degradation is considered as the most significant factor in virtualized 

systems. On a virtualised host, all the Guests share and make use of the same physical network interfaces 

sharing the available bandwidth and medium. Each VM has a dedicated link called a virtual port attached 

to an internal logical virtual switch which the hypervisor manages. The physical network interface is 

attached and is a member of that virtual switch. Through that virtual switch and after the performance of 

the switching and routing procedures that take place as if it is happening on actual hardware switch, the 

data finds the way out to the external world. The packet switching process executed by the hypervisor 

becomes a time-consuming process especially when the number of hosted VMs increases or the flow and 

rate of data is increased. Applications demand the establishment of a communication channel before the 

data exchange starts. However, multiple opened communication channels for a long period of time 

consume a significant portion of available bandwidth, increasing the network overhead and bottlenecks.  

In computing, operating systems make use of the hardware-based hierarchical protection mechanism to 

protect data and applications from faults and unauthorised access to the hardware. That mechanism is 

implemented by CPU architectures providing different CPU execution modes. Intel architecture 

processors implement that mechanism through four protection rings, Ring 0 to 3 where Ring 0 is the level 

with the most privileges that is being used by the kernel while Ring 3 is being used by the user. On the 

other hand, on ARM processors these privilege levels are implemented through an exception level 

mechanism which we will analyse further in Section 5.4.2.Although the modern CPU processors are 

enforced with advanced virtualisation extensions which allow a Guest operating system to be executed 
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on Ring 0, still privileged instructions need to be trapped on hardware and emulated, significantly reducing 

the processing performance while during that time a sequence of actions need to be performed by the 

hypervisor layer in order to keep track of those commands and virtual machine state, slowing down the 

overall system performance.  

Modern virtualised topologies make use of network-based storage which means that each VM in order to 

perform a read/write request needs to raise a request to the hypervisor. Although hardware assisted 

virtualisation extensions improve the networking virtualisation performance, accessing multiple virtual 

machines on the same network infrastructure exhausts the available bandwidth while slowing the 

network throughput. The CPU sharing in combination with packet delay and packet loss on a virtualised 

shared infrastructure, although typically low, still can slow the network performance which can prove 

critical to transactional database connections.   

Although virtualization offers centralized management, by merging all the services into a single system or 

fewer physical systems, this makes your system architecture vulnerable increasing the chances of a single 

point of failure. Server consolidation plans must be delivered followed by strong backup, failover, 

redundant systems. On Cloud data centres (CDCs), cloud providers offer auto-recovery and auto-failover 

mechanisms due to system failures, keeping data backups in different areas and regions, globally.  

However, the most important consideration and challenge on virtualized environments is to secure and 

protect the virtualization infrastructure from security threats. Virtualised environments are exposed to 

many vulnerabilities and risks which an intruder can exploit, threatening the integrity and privacy of a 

system. Those vulnerabilities are at higher risk when it comes to a Cloud infrastructure scale.  

The heart of a virtualized system is the hypervisor; it not only controls and manages the operation and 

state of each VM hosted on a host machine, but also handles the inter-communication between VMs and 

VMs to the physical hardware. On modern CPU architectures, a hypervisor is loaded on a dedicated mode 

at the highest privileges. Therefore, hypervisor-based attacks are considered the most dangerous and 

must be eliminated.  A hypervisor is a massive software package, configured to perform many 

sophisticated tasks. The main responsibility of a hypervisor in this context is therefore to keep each VM 

isolated from the others and from unauthorised access to the host operating system or hardware direct. 

A compromised, affected hypervisor can perform several rogue actions. A malicious intruder is able to 

bypass the VMM layer and gain direct access to the underlying hardware or the operating system that is 

running on the host in the case of Type 2 hypervisor architecture. Poor isolation can also cause a series of 
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malicious attacks like VM escape and VM hyper-jacking [77, 82]. Administrators must be very careful with 

offline or dormant VMs which remain provisioned offline. Those VMs may contain a security loophole and 

if those VMs return to an online state after a while, this creates a point of vulnerability until their patches 

and software updates are brought up to date. 

Furthermore, VM-based attacks are another category where a rootkit and malware installed on a VM tries 

to perform and execute penetration attacks either to another VM or on external targets. Figure 3.4 names 

some common cases and type of attacks that administrators need to be aware of on virtualised systems 

[77, 82]. 

 

Figure 3-4 Virtualization threats considerations 

 

3.2 The Advent of Bare metal Instances 

Prior to the emergence of Cloud computing, businesses used to manage and administer their own data 

centre infrastructure hosted on their own facilities. The development of server virtualization remarkably 

reduced businesses’ upfront costs and capital investments on space and hardware resources. However, 

hardware and infrastructure maintenance as well as administrative tasks were too costly and time-

consuming processes, that were required a lot of effort from administrators while deadlines and time 

limiters putting a lot of pressure on them. With the advent of Cloud computing, many businesses decided 

to relocate and shift their workload to the Cloud by adopting a more flexible rental model.  

The cloud is a multi-tenant ecosystem. Due to the existence of a virtualization layer, the physical hardware 

resources are shared among all users causing a lot of limitations mainly noted on the system and network 

performance like latency and inconsistency, while due to the shared hosting environment, a lot of 

challenges around security and privacy are raised. Therefore, virtualized cloud infrastructures are not 
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intended, and do not work efficiently, for all kinds and types of customers and workloads. There are 

specialised workloads that are restricted by strict privacy and security agreements while demanding 

powerful computing performance. Even the use of containerization, an alternative form of operating 

system virtualization where multiple applications isolated from each other, sharing the same OS kernel, 

cannot host and provide a consistent, high-performance environment to intensive, specialised workloads 

[3]. Although containers are considered lightweight environments, easily scalable and highly portable 

solving a number of problems for software developers, performance and security issues and remain. 

Containers share the same OS, so isolation is considered lighter than VMs while resource allocation most 

of times is poor and limited. To be modular and easily portable, containers allocate some MB of memory 

and cores of a CPU [266]. Therefore, that kind of form of virtualization is not preferred for intensive, 

heavily resource-consuming applications. 

The need to tackle those limitations and offer to customers a stable, consistent, durable, high 

performance and secure infrastructure led CSPs to include as part of their service a suite of Bare metal 

instances, also named as Metal as a Service (MaaS). 

 

 

 

Figure 3-5 Metal as a Service part of the Cloud service suite 
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3.2.1 What are Bare metal instances 

A Bare metal instance is nothing more than an actual physical server machine, a piece of hardware that 

lacks the virtualization layer as shown in Figure 3.5 above. It is specifically designed to eliminate the 

virtualization overhead delivering a native, pure system performance to the end-user. 

Although the virtualization technology plays a core role in the cloud computing infrastructure, it is not 

necessary or a prerequisite of the normal operation of the Cloud. A statement of N.I.S.T [95], supported 

the idea that the operation of Cloud is not based on virtualization but undoubtedly enables and helps in 

the delivering of most of the Cloud computing benefits and characteristics. Cloud computing can stand by 

itself without the contribution of the VT layer following the same principles, maintaining the same 

characteristics offering the same and more benefits even through Bare metal instances. 

Bare metal instances are servers dedicated to a single tenant meaning that the hardware resources belong 

and are consumed by a single and only customer. Three of the top Cloud Service Providers, Google, 

Amazon, and Microsoft as well many other IT vendors like IBM, Rackspace, Oracle etc. provide Bare metal 

instances as a service on demand. While more and more players join the Bare metal market. Surveys have 

shown that the global Bare metal market is expected to increase up to 11.40 billion US dollars during the 

period 2021-25; Bare metal absorbs and attracts various sectors such as IT and telecommunications, 

healthcare, government etc. 

Cloud data centres facilities are composed by both virtualized and Bare metal servers. The core difference 

between VMs and Bare metal instances is the existence of the intermediate layer, known as hypervisor, 

which is installed on top of the hardware. The hypervisor manages, controls, monitors the sharing of 

physical resources among the VMs. In contrast, on Bare metal servers, users control and manage the 

entire system and networking infrastructure. 

As with any Cloud service, similarly with Metal as a Service, users can register for a physical server machine 

on demand through a web-based portal with no need for human interaction. Then a new system joins the 

cluster of the data centre. Bare metal servers are highly customizable, and users can choose the level of 

resources and hardware specifications from a pool of resources in a similar way like on IaaS. MaaS follows 

the same pricing schema of a utility style billing model, where users pay for only what they use. 

3.2.2 Bare metal instances as a hosting platform 

Metal as a Service is a collection of raw hardware and resources. It’s a collection of nodes that customers 

can configure as desired, based on their needs, while they are free to install even a customized operating 
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system or any similar software, unlike Cloud servers in which users must choose from a pre-configured 

list of operating systems that is supported by each Cloud Service Provider. 

As with virtualized systems, so Bare metal instances are not the best choice for every business workload. 

For business operations, applications and services that do not need performance and security 

requirements, it’s easier and often better to deploy a solution for a virtualized environment like IaaS. For 

business sectors like finance, healthcare, manufacturing and retail where they do make use of big data 

analytics and need to meet the strict requirements of privacy, security and high performance, Bare metal 

instances fit better. When it comes to performance, clearly Bare metal instances are the right choice. Bare 

metal is developed for specialised, sophisticated software and applications that due to specific and strict 

requirements are not Cloud friendly and not intended to be hosted and running on a virtualized server 

infrastructure.   

There are many workloads that are not suitable or are intended to run on the Cloud and do not work 

efficiently on virtualized infrastructures. In such cases, MaaS is the best choice as an infrastructure hosting 

solution providing privacy and high performance while it retains Cloud computing characteristics. In some 

cases, software, and applications demand root access, so they can directly talk and communicate to the 

hardware. On virtualised systems, users can manage and see only the logical resources of the Guest 

machine. When software requires access to the hardware in order to operate and I/O call, the hypervisor 

is responsible for receiving and executing the command on behalf of the Guest user, increasing the latency 

and execution time of a process.  

There are sophisticated software and applications that require root access or direct access to the 

hardware, those are not able to work with a hypervisor layer in the middle. Bare metal instances are 

however accessible through SSH and VPN connections while users can interact with devices via remote 

desktop access (RDP).  

Additionally, the updated rules of GDPR raised a lot of challenges and concerns about the virtualized, 

shared Cloud environments and brought a lot of challenges about the privacy and policies followed by 

shared, multi-tenant virtualization environments such as public hosting Clouds. In the case of Bare metal 

instances, as single tenant systems, they offer flexibility on following any security and policy regulations 

that business defines.  

Based on customer demands and requirements Bare metal instances can spin up in a couple of minutes 

to several hours if specific customizations need to take place. Although the provisioning and deployment 
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process of a Bare metal instance takes longer than virtualized environments, it worth sacrificing that time 

to get a high quality, reliable and consistent system for your business's needs. However, recent studies 

work on boot time and resource reservation improvements are making a lot of progress [220,222]. 

G. Kominos and et al [119] performed an extensive performance evaluation on the three most usable 

hosting platforms of, Bare metal, virtual machines and containers, which are available to the end-user as 

a service on a Cloud environment. Using as performance metrics the CPU, memory, networking, and disk 

I/O show that Bare metal instances achieve and deliver higher performance overall compared to the other 

two platforms while VMs running upon a Type 1 hypervisor introduce a significant overhead. A Bare metal 

host delivers the best CPU performance while VM was worst since the scheduler needs to manage Guests’ 

processes efficiency, increasing the overhead. Another significant observation was related to read and 

write tasks to and from memory. VMs show a significant degradation in performance during writing to 

memory slots while similar results were noticed on I/O requests to the drive. However, due to the lack of 

a virtualization layer and single-tenant structure, Bare metal instances lack resource utilization and better 

manageability.  

3.2.3  Bare metal Instances for Micro Data Centres 

In Chapter 2 we mentioned some Edge Computing deployment methods where Micro Data Centres could 

play an important role in their implementation. Gopika et al. [252] and Christian et al. [254] performed an 

investigation on several Edge Computing architecture models while they looked into additional 

technologies that could contribute and support such solutions, mostly focusing on virtualized technologies 

like virtual machines and containers that could boost the efficiency and scalability of systems plus the 

added advantage of a live migration process. However, applying Edge Computing as a solution to 

overcome the network performance limitations that exist between an IoT device and Cloud architecture 

while still utilizing virtualization technologies for system operation is a bit of an oxymoron. The 

virtualization layer increases the performance overhead, while sharing hardware and network resources 

among users and applications creates bandwidth limitations and latency since communications are still 

served through the same physical network interfaces. Therefore, we suggest and propose the utilization 

of Bare metal instances rather than virtualised systems. Combining Micro Data Centres with Bare metal 

instances could achieve the highest performance taking advantage of the easily distributed, multi-

deployed, low latency architecture that Micro Data Centres provide and the benefit of native compute 

performance that Bare metal instances deliver. 
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As we explained in Section 2.4, a CSPs availability model is accomplished through the adoption of distinct 

zones composed of regions. Virtualization plays a key role in that, giving the flexibility of moving VMs 

around different racks and data centres. Taking a closer look as Figure 3.6 illustrates, let us visualize a 

zone as a rack where several VMs are sharing power and networking. Any failure on those resources would 

affect VMs’ operations. Therefore, for high availability a service is hosted on zone A and a replica of that 

is hosted on zone B on a different rack [264]. Similarly, adopting the same principle and strategy on Edge 

Computing with Micro DCs and Bare metal instances, a service can be hosted on a Micro Data Centre on 

a dedicated server while keeping a replica of that service on a separate Micro Data Centre on a different 

Bare metal instance. We could even increase high availability by utilizing Bare metal instances of 

Embedded Development Boards like Raspberry Pi boards (RPIs) and BeagleBone by keeping and 

maintaining several replicas of services on the same Micro Data Centre as well as on a distinct one. 

 

 

Figure 3-6 Availability sets of VMs and Bare metal instances 

Currently there are no similar proposals in the literature looking into Bare metal solutions to enhance 

Micro Data Centre deployments on the edge. Figure 3.7 illustrates our proposed architecture and point of 

interest of an Edge Computing architecture implementation, where Micro Data Centres utilize Bare metal 

instances free of virtualization rather than virtualised systems. Specialised applications like vehicle 

automation, online gaming, big data analytics and more depend on fast responses and real-time 

processing. Bare metal instances could be the best hosting solution to meet the demands and 

requirements of such applications. The role of a Bare metal instance plays either a resource rich server or 

an embedded device like a Raspberry Pi board. Raspberry PIs have become very popular platforms on the 

edge due to low cost, small size, and power efficient characteristics. Several experiments show RPIs in the 

role of an edge node or edge gateway [258]. In cases like that, a single or a cluster of RPI boards can deliver 

a valuable, high-performance infrastructure. Motivated by that we explore RPIs playing the role of Bare 
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metal hosting platforms in order to provision and enforce a Micro Data Centre infrastructure. Each PI 

member of a cluster can support and deliver a service, or an entire cluster of PIs can be allocated to 

provide a dedicated service to users. Scalability issues can easily be solved by deploying another cluster 

of PIs while during a faulty hardware replacement between PIs, it’s an affordable and handy process.  

 

Figure 3-7 Bare metal Micro DCs edge architecture implementation 

3.3 Summary  

Virtualization technology has become an integral part of Cloud computing offering benefits such as 

scalability, system reliability and enforced fault tolerance while maximizing hardware utilization. 

However, all those benefits have an impact on the performance and system consistency. Several research 

papers show that the virtualization layer affects and slows down up to 20% of a system's performance. 

Therefore, Cloud Service Providers have included Bare metal instances in their service suite, free of 

virtualization. 

Bare metal instances or Metal as a Service are dedicated servers to a single host, free of virtualization. 

However, utilization of Bare metal instances instead of virtual machines comes with some challenges on 

achieving workload balancing, availability, and fault tolerance, since live migration techniques are not 

available due to lack of a virtualization layer. 

In the next chapter we will introduce the importance of live migration on both virtualized and Bare 

metal systems. We will discuss and analyse the implementation of live migration on VMs as well as the 

challenges and limitations on implementing live migration on Bare metal instances.   
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4 Live Migration 

 Modern Edge Computing architecture implementations allow installing small modular data centre 

infrastructure at the edge of a network known as Micro DCs. Edge Micro Data Centres enable the benefit 

of faster, real-time processing closer to the edge user through a distributed network infrastructure. 

Bringing computing and processing power closer to the IoT devices requires mechanisms that will offer 

high availability, redundancy, and fault tolerance, maintaining that attribute of mobility and modularity 

of a service avoiding any disruption or downtime. Live migration techniques can provide us with that 

insurance. 

As Figure 4.1 demonstrates, edge Micro Data Centres are installed on multiple distributed locations on a 

network, gathering an enormous amount of digital information from a variety of resources that send and 

request data and other vital information.  

 

Figure 4-1 Live migration among micro DCs on an Edge network 

Live migration is a vital tool in Edge Computing for many real-time, time-sensitive applications that have 

strict uptime service requirements like video streaming, online gaming, health care, e-commerce, smart 

traffic control systems and vehicle automation. Unexpected hardware and system failures or scheduled 

maintenance can cause disruption of service which in some cases can be catastrophic. Migration tools 

offer the great flexibility of transferring the state of a system to a backup system in a short time, avoiding 

long downtimes and service disruptions. They can either be used to migrate system data and state to 

another Micro Data Centre or even to a server located on a different physical location. In this way, we 

achieve high availability, redundancy, and fault tolerance. Smart traffic and vehicle automation 
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applications interact in real-time with digital sensors installed in various locations collecting several 

measurements about objects, speed, distances and more. That information needs to get processed in 

order to prevent potential accidents. Disruption of a service like that can cause accidents, threatening 

human lives. Migration applications can help in factory automation by performing workload relocation 

offering higher Quality of Service (QoS) and location-awareness on devices and vehicles that need to be 

moving around. 

 

4.1 Overview of Virtual Machine Live Migration  

Virtual machine migration is a mandatory tool both to enterprise and Cloud infrastructures, permitting 

the relocation of a single or cluster of virtual machines from one physical host system to another, ideally 

with no service downtime.  There are two techniques to perform a VM migration, the live and cold 

migration techniques. We focus only on live migration since cold migration demands the suspension of 

the Guest OS which leads to downtime of the upper services, something that is not desirable or acceptable 

on modern smart networks. Live migration on the other hand is referred to as a downtime-free technique 

where the Guest OS is relocated with no need for restarting the hosted applications. The Guest OS and 

users connected to it, do not need to be aware of the process that is taking place and no service 

interruption occurs. 

Continuity of service, high availability and accessibility are critical aspects especially when referring to 

Cloud infrastructures. Proactive maintenance, fault tolerance, server and resource consolidation, Quality 

of Service and redundancy are some of the great benefits that a virtual machine migration process offers. 

Virtual machine live migration techniques remain one of the most interesting topics in the research 

community looking at performance and security improvements. Most of the virtualization vendors like 

VMware, Oracle, Microsoft, and Linux have integrated a VM migration tool as part of their virtualization 

suite.  

On a virtualized system the hypervisor is the orchestration layer that manages, controls, and monitors a 

virtual machine live migration operation. The primary goal of live migration is to be completed in the 

shortest possible time, eliminating a service disruption or failure of service. The performance of a VM 

migration is measured in relation to the completion time of the following events: 

● Preparation time: Describes the time that it takes to allocate the required resources at the 

destination system in order to ensure the availability of the resources.  
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● Memory pages migration time: The time that it takes to fully migrate all the memory pages from the 

source host to the destination. 

● Downtime: The time that a VM is paused in order to complete and transfer the final portion of the 

state. 

● Total migration time: Describes the overall time that it takes for the completion of a VM migration 

process from source to destination host. The time starts being measured by the initiation state until 

the point where the VM state is up and running at the destination VM.  

Although during the last decades different technological approaches have been developed and suggested 

offering process migration and operating system migration methods [20, 250], however, none of them 

was fully able to offer an efficient, secure, and stable way of migration between hosts. Therefore, 

migration of virtual machine instances on virtualized systems has been adopted as the most popular way 

of migration that has been dominant over the last few years in the enterprise industry which still attracts 

the interest of the research community on suggesting improved performance techniques and 

implementations.  

4.1.1 Virtual Machine Live Migration Components and Phases 

A VM is a representation of a physical system having the same hardware resources such as processing 

power, memory, storage, networking interfaces and access to the available peripheral devices equivalent 

to a physical system. During a live migration process, the state of all those resources and open connections 

must be relocated at the destination system in order for a Guest OS to remain functional and resume at 

the same state as before the migration. The hypervisor layer is responsible for the orchestration and 

management of the process. 

As has been well documented by many researchers in those years, during a VM live migration the 

following components need to get migrated from source to destination host [268]: 

• CPU state 

• Memory pages 

• Motherboard settings 

• Network TCP/IP connections 

• Peripheral status 
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The CPU state describes the running state of the cores which have been allocated to the virtual machine. 

Memory migration is one of the most crucial parts and the second highest in size of data that need to be 

migrated. Memory size varies based on the needs and demands of each virtual machine typically being 

between 2GB and 64GB. Furthermore, during a VM live migration process, all the TCP/IP network 

connections must remain open and live before and after the completion of the process. In order to achieve 

something like that, both physical machines must be connected to the same logical networking subnet. 

The network migration processes rely on the ARP mechanism’s unsolicited reply that announces the new 

location of the migrated VM. The VM should keep the initial IP address in order to achieve network 

redirection. Recent IP addressing solutions as discussed and suggested from Zap’s modelling, [241] a 

dynamic DNS mechanism, name to IP address mapping translation can also be applied so VMs should be 

accessed using the same hostname after migration. 

Modern virtualized architecture schemes utilize shared data storage techniques that keep storage data 

and VM states centralized making them easily and quickly accessible from the rest of the network. Shared 

storage techniques like SAN (Storage Array Network) and NAS (Network Attached Storage) also provide 

the advantage to avoid storage migration.   

Planning and preparing a live VM migration before it takes place is an important task in order to perform 

a higher performance migration. The following steps must be performed: 

● Selection of a requested VM or group of VMs that want to migrate. 

● Allocate the required physical level resources at the destination host machine. 

● Pre-copy most of memory pages to destination while the VM still running at the source machine 

● Send CPU state. 

● Transferring control to the destination system. 

 

There are two strategies to fulfil a VM live migration process, the pre-copy and post-copy methods [1, 20]. 

The difference between those approaches is mainly focused on the way that they manage and treat 

memory pages transformation from source to the destination system. 

• Pre-copy 

Handles the transformation of memory pages from source to destination in an iterative way without 

affecting the operation of running the VM on the source host. The number of memory pages that have 

been modified by the source user during that process, called dirty pages, are transferred to the destination 
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machine with the next iteration. While the rate of the dirty pages remains too high then the total 

migration time is increased. The pre-copy technique includes a short stop and copy phase where the 

operation of the VM is suspended on the source host, and the rest of the memory pages as well as the 

critical CPU state is transferred to the destination host where the VM continues to run.  

• Post-copy 

At the beginning there is a short time period of stop and copy, migrating the essential kernel state in order 

for the VM be able to be executed and start running at the destination host. When the VM accesses a 

memory page portion that is not available to the destination host, it raises a page fault signal, and the 

memory page is pulled by the source host on demand.  The post-copy approach achieves a remarkably 

short downtime of service but longer total migration time.  

Memory pages can be transferred by using three main techniques, push phase, stop-and-copy and pull 

phase. It’s very common for a combination of two of them to be used in order to achieve the best 

performance in the shortest overall migration time. 

• Push phase:  As its name declares, while the VM is still running on the source host, memory pages are 

pushed to the destination machine. Dirtied pages must be resent in order to keep consistency.  

• Stop and copy phase: The running VM at the source host needs to be suspended in order to transfer 

all the memory pages to the destination host where resumes its operation. Although this technique is 

straightforward and simple the main drawback is that VMs suffer and are affected by an unacceptable 

downtime that cause interruption of the service hosted inside a VM. 

• Pull phase: The VM starts the operation on the destination machine and when there is a demand to 

access a memory page, that page is pulled from source to destination.  

 

The following Figure 4.2 gives a comparison between the stages that a system passes through during a 

pull and push phase respectively.  
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Figure 4-2 Pre-copy vs Post-copy memory migration process 

Migration of memory contents is one of the most crucial and highly important parts during a VM live 

migration process. Nowadays, particularly on CDCs, memory size has capacity starting from 4GB reaching 

up to 128 GB or even higher, in some cases dealing with sensitive, volatile data which can be lost in case 

of a failure.  

There are different memory modules that need to be migrated from source to destination listed as 

following: 

• VM configured memory: A VM like a physical system needs access to physical memory for loading 

and storing process’s essential code. This amount of memory is allocated by the hypervisor and works 

as a physical memory to a VM.  

• VM used memory: A portion of frequently accessed and modified memory pages, part of the 

configured memory module is the VM used memory module.  

• Application requested memory: Each process is an application that demands access to a specific 

amount of memory VM for their smooth operation and functionality. However, it is not necessary 

that this memory is hosted entirely in physical memory as may reside on a disk if the available 

memory space is not sufficient. Swapping methods takes effect and operation in this case.  

• Application actively dirtied memory refers to the memory space where active applications and 

processes are loaded into; a VM frequently accessing those memory pages, modifying them regularly, 
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minimizing in that way the use of swapping disks techniques which extends the operation of the 

migration process.  

 

Performing a live migration in an efficient manner based on the ability to transfer the entire state of a 

source system to a destination over a network is almost impossible or challenging to be performed in 

traditional computing environments. Early studies and approaches to that area were related to process 

migration techniques. However, process migration has several restrictions and many dependencies on the 

OS while demanding the creation of dedicated user spaces or domain groups in order to achieve a level 

of isolation from the rest of the system. 

However, in virtualized infrastructures thanks to the abstraction layer, migration of a group or single entity 

of a VM from one host to another is a simple and easy task. Major advantages of such an implementation 

are that VMs can be easily relocated, VM instances can scale up or down independently to storage state. 

There is a centralised control and monitor management solution that requires backup and redundant 

architecture designs. Network bandwidth and latency are major factors that network administrators need 

to consider in order to not impact or affect VMs’ performance.  

 

4.2 Live Migration of Bare metal instances on the Edge 

Bare metal Cloud preserves the cloud-based characteristics of flexibility and scalability offering fast and 

automated, on-demand server provisioning and pay-as-you-go billing model while offering higher 

computing and processing performance with finer security. Since there is no resource sharing among 

users, Bare metal cloud eliminates the effect of "noisy neighbours" where users compete for access to a 

greater share of resources. Furthermore, with no virtualization layer, no hypervisor overhead and sharing 

of underlying resources are in place.  

Bare metal cloud is a great fit to mission-critical applications that require optimum computational power 

where virtualisation overhead is not acceptable and governed by strict security and privacy policies. Many 

applications require access and modifications on the hardware or specific attachments in order to 

configure a high-performance SAN or NAS integration. 

Big data is one of the main areas in IT in which Bare metal instances could be a perfect fit. With that 

massive growth of IoT devices, an enormous amount of data is collected and stored to the Cloud for 

further processing and analysis. Big data analytics formulas demand the high compute performance that 
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Bare metal can provide as well as the flexibility to spin up an additional server or shut it down when 

needed while paying only for the time of use. E-commerce is another field where Bare metal server 

provisioning can be valuable. There are times in the year when retail websites have the need for more 

resources. That sporadic demand of resources leads to the "noisy neighbour" issue that virtualised 

systems deal with, however, on Bare metal systems, users can fully utilize the maximum hardware 

resources when requested without dealing with the issue of potential inadequacy of resources. 

Micro Data Centres improve network performance while Bare metal clouds offer dedicated, native 

hardware performance, free of virtualization overhead. A potential combination of both technologies 

could deliver an ideal hosting environment for all kinds of workloads, from those that need network 

consistency to those which require pure, native processing power. Although Micro Data Centres can host 

Bare metal instances, redundancy, fault tolerance and high availability on those become extremely 

challenging.  

Designing and deploying an Edge Computing architecture in order to fit to a specific workload becomes 

challenging. Several factors and aspects affect the choice of the right model and infrastructure 

components that form your edge network. Relocating computing and processing power closer to the edge 

demands careful planning of the number of edge nodes needed in order to cover the needs of the varied 

IoT connected devices. QoS and service continuity become high priority so devices can remain connected 

even on the move. Workload distribution, service load balancing and fault tolerance become the key for 

the maintenance of a healthy edge network. Live migration schemes and strategies becomes an 

interesting topic to the research community.  

Rohit et al. [255] proposed a container-based live migration algorithm upon Linux systems called LIMOCE 

which can find applications on ARM based edge clusters. The algorithm is based on the Checkpoint/restore 

in user space functionality that Linux provide exposed via API and managed by a centralized management 

tool and hidden from users. However, in order to make it work Linux kernel modifications are required. 

Paolo et al. [256] introduces a mobile Edge Computing (MEC) architecture consisting of three-layers for 

the support of mobile devices that lack computing and processing power on the edge. Edge devices that 

cannot perform intense computation tasks, are connected to an MEC middleware layer which performs 

those tasks on their behalf. That middleware layer support consists of two primary components, the Elijah 

platform and the Server Manager that manages the connection and communication of edge devices with 

the Elijah platform. The MEC layer provides a virtualised function migration in order to provide high 

availability, and service continuity based on a VM / container architecture. Working in the same field, 
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Shangguang et al. [257] conducted a survey on the available service migration strategies and solutions 

that could find implementation on MEC architectures mentioning once again the three-layer architecture 

as introduced by Paolo et al. [256]. 

Performing a VM live migration has been a straightforward process. Essentially, VM's state resides in the 

memory of the host machine. Once that memory portion has been copied ahead to the destination host, 

the host can access its virtual disk files through shared storage. In contrast, on Bare metal instances, the 

state exists in the physical hardware components. Extraction and insertion of the hardware state through 

a software-based layer is very challenging. Specialised software is needed with access to both hardware 

and application layer. Software developers need to develop their own program to accomplish a task like 

that. Performing a Bare metal live migration without the assistance of a hypervisor management layer is 

extremely challenging. 

A Bare metal live migration framework needs to meet some requirements and several assumptions. At 

first, a live migration framework on Bare metal instances needs to be independent of the operating system 

because users should be free to select the OS of their choice without limitations. Furthermore, users 

should not be responsible for taking actions in cases of unexpected failures. That should be an 

administrator's responsibility whether this is subject to industrial or Cloud environments. Additionally, 

one of the greatest advantages of a Bare metal instance is that it is fully customizable, meaning that users 

can install and configure entirely based on their preferences. So, changes or modifications at the OS level 

could cause conflicts to a software-based developed live migration scheme. Additionally, source and 

target Bare metal instances should have the same hardware components and characteristics like 

motherboard, networking interfaces, memory capacity and CPU architecture. It's very common, on data 

centre infrastructure to find clusters of racks of servers with identical hardware specifications. So, finding 

an available Bare metal instance is not difficult. 

 

4.3 Related Work on Bare metal Live Migration Schemes 

During the years different approaches have been proposed on a live migration such as OS live migration 

[20] and process migration [250] schemes. Although OS live migration allows the migration without the 

need for source and destination to have identical hardware specifications or the existence of a 

virtualization layer, modifications are still required on the operating system. Additionally, process 

migration as introduced by the Zap model [241], allows the migration of a process among source and 
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destination OSs. However, this kind of migration model is not preferred due to a series of dependencies 

that a process maintains with other processes running on the same system and connections with the OS 

itself. 

Bare metal live migration is a fresh topic in the academic and research community with few practical 

implementation schemes in production. Recent research experiments like Fukai’s et.al. [37, 38] introduce 

an advanced, thin hypervisor layer able to perform a live migration on Bare metal instances on single and 

multi-core processors based on x86 architecture called BitVisor [37] and BLMVisor [38] respectively. Both 

hypervisor schemes utilize the same core hypervisor governed by the same underlying operations. The 

great advantage of that approach is that it does not emulate or virtualize the hardware resources, instead, 

it exposes them directly to the Guest OS, as Figure 4.3 illustrates. Furthermore, the hypervisor's footprint 

is remarkably smaller than traditional hypervisor layers. The hypervisor supports the execution of a single 

and only Guest OS which simplifies its functionalities like CPU scheduling and memory mappings 

operations and it only acts during the live migration process while remaining almost inactive during the 

normal execution of the system therefore the hypervisor overhead remains at negligible levels. Moreover, 

in order to avoid any performance degradation when the live migration process takes place, a dedicated 

network connection is used between the source and destination transferring the Guest OS state across 

the network. 

 

Figure 4-3 BLMVisor and BitVisor architecture 

 

Modern x86 processors are enforced with hardware assisted virtualization extensions offering a full 

virtualization solution of an unmodified Guest OS. Both AMD and Intel vendors have introduced their own 

suites of hardware assisted virtualization extensions under the brand names of AMD-V and Intel-VT 
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respectively. Currently implementations of BitVisor and BLMVisor support only Intel processors taking 

advantage of the hardware-assisted virtualization functions. Intel processors use a specialized data 

structure called virtual machine control structure (VMCS) capable of storing, maintaining, and restoring 

CPU state. VMCS mechanisms save both host and Guest environment state in memory. A hypervisor can 

then easily read VMCS structure on a source machine and write the states into VMCS at a destination 

machine performing a CPU state migration process automatically. Most of the CPU state resides inside a 

VMCS structure however some general-purpose registers and more system specific registers can be 

obtained through the software. 

Memory migration is a research field that has been studied very well many years ago. During the migration 

process the hypervisor starts transferring all the available memory pages in the background, known as 

“pre-copy” process as explained above in Section 4.1.1 while those most recently accessible by the 

operating system pages, which have undergone some modifications, are sent following an iterative model. 

During the migration process, the operating system accesses some of the memory pages. Modified pages 

need to be resent from source to destination until a small portion of them remain at the source system. 

Then the hypervisor stops the Guest OS operation at source and transfers the remaining number of dirty 

pages at the destination known as “stop-and-copy” process.  

Another challenging part of a live migration process is the preservation of internal and I/O devices state. 

The migration of internal state of the various physical components such as network cards, system’s timers 

and the state of the supported interrupt handlers cannot be performed through a software layer but a 

more privileged application is required with higher permissions and access to the underlying hardware. In 

order to capture and set those internal states from source to destination system, the hypervisor monitors 

and reconstruct the physical state based on device specifications. 

Modern platform architectures allow programmed input-output (PIO) or memory mapped input-output 

(MMIO) functions access to device registers through memory pages. In general, there are two approaches 

for a processor to communicate with a peripheral device: Port-mapped I/O and Memory-mapped I/O. The 

PIO method makes use of special CPU instructions to talk to an I/O device. In contrast, the MMIO method 

does not require special CPU instructions. Each device register is assigned to a memory address space 

specific to each platform which can be access via simple CPU load/store instructions for access to I/O 

devices such as GPIO, timers and so on. Each time a Guest OS requires access to those specific memory 

addresses, then a paged fault request is raised to the hypervisor which can handle and monitor the access 

seamlessly. The device registers are classified into three categories as readable, write-only, and internal 
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registers. Device state can be described by two sub-states, the configuration state and status state. The 

configuration state contains operational configuration values of the device which are modified by the OS 

while the status state describes the running state of the device at each time. To give an example, NIC 

configuration state refers to the transmission and reception bandwidth while the status state can be the 

actual status of the interface during a device reset operation. 

There are also two categories of unreadable states. One refers to write only registers that software can 

modify or set but cannot read them, and the internal registers which are updated by the device itself. No 

existing software can write or read those states. The way that BLMVisor and BitVisor preserve those states 

is by continuously monitoring the accessing on write I/O registers that are mapped to I/O memory. When 

the Guest OS sends a request to access an I/O address, the hypervisor intercepts those values and stores 

them into memory locations. During the migration, the hypervisor captures and transmits the most 

recently updated value to the destination. 

Like write-only registers, there are a group of read-only registers. In order to set unwritable states at the 

destination, the hypervisor also needs to reproduce and reconstruct the state, through dummy data until 

the state changes to the desired state. 

However, both the BLMVisor and BitVisor implementations face some limitations not only on hardware 

specifications of the devices but also on the supported CPU architecture. Currently, BitVisor and BLMVisor 

supports the x86 Intel architecture while supporting device specific migration. The rise of ARM processor 

architectures in embedded technologies and the introduction of chips targeted to data centre 

infrastructures introduce a new candidate as a hosting platform especially on Bare metal edge instances. 

The small CPU footprint in relation to the low energy consumption and low price on the market make it 

an alternative solution for Micro Data Centres. Due to high customizability, chip vendors can adjust ARM 

processors based on workload needs. Therefore, we aim to investigate a practical implementation for a 

Bare metal live migration on ARM based instances that can take place on a Micro Data Centre 

infrastructure. 

 

4.4 Summary 

Live migration is a valuable tool that helps in the reliability of an environment. Due to live migration, Cloud 

environments are able to offer and provide service continuity and high availability. Moreover, live 
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migration allows the implementation of workload consolidation techniques in order to perform higher 

Quality of Service, redundancy, fault tolerance and load balancing among systems. 

However, live migration is mostly available on virtualized systems. With the increasing use of Bare metal 

instances, maintaining these live migration benefits becomes extremely challenging since the 

virtualization layer is eliminated. Working on that area, Fukai first introduced a lightweight hypervisor 

scheme capable of performing a live migration of a system’s state among Bare metal instances on x86 

architecture. However, Bare metal live migration is based on a lot of dependencies that makes it difficult 

to be portable for a wide range of platforms and architectures. Recently, ARM chips have focused on Edge 

to Cloud datacentre infrastructures and have attracted a lot of interest from many vendors. Currently, 

there is no such implementation on ARM based systems. 

In the next chapter we discuss the adoption of ARM architecture in the data centre infrastructure and 

the benefits of ARM processors utilization on Edge Computing.   
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5 ARM Architecture for Virtualisation and Edge Computing 

5.1 Overview of the ARM Architecture 

In computing, there are two architectural designs of processors, one is CISC (Complex Instruction Set 

Computing) and the other is RISC (Reduced Instruction Set Computing). The key difference between the 

two architectures is focused on the instruction set architecture (ISA) which describes a set of commands 

that a processor can handle and execute such as addressing modes, data types, registers, interrupts, and 

exceptions handling. The CISC approach, as its name implies consists of more complex instructions that a 

processor needs to execute. A single instruction may be composed of several additional operations that 

need to be performed. Although the CISC architecture minimizes the number of instructions per program, 

it spends a higher number of cycles per instruction. An example of the CISC architecture is the x86 

instruction set. Both Intel and AMD make use of the x86 processor’ architecture. On the other hand, RISC 

does the opposite, reduces the number of cycles per instruction using a pipeline instruction scheme. 

Several numbers of instructions are executed in a pipelined manner, where each instruction is executed 

within a single clock cycle. ARM instruction set architecture which stands for Advanced RISC Machine, is 

a member of the RISC family. ARM instruction set architecture design completes a task in a few lines of 

code by using simple commands. Simple instructions result in the need for fewer transistors, resulting in 

more chip space, meaning ARM processors have a smaller chip footprint. Power consumption rates and 

efficiency can be one of the most important criteria and factors on embedded devices And ARM 

processors offer a low-power design since fewer transistors are being used and relatively lower processing 

speed is achieved. 

The introduction and adoption of ARM processors has great economic impacts on organizations, 

significantly reducing on-premise and cloud infrastructure and operation costs while delivering great 

efficiency. In embedded and mobile systems, power efficiency is by far the most important aspect 

compared to performance. Heat and power consumption become the key factors on a mobile product 

design. X86 architecture CPUs are well-known for their high performance making them suitable on large 

desktop and laptop processors. ARM processors in contrast achieve high energy efficiency due to the RISC 

instruction set architecture since the internal architecture is much simpler with fewer types of 

instructions. That leads to energy savings and less overhead. 

ARM is the dominant RISC microprocessor architecture finding massive implementation in almost all the 

world’s devices covering a wide range of technologies. During the last decade, ARM architecture finds 
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utilization on 95 per cent of the current mobile and consumer devices such as smartphones, tablets and 

wearables landscape, while it keeps growing in the market networking systems infrastructure like routers, 

switches and firewalls and on modern embedded technologies such as automotive and a wide range of 

smart devices in industrial and utilities, holding a sizeable market share. Given of the range of the available 

interactive wearables devices in the market, ARM provides a wide range and kind of processors covering 

market’s wide range of applications. For example, Moto 360 smartwatches are Cortex-A7-base while 

fitness tracking Gear Fit is ARM Cortex – M4 CPU based. 

What makes the ARM architecture stand out from the x86 architecture is that it offers chip-makers the 

option to design their own processors. ARM does not actually make or produce processors, instead, it 

designs a CPU’s architecture which becomes available through a licensing-based model. In simple terms, 

it sells licenses for its “instruction sets” architecture which determines how processors handle commands 

and internal instructions, how the input and output data should be formatted, how the processor interacts 

with RAM and other peripheral components and much more. An instruction set architecture is a blueprint 

for how all the parts of a CPU will operate. Through that license-based model, chip vendors like Samsung, 

Qualcomm, AMD, Broadcom, Amazon, Huawei or Apple have the freedom to customize their own CPUs 

and systems-on-chips (SoCs). 

Another great feature that ARM processors first introduced into the semiconductor industry was 

heterogeneous computing architecture. Heterogeneous computing is a system design that enables the 

ability to combine and host more than one kind of processor into a single chip covering graphics processing 

unit, application-specific integrated circuits as well as a modern type of neural processing unit that’s 

specifically designed for machine learning. Although the heterogeneous chip architecture has been 

adopted for years on mobile devices, datacentres are mostly dominated by traditional complex chip 

architectures that focus on optimised performance. However, the rapid growth of IoT and Edge 

Computing will change those stereotypes in the data centre industry.  

ARM refers to heterogeneous architecture as big.LITTLE, a feature that is available on the modern Cortex-

A series processors. In the case of a big.LITTLE chip, one of the cores will be low power while the other is 

much more powerful core. Based on the chip utilization, if intensive tasks are taking place, then the 

compiler communicates with the chip to make use of the powerful core while during basic, low levels of 

processing the lower-power core will run and the more powerful turns off. In that way, up to 75% power-

saving is achieved. 
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5.2 ARM into the Cloud to Edge server infrastructure 

The emergence of the IoE era driven by a diversity of sophisticated, advanced smart technologies requires 

a flexible architecture tailored to meet modern applications needs and demands in process and computing 

infrastructure. Although for decades data centres have been dominated by complex instruction set chip 

architectures which perform tasks at high speed, during the last few years, ARM is working up to make its 

entrance in data centre infrastructure. In 2020, ARM has fulfilled this milestone, gaining some market 

shares on server infrastructure from Intel, the dominant force for years and now reaching up to 25%. ARM 

released its first chip designs dedicated to data centre infrastructures, introducing the Neoverse family 

line with E1 and N1 cores. ARM through the Neoverse architecture cores it is trying to build a new 

ecosystem, offering a high-efficiency architecture, giving a solution on customer’s needs on modern Cloud 

to Edge infrastructures. Neoverse E1 and N1 CPU processors offer high performance while increasing the 

energy efficiency up to 30% higher than previous generation processors of the Cortex family. Those 

modern CPUs aim to address the requirements for specific applications in the cloud-to-edge 

infrastructure. 

N1 aims to find implementation more at the edge or within a data centre. Those processors aim to offer 

higher computing performance, 60% and faster processing speed, expecting to boost by 60% over the 

previous generation processors. Meant for the data centre or the edge while it can scale from 4 up to 128 

cores, it also promises 2.5x more performance on cloud-based workloads, along with 30 percent power 

efficiency improvements. On the other hand, E1 delivers higher throughput performance than N1 

processors. N1 cores mainly target fast data processing while E1 cores target fast data transferring, a 

combination that could be a great fit for servers located at the edge of a network where billions of IoT 

devices are connected.  

ARM Neoverse cores could also be great candidates for Bare metal Micro Data Centres since they combine 

both performance and high throughput factors, very important to modern Edge Computing solutions 

where data needs to be analysed quickly and passed through end devices over a network. 

One of the reasons that ARM processors dominate in the mobile and embedded industry, having 

application in a wide range of embedded and wearable devices, is that the variety of ARM families cover 

most of the market’s needs. Besides the Neoverse family, the ARM family palette contains Ethos and 

Cortex families.  
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We are going to provide a highlighted general overview of the Cortex family, areas of applications and 

main characteristics. The ARM cortex family is divided into three sub-families named Cortex-A, Cortex-R 

and Cortex-M. Through those three types of processors, ARM covers a range of applications’ needs 

perfectly, giving the ability to chip designers to choose the core that best fits without setting restrictions 

and forcing them into a one-fits-all implementation. 

ARM in 2011 announced the release of ARMv8 core series introducing the support of x64-bit operating 

systems. ARMv8 is the successor of ARMv7 enhanced with new features and extensions of the ISA and 

the hardware, like the ability for both 32-bit and 64-bit core execution states, embedded on hardware 

security and cryptographic extensions; also, the support of hardware-assisted virtualization enables the 

ability to run multiple unmodified Guest OS. The scope of ARMv8 was to insert into the server market and 

data centre infrastructures offering high performance low-cost small size chips comparable to the market 

leaders for years of the chip on server market, Intel and AMD. 

In March 2021 ARM announced after 10 years a new architecture and successor of v8, the ARMv9 as a 

response to the high demand of specialized processing and computing. ARMv9 inherits the same ISA and 

exception levels from v8 having full backwards compatibility. The new add-ons and extensions on ARMv9 

are mostly targeted around the pillars of AI, IoTs, 5G and security. ARM in collaboration with Fujitsu 

developed the second version of Scalable Vector Extension (SVEv2) technology, a technology that 

enhances the processing of 5G systems and the capability of running ML workloads while increasing the 

overall performance at 30% from the previous generation. In the field of security ARMv9 introduces the 

Confidential Compute Architecture (CCA) which protects sensitive data and portions of code from being 

modified and accessed on hardware-based protections even from other privileged applications.   

In the last few years, both Google and AWS, two of the top Cloud Providers, announced the discussions 

of the adoption of ARM servers on data centre infrastructure.  Already three of the biggest enterprise 

leaders in business and the IT world, Google, Amazon, and Facebook have announced their interest to 

adopt ARM based servers into data centre infrastructures, reducing the need and adhesion to x86 chip 

architectures that Intel and AMD dominate.  

The ARM family of processors comes in different types covering a wide architecture of platforms. 

Application developers and programmers can choose from three main suites of processor profiles A, R, 

and M, based on the needs and demands. Due to rapid and aggressive development of ARM processors 

in the market, it’s difficult to develop a generalised implementation covering all those kinds of 
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architecture. Therefore, we selected to work on the latest ARM family to server infrastructures, Cortex-A 

series eight (ARMv8). Unfortunately, at the time that the thesis was being written ARMv9 was not 

available so we could not develop our design and implementation on the latest version. 

 An architecture profile is the one that we mainly focused on and used on server infrastructures, capable 

of supporting a full OS. The following list gives a brief description of each profile [7, 9]: 

• Cortex-A family processors refers to high-performance application processors finding 

implementation in mobile devices, networking infrastructure, in automotive and a wide range of 

Linux and Android consumer devices such as tablets, raspberries etc., that contain memory and MMU 

Translation system. The Cortex-A series of processors cover this market’s demands supporting both 

32bit and 64bit architectures. 

• Cortex-R family processors refers to real-time processors offering high-performance processing to 

embedded devices that depend on and demand reliability, fault-tolerance, and real-time processing 

such as autonomous systems. 

• Cortex-M family processors refers to microcontrollers, finding application on smart home devices like 

smart lighting and motion sensors. The main benefits of M family processors are low power 

consumption, low-latency, and highly deterministic operations. The latest version of M-profile 

processors puts its emphasis on providing high machine-learning performance (Cortex-M55). Those 

types of platforms support a different exception handling design and only support a simpler, smaller 

instruction set named Thumb instead of an ARM instruction set. The key difference of that new core 

architecture is the enhancement with the neural processing unit (NPU) which delivers high ML 

performance, mission-critical to utilize the potentials of AI and IoT. 

 

The technological trend and demand for adopting virtualization nowadays and making it available on 

smartphones as well technological vendors that aim to reduce financial investments, reduce space 

requirements and at the same time the electric and power consumption rates move their interest to on-

premises ARM server implementation and moreover on CDCs. Google announced interest in introducing 

powerful ARM servers on its CDCs. Google and AWS have announced the relationship with Qualcomm for 

the adoption and replacement of x86 processors with ARM servers in data centre infrastructures[267].  

ARM, following the technological needs and demands for multi-boot environments, introduced 

virtualization with the ARMv7 family where Cortex-A15 and Cortex-7 processors introduced support for 

hardware-assisted virtualization. Further enhancement of virtualization specifications and features were 
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added later in ARMv8 and keep evolving until today. In production environments like CDCs servers make 

use of the Cortex-A family. ARM virtualization extensions are greatly different from virtualization on x86 

architecture. 

Additional studies try to explore the capabilities and advantages of ARM based Bare metal instances 

mostly on RPI single boards for the support of big data analytics and machine learning tasks in an effort 

to decongest the heavy workload from IoT products to the Cloud [221]. 

5.3 ARM TrustZone execution environment features 

ARM Cortex-A family processors are enforced with TrustZone [6, 9] security extensions, a set of hardware-

based technological security features that divides the hardware infrastructure into two separated, 

isolated worlds as illustrated in Figure 5.1, a secure and a normal world, also referred to as modes. 

TrustZone functionality has a similar concept to trusted platform-modules (TPM) on x86 platforms. On 

ARM TrustZone extensions create a trusted execution environment (TEE) where a software that is running 

in the secure mode has a completely different view of the hardware infrastructure from one running in 

non-secure mode. Secure world offers security, confidentiality and integrity allowing only trustful 

software and applications to run into it. TEE is a good solution for storage and maintenance of encryption 

keys or biometric credentials that need to be used for verification purposes by the operating system or 

other applications. This means that even when a malicious code affects the system, and an intruder 

obtains root privileges to the normal OS world, it cannot jump or access the secure world. 

 

Figure 5-1 ARMv8 processors supported CPU modes 

TrustZone is a hardware embedded, programmable chip that enables peripheral and memory protection. 

Memory is also divided into secure and non-secure regions. When software is running in a non-secure 

world, a non-secure memory flag is enabled that permits only access to normal world memory space. Only 
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a trusted software runs on a TEE having access to the processor, peripherals and memory while it is 

completely isolated from applications and the operating system running outside of it. ARM Trustzone does 

this by creating a partition and isolation of the hardware components such as busses, peripherals, 

memory, interrupts so that the application code does not have access to that protected, restricted portion 

of resources. 

On ARM processors with TrustZone Security extension features, each core can be executed on non-secure 

and secure world where the context switch between those two worlds is managed by the dedicated CPU 

mode, named Monitor mode as Figure 5.2 illustrates. The transition between the Secure and Non-Secure 

world happens through a dedicated instruction named Secure Monitor Call (SMC). Once this instruction 

is called, the CPU enters into the most privileged dedicated mode, the monitor mode that gives access to 

all hardware including the restricted peripherals and memory portions. In that way, a trusted OS, or 

application runs in the TEE. Trusted applications that reside in a TEE have access into the device’s 

peripherals, interrupts and memory whereas hardware isolation keeps them secure and isolated from 

user-installed applications and the main operating system. 

 

Figure 5-2 TrustZone Normal and Secure worlds 

 

5.4 ARM Virtualization Extensions 

The vision for the emergence of ARM servers as well the path to make ARM processors competitive and 

comparable to Intel’s and AMD’s x86 architecture processors in the datacentre could not be possible 

without the introduction of Virtualization extensions on ARM. Therefore, ARM adopted the same path as 

x86 architecture processors and introduced hardware-assisted virtualization extensions in its latest 

models of the ARMv7 architecture and improved them further on ARMv8 processors. 
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Taking into consideration the principles as documented and proposed by Popek and Goldberg [31], ARM 

introduced and implemented hardware-assisted virtualization extension features capable of supporting 

and providing an efficient full virtualization environment and equivalence to several Guests Oss. 

5.4.1 Hardware-assisted Virtualization 

Because of the need to overcome the burden of binary translation implementation achieving faster 

processing and improved performance on virtualized systems, CPU manufacturers of x86 architecture 

(e.g., Intel introduced a set of virtualization extensions as part of their processor architecture). Hardware-

assisted virtualization technology introduces a new layer in the x86 CPU ring architecture, Ring -1 where 

the hypervisor can load, and Guest OS can run on Ring 0 just as on non-virtualized systems as is visualised 

in Figure 5.3. Processors with hardware-assisted virtualization technology enabled, support a set of new 

instructions called VMX (Virtual Machine Extensions). VMX operations run under two modes, root and 

non-root operation modes. This set of instructions permit a restricted number of operations and values 

that control what registers can accept.  

 

Figure 5-3 x86 Ring privileges architecture 

In 2005 Intel [59, 240] introduced a suite of hardware-assisted virtualization extensions using the brand 

name VT-x. Intel’s VT extensions utilize those executions modes where operations can run either on root-

mode or non-root or else Guest-mode. A hypervisor transitions between those two modes through the 

execution of VM entries and VM exits as illustrated in the Figure 5.4. Through a VM Entry operation, a 

VMM transits from a root mode state to a non-root state and, vice versa, through a VM Exit operation 

return from a non-root state to a root.  

In a VMX root mode state, a set of new processor instructions are available and the values that can be 

loaded to control registers are restricted. Because VMX operations permit and allow a specific number of 

actions to take place, a Guest software is able to run and be executed at the privilege level that was 

intended to be run by design. VMX operations define a specialized data structure that keeps track of VMX 
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transitions through root and non-root operations as well as the processor state in each mode. A hypervisor 

makes use of a separate instance of a VMCS for each virtual machine per virtual CPU.   

 

Figure 5-4 Intel VT-x CPU Operations 

5.4.2 ARM Exception Levels 

In order to understand better the new virtualization extensions as first introduced on ARMv7 and 

embedded on ARMv8, one first needs to explain and introduce the concept of privileges. Systems are 

enhanced with several protection domains, known as protection rings on the x86 architecture, that 

control, manage, and protect access to hardware resources like memory and CPU from unauthorised or 

malicious intentions. For example, the operating system’s kernel has a higher level of access to system 

resources than a user application running upon it, which has limited permissions to performing 

modifications or configurations to the system. The ARM architecture implements a slightly different 

scheme of levels of privileges. Instead of rings, it adopts a horizontal privilege architecture known as 

Exception levels. 

Code execution can have either an unprivileged or privileged access level. The unprivileged access level 

has limited visibility and access to only a specific number of system registers and to a protected portion 

of memory regions. When a user application tries to access restricted resources then the process 

generates a fault condition and therefore exceptions used to take over and handle those accesses. In 

contrast, the code that is executed on privileged access levels has access to all resources and memory 

regions with no restrictions. The exception level scheme defines who can execute, which complex list of 

instructions on what resources. The ‘who’ part refers to each of the available CPU modes that a processor 

is running.  

ARMv7 processors follow a slightly different privilege level design from the ARMv8 processors, which 

define three distinct privilege levels that are defined by the PLx definer as Figure 5.5 presents. Each 

privilege level has an identification number starting from 0 to 2 and the higher the number means the 

higher the level. PL0 is the least privileged level where user’s applications run. This software ’does not 
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have permissions to access or implement any configuration settings and the only permissions that 

software has access to is the unprivileged portion of memory.  

 

Figure 5-5 Available CPU modes on Normal and Secure world respectively 

In contrast, on ARMv8 processors those privilege levels are called Exception levels that bear the initials of 

Elx. Furthermore, an additional exception level was introduced. So, the ARMv8 architecture is divided into 

four exception levels, EL0 to EL3 where, similar to ARMv7, EL0 level is referred to as the least privileged 

while EL3 the most privileged level. Several modes become available depending on the exception level. 

CPU can be executed in one of the four exception levels as demonstrated in Figure 5.6. Exception levels 

determine the privileged level as defined on ARMv7 architecture.  

 

Figure 5-6 ARMv8 Exception model 

ARM hardware-assisted virtualization extensions as introduced on ARMv7 (Cortex-A9) are focused on the 

introduction of a new processor execution mode called HYP mode. As with any system, on ARM an 
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operating system kernel runs in SVC mode while user’s applications run in the USR mode. The HYP mode 

has higher privileges from both SVC and USR mode and that’s why HYP mode is running in the EL2 privilege 

level with dedicated access to registers and memory space. HYP mode has a separate set of instructions 

available as well as its own set of registers. Since HYP mode is running on a higher, distinct exception level 

than the SVC mode, there are no conflicts or sharing of code execution with the kernel on SVC mode, 

making it clear and independent. The HYP mode was developed to provide features to a candidate 

hypervisor and not for running an operating system like Linux kernel since that would require a lot of 

changes and source code modifications of the kernel. As we described in Section 5.1. ARMv7 and v8 

architectures offer two worlds of execution and operation, secure and normal or non-secure world. 

Virtualization extensions are implemented only when a core is running in the non-secure world. System 

administrators have to ability to configure on which exception level or what instructions should be 

trapped on the hypervisor. They are able to choose if the code exceptions should be trapped always and 

only on the HYP mode, handled by the hypervisor or some of those should be treated by the kernel in SVC 

mode. 

HYP mode by default is disabled. In order to access and enable the virtualization extensions, we have to 

enable it during the boot process of the system. As Figure 5.7 illustrates during the boot process the 

system needs to enter the secure world and change to the Monitor CPU mode. Through that it can activate 

and access the HYP mode under the non-secure world. 

 

Figure 5-7 ARM normal boot process 

Through the HYP mode, a hypervisor handles the content or world switch between virtual machines when 

a Type 1 hypervisor is being used or between the host and the virtual machines on Type 2 hypervisor. The 
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processor follows the same procedure as it does when an exception is raised. The processor needs to 

enter the HYP mode with an EL2 exception level in order to save and store the current state of the 

processor. 

In order to perform a complete content switch among VM and the host, a series of registers need to be 

stored and retrieved as listed below. 

• General Purpose Registers (GP) 

• Page Table pointer (PT) 

• Floating – Point Registers (FPU) 

• Banked Registers for all kernel modes 

• System Coprocessor Register (MRS) 

• Address Space ID (ASID) 

 

Very frequently, during the normal code execution of a program, a user requires access to more restricted 

resources that requires higher privilege permissions than user’s mode (USR). So, an exception is triggered 

that makes the CPU change the mode to a more privileged level. Which exception level is based on the 

type and kind of exception handler that deals with the request. A more privileged software called 

exception handler runs at a higher privilege level then handles this request and returns the result back to 

the software that raised it. There are different types and kinds of interrupts like FIQ, IRQ, Aborts, each of 

them has a linked interrupt handler.  

The following procedure takes place during an exception: 

• The CPSR is stored into the banked SPSR register of the particular mode where the exception is 

handled 

• The current processor mode and exception level are set based on the type of the exception 

• The interrupt bits are set on the CPSR register  

• It then stores the return address into the banked LR register 

Once the exception has been processed the following steps are executed in order for the system to 

continue the code execution before the exception.  

• The stored value from the SPSR register is copied back to the CPSR in order to restore the state 

of the status register. 
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• That automatically changes and restores the processor’s mode and exception level.  

• The banked LR register is copied back to the PC. 

 

Figure 5-8 Example of ARM Banked registers mechanism 

5.4.3 ARM Registers  

Latest versions of ARMv8 processors support up to nine execution modes, also called processor modes, 

as listed in Figure 5.9. The processor mode can be modified and manipulated in two ways, either by a 

program that runs on one of the privileged modes or through a hardware interrupt.  
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Figure 5-9 ARM List of registers per CPU mode 

ARM processors, depending on the version, have several general-purpose registers, a program counter 

(PC), an application program status register (APSR), a current program status register (CPSR) and saved 

program status registers (SPRSs). Some of those registers are hidden during normal execution of the 

system but become available and accessible when the processor accesses a particular mode. Those 

registers are called banked registers. ARM processors due to the structure of that banked register, provide 

rapid context switching when a processor needs to handle exceptions, executing privileged instructions. 

The current processor status register (CPSR) reflects the current execution state of the processor. The first 

five bits [4:0] define the mode where the processor is running each time. There follows the list of the CPU 

modes that a processor can be in as well as the combination of the bits of them in Table 1. From the list, 

the User mode is the only unprivileged mode while all the rest of the modes are more privileged and can 

be used to execute some system operations and tasks.   

M [ 4 : 0 ] 
Mode 

Bin Hex 

10000 10 User 

10001 11 FIQ 

10010 12 IRQ 

10011 13 SVC 
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10110 16 Monitor 

10111 17 Abort 

11010 1A Hyp 

11011 1B Undefined 

11111 1F System 

Table 1 ARM CPU supported execution modes 

The ARM architecture is in continuous development, introducing and implementing more and more new 

features over time and ARMv7 has some significant differences from the successor ARMv8 family of 

processors. Besides the supported exception levels as mentioned, another important difference is the 

support for 64-bit registers on ARMv8 architecture. That feature also brings change on the number of 

supported registers, which also affects the number and use of banked registers. ARMv7 architecture 

processors follow a mode-based banked register scheme where each processor mode has a dedicated set 

of banked registers. On ARMv8 that architecture has changed. Instead, an exception-based banked 

register model is followed and several “special” registers were introduced as presented in Figure 5.10.  

 

Figure 5-10 ARMv8 Special Registers 

In case of an exception, the current execution state is stored in the following dedicated registers based 

on the exception level:  

• Exception Link Register (ELR)  

and  

• Saved Processor State Register (SPSR) 

 

Where the ELR register is to hold the return address after the completion of the exception and the SPSR 

register holds the value of the PSTATE fields. As we mentioned earlier, on ARMv7 architectures, each 

processor mode had its own dedicated SPSR register to maintain and store the value of the CPSR. 

However, on ARMv8 each exception level has a dedicated SPSR register for that task.  
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Under the ARMv8 instruction set architectures, there is no equivalent of the CPSR register like on the 

ARMv7 instruction set architecture. Instead, it has a collection of fields as Processor state (PSTATE). 

Processor state fields are accessible through the use of specialised MRS and MSR instructions respectively. 

5.4.4 Memory management  

One of the key operations and functionalities handled by an operating system is the memory management 

system, mapping and translating virtual addresses, also known as linear addresses in the computing 

architecture, of user applications to the actual physical address on a system.  

A memory management system performs a dynamic allocation of regions of memory to operating systems 

and applications. Normally, an operating system or a hypervisor if we are referred to a virtualized system, 

keeps track of a virtual to physical translation address mapping into a translation table also called a pages 

table. Those translation tables are stored in memory and controlled by an OS or a hypervisor therefore 

are not a static content but continuously updated based on the running task or application.  

Normally, an operating system owns all the physical memory on a system and is responsible for the 

management of this as well as the allocation of dedicated memory spaces to applications on demand. In 

non-virtualized systems, the translation of virtual memory address to physical memory occurs and is 

managed by the OS, however, ARM virtualization extensions enable a 2-stage memory translation process 

similar to the shadow pages functionality on x86 architectures.  This 2-stage memory translation is a 

hardware-embedded feature enabled where the first translation phase is handled by the Guest OS by 

mapping Guest virtual memory translated to Guest physical memory by the Guest OS while the second 

translation phase is handled by the hypervisor where the intermediate physical address (IPA) is translated 

to actual physical memory as shown in the following Figures 5.11 and 5.12. 

If the Stage-2 translation feature is enabled, then the following procedure takes place as illustrated in the 

Figure 5.11:  

• Stage-1: At first the virtual address (VA) is translated into an intermediate physical address (IPA) 

• Stage-2: The results of intermediate physical address (IPA) is mapped to a physical address (PA) 

The first stage of translation is handled by the Guest OS while the stage two translation is controlled by 

the hypervisor. A Stage-2 translation provides a secure way of accessing physical memory only from HYP 

mode, completely transparent to Guest OS and user.  
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Figure 5-11 ARMv8 2-stage table translation management 

In User mode, there can be many translation tables while on the hypervisor level (HYP mode) and on 

secure monitor level, only a single translation table exists. 

 

Figure 5-12 ARMv8 2-stage memory translation system 

5.4.5 Comparison between ARM and x86 architectures 

At a higher level, both architectures support virtualization features that have a similar concept of 

functionality, but the implementation is done through a different structure. Both on ARM and x86 

architectures, virtualization extensions are embedded to ISAs with the goals to implement and satisfy 

Popek and Goldberg [31] principles in order to provide an efficient and effective virtualized system.  

Seen from a higher perspective, both architectures support a two-stage memory translation mechanism 

as explained above but Intel refers to it as Extended Page Tables (EPT). Both architectures also support 
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interrupts and exceptions handlers, supported by the hypervisor and returns to a Guest with a virtualized 

value. Finally, both maintain and store Guest and host state separately.  

Major differences between Intel’s VT-x virtualization suite and ARM are that the latter gives the flexibility 

and privilege to a software programmer to decide which and what Guest state the hypervisor should save 

rather than it being done automatically by the hardware. The x86 architecture follows an orthogonal 

privilege scheme where the hypervisor runs in the privilege ring like the kernel does but unlike on ARM 

where hypervisor runs on a new mode (HYP), that is executed on a distinct CPU mode, more privileged 

than kernel mode..  

 

Figure 5-13 Intel’s x86 privileges ring scheme 

During a Bare metal VM live migration the CPU state of a Guest can be easily identified. Intel’s hardware-

assisted virtualization is enforced with a specialised data structure called VMCS as demonstrated in Figure 

5.14 that keeps and maintains the state of a VM as well as the state of the host machine before transit to 

a non-root mode. In contrast, on ARM architectures there is no similar data structure. ARM gives freedom 

to developers to configure and save the type and number of registers that they want to maintain.  

A VMCS is created for each of the virtual CPUs on a virtualized system that contains all the sensitive 

information of the current state of a vCPU. A Guest state is loaded in a CPU when a VM Entry instruction 

is executed while the host state is loaded when a VM Exit instruction is executed. By implementing these 

VT-x extensions, no OS modification or binary translation is needed in order to support multiple VMs. 

However, frequent execution of VM Exit instructions slows down system performance and increases the 

latency. VT-x introduced two CPU operations that allow a CPU to run and be either in root mode or in non-

root mode.  
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Figure 5-14 Intel’s x86 VMCS packet structure 

In contrast, on x86 architecture there is no such a separate extra CPU mode and privileged layer. Intel 

introduces an orthogonal virtualization architecture to separate user mode from kernel and virtualization 

by dividing to non and root mode. Figure 5.8 illustrates the VMX root and non-root modes in correlation 

to the x86 ring architecture which traditional x86 processors use. 

VMX root mode is used by a VMM while in VMX non-root operation a Guest OS runs. Both states support 

all four privilege levels, so a Guest OS can run at its intended privilege level. Under VMX non-root mode 

lots of instructions can cause a VM Exit instruction increasing the latency and degradation of performance. 

For example, in case of a move operation that take place between a register and a control register like 

“MOV from/to CR3” (control register) or in cases of an external interrupt and  during a page fault,  a 

number of several VM Exit and VM Entry operations are triggered in order to serve those requests 

resulting on degradation of system’s performance.   

Transition from root to non-root operation is handled by two VMX transitions. VM Entries is called during 

the transition from a root privileged environment to a non-root, while during the execution of a VM Exit 

instruction the operation and control returns to root (hypervisor).  

A CPU running on non-root mode is equivalent to a non-virtualizable environment when sensitive and 

privilege instructions from VMs need to trap to hypervisor, CPU swaps from non-root to root mode. In 

addition, ARM traps to HYP mode. 

 

5.4.6 ARMv7 vs ARMv8  

In the last few years, the ARM architecture has continued to make progress by introducing new versions, 

even if this pace of advancement creates confusion and frustration in the software development 

community. Mainly, most of the changes and differences among ARM versions are focussed on the 

Instruction Set Architecture (ISA), the operational and system modes and list of available registers. 
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In version 8 of the architecture (ARMv8), ARM introduces support for the 64-bit instruction set and offers 

the capability for two execution states, AArch64 with 64-bit registers and AArch32 with 32-bit registers 

for backward compatibility with the preceding ARMv7 architecture. In comparison, ARMv7 uses the A32 

and T16 instruction sets (32-bit and 16-bit, respectively). 

Therefore, the live migration scheme will differ from one ARM version architecture to another, and 

adjustments need to be made in order to provide compatibility with both AArch32 and AArch64 execution 

states. This section will provide a brief overview of the core differences among ARMv7 and ARMv8 

architectures based on the adjustments that need to be made so our live migration scheme will work on 

both ARMv7 and ARMv8 versions.  

The four main differences that need to be considered between the ARMv7 and ARMv8 are: 

• The availability of two execution states 

• The number of the available registers  

• The introduction of the suffix _ELn based on the exception layer 

• The access to the System registers 

The AArch32 execution state is an evolution of ARMv7 enhanced with some new instructions and is mainly 

used for compatibility reasons. When the processor enters the AArch64 execution state, 64-bit wide 

registers are available as well as a new exception model architecture. It is therefore important for our live 

migration scheme to know the execution state in order make adjustments related to the available 

registers.   

Additionally, the ARMv7 architecture provides 16 general purpose 32-bit registers, ranged from R0 to R15. 

On the other hand, ARMv8 provides 31 64-bit wide registers. However, each of these registers can be 

used either as a 64-bit (X0-X30) or as a 32-bit wide register (W0-W30). As such, the same register has two 

ways of representation based on the execution state as Figure 5.15 illustrates. 
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Figure 5-15 List of general-purpose registers on ARMv7 and ARMv8 architecture 

 

As we mentioned, ARMv8 introduces a new exception model architecture using the prefix ELn as Figure 

5.16 shows where n can take values from 0 to 3 with 0 being the least privileged, normally this is the user 

mode and 3 to be the most privileged. That also brings changes in the use of the bank registers compared 

to the ARMv7 architecture.  

Furthermore, there is a huge architectural design difference in the way that the ARMv7 architecture treats 

the use of existing banked registers while on ARMv8 has embedded those are called special registers. On 

ARMv7 when the CPU changes between different modes, there are some banked registers dedicated to 

that specific mode making the content switching process much faster. However, that concept changed 

significantly on ARMv8. Instead of having banked registers based on the CPU mode, ARM introduce 

banked registers based on the level of the exception that is received. 

Moreover, on ARMv7 the architecture contains two special Program Status Registers (PSRs), the Current 

Program Status Register (CPSR) and the Saved Program Status Register (SPSR) which stores the state of 
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the processor at a given time and the value of the CPSR when an exception or interrupt signal is received 

respectively. In ARMv8 the current program status register is not available when the processor is running 

in AArch64 execution state. The functionality of the CPSR is replaced with a Processor state (PSTATE) 

register which contains all the information about the current state of the processor, including the current 

mode.  

 

Figure 5-16 Banked registers and special registers 

On ARMv7 the System Control Register known as SCTLR is accessed using the Coprocessor 15 (CP15) which 

offers access to many features.  In contrast, CP15 is not needed on ARMv8 and the software can access 

system registers using the MSR and MRS instructions. In Figure 5.17 we follow an example of the use and 

access of the system control registers through the P15 and SCTLR registers respectively. 

 

 

 

 

 

 

Figure 5-17 Accessing system registers on ARMv7 and ARMv8 

Another significant change is the naming conversions for calling the registers. On ARMv8 most system 

registers now end using the format of the Exception level that are called or used.  

So, based on the differences as explained above, creating a universal live migration scheme on ARM 

systems is extremely challenging. Our design and implementation is based on ARMv8 since it was the 

ARMv7 

MRC    p15,  <R>  

MCR    p15,  <R> 

ARMv8 

MRS     <R>, SCTLR_ELn 

MSR     SCTLR_ELn, <R> 
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latest version and is embedded in the processors that are intended to be suitable for edge and datacentre 

infrastructures. 

 

5.5 ARM Hypervisors  

ARM architecture processors cover a wide range of hardware platforms, and are widely found in 

applications on embedded devices like mobile phones, PDAs, tablets and laptops etc. Hypervisors on ARM 

based systems is therefore an attractive area of research to the academic community. Hypervisors not 

only work as a management tool to the system and underlying hardware infrastructure, offering an 

enhanced layer of security by preventing unprivileged instructions or malicious access to kernel’s 

operation but also enabling the ability to execute multiple OSs on a single platform. Two types of 

hypervisors can be found in applications on ARM based platforms, real-time hypervisors, which cover 

most embedded devices and system hypervisors finding implementation mostly on desktop/server 

systems. Although the ARM architecture has existed in the IT industry for many years now, only a small 

number of hypervisors exist in comparison to x86 processor architectures. This is mainly due to continuous 

development of the ARM architecture which leads to incompatibility from one version to another. For 

example, the number of registers, new CPU modes, and register format differences that can be found 

from ARMv6 to ARMv7 and ARMv8 models. 

Hypervisors are not only a management tool for servers, they are also used by embedded devices and the 

automotive industry. Our interest and application focuses on Type 1 (Bare metal) hypervisors for data 

centre infrastructures which have direct access to the hardware, offering native performance and better 

management controlling the access to the underlying hardware infrastructure. A list of some existing ARM 

hypervisors in the research community as well in industry are listed in Table 2.  

Real-time Hypervisors Desktop/Servers Hypervisors 

Xen Xen 

ViMo ViMo-S 

OKL4 Xvisor 

RTZVisor  

Minos  

ARMVisor  
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SierraVisor  

Xvisor  

Table 2 ARM-based Type 1 and 2 Hypervisors 

With the introduction of powerful ARM processors into data centre infrastructure, the development of 

ARM hypervisors becomes an active field for the research community. Only a few hypervisors are 

currently available to server infrastructures. 

Xen: Is one of the most famous Type 1 hypervisors finding application on both ARM and x86 architecture 

environments. Is a member of a (PV) Paravirtualization family which means that the Guest OS needs some 

kernel modifications in order to run in a virtual machine without the need of emulation. Xen 

paravirtualization support on ARM system is achieved through hypercalls. Hypercalls work in a similar way 

like systemcall works for the operating system when it needs to execute some privileged instruction on 

hardware. Hypercalls are an advanced processor instruction, enabled when an HVC processor instruction 

is called, where a Guest OS informs the hypervisor to handle a privilege instruction. Mostly it is used when 

the hardware does not offer virtualization extensions, like Cortex – A5, A8, and A9 processors models. Xen 

is one of the most famous hypervisors in the industry. When it is installed by default it creates a virtual 

machine called Dom0 (Domain 0) where a set of device drivers reside called PV Backends (Paravirtualised). 

Dom0 provides access to the unprivileged Guest machines. Each Guest virtual machine created is called 

DomU (Domain Unprivileged) which is installed with a set of Para virtualized frontend drivers. On Xen 

each PV Backend is shared with multiple PV frontends where in practice every time a Guest DomU makes 

an I/O request that is performed and delivered by Dom0. Although, Xen supports live migration 

functionality, performance is poor due to the Domain structure model that follows and the need for 

continuous use of hypercalls. 

ViMo-S:  ViMo-S is another Type 1 hypervisor on ARM systems. However, ViMo-S is under development 

and works only for experimental purposes. ViMo-S is the successor of the ViMo project, a hypervisor 

designed to find implementation on ARM based mobile platforms. However, ViMo was not designed 

based on ARM VEs. Therefore, its successor, ViMo-S was developed based on ARM VEs taking advantage 

of more privileged execution layer, EL2, offering the support of console, network and disk virtualization 

devices. Like Xen, it makes use of a domain structure creating by default the Dom0 virtual machine. ViMo-

S offers the support of unmodified Guest OS unlike Xen by using full virtualization for CPU and Memory 
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taking advantage of the ARM VEs while using Paravirtualization for I/O requests and interrupts. However, 

ViMo-s remains a research proposal with no migration features or support for full hardware virtualisation.   

Xvisor: Xvisor is a Type 1 (aka Bare metal) monolithic hypervisor, meaning that it runs directly on the 

hardware while it contains all necessary hardware drivers in order to provide access to the underlying 

hardware resources, including storage, network and input/output peripheral devices. Consequently, it can 

find application and implementation on limited hardware support. Nevertheless, it has attracted a lot of 

interest in the research and academic community. It is available for a wide range of both embedded 

systems and server platforms. Xvisor finds implementation on a wide range of hardware platforms 

supporting a huge range of ARM processor models like ARMv6, ARMv7 and ARMv8. Xvisor offers both the 

support for full virtualization to unmodified Guest OSs and paravirtualization solutions using hypercalls, 

similar to Xen hypervisor, for compatibility with some older processor architectures.  

The development community of Xvisor is one of the few that is still in continuous development, offering 

upgrades and improvements adding new functionalities. Xvisor offers detailed documentation of how to 

get installed on a wide range of ARM based platforms covering a huge group of embedded platforms as 

well computing and server systems like Raspberry hardware models and AppliedMicro X-Gene 1 server 

platforms. Although Xvisor does not offer any kind of migration functionality, however, the lightweight 

code footprint, well designed structure that takes advantage of ARM VEs, has led is leading to becoming 

a promising hypervisor of choice for many future research projects. to it becoming our choice to extend 

and adapt our code in order to implement the migration functionality on that.  

Since host device drivers are part of Xvisor's source code, there is no need for additional context switch 

and scheduling mechanisms when a host interrupt is rising, eliminating performance overhead. As the 

following Figure 5.18 illustrates, during the normal execution of the Guest OS when an interrupt is raised, 

Xvisor running on HYP mode can handle it. Furthermore, processor scheduling takes place per CPU while 

load balancing for multiprocessors is handled as a separate entity. 

An extensive analysis and comparison of Xvisor to Xen and KVM hypervisors was executed and presented 

by Anut Patel et al [249, 269] where it was shown that Xvisor, due to monolithic design, performs much 

better than Xen. All key operations of Xvisor run on a single software layer with the highest privileges, 

including virtualisation features.  
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Figure 5-18 Interrupt handling process 

 

5.6 ARM Live Migration 

Existing ARM hypervisors lack an efficient, operational live migration scheme. The increased demand on 

ARM based systems, their adoption on data centres and targeting of Edge Computing solutions with the 

announcement of ARMv9 to be available in the market, make live migration an important and necessary 

tool in this space. 

The introduction of hardware-assisted virtualisation extension features on ARM processors increased 

interest in discovering its capabilities by both the academic and research community as well as the 

industry. Two of the most widely known competitors and widely used open-source hypervisors, Xen and 

KVM, leveraging ARM virtualization extensions introduced support for unmodified Guest operating 

systems on ARM systems. According to the performance evaluation of Christoffer Dall et al [118], 

operations like interrupt handling and content switching are completed faster on a Type 1 hypervisor, are 

compared to a Type 2 hypervisor on ARM, while Xen Type 1 hypervisor on ARM achieves a higher 

performance compared to x86. In contrast, a Type 2 hypervisor like KVM on ARM experiences a higher 

performance overhead compared to the x86 architecture. Therefore, our interest is more focused on a 

Type 1 hypervisor on ARM based systems to support Bare metal instances. 

A hypervisor normally performs and manages several tasks and has several responsibilities that cost on a 

system's performance, such as memory management and translation, device emulation, exception and 

interrupt handling, instruction trapping and context switching. However, when it comes to live migration 

of ARM based Bare metal instances, the list of responsibilities can be remarkably reduced, something that 

could minimize if not eliminate the performance overhead. 
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 To the best of our knowledge at the time of writing this thesis, no existing, operational solution exists on 

ARM-based hypervisors to perform a live migration among ARM systems. Therefore, we proposed a live 

migration implementation based on the lightweight Xvisor hypervisor architecture. 

5.7 Summary 

For decades ARM chips have dominated embedded devices, and extensive application has been found on 

a variety of devices like wearables, mobile and modern smart technologies. With the rapid growth of IoT 

devices and the increased demand for Edge Computing architecture design implementations, ARM in an 

effort to remain competitive announced the introduction of Cloud-to-Edge specific cores available for 

servers and data centre infrastructures. Modern AI and machine learning cores were not the first 

approach of ARM in the data centre world. The widely used Cortex X processor family covers a wide range 

of systems and needs.  

Virtualization is an integral part of today’s systems, being found widely on Cloud datacenters and many 

other areas. Therefore, ARM could not be out of that. Most recent versions of Cortex X processors support 

hardware-assisted virtualization. Therefore, ARM like any other vendor who wants to stay in market 

introduced the support of hardware assisted virtualization features in most recent versions of Cortex X 

family processors. Although hardware assisted virtualization features are available on ARM processors, a 

limited number of hypervisors are available in the market that are appropriate to support server and data 

center infrastructure. 
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6 High level design overview for a CPU live migration scheme 

6.1 Introduction  

In Chapter 3 we introduced our novel idea of utilizing Bare metal instances on Micro Data Centres as edge 

nodes to support the Edge Computing paradigm. The lack of availability of a live migration scheme on Bare 

metal instances attracted our interest in developing such a scheme targeting ARM based systems. This 

chapter introduces a case study where our novelty of executing a CPU state live migration process could 

find practical implementation. The following sections provide a high-level design overview and the 

requirements that need to meet to implement and support our scheme., analysing the core components 

that take part during the migration process as well as the phases of implementation. We provide a detailed 

description of the infrastructure dependencies and requirements where our novel scheme finds 

application. 

 

6.2 Case Study 

The rapid growth of the IoT as explained in Chapter 2 requires drastic solutions and workload 

redistribution from the present “all-to-Cloud” architectural model where it mainly dominates, to a more 

robust, distributed architecture capable of providing low-latency, high efficiency, and flexible 

performance to end users. The emergence of Edge Computing solutions as mentioned in Section 2.3 to 

offload the traffic generated from a variety of IoT devices to the cloud, brings data processing and 

computation closer to the edge of a network rather than shipping data produced by IoT devices directly 

to the cloud. Modern edge cloud solutions find practical implementation through the utilization of Micro 

Data Centres installed in distributed locations as discussed in Section 2.4 

More and more use cases in the research and academic community show interest in exploring the 

performance of Micro Data Centres at the edge. For example, an attractive subject that has emerged is 

the utilization of ARM based Raspberry PIs (RPIs) as Edge Gateways on edge cloud architectures instead 

of using high-performance computer servers [247]. The driving force that gave rise to explore that field 

was when the authors in [232, 233, 243] managed to compose a cluster of RPIs consisting of 300 or more 

single nodes offering great opportunities due to their high energy efficiency, cheap implementation, and 

easy adaptability due to the small footprint of design, making them highly suitable for Micro Data Centre 

infrastructures where the attributes of portability, flexibility and efficiency are highly in demand. The 

combination of a large number of RPIs in a cluster helps to overcome and offset the drawback of the 
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performance limitations that an RPI has due to structure and hardware architecture limitations, achieving 

a resource aggregation. 

Figure 6.1 illustrates a typical edge architecture where an RPI cluster might find implementation, playing 

the role of an edge gateway as proposed in most recent use cases in academia [234, 235]. In this scenario, 

edge gateways are deployed in various geographical locations where IoT data is gathered for additional 

processing and computation before being backhauled to the cloud. On a cluster of RPIs, compute 

performance is gathered and shared among the same tasks, achieving higher compute, scalable 

performance feasible to support and deliver high levels of demand. 

 

Figure 6-1 Adoption of a cluster of RPIs architecture at the edge 

Recent studies have tried to investigate and evaluate the performance of a cluster of RPIs at the edge by 

testing a variety of workloads.  Authors through several experiments have demonstrated the efficient and 

effective utilization of ARM based RPIs at the edge, reporting results of testing a variety of workloads and 

data. The demand for Edge Computing solutions inspired Ana Juan et al. [234] to introduce an ad-hoc edge 

cloud computing model which could easily be adopted and deployed on demand. The proposed design 

solution is based on the deployment of a containerised architecture which was composed of RPIs 

endpoints. Microservices and containerisation have become a popular architecture for containerised 

applications, known as microservices, enabling a continuous integration and delivery methodology. A 

containerised orchestration system consists of a centralised master controller and several worker nodes 

as Figure 6.2 illustrates. The master node controls and manages the resources and handles the distribution 

of manageability of workload among the workers, while the actual applications are hosted in worker 

nodes. As Ana Juan suggested [234], masters and workers could easily be replaced by a single board of 
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RPIs or even a cluster of them, creating a Kubernetes cluster capable of hosting and serving a highly 

efficient workload.  

  

Figure 6-2 Microservice orchestration cluster architecture composed of RPIs 

 

Working in the same field of interest, Claus Pahl et. al. [235] proposes a container-based edge cloud 

platform as a service architecture hosted on clusters of RPIs. Both approaches adopt the same 

architecture model as illustrated in Figure 6.2. Similarly, Remo Scolati et. al. [237] proposed a container-

based lightweight Big Data streaming solution for edge Cloud infrastructures, based on clusters of RPIs. 

Authors in recent research experiments [244, 246] introduce and evaluate the utilization of clusters of 

stackable single board RPIs as edge nodes for data processing and analysis for the performance of machine 

learning applications and tasks.  The evaluation results of the upper use cases show that modern versions 

of RPIs, working in a bundle architecture, can handle and perform advanced high performance, real-time 

operations while maintaining some Bare metal characteristics. Adopting a Bare metal architecture offers 

higher data privacy and users’ isolation while system resources are assigned to dedicated tasks. In a similar 

way, edge cloud RPIs are members of an isolated network where single instances or bundles of them work 

on dedicated tasks. Even on containerised infrastructures the impact on system performance is minimal 

since we talk about an OS-level virtualization form and not a hardware-based virtualization. However, all 

these studies and use cases rely on the existence of a virtualization form such as containerisation in order 

to support the concepts of scalability, flexibility and resource manageability.  

A single board, free of the virtualization layer acts as a single unit working on dedicated tasks, delivering 

higher computing performance as a result. However, fault tolerance, workload load balancing, quality of 
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service and reliability are crucial attributes in order to guarantee a seamless integration and processing 

architecture so maintaining RPI boards as backup systems or having replicas of an existing topology in a 

cluster of RPIs in case of unexpected hardware failures, is highly desirable and affordable from both a cost 

and space point of view. However, the lack of support for performing live migrations among those 

platforms due to virtualization limitations makes this a challenging task. Therefore, our proposed solution 

and implementation can find extensive application in such environments. Migrating the system’s state 

from a single RPI to another during intensive tasks like real-time data processing and data analytics could 

be valuable. Even more so in the case of failure, when memory and CPU state migration could maintain 

the continuity of the service since ARM based systems adopt and follow a memory-mapped architecture. 

Let us consider a use case scenario where we have configured the RPIs to process and execute a series of 

batch processes such as performing a Big Data analytic function on real time data flowing through the 

network. The RPIs are all connected together, through a LAN network where each of the RPIs is performing 

individually. However, all RPIs are part of the same project, each of them works on a dedicated task. A 

hardware failure or crash of the system requires the replacement of the single board of the failed RPI with 

a new one, as well as to start the processing from the start. In order to avoid this corruption and disruption 

of the process, we could perform a state migration of the CPU and memory components since storage is 

shared among the bundle of RPIs and no peripheral devices are needed. Our proposed solution could work 

and find implementation in that case transferring the CPU state through the network using a UDP socket 

for higher efficiency. 

 

6.3 Design Decisions 

When it comes on the design, development, and implementation of a live migration scheme especially on 

Bare metal instances, several requirements need to be met and decisions need to be taken. Live migration 

is a complicated process with many requirements as we have shown in Section 4.2. The state running on 

environment A with a specific infrastructure needs to reach location B with similar if not identical 

infrastructure maintaining the same environmental variables where identical infrastructure means that 

the key components such as CPU architecture, peripheral devices and memory capacity should match 

between the environments. Following the same principles, designing such an implementation on Bare 

metal instances is a challenging and very demanding process. Although Bare metal live migration scheme 

adopts the same basic principles as common Type 2 hypervisors support on virtualized systems there are 

some core differences. The main difference is that instead of taking place on top of a virtual machine 
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manager (VMM), migration is performed among physical instances, migrating hardware state from a 

source to a destination system over the network. On top of this, there are some general requirements or 

goals that must be fulfilled in order to a migration scheme to be considered as efficient and practical. In 

the following section we will see those requirements as well as design decisions made based on higher 

constraints.  

6.3.1 Base requirements for the development of a Bare metal live migration scheme 
 

First, and most important, a Bare metal live migration model needs to be OS independent and free of 

user-interventions. A live migration should not be tied to a specific operating system while users should 

not be aware or interact with such a process in order to avoid any modifications that could interfere with 

the normal operation of the live migration process. Users need to be free to select an operating system 

of their choice and not limited on choices. Furthermore, in order to fulfil the fault tolerance attribute and 

acting proactively, a live migration process must be independent and user-free able to be triggered and 

executed at any time.  

Moreover, an important aspect of the live migration process is to maintain system performance on the 

same levels as much as possible before, during and after execution of such process. The concept of 

performance, in this case, has many aspects that need to be taken into consideration such as the 

performance degradation and overhead that a functionality like that can cause, affecting the host system 

performance and the total amount of time that a live migration takes until completion. A software needs 

to run most of the time idle in the background minimizing the effect of system performance while inspects 

the incoming and outcoming calls on the system resources. During the execution of the live migration 

process, that software needs to be capable enough to access, gather as well as transfer the state among 

systems.  

Several approaches have been proposed through time related to a live migration scheme on Bare metal 

instances with some of them finding practical implementation while others are just merely conceptual 

suggestions. Previous studies [250] suggested the introduction of a new module as part of the operating 

system kernel, however that solution requires kernel modifications, making it inefficient and impractical. 

Additionally, another proposed solution was using the operating system hibernation functionality, where 

the state is saved in memory or stored on disk. In both cases, this solution was inefficient since a huge 

amount of memory is demanded or a significant degradation performance was experienced during the 

migration of the state from the disk.  
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The first Bare metal live migration scheme that successfully finds practical implementation was introduced 

by Fukai et al. [37] called BitVisor. BitVisor is a thin, lightweight hypervisor layer, which accesses and 

exposes hardware resources to the Guest machine without virtualization but takes advantage of 

virtualization technologies like the VMCS structure in order to perform and deliver parts during a live 

migration execution. Following that and based on BitVisor’s architecture, Im Jaeseong et al [220], 

proposed an on-demand virtualization layer making some modifications of the source code. The 

virtualization could be enabled and disabled during normal operation of the Guest and taking action only 

during the migration process reducing the performance costs. However, all those cases find practical 

implementation only on x86 architecture.  

On ARM architectures, at the time this thesis was written and to the best of our knowledge, there is no 

similar functionality or any practical solution The emerging of ARM processors targeting on the edge, and 

the need of live migration on Bare metal instances being part of a Micro DC infrastructure, led us on 

develop a novel live migration scheme on ARM based on the following design decisions 

6.3.2 Design choices of our novel scheme 
 

Having in mind the base requirements as explained in Section 6.3.1 and inspired by Fukai's [37] 

implementation scheme on x86 architecture, we take the following design decisions for our novel live 

migration scheme on ARM Bare metal instances. A thin, lightweight hypervisor installed on top of the 

hardware where will act as a mediator that reads and passes values from the hardware to the software 

and needs to have the right permissions and privileges in order to gain access to the hardware resources.  

The structure and nature of the hypervisor we believe that will be more efficient and effective If be 

monolithic, enclosing all the required drivers of the system. In general, there are two Type 1 hypervisor 

classifications, a monolithic and a microkernel type. The core difference between those two categories is 

the way that a hypervisor manages and deals with access to the hardware resources and drivers. A 

monolithic hypervisor contains all the host drivers of all the hardware resources that it needs to access, 

meaning that the drivers are part of the hypervisor architecture and code including networking and I/O 

peripheral devices. Additionally, it maintains all the hardware drivers and services like CPU scheduling, file 

management, memory management operations on the same partition. In that way, all the operations and 

access to the hardware resources reside and are executed within the most privileged level making the 

code more trustworthy. The advantages of using a monolithic hypervisor compared to a microkernel one 

are the efficiency and performance improvements while the correct system drivers are always available 
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so it is very rare to face issues with unsupported or incorrect drivers. However, a monolithic hypervisor is 

larger in size than a microkernel since it needs to include all the necessary support drivers and, in case of 

a service crash, the entire functionality of the hypervisor crashes too. That architecture makes a 

monolithic hypervisor more dependent on specific hardware, limiting support. We believe that a 

monolithic Type 1 hypervisor fits better to a Bare metal live migration scheme since it offers a higher 

performance which is one of the main requirements. Furthermore, it provides higher security knowing 

that the implemented code is tested, and the installed drivers cover all the services and devices. In the 

case that a user manually wants to interfere with the underlying infrastructure or install customized 

drivers, this will not affect the migration phase which makes the scheme more reliable and secure. 

Although there is a definition conflict on combining Bare metal instances with a hypervisor running on top 

of them, in our case, the hypervisor intervenes in the normal operation of the system only when a live 

migration process takes place minimizing the performance overhead. With respect of the definition of 

Bare metal instances only a single tenant, also known as the Guest machine, is running as a host on each 

system. That makes hypervisor's operation much simpler as eliminating the need for content switching or 

CPU scheduling mechanisms to take action and the need for virtualization of the peripheral devices by 

using pass-through mechanism which also reduce the impact of the hypervisor on the system.  

The ARM architecture provides a clear structure on the level of privileges in association with the Exception 

levels as introduced in Chapter 5. That structure also makes the design process much easier since a 

dedicated privilege and exception level is used by the hypervisor layer while a Guest OS can maintain 

direct access to the hardware. Through that way, a type 1 hypervisor is executed on a higher, more 

privileged level than Guest OS without affecting or slowing down Guest operation. 

Of course, creating a hypervisor from scratch is an extremely demanding and time-consuming project. 

Therefore, we decided to develop our live migration scheme based on one of the existing ARM based 

hypervisors. Although ARM processors are becoming more and more in demand there are still few Bare 

metal hypervisors available to the industry. Therefore, we must choose from a limited number of available 

Type 1 monolithic hypervisors with capabilities to support data centre and Edge Computing environments. 

Xvisor hypervisor looks to be the best candidate for our implementation. 

The choice of Xvisor leading on a more restrictive list of development boards where we can test our 

scheme. The high popularity of RPIs in the industry led us to choose this as the development board. The 

decision to work with the latest version of ARM processors automatically allows us to work with two of 
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the most recent RPI versions, the RPI3 and RPI4 that both make use of the ARMv8 architecture processor. 

We will learn and discover some of the features of RPI platforms in the Section 6.3.3. 

One of the peculiarities that exist when designing a Bare metal live migration scheme is that it is tied with 

the underlying system infrastructure. Therefore, it is very challenging to develop a universal model that 

fits and works upon any hardware specifications. This is especially so when it comes to the ARM 

architecture, where the instruction set architecture and register specifications vary from one version to 

another. So, based on the differences as explained in Section 5.4.6, creating a universal live migration 

scheme on ARM systems is extremely challenging. Our design and implementation are based on ARMv8 

since it was the latest version and is embedded in the modern processors that are intended to be suitable 

for edge and datacentre infrastructures. Therefore, the live migration scheme will differ from one ARM 

version architecture to another, and adjustments need to be made in order to provide compatibility with 

both AArch32 and AArch64 execution states. 

Following, we will analyse and describe our choices of the Xvisor as the hypervisor and the RPI as the 

development board.  

6.3.3 Xvisor Architecture Design 

From the presented list of ARM based hypervisors as reviewed in Section 5.5, we chose to develop and 

apply our system on Xvisor. The main reasons why we chose this hypervisor over the others are listed 

below:  

• Xvisor is a member of the monolithic type of hypervisors covering a wide range of peripheral and 

hardware drivers.  

• It provides a wide range of functionalities as well as the ability to enable or disable them. Through 

that way, we can adjust and customize nya part of it in order to increase system performance. 

• Xvisor is under continuous integration and development and an active support community is 

available to answer any questions or concerns. 

• The Xvisor hypervisor supports a wide range of ARM-based systems and architectures from 

embedded devices to servers for data centre infrastructures.  

 

A detailed analysis of the design architecture of Xvisor will help us to understand further about the 

installation and configuration process as well as how to integrate our novel approach and code 

contribution. As discussed above, Xvisor is a Type-1 monolithic hypervisor, also known as bare-metal, 



107 
 

which offers a lightweight, portable, flexible virtualization layer implementation. Figure 6.3 shows a high-

level architecture of the Xvisor infrastructure. It supports both ARM and x86 CPU architectures, covering 

a huge list of board models, so for the purpose of our experiment we can build, configure and install Xvisor 

on an RPI 3 board. Xvisor follows the same general guidelines and principles that most hypervisors follow 

and use, by referring to virtual machines as a Guest instance or Guest environment. On Xvisor any process 

running on the background is represented by a virtual CPU instance. In order to separate vCPUs assigned 

to a Guest instance from those that are used by the system, Xvisor categorises virtual CPUs of the system 

as Normal and Orphan vCPUs respectively. Normal vCPUs are referred to the number of vCPUs that are 

used by a Guest instance, compared to Orphan vCPUs that are used by internal and background processes 

necessary for hypervisor functionality. Like on any system, a CPU is running on two modes, the privileged 

or unprivileged mode. Normal vCPUs run in User (unprivileged) mode since they are used by Guest 

machines while Orphan vCPUs which run in Supervisor (privileged) mode and are controlled by the 

hypervisor itself.  

  

Figure 6-3 Xvisor high level system architecture 

The following Figure 6.4 gives a high-level overview of the Guest architecture design as it resides in an 

Xvisor infrastructure. All the components dedicated to a Guest machine are memory mapped into smaller 

memory portions, called regions and each region is a sequence of memory addresses reserved in physical 

memory. That gives great flexibility in controlling, accessing, and manipulating memory and peripherals 

via memory mapped functions.  
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Figure 6-4  Xvisor Guest Logical Architecture 

The content of a vCPU architecture consists of two groups of registers, the Arch_registers and the 

Arch_private as shown in Figure 6.5 The Arch_registers contain the registers that are updated by the 

processor itself, running in User mode, such as general-purpose registers and status flags. Both Normal 

and Orphan vCPUs have their own copy of Arch_registers. On the other hand, Arch_private registers are 

the group that a vCPU accesses when running in supervisor mode such as when a normal vCPU tries to 

read/write to those, and an exception is raised. Orphan vCPUs do not require an Arch_private group of 

registers since it always runs in Supervisor mode.  

 

Figure 6-5 Xvisor vCPU structure 

Xvisor also provides an extensive list of debugging commands which allow us to confirm the normal 

operation of the system and to determine and extract information from the hardware components. Later 

we will explain some of those commands as part of our implementation to initiate a CPU live migration 

process.   

Xvisor is under continuous development, where more and more features are enabled over time. The 

version of Xvisor that was available at the time of this thesis (v.0.2.11), does not for instance fully support 

a network stack which makes migration of resources via an Ethernet network a more challenging task. 
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Although, Xvisor makes use of the open source LwIP TCP/IP stack, not all the API calls are ported and 

configured to support all kinds of platforms and network drivers. Taking into consideration those 

limitations, our implementation makes use of a UDP communication tunnel between the two end nodes. 

6.3.4 Introduction of Raspberry Pi 

RPIs have become well known in both the business industry and research community as an increasing 

number of use cases try to discover the capabilities of RPIs as both IoT devices and edge systems. 

Therefore, for our implementation, we chose to use an RPI platform due to low cost, energy efficiency 

and because is also supported by the Xvisor hypervisor. 

A Raspberry Pi (RPi) is a small footprint desktop computer in a pocket-size. It is therefore a cheap solution 

that is finding application in many projects in both academia and industry, from sensors up to Edge 

gateways for processing aggregate data collected by a variety of IoT devices. Due to its small size it is a 

highly portable device that can be installed almost anywhere. 

All generations of RPIs are developed with ARM architecture processors. The first-generation RPI (Pi 1) 

used ARMv6 while RPI 2 started using the ARMv7 cortex family processor. Both the latest RPI 3 and 4 

generations come with ARMv8 Cortex family processors, powerful enough to fit on server infrastructures 

and support high-performance workload. The following table 3 gives a high-level overview of the different 

generations of RPIs including the supported Broadcom SoC and ARM processor version.   

RPI generation Broadcom SoC ARM processor 

Raspberry Pi Zero BCM2835 ARMv6 

Raspberry Pi 1 BCM2835 ARMv6 

Raspberry Pi 2 BCM2836 ARMv7 

Raspberry Pi 3 BCM2837 ARMv8 

Raspberry Pi 4 BCM2711 ARMv8 

Table 3 Overview of the available generations of RPIs 

An important detail to mention here is that USB and Ethernet ports on an RPI board make use of the same 

bus system internally. As the following block diagram shows in Figure 6.6, the data exchanged through 

those ports pass through the USB hub. So, there is a generic controller of a LANxxxx type serving requests 

and further configuration for both USB and Ethernet ports. For example, on RPI 3 where our 

implementation is based, a LAN9514 controller is used. As the following block diagram shows, the 
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Ethernet PHY port is communicating with the Ethernet controller where it communicates with the USB 

Hub interface. Therefore, developing or porting an existing network stack on RPI is more challenging since 

specific configuration needs to be done in order to make use of the USB bus. Furthermore, a slight 

bottleneck may occur since data travels through the same bus system in order to serve both networking 

and USB requests. We will therefore need to consider this design information during the hypervisor 

configuration in order to enable networking on an RPI. 

                             

Figure 6-6 Block diagram of RPI networking infrastructure 

6.4 Components of our Live migration Scheme 

As we mentioned, currently there is no other similar work proposing a live migration scheme on ARM Bare 

metal instances. Creating a universal live migration scheme on ARM is very challenging and demanding. 

Therefore, for our proof of concept we decided to design, configure, and apply our live migration scheme 

based on the ARMv8 architecture focusing on CPU state which is the core point of difference between 

ARM and x86 architectures since the remaining parts that we will see and explain in this section at some 

points are covered well from existing works in the research community. 

This section describes the main elements which are essential to the reconstruction of the state of a system 

during and after the execution of a Bare metal live migration as well as the techniques and methodologies 

which we need to adopt in order to achieve that outcome.  

As we have described in Section 4.1.1, the same core elements that take place during a VM live migration 

process, take place in a Bare metal live migration too. The key difference is the lack of virtualization, 

meaning that instead of taking the virtual version of the system, we migrate the actual physical state. 

However, based on the design decisions described in the previous section, the actions of preservation and 
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migration of the state in our case will be handled by a thin hypervisor layer based on Xvisor. Through that 

layer we can gain access to the memory, CPU and peripheral state.  

On virtualized environments during a live migration the main components that take part during the 

process are transferred in the following order, memory, cpu and last but not least the peripheral 

connections. However, a Bare metal live migration scheme should adopts a slightly different approach by 

transferring first the memory state in an iterative manner including peripheral connections and then the 

CPU state. That’s because on ARM architectures, peripherals are accessible through a memory mapped 

I/O methodology. So, by transferring the memory state we perform part of the peripheral devices state 

at the same time. Moreover, during the migration of the CPU state we make use of some portion of 

memory in order to store the values which we later use to fill in the data part of the network packet. In 

that way we keep intact the memory state. 

As we outlined above and explain further in Section 6.4.1, Xvisor performs a mapping of the Guest 

environment to the physical memory space, dividing it into several regions where each region corresponds 

to a resource making the manageability and configuration easier. Additionally, Xvisor creates virtual CPU 

cores which are allocated to the Guest user and the various services running on the system. So, by 

capturing the state of the virtual core, our system can effectively represent the state of the Guest system 

at each specific time as we explain further in Section 6.4.3. Finally, I/O connections with peripheral devices 

and resources are performed through a memory mapped method. Devices and resources are mapped to 

a pre-defined range of physical memory and Xvisor is able to access those addresses using simple read/ 

write commands like treats memory requests as we show in Section 6.4.2.  

The thesis does not focus and bother with the migration of the storage elements. This is not a concern 

since modern implementations allow a shared storage infrastructure accessible through the network such 

as SAN and NAS which both the source and destination systems can access at any time. 

6.4.1 Capturing memory 

Memory migration is a well-studied subject in the research and academic community [5, 114, 268] finding 

implementation through the pre-copy methodology, as the most efficient choice as explained in section 

4.1.1. During the implementation of a pre-copy, memory pages are transferred from source to destination 

in an iterative format. Applying a memory migration from system to system is highly dependent on three 

factors, the total amount of supported physical memory, the physical addressing scheme of the platform, 

and the corresponding memory management system of the hypervisor layer. In this section we will outline 
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the memory migration process for our Bare metal system using an XVisor hypervisor running on RPI 3 

boards. 

Each platform hardware specification defines the address memory space as well as the subsections that 

are divided and assigned to various internal resources. The RPI hardware specification defines the address 

memory space where physical memory and I/O memory mapped peripheral devices are accessible. Based 

on those specifications, the Xvisor hypervisor is able to read/ write to memory using the pre-defined 

memory addresses and communicate with the I/O peripheral devices.   

In general, a hypervisor manages the allocation of resources in a Guest machine. In the same way, Xvisor 

allocates and maps a "Guest address space" for each Guest machine. A Guest address space is divided into 

several regions where each region belongs to memory and the various I/O peripherals such as the 

Programmable Interrupt Controller (PIC), Universal Asynchronous Receiver/Transmitter (UART) or a 

liquid-crystal display (LCD)). Additionally, each Guest region has a unique physical address and size that is 

mapped direct to the physical memory of the host. That mapping relationship is illustrated in Figure 6.7. 

The memory capacity, as well as the addressing scheme on a Raspberry Pi platform, differs from one 

version to another. On a RPI 3 model the memory capacity is 1 GB and the physical addressing range goes 

from 0x000000 to 0x3FFFFFFFF, while the address range from 0x3F0000000 to 0x3FFFFFFF is allocated 

and mapped to I/O peripherals.  

 

Figure 6-7 Xvisor memory address scheme mapping on RPI physical addresses 
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One of the advantages of the ARM architecture is that all peripheral bus addresses are mapped to physical 

memory. So, accessing memory-mapped addresses in physical memory tends to access the bus addresses 

and through this relationship we are able to access the peripherals. Therefore, through a memory 

migration process on ARM systems, we can facilitate the migration of two components in one, both the 

system memory and peripheral connections.  

6.4.2 Capturing peripherals  

Generally, there are two methods of communication between hardware peripheral devices and the CPU, 

using either a memory-mapped I/O (MMIO) or port-mapped I/O (PMIO) method. In contrast to the x86 

systems architecture, most ARM systems support a memory mapped I/O methodology. Peripheral I/O 

device registers are mapped or linked to a predefined memory range of addresses, so, an I/O device can 

write to or read from memory to set or get information and data. In that way, I/O devices are accessible 

just like any other memory address. Also, when an interrupt comes from a peripheral, the CPU accesses 

that device for reading /writing purposes through a memory location at a particular address.  

Memory-Mapped Input Output (MMIO) is the process that peripheral hardware devices use to interact 

by reading from and writing to dedicated, predefined memory addresses. ARM based systems make use 

of memory-mapped I/O (MMIO) process in order to interact with hardware peripheral devices by reading 

from and writing to predefined memory addresses. Each peripheral device is described by a range or group 

of memory registers which requires special access through a memory map. Access to a peripheral device 

occurs through an offset from the peripheral base address which is defined by the SoC of a system. 

Through that memory-based mapping architecture all peripheral hardware devices can be described by 

an offset from the Peripheral Base Address. 

So, for example on RPIs boards there are three types of addressing scheme, the bus addresses, the 

physical addresses, and the virtual addresses as illustrated in Figure 6.8. All three addressing schemes 

provide a way of communication between software and the peripherals. A software package when it tries 

to access peripherals can do that by using either the virtual addresses or through the use of the Direct 

Memory Address (DMA) controller where it must use the bus addresses, while in some cases where the 

software has the efficient permissions and privileges to access the RAM directly, then it must use the 

physical addresses.  



114 
 

 

Figure 6-8 Example of RPIs addressing map diagram 

Performing a live migration of peripheral device state in this case can be easily performed by continuously 

monitoring access to the range of memory addresses where I/O peripheral registers are mapped. On ARM-

based systems, the memory-mapped I/O methodology is accomplished using the I/O memory 

management unit (IOMMU) and the Generic Interrupt Controller (GIC). As Figure 6.9 illustrates, ARM 

systems are enhanced with two separate memory management units, an I/O and the traditional MMU. 

The difference between those two systems is that the first one controls the translation, access, and 

communication of the incoming requests from a DMA controller to the physical memory. IOMMU is 

responsible for performing the translation and protection from unauthorised access to a specific memory 

page or memory region that is assigned and dedicated to a peripheral device, adding an extra layer of 

security while the traditional MMU translates the virtual address of a CPU to physical memory. 

 

Figure 6-9 ARM memory management unit architecture for devices and CPU 
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The ARM System Memory Management Unit architecture (SMMU) defines the IOMMU architecture that 

is implemented on ARM processors to control the access and configuration of the hardware devices.  

Figure 6.10 below shows the logical parts of the SMMU architecture. The flow of communications among 

the client devices and the SMMU is that a memory access is requested by a client device which is raised 

to the SMMU. The latter is responsible for performing an address translation for that request. It then 

accesses the main memory on behalf of the client device.  

 

 

Figure 6-10 ARM SMMU system architecture 

The ARM Generic Interrupt Controller (GIC) is part of the processor architecture. There are several 

versions of GIC, and the most recent processors are enhanced with the latest version of GICv3 and GICv4. 

The GIC is a controller that handles all the IRQ interrupts that are coming from the peripheral devices 

which can raise such an interrupt. A peripheral device sends an IRQ interrupt to the GIC. Then the GIC is 

able to serve and forward that interrupt to the connected cores. An I/O peripheral device creates IRQ 

interrupts which flow through a Distributor to a CPU Interface that is responsible for handling that type 

of interrupt. Then the CPU Interface forwards the received IRQ interrupt to CPU cores. In the GIC 

architecture, Interrupts can be identified by using ID number knowns as INTIDs. 

The GIC architecture consists of the following set of logical components as shown in the diagram in Figure 

6.11:  

• Distributor: 

The Distributor is the core part of the GIC that handles all the sources of interrupts and keeps the 

routing configurations. There are several categories of sources like: 

• LPI Locality-specific Peripheral Interrupt (LPI) 
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• PPI Private Peripheral Interrupt (PPI) 

• SPI Shared Peripheral Interrupt (SPI) 

• Software Generated Interrupt (SGI) 

• Redistributor: 

Provides the configuration settings for interrupt sources like PPIs and SGIs. 

• CPU Interface: 

The CPU Interface is responsible for forwarding and delivering the IRQ interrupt to the available core.  

• Interrupt ID: 

When an I/O peripheral device sends an interrupt signal to the GIC, the GIC identifies and knows the 

source of the interrupt based on a unique identification number known as Interrupt ID. 

 

Knowing the architecture and internal components of the GIC controller is valuable in the case of a 

peripheral I/O migration state. An interrupt is raised each time when the software needs to communicate 

and access a peripheral device. Different kinds and types of interrupts are handled and served by separate 

CPU interfaces. Therefore, when a change of device is needed to be done to a predetermined status, that 

change can be triggered through the use of the proper GIC register linked to that type of interrupt. 

 

Figure 6-11 ARM GIC architecture diagram 

6.4.3 Capturing Essential CPU state 

A processor consists of several components including the registers, which are high-speed temporary 

locations that store processor data and instructions. Different types, kinds, and architectures of 

processors contain different numbers and configurations of registers which are used for different 
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purposes, so there is no simple approach to capturing this information. Capturing a CPU state is a very 

challenging task especially on ARM based Bare metal instances, where no implementation like VMCS is 

available to encapsulate Guest CPU state into a data structure and easily migrate and adjust to another 

system as covered in Chapter 3. Furthermore, to the best of our knowledge, there is not an official 

definition that defines an “essential CPU state” that it can be used to achieve a reconstruction of the initial 

Guest state through a migration process from system A to system B. 

Capturing CPU state is highly dependent on the processor's architecture, meaning that the specific 

processor's architecture defines which registers need to be preserved. Based on that, a hypervisor needs 

to understand that list in order to be able to read, capture and preserve them during the migration 

process. So, in our case we need to preserve the right group of registers based on the ARMv8 architecture 

as supported by the RPI 3 model.  

 Firtst, we need to define and explain from our point of view what we is considered as the essential CPU 

state. In our scheme as essential CPU state is considered to be the group of the general purpose registers 

that are used and take part during execution of an application as well as the group of registers that 

describe the processor’s configuration status at that specific time. Although ARM documentation suggests 

that the following list of elements needs to be saved and restored during a content switching process, this 

has not been proven by the research community that could also be sufficient to perform a CPU state 

migration. 

• General purpose registers X0-X30 

• Advanced Floating registers V0-V31 

• Status registers  

• TTBR0_EL1 and TTBR0 

• Thread Process ID Registers  

• and Address Space ID (ASID)  

Since it is now common for a processor to have multiple cores, Xvisor assigns one or more physical cores 

to a Guest machine that are defined as virtual cores from Xvisor's architecture perspective. Each core's 

execution state is mainly described by three subgroups of registers which are a group of general-purpose 

registers, a group of special purpose registers, and processor’s state (PSTATE). On the ARMv8 architecture 

in order to accomplish a CPU state migration the following group of registers need to be preserved and 

migrated, 31 general purpose registers, and PSTATE, as listed in Figure 6.12. In detail, this includes 31 
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general purpose registers (X0-X30), 4 Stack point registers (SP_ELn), 3 exception link registers (ELR_ELn), 

and 3 saved processor state registers (SPSR_ELn). The functionality and purpose of the registers is 

described in Sections 5.4.2 and 5.4.3. Furthermore, while the PSTATE can be considered as a register, it 

actually represents a group of registers and flags that preserve the current process state. 

 

Figure 6-12 List of registers compose a CPU state 

It is very important from a performance perspective that the CPU state migration be limited to the minimal 

necessary number of registers. It is normal that the higher the number of the migrated registers, the 

longer the CPU migration time which in turn affects and increases the total migration time. ARM processor 

has over 100 registers most of them are system registers giving a global picture of the state of the 

processor. Processors typically perform several content switching processes between tasks and processes 

running on a system. Exactly what registers need to be saved and restored varies based on the operating 

system and the architecture. Some of the registers that take part in a content switch process are the 

general-purpose registers, some status registers and some translation table registers. Having that in mind, 

our belief is that working with a single Guest environment does not necessitate the perseveration of all 

registers but only those which describes the content state of the Guest user space, minimizing hypervisor’s 

overhead. 
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6.5 Design Implementation Phases 

In this section, we introduce a design that covers the execution of a CPU state migration based on the 

ARM architecture, the design works on both ARMv7 and ARMv8 architectures however, our testing is 

based on ARMv8. Our proposed model is divided into four phases, the configuration phase, the 

reconnaissance phase, the migration phase and the confirmation phase. Starting with the configuration 

phase, this includes any prerequisite configuration in order to prepare the underlying infrastructure and 

resources where the migration process will be implemented, such as hypervisor's layer settings and 

networking infrastructure configuration details. This is followed by the reconnaissance phase, which 

describes the information gathering process related to crucial details and state that is needed in order to 

execute and trigger the migration process, such as the numbers and IDs of the vCPUs. Then the migration 

phase begins, which consists of retrieving, storing, and transferring vCPU registers at the source, and 

receiving and adopting the data at the destination. The final phase of the design model is the confirmation 

phase, where verification messages give feedback and confirm the successful completion of the migration 

process.  

This model can find application on any ARM based platform that meets the following conditions: 

• A hypervisor infrastructure that provides a defined structure of a vCPU. 

• A hypervisor infrastructure that includes hard-coding the list of architecture-based registers. 

 

6.5.1 Configuration Phase 

We now explain how to adopt these phases on an infrastructure where Xvisor is being used. Starting with 

the configuration phase, the Xvisor hypervisor first needs to be loaded on both the source and destination 

systems before we deploy anything else since the creation of the Guest OS and the migration process 

depends on the existence of it. The installation process of Xvisor is based on the pre-existence of the U-

boot bootloader which will load the kernel and bring up the OS. In our case, U-boot helps us to load the 

Xvisor kernel with the hardware description of the underlying board as well as the Linux kernel of the 

Guest instance. During the boot process of Xvisor, it creates the description plan of the Guest machine by 

default, allocating the specified number of vCPUs and memory regions. However, the Guest machine does 

not get created automatically so we need to trigger and execute the Guest machine first in order to start 

it running.  
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Before any state can be transferred from source to destination, a communication channel also needs to 

be set up between the two nodes. So, the networking settings must be applied in a manner where both 

servers belong on the same network and are able to communicate with each other. Furthermore, Xvisor 

gives us the capability and flexibility to define the number of vCPUs that we want to assign on a Guest. By 

default, two vCPUs are assigned to a Guest instance. We can modify the number of the vCPUs either 

during the build process of the source code of Xvisor or before we start the execution of the Guest 

instance. Once the number of the vCPUs is defined, the Guest machine starts on the source system. Part 

of the configuration process is to configure and modify the live migration functions, by adjusting the IP 

addresses and port numbers of the source and destination systems that we configure for the live 

migration process to use.  

6.5.2 Reconnaissance Phase 

Once the configuration phase is complete, the reconnaissance phase can begin. The execution of the live 

migration process requires some information to be given by the user. This includes the id number of the 

vCPUs and the range of the Guest address space that contains all the memory blocks of each Guest region. 

This information is given as input arguments to each function (memory migration, CPU migration). We 

can easily gather that information by calling some of the debugging commands that the architecture of 

Xvisor offers to us. Potentially, going forward, that process could be automated by integrating the 

information gathering process as part of the source code. Xvisor then divides the vCPUs into two 

categories, normal and orphans, where normal are referred to vCPUs attached and used by the Guest 

machine. Therefore, finding the ID numbers of the Guest vCPUs can be done by listing the normal vCPUs. 

Taking and passing that information to those functions can be resolved internally through the source code. 

6.5.3 Migration Phase 

In general, during the performance of a live migration process, the three major components that are 

transferred from source to the destination server are the CPU state, the memory and the peripheral 

connections. The architectural design of Xvisor allows us to migrate the state of the peripheral devices at 

the same time through a memory migration, since a memory mapping scheme is used in ARM systems.  

Based on that, the migration phase can be completed by calling two functions. A function that takes as 

arguments the id numbers of the vCPUs and performs a CPU state migration, and a function that takes 

the memory address range of the Guest regions in order to perform a memory migration. Each of those 

functions first creates a TCP or UDP session based on customer preferences, then captures and transmits 

that state to the destination server. Transmission of the state can occur through either a UDP or TCP 
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session. UDP is preferred in the case that we desire higher performance, while TCP offers trustworthy 

migration. In each case, the appropriate APIs are called in order to set up the communication channel and 

then send and receive the data between the source and destination servers.  

The destination server starts by waiting in the listening mode by calling a “receive state” function where 

it is waiting for incoming connections and ready to receive the data (state) from the source. At first, the 

memory state is received and adapted to the destination Guest address space, followed by the CPU state. 

Following this, once the destination server has received that state, it adapts the values and creates the 

Guest machine. After the completion of those stages and once we have confirmed that the Guest machine 

at the destination server is booted properly, the Guest machine at the source machine is ready to be 

deleted. 

The live migration scheme outlined here works with the latest ARM versions such as ARMv7 and ARMv8 

which both support CPU virtualization extensions. Although on ARMv7 version virtualization features 

come as part of a distinct CPU mode, the HYP mode, on ARMv8 it is enhanced as part of the ISA having a 

dedicated execution layer and registers. 

6.5.4 Confirmation Phase 

Once the migration phase is completed, the system needs to confirm and verify the successful receipt and 

integrity of the shipped data from source to destination. In a real use case scenario, the migration phase 

either will succeed and the state will resume on the destination, or it will fail, returning an execution error 

message, so the confirmation phase is eliminated. In order to increase the integrity and reliability of the 

migration phase a UDP protocol is used while the CPU state is migrated through a dedicated Ethernet 

connection between the source and destination. If the state has been altered during the migration phase 

the migration will fail protecting from a corrupted state to resume on the destination. In the case where 

the migration state fails the state continues running on source with no issue. 

Currently, our experimental scheme makes use of the UDP communication and transportation protocol 

that lacks reliability. Therefore, for proof of concept of our design and in order to verify the successful 

operation and integrity of the migrated state, during the experimental process we make use of the 

network traffic analyser tool that captures the data as it reaches the destination. During the migration, 

the source keeps a copy of the migrated data while the destination prints the received data to the 

standard output. In that way, through a cross-check we can confirm that the right fields and values of data 

reach the destination system. Furthermore, through the network analyser tool (Wireshark) we check that 
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there is no modification to the data after the reception by the destination system or at the hypervisor 

layer.  

 

6.6 Summary 

In this chapter we observed the tremendous interesting in the adoption of RPIs at the edge of a network. 

Inspired by this trend we explored the development and support of live migration process on ARM based 

systems. We discussed the core differences between the ARMv7 and ARMv8 processor versions as well 

as the reasons why we chose to work our live migration scheme on the latest ARMv8 version. 

Furthermore, we discussed the design decisions and requirements for the implementation of a live 

migration scheme on ARM based systems. The need of a monolithic, lightweight hypervisor led us to 

choose Xvisor as our underlying layer and develop our implementation having as primary targets RPIs 

boards. Lastly, we analysed the parts and phases of our live migration scheme as well as the components 

that take part in the migration process.  

In the following Chapter 7, we work on the implementation of our live migration scheme on Xvisor 

explaining all the enhancements and modifications we need to apply in order to support live migration 

between two systems. 
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7 Implementation 

7.1 Introduction 

This chapter gives a detailed analysis and explanation of our source code implementation for the support 

of a CPU state live migration as this finds application on ARM based instances through the Xvisor 

hypervisor. As we introduced in Chapters 5 and 6, ARM systems such as Raspberry PIs attract huge interest 

from the research and academic community on exploring them as Edge Computing deployment solutions. 

However, there is a lack of availability for an ARM based live migration scheme targeting Bare metal 

instances such as single RPI boards. Therefore, our novel implementation assists in the performance of a 

CPU live migration between RPI boards that could be installed and serve as edge nodes offering high 

service availability and fault tolerance. This chapter covers the core functionalities of the establishment 

and execution of a CPU live migration process among two ARM based systems as illustrated in Figure 7.1.  

We do not cover a full Bare metal state migration including memory, storage and peripherals but we focus 

on the CPU state migration part. This is because the development of a CPU live migration framework is 

the most challenging part of all the required components that take part in a Bare metal live migration 

process because of the dependencies and peculiarities of the processor’s architecture. The remaining 

components such as memory, storage and peripherals can largely be based on existing work. For example, 

a storage migration process is of limited value since network-based shared topologies such as SAN and 

NAS are increasingly being adopted, which both the source and destination systems can access at any 

time. Additionally, memory state migration processes have been studied extensively in the literature, 

where proposed solutions and implementations find application on both x86 and ARM architectures. As 

we explained in the previous chapter, the performance of a memory migration on ARM based systems, 

also completes a peripheral migration state since a memory mapped methodology is adopted. Therefore, 

the only challenging part with no current practical implementation on ARM systems is the application of 

a CPU state migration where our novelty is focussed. 
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Figure 7-1 CPU live migration implementation steps 

Our implementation covers four main phases where each of those phases consists of a few additional 

steps. Those phases are: 

• Phase 1: Networking configuration 

• Phase 2: Retrieve CPU state (source)  

• Phase 3: Receive CPU state (destination) 

• Phase 4: Adoption of CPU state (destination) 

 

All these phases are part of the design approach as introduced and explained earlier in Section 6.5. More 

specifically, phase 1 is part of the configuration phase, phase 2 is part of the reconnaissance phase, phase 

3 is part of the migration phase while phase 4 is a mixture of both migration and confirmation phases. 

Phase 1 covers the configuration related to the underlying networking infrastructure and the support of 

a ported TPC/IP protocol. Xvisor gives the ability and support for a TCP/IP network stack, however this 

feature is not enabled by default. Therefore, at first, we need to make the appropriate modifications in 

order to support a network connection between the source and destination and make the necessary API 

calls for the construction of a UDP packet.  

Phase 2 explains the source code for retrieving the CPU registers values from the source and all the 

dependencies related to this task such as the way that Xvisor communicates and interacts with the 

hardware. Phase 3 analyses the source code at the destination host that receives the migrated list of 

registers. In this phase we present a sample of the receive function that could work on Xvisor in a future 

release, as well as the sample of code that we used in our proof-of-concept experiment lab.   

Finally, phase 4 gives a sample of the code which performs adoption of the received registers by the 

destination host.   
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In order to implement a CPU live migration functionality as part of the Xvisor, first we need to develop 

and integrate the appropriate menu including the options for the migration as part of the existing Xvisor’s 

menu. For convenience, we have integrated the list of the options as part of the existing "ping" menu as 

provided by Xvisor. However, we could easily create a separate menu, giving the name of our choice that 

performs the same functionality. This could be a task for future work.  

Algorithm 1 describes the logic of our implementation. In line 7 we integrate the migration of the CPU 

registers from source to destination. Line 9 performs the adoption of CPU registers at the destination host 

while in line 11 the reception functionality starts waiting for the incoming state. 

 

ALGORITHM 1: XVISOR PING MENU 

1: Require: Installation of Xvisor hypervisor 

2: Function cmd_ping_usage(input parameters) 

3: If pass `help` then 

4: Show ping menu 

5: Else if pass `ping to` then  

6:       Ping the address; 

7: Else if pass `ping senddata` then  

8:       Execute cpu migration; 

9: Else if pass `ping adapt` then 

10:       Replace cpu values; 

11: Else if pass `ping datareceiver` then 

12:       Receive cpu values; 

13: End function 

 

The code implementation of the menu with the options is presented in Figure 7.2 while Figure 7.3 shows 

the output of the menu as it appears to the user. 

 

static void cmd_ping_usage(struct vmm_chardev *cdev) 

{ 

 vmm_cprintf(cdev, "Usage: \n"); 

 vmm_cprintf(cdev, " ping help\n"); 

 vmm_cprintf(cdev, " ping to <ipaddr> [<count>] [<size>]\n"); 
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 vmm_cprintf(cdev, " ping senddata <ipaddr> <vcpu_id1> <vcpu_id2>\n"); 

 vmm_cprintf(cdev, " ping adapt <vpcu1> <vcpu2>\n"); 

 vmm_cprintf(cdev, " ping datareceiver <local_port>\n"); 

} 

Figure 7-2 Code integration for CPU migration into Ping menu 

 

Figure 7-3 List of the available sub-commands of the ping command 

 

7.2 Networking configuration  

Besides the menu integration, some modifications to the existing source code of Xvisor are required to 

support our implementation. Those prerequisites are mostly related to enabling some of the networking 

functionalities like the desired networking stack. 

As we mentioned in Chapter 6, by default the Xvisor architecture supports two types of networking stacks, 

an internal network packet switching framework stack and a network stack for socket programming. The 

network stack for socket programming is optional and therefore by default is disabled. Xvisor is integrated 

with the open-source LwIP TCP/IP stack. So, in order to achieve, create and open a TCP/IP session between 

two systems running Xvisor, we need first to enable support for the available TCP/IP network stack as that 

is provided through LwIP.  

Moreover, the supported drivers related to the Ethernet and the USB need to be ported and enabled since 

a connection via an Ethernet cable is supported by porting the relative drivers of the USB ports. This is 

mostly a requirement of the RPI’s specifications and boards from other vendors may only need the use of 

the Ethernet drivers.  

This is followed by the changes that need to be configured as part of the compilation and build phase of 

the Xvisor in order to include and make available the additional functionalities which are necessary for 

the support of our live migration scheme through the network. Someone who wants to use Xvisor on an 

RPI board and wants to perform a live migration by adopting our live migration scheme, needs to follow 

and make those changes in order to enable the necessary functionalities and options. Figure 7.4 shows 
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the modifications that we need to perform in order to enable the support for the networking TCP/IP stack 

which by default as we mentioned before is disabled. We just replace the default option from “n” (no) to 

“y” (yes). 

 

menu "Network Stack Options" 

    depends on CONFIG_NET 

config CONFIG_NET_STACK 

    tristate "Network stack 

support" 

    depends on CONFIG_NET 

    default y 

 

Figure 7-4 Enabling Network Stack Options 

Figures 7.5 and 7.6 show the source code modifications that need to be done in order to enable the 

supported drivers for the Ethernet end USB interfaces respectively as well as the appropriate controller. 

The name of the supported Ethernet and USB controller is based on the hardware. Based on the official 

documentation of RPI 3 the supported drivers of the controller are part of the SMSC95xx family. 

menuconfig CONFIG_ETHERNET_DRIVERS 

        tristate "Ethernet driver support" 

        default y 

        depends on CONFIG_NET_DEVICES 

        help 

                Select ethernet drivers 

Figure 7-5 Enabling the support of Ethernet drivers 

menuconfig CONFIG_USB_NET_DRIVERS 

        tristate "USB network driver support" 

        default y 

        depends on CONFIG_USB && CONFIG_NET_DEVICES 

        help 

                Select USB network drivers. 
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if CONFIG_USB_NET_DRIVERS 

 

config CONFIG_USB_SMSC95xx 

        tristate "SMSC95xx driver" 

        default y 

        help 

                USB SMSC95xx network device driver 

Endif 

Figure 7-6 Enabling the support of USB drivers 

So, we have now enabled support for LwIP and properly configured the networking Ethernet interface. 

Furthermore, as we will see in the code that follows, we chose to make use of UDP protocol rather than 

using a connection-oriented session between the source and destination. One of the reasons is due to the 

version of Xvisor (v0.2.11) that was available during the time that this thesis took place, where support 

for TCP API calls is not fully implemented by the LwIP network stack. Furthermore, our network 

infrastructure is envisioned to be a private, isolated network consisting of only two users at this stage. 

Therefore, it can be considered reliable and secure enough that no other recipients exist to intercept or 

interfere with the migration process. By using UDP protocol we also do not incur additional latency or 

transmission delays since a smaller header is used in comparison to TCP and less configuration is needed 

on our side to create a UDP socket.  

Let us now consider the specific client/server scenario, where the source host plays the role of the client 

while the destination host plays the role of the server by utilizing a Socket API. A socket API is a collection 

of API calls that enable the communication between applications programs. There are three types of 

sockets, a stream socket, a datagram socket, and a raw socket which is the one that we decided to make 

use of in our implementation. With a raw UDP socket, unlike TCP, the client does not need to form a 

connection with the server while the server just waits for datagrams to arrive. The following diagram in 

Figure 9.7 illustrates the socket API calls or methods in order to initiate and transfer data between source 

and destination. Primary functionalities of a socket API are the establishment of a connection, send and/or 

receive data and close a connection which are performed with the call of the methods as illustrated in 

Figure 7.7. At the source we call the list of functions as provided by the library of the LwIP stack such as 

lwip_socket(), lwip_bind(), lwip_sendto() and lwip_close() [238]. The lwip_socket() is the first function 

that we need to call, specifying the type of communication as well as the desired protocol family following 

by the lwip_bind() which binds the created socket to an interface and assigns an IP address while the 
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lwip_sendto() function is used to transmit data through UDP while the lwip_close() terminates the socket. 

Similarly, on the destination host we make use of the API calls that a Unix socket provides to a Linux system 

[239]. The only difference is that on the destination host we use the recv() method which is used to receive 

data over a UDP.  

 

Figure 7-7 LwIP API calls setting up a UDP server – client channel 

 

7.3 Retrieve CPU at source 

To retrieve the CPU state of a Guest instance several sub-tasks need to be done which involves a deep 

understanding of the hypervisor layer implementation. Algorithm 2 provides the pseudo code of our 

approach.  

 

ALGORITHM 2: TRANSMIT CPU REGISTERS 

WORKFLOW 

1: Require: Existence of Guest vCPUs 

2: Input: IDs of the vCPUs 

3: Function senddata(vCPU1, vCPU2) 

4: Set timer; 

5: If IDs of vCPUs are valid then 

6: For each vCPU do 
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7: Read registers; 

8: Store registers in a data array; 

9: Create a UDP socket; 

10: Prepare packet; 

11: Load data from array into packet; 

12: Send packet to destination; 

13: Stop timer; 

14:     end 

15: end 

16: End function 

 

Through the execution of `senddata` function as defined in algorithm 2 the following actions are 

implemented: 

• Identification of the mapped vCPUs 

• Read and store the registers of each vCPU 

• Creation of a UDP packet shipping the captured registers as data 

• Send the formatted UDP packet 

 

Retrieving the CPU state means capturing the values of the CPU registers in real time. On Xvisor, a vCPU 

is a virtual representation of a CPU so, in order to perform a state migration, we need to gain access, read 

and then store the values of the registers that describe a vCPU. However, we don’t want to migrate the 

values of any vCPU, but only those that are assigned and used by the created Guest machine. Therefore, 

we need to understand how a Guest machine and vCPU structure are handled and represented by the 

Xvisor infrastructure code. 

On Xvisor a Guest instance is represented by the following components as defined in the sample of code 

in Figure 7.8:  

1. A global unique identification number (ID) in the case that more than one Guest instance exists.  

2. A Guest Device Tree node configuration which is a data structure that maintains the configuration 

of that specific Guest instance. 
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3. A vCPU Count which is the number of the total vCPU instances which are attached to this Guest. 

By default, Xvisor assigns two vCPUs for each Guest, however, depending on the hardware 

specifications of the host system more than two vCPUs can be attached. 

4. A vCPU List of the vCPU instances which are attached to this Guest 

5. A Guest Address Space  

6. An architecture dependent part of the vCPU which contains the state of the Guest machine. 

The architecture dependent part consists of the Arch Registers structure and the Arch Private as 

described earlier in Section 6.3.2. 

 

struct vmm_Guest { 

 

 /* General information */ 

 u32 id; 

 struct vmm_devtree_node *node; 

 /* VCPU instances belonging to this Guest */ 

 vmm_rwlock_t vcpu_lock; 

 u32 vcpu_count; 

 struct dlist vcpu_list; 

 /* Guest address space */ 

 struct vmm_Guest_aspace aspace; 

 /* Architecture specific context */ 

 void *arch_priv; 

}; 

Figure 7-8 Code structure 

The core part of a Guest machine and the key to our novel contribution is the structure of a vCPU. On 

Xvisor as Figure 7.9 shows, a vCPU structure consists of: 

1. A global unique identification number (ID) in case more than a single vCPU is attached on a Guest 

instance. 

2. A Device tree node data structure  

3. A flag which indicates if that vCPU is Normal or Orphan. We pointed out the distinction between 

normal and orphan as defined by Xvisor architecture in Section 6.3.2. 



132 
 

4. Starting value of the Program Counter. 

5. The size of the vCPU stack 

6. The Host CPU which that vCPU is running. 

 

struct vmm_vcpu { 

 /* General information */ 

 u32 id; 

 u32 subid; 

 char name[VMM_FIELD_NAME_SIZE]; 

 struct vmm_devtree_node *node; 

 bool is_normal; 

 bool is_poweroff; 

 struct vmm_Guest *Guest; 

 /* Start PC and stack */ 

 virtual_addr_t start_pc; 

 virtual_addr_t stack_va; 

 virtual_size_t stack_sz; 

 /* Architecture specific context */ 

 arch_regs_t regs; 

 void *arch_priv; 

 /* Virtual IRQ context */ 

 struct vmm_vcpu_irqs irqs; 

}; 

Figure 7-9 Code structure defining a vCPU on Xvisor 

The default configuration of the Xvisor assigns two vCPUs per Guest instance. If we want to increase the 

compute power and performance of the Guest instance, we can modify and change the default number 

of assigned vCPUs during the source code compilation of the Xvisor or through the console. If you want 

to add or delete a VCPU at boot-time then we need to edit the /boot.xscript file and increase or decrease 

vcpu_count value passed to "vfs guest_fdt_load" command. Else If we decide to add vCPU for existing 

Guest instance we need to execute the commands in Figure:  
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Delete vCPU 

# guest destroy guest0 

# devtree node del /guests/guest0/vcpus/vcpu1 

# guest create guest0 

# vfs guest_load_list guest0 /images/arm64/virt-v8/nor_flash.list 

Add vCPU 

# guest destroy guest0 

# devtree node copy /guests/guest0/vcpus vcpu2 /guests/guest0/vcpus/vcpu1 

# guest create guest0 

# vfs guest_load_list guest0 /images/arm64/virt-v8/nor_flash.list 

Figure 7-10 Increase or Decrease the number of the assigned vCPUs per Guest Instance 

In the case that we increase or decrease the default number of the vCPUs additionally we need to adjust 

our configuration of the number of migrated vCPUs. For example, with three vCPUs, the function 

“senddata” as explained in Algorithm 2 needs to be done as follow: senddata(vCPU1, vCPU2, vCPU3) 

To read and store the values of the registers, we first need to know the exact list of registers. Based on 

the processor architecture, Xvisor maintains hardcoded, architecture specific, lists of registers. The 

following Figures 7.10 and 7.11 show an example of the hardcoded definition of the core and general-

purpose registers as defined on Xvisor for an ARMv8 and ARMv7 architecture respectively. 

struct arch_regs { 

 /* X0 - X29 */ 

 u64 gpr[CPU_GPR_COUNT]; 

 /* Link Register (or X30) */ 

 u64 lr; 

 /* Stack Pointer */ 

 u64 sp; 

 /* Program Counter */ 

 u64 pc; 

 /* PState/CPSR */ 

 u64 pstate; 

} __packed; 

struct arch_regs { 

 u32 sp_excp; /* Stack Pointer for 

Exceptions */ 

 u32 cpsr; /* CPSR */ 

 u32 gpr[CPU_GPR_COUNT]; /* R0 - R12 

*/ 

 u32 sp; /* Stack Pointer */ 

 u32 lr; /* Link Register */ 

 u32 pc; /* Program Counter */ 

} __packed; 
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Figure 7-11 Structure of calling ARMv8 registers     Figure 7-12 Structure of calling ARMv7 registers 

Access to both the architecture specific dependent and independent registers happens through the use 

of pointers as shown in the following Figure 7.12. Using the "regs" pointer we can access and read the 

values of the general-purpose registers while with the pointer named "archi_priv" we read the values of 

the registers as updated by more privileged exception levels. 

#define arm_regs(vcpu)  (&((vcpu)->regs)) 

#define arm_priv(vcpu)  ((struct arm_priv *)((vcpu)->arch_priv)) 

#define arm_Guest_priv(Guest) ((struct arm_Guest_priv *)((Guest)->arch_priv)) 

Figure 7-13 Defining the pointers of the architecture registers 

In our implementation we chose to make use of the ARMv8 architecture. So, in order to communicate 

with the CPU and read the values of the registers we need to use the naming conversion as defined in the 

arch_regs block as explained above in Figure 7.10. Similarly, in case we need to adjust the process to an 

ARMv7 architecture we just replace the name of the registers. For example, in ARMv7 the general-

purpose registers are only thirteen while in order to access the current state we make use of the CPSR 

register instead of the PSTATE like we do on ARMv8. 

Coming back to the "ping senddata" command, as we introduced in the menu panel, this takes three 

parameters, the destination host IP address and the IDs of the migrated vCPUs. By default, when a Guest 

instance is created, Xvisor assigns two vCPUs. We can identify the ID numbers that we need to pass in our 

command using the supported "vcpu normal_list" subcommand as shown in Figure 7.13. This command 

lists the currently available vCPUs that are assigned to a Guest instance. 

 

Figure 7-14 Output of the vCPU normal list execution command 

In the first part of the source code, we validate that those IDs of the given vCPUs exist. Afterwards, we 

pass those vCPUs to another function which can access, read and store the values of the registers into a 

data array. 
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The following section of code in Figure 7.14 performs those actions. With the help of the two pointers 

regs1 and regs2 we are accessing the named registers of the vCPU1 and vCPU2 respectively. 

/*Put the values of register inside the array*/   

   data_buffer[0] = regs1->sp; 

   data_buffer[1] = regs1->lr; 

   data_buffer[2] = regs1->pc; 

   data_buffer[3] = (regs1->pstate & 0xffffffff); 

   data_buffer[4] = regs2->sp; 

   data_buffer[5] = regs2->lr; 

   data_buffer[6] = regs2->pc; 

   data_buffer[7] = (regs2->pstate & 0xffffffff); 

Figure 7-15 Storing registers’ values into a data structure 

Additionally, we can expand the list of the registers we want to capture using the appropriate pointer and 

the right name of the register as that defined in the embedded hardcoded list. 

Once we have stored the values of the registers in the data array we need to create and set a UDP socket 

giving the destination details. We have hardcoded the network configuration details for both the source 

and destination hosts at this stage, including the IP address and UDP ports as shown in Figure 7.15. Both 

source and destination hosts initiate a UDP socket, listening on port 6002 while we have declared the 

source IP address to be 192.168.0.10 and for the destination host to be 192.168.0.11. 

#define SENDER_PORT   6002 

#define RECEIVER_PORT  6002 

#define SENDER_IP        "192.168.0.10" 

#define RECEIVER_IP  "192.168.0.11" 

Figure 7-16 Define globally Networking configuration details 

Lastly, for performance evaluation, we make use of a timer that counts the overall time it takes to 

complete a CPU live migration process. The timer starts counting once the “ping_senddata” function is 

triggered until the data migration process is completed. The sample of code in Figure 7.16 describes the 

integrated part of the timer. 
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//Initial timer 

u64 timer_stamp = 0; 

u64 mult, start_tstamp, end_tstamp; 

// Start timer 

start_tstamp = vmm_timer_timestamp(); 

// Stop timer 

end_tstamp = vmm_timer_timestamp(); 

// Print the total migration time 

timer_stamp = (end_tstamp - start_tstamp); 

vmm_cprintf(cdev, "timer_stamp = %"RPId64" nanoseconds\n", timer_stamp); 

Figure 7-17 Setting up timer for performance evaluation 

Appendix A-1 and A-2 present the integration of our source code for the performance of a CPU migration 

implementation. Once we have validated that the number of vCPUs exist and are valid, we pass the 

information to the “netstack send udpdata” nested function which is responsible for handling the data 

captured from the registers and transmit them through the network.  

Let us next describe some of the core parts of that implementation in order to understand how it works 

and what it does. Once the “ping senddata” command is executed the “cmd_ping_senddata” function is 

triggered that first checks that the right number of parameters passed which is performed by the following 

sample of code in Figure 7.17. 

 if((argc < 1) || (argc > 3)) { 

     cmd_ping_usage(cdev); 

     return VMM_EFAIL; 

  } 

Figure 7-18 Passing arguments validation function 

Then, the part of code in Figure 7.18 transforms the IP address of the destination host to the right format 

and converts the ID numbers of the vCPUs from a string to an integer. 

 str2ipaddr(ipaddr, argv[0]); 

  id1 = atoi(argv[1]); 

  id2 = atoi(argv[2]); 

Figure 7-19 Conversion of IP address from string to integer format 
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Following this, we need to check that the passed numbers of vCPUs exist and have been created by Xvisor, 

a task which accomplished by the code described in Figure 7.19. 

vcpu1 = vmm_manager_vcpu(id1); 

        if (!vcpu1) { 

                   vmm_cprintf(cdev, "Failed to find vcpu\n"); 

                   return VMM_EFAIL; 

        } 

vcpu2 = vmm_manager_vcpu(id2); 

        if (!vcpu2) { 

                   vmm_cprintf(cdev, "Failed to find vcpu\n"); 

                   return VMM_EFAIL; 

        } 

Figure 7-20 Validation process of the given vCPUs 

Afterwards, we access and read the registers of each of the vCPUs using pointers as explained in the 

previous section while at the same time we store them into a data structure array as shown in Figure 7.20.  

data_buffer[0] = regs1->sp; 

data_buffer[1] = regs1->lr; 

data_buffer[2] = regs1->pc; 

data_buffer[3] = (regs1->pstate & 0xffffffff); 

data_buffer[4] = regs2->sp; 

data_buffer[5] = regs2->lr; 

data_buffer[6] = regs2->pc; 

data_buffer[7] = (regs2->pstate & 0xffffffff); 

Figure 7-21 Store registers into a data array 

Finally, once we have stored the values of the registers into the data array, appendix A-3 shows the code 

implementation that creates a UDP socket filling the data portion of the packet with the data from the 

array. 
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7.4 Source code Implementation – Receive CPU state at destination host 

At the time when the implementation development and the practical experiments took place, Xvisor 

(v2.11), did not support Live migration or any kind of interaction between two distinct Xvisor systems. 

Therefore, for proof of concept of our implementation as a destination host, we made use of a Linux 

distro, called Raspbian in the first instance but subsequently implemented the functionality in Xvisor also.  

Algorithm 3 presents the logic behind the receive functionality that operates on the destination host. Line 

3 shows that the receive function takes as input parameters the UDP port as well as the number of 

migrated vCPUs. It creates and sets up a socket as shown in line 4 and 5 while once the data has reached 

the destination, we store them to a temporary array (line 8). The last step is to replace those registers 

with the native one of the destinations.  

ALGORITHM 3: RECEIVE CPU REGISTERS 

WORKFLOW 

1: Require: Existence of Guest vCPUs 

2: Input: Data over network, IDs of the vCPUs 

3: Function receivedata(UDP_port,vCPU1, 

vCPU2) 

4: Create a UDP socket; 

5: Set socket in listening mode; 

6: If packet received then 

7: For each vCPU do 

8: Load registers to a data array; 

9: Replace/Adopt registers from data 

array to CPU registers 

10:     end 

11: end 

12: End function 

 

Appendix A-4 includes the block of code for the receiver side implementation based on the Raspbian 

operating system. We have developed a script in C that performs the following tasks: creates a UDP socket 

that listens for incoming data on the predefined port and once the data are received print them to the 
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screen. In this way, we confirm that the migrated values of the registers from the source side match the 

received values at the destination. 

Next, we briefly analyse and explain some of the functionalities of the above functionality.  

• By calling the socket() function we create a Unix socket interface defining the protocol that it will 

support. In our case this will be a UDP socket as shown in Figure 7.21. 

socket(AF_INET, SOCK_DGRAM, 0) 

Figure 7-22 Creation of a network socket 

• Figure 7.22 shows the configuration of the Ethernet interfaces with the IP address and port number 

of source and destination interfaces where data will be sent and received respectively. 

 

serveraddr.sin_family = AF_INET; 

serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 

serveraddr.sin_port = htons(PORTSERVER); 

  

clientaddr.sin_family = AF_INET; 

clientaddr.sin_addr.s_addr = inet_addr("192.168.0.10"); 

clientaddr.sin_port = htons(PORTCLIENT); 

Figure 7-23 Socket interface configuration 

• The bind() function binds that socket to our local interface while the recvform() function is waiting 

for incoming data that it will store into a temporary array called “buf” as explained in the following 

Figure 7.23. Finally, we print all the elements of that array on the screen. 

 

bind(s, (const struct sockaddr *)&serveraddr, sizeof(serveraddr) 

recv_len = recvfrom(s, buf, BUFLEN, 0, (struct sockaddr *)&clientaddr, &slen) 

Figure 7-24 Socket data reception function 

This is a common script that could run on any Linux distribution system making use of Unix socket API 

calls. Through that script, we observe the ability of Xvisor to communicate with other systems and the 

ability to transmit vital, sensitive information about the hardware. Potentially, that could be useful in the 

case that we would like to keep a system state backup or system logs about the state of the hardware on 

a centralised server for future data analytics tasks.   
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With this work done however, we next need to develop and configure the receiver implementation on 

Xvisor, which poses a more challenging task because of the limitations on the supported TCP/IP network 

stack. As we mentioned in the previous section, from the list of the menu, the "ping datareceiver" 

command takes as arguments the UDP port where the data should be sent by the source. Afterwards, it 

creates a UDP socket as before using the API functions of the ported LwIP network stack as illustrated in 

Figure 7.24. In this implementation, both the source and destination hosts use the LwIP methods in 

comparison to the one that we have shown above where the destination host uses only the Unix API calls.  

 

Figure 7-25 LwIP API calls setting a UDP client/server socket 

In Figure 7.25, the block of code that performs the receiver operation as described above. We first perform 

input data validation and then we apply a type conversion that is necessary in order to process the 

information in the right format. 

 

static int cmd_ping_datareceiver(struct vmm_chardev *cdev, 

    int argc, char **argv) 

{ 

 void *arg; 

 u8 port; 

 vmm_printf("***---%s---***\n", __func__); 
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 vmm_printf("***---%s---***\n", argv[0]); 

 if((argc < 1) || (argc > 2)) { 

  cmd_ping_usage(cdev); 

  return VMM_EFAIL; 

 } 

 port = atoi(argv[0]); 

 netstack_receive_udpdata(port); 

 return VMM_OK; 

} 

 

Figure 7-26 Main code of the data receiver function 

Appendix A-5 describes the nested functionality which is part of the main “cmd ping datareceiver” 

function above. The “netstack receive udpdata()” function handles the creation and reception of incoming 

data at the preconfigured port. 

The code of the receiver side on Xvisor has many common parts with the one of the sender as we 

explained in Figure 7.17. Similarly on the receiver side, we create a raw type socket and we assign an IP 

address to it as well as a port while we pre-define the IP address of the sender making available that socket 

to that specific sender. Once the socket is ready it listens for incoming data. Since the data is transferred 

using UDP encapsulation, the sender and receiver sides do not need to establish a session prior to data 

transmission. The main difference is that instead of calling the sendto() API call, we call the recvfrom() API 

call. 

 

7.5 Source code Implementation – Adoption of CPU state at destination host 

Once the data has been successfully received at the destination host, the “ping adapt” command is 

executed to replace the current CPU register values with the new one of the source. Two main actions 

need to be performed in order to adopt and replace the existing values of the registers. First, we need to 

check and confirm that the required level of resources are available. The same number of the migrated 

vCPUs from the source host need to be available at the destination host. However, we don't need to create 

a Guest instance on the destination in order to have the appropriate number of resources available prior 

to CPU migration. During the build process of Xvisor we pre-define the number of the available vCPUs that 



142 
 

we want to assign on a Guest instance. The sample of code in Figure 7.26 does that by taking as input the 

ID numbers of the migrated vCPUs. 

vcpu1 = vmm_manager_vcpu(id1); 

     if (!vcpu1) { 

 vmm_cprintf(cdev, "Failed to find vcpu\n"); 

 return VMM_EFAIL; 

     } 

vcpu2 = vmm_manager_vcpu(id2); 

     if (!vcpu2) { 

 vmm_cprintf(cdev, "Failed to find vcpu\n"); 

 return VMM_EFAIL; 

     } 

Figure 7-27 Validation of the passing vCPUs IDs 

Once we confirm they are available and we have reserved the right level of resources, we can initiate the 

adoption process whereby the received data is loaded into the appropriate registers at the destination. 

The core functionality on the adoption process is based on the use of an array that works as a temporary 

storage for the values of the incoming registers, this is done in order to avoid any loss of data. Then we 

load the values from the array to the CPU registers at the destination, this is essentially a common load 

and store operation as supported by the ARM instruction set architecture. The following sample of code 

in Figure 7.27 performs this task. 

 /*Store the values of register inside the array*/ 

  data_buffer[0] = regs1->sp; 

  data_buffer[1] = regs1->lr; 

  data_buffer[2] = regs1->pc; 

  data_buffer[3] = (regs1->pstate & 0xffffffff); 

 

  regs2->sp = data_buffer[0]; 

  regs2->lr = data_buffer[1]; 

  regs2->pc = data_buffer[2]; 

  regs2->pstate = data_buffer[3]; 

Figure 7-28 Temporary storage for the received registers 
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So, as we explained in the previous section, in order to retrieve and store the value of a register into a 

temporary data structure like an array we make use of the following general type of code: 

X [ ] = pointer -> register; 

where X is the name of a data structure, pointer is a defined kind of pointer that points to an allocated 

memory address and register is the name of the register that we want to capture. In this case we the 

reverse process in order to load or restore a value to a register, again using a temporary data structure 

we perform the following type of code:  

Pointer -> register = X [ ]; 

Figure 7.28 below shows the source code implementation for the adoption for the migrated CPU state. 

The “cmd ping adapt” function performs the required validation checks while appendix A-7 describes the 

nested function "netstack adapt registers" which executes the actual replacement of the received 

registers with those at the destination. 

static int cmd_ping_adapt(struct vmm_chardev *cdev, 

    int argc, char **argv) 

{ 

 int id1, id2; 

 struct vmm_vcpu *vcpu1;  

 struct vmm_vcpu *vcpu2; 

 if((argc < 1) || (argc > 3)) { 

  cmd_ping_usage(cdev); 

  return VMM_EFAIL; 

 } 

 id1 = atoi(argv[0]); 

 id2 = atoi(argv[1]); 

  

 vcpu1 = vmm_manager_vcpu(id1); 

 if (!vcpu1) { 

  vmm_cprintf(cdev, "Failed to find vcpu\n"); 

  return VMM_EFAIL; 

 } 
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 vcpu2 = vmm_manager_vcpu(id2); 

 if (!vcpu2) { 

  vmm_cprintf(cdev, "Failed to find vcpu\n"); 

  return VMM_EFAIL; 

 } 

 

 netstack_adapt_registers(arm_regs(vcpu1), arm_regs(vcpu2)); 

 return VMM_OK; 

} 

 

Figure 7-29 Source code for the execution of the adaption process 

The sample of the code above was tested at the source system using some dummy data passing on from 

one vCPU to another. As we mentioned in Chapter 6, by default two vCPUs are assigned to a Guest 

machine. Using as source values some dummy data of the first vCPU, we stores these values into a 

temporary array. Then, we loaded those values from the array into the second available vCPU. Through 

that process we confirm and test that the source values of the vCPU1 replaced the initial values of the 

vCPU2 on the same host machine.   

However, there are concerns about the success of the process on separate hosts. Ideally, the reception 

and adoption actions of the registers on the destination host should be merged into a single action in 

order to maintain system consistency and efficiency of the process. However, due to limitations  that we 

mentioned in Chapter 6 as well as earlier in this chapter, we could not perform and test that. A suggested 

configuration step that is noted as future work.  

 

7.6 Summary 

In this chapter we introduced our novelty and enhanced functionality for the performance of a CPU live 

migration process available to ARM based Bare metal instances finding application as part of the Xvisor 

hypervisor architecture. We presented the configuration and code changes that need to be done prior to 

compilation of Xvisor in order to include our novel implementation for the performance of CPU state 

migration and then we explained our integrated menu that lists the commands for the transmission, 

reception, and adoption of the migrated registers.  Following on in Chapter 8, we perform a demonstration 
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of the CPU live migration as this takes place between two ARM based RPI hosts while we evaluate the 

time it takes to complete a CPU live migration in relation to the number of migrated registers. 
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8 Practical Experiment & Evaluation 

This chapter demonstrates the execution of our CPU live migration process as explained and implemented 

in the previous chapter. This practical experiment covers the installation and configuration of the Xvisor 

hypervisor followed by the execution of our novel contribution of a CPU live migration process. 

Furthermore, we evaluate the impact that the number of migrated register groups has on the overall 

migration performance and completion time of the process.  

 

8.1 Setting up the Lab Environment 

Working on an isolated, internal network with no external connections or communications, we are going 

to perform a CPU live migration that emulates an operational scenario. The lab environment consists of 

two Raspberry PI (RPIs) generation three model B boards, as illustrated in the following Figure 8.1, 

therefore, our lab environment is considered secure enough from network vulnerabilities or threats that 

can interfere, putting in danger the integrity of the migrated data.  

 

Figure 8-1 Lab topology 

A high-level overview of the characteristics and system configuration of each RPI board is given by Table 

4, while a brief description of the steps and milestones that are covered in this experiment is given by the 

diagram in Figure 8.2. 
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Board Raspberry Pi 3 – Model B 

(source) 

Raspberry Pi 3 – Model B 

(destination) 

ARM Processor ARMv8 ARMv8 

Kernel Xvisor Raspbian OS 

TCP/IP Protocol UDP UDP 

IP Address 192.168.0.10 192.168.0.11 

Port  6002 6002 

Table 4 Lab configuration overview 

 

Figure 8-2 Experiment Milestones 

As Figure 8.2 shows, starting at the source host, we install and boot the Xvisor hypervisor. Once it is 

booted, we make the necessary networking configuration changes and adjustments, so it can be part of 

the same local network as the destination host. Our lab environment is a private LAN topology, consisting 

of just the hosts. Therefore, it is considered secure enough with dedicated bandwidth to make use of UDP 

at the transport layer for the state migration process. Although TCP is more reliable through the error 

recovery process that it provides, by using UDP we achieve higher performance and less network latency 
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since fewer bytes of overhead flow through the network. UDP also consumes less bandwidth and fewer 

processing cycles.  

After that we create the Guest environment on the source. At the same time, at the destination host 

which is a common Raspbian OS, we make the same networking configuration and we start the local 

network packet monitoring tool called Wireshark on the Ethernet channel. We validate connectivity 

between the source and destination using the ping command. Once that is successful, we start the retrieve 

function on the destination host, setting it to listening mode for incoming packets while we initiate the 

CPU live migration process at the source. The initiation process as well as all the internal sub-processes 

was fully explained by our implementation in Chapter 7. 

 

8.2 Configuration of the Source System 

8.2.1 Step 1: Boot Xvisor on Source 

Following the official documentation provided by the Xvisor community, in order to install and boot Xvisor 

the assistance of the U-boot bootloader is needed. Both the U-boot and Xvisor images are pre-installed in 

a formatted SD card, which is installed in the source RPI. All the necessary files are U-boot compatible. 

Through a serial connection to the source RPI using a software like Putty [115] and once the RPI is powered 

on, we need to interrupt the normal execution of the U-boot bootloader and provide the boot image of 

Xvisor. Once the U-boot> prompt comes up the boot files of Xvisor stored in SD card need to be loaded 

into the physical memory of the RPI board.  

Those files are:  

• the binaries of Xvisor compatible to U-boot (uvmm.bin),  

• the device tree binaries that describe the hardware components of the RPI3 hardware (bcm.dtb) 

and  

• the Guest Linux kernel that the Guest machine uses (udisk.img).  

 

The following list of series of commands describes the loading phase of the required files as explained 

above. Additionally, this step can be automated using an “autoboot” configuration file that contains the 

following list and order of commands as part of the U-boot initial configuration.  

1. We change partition in order to read from the SD card using the command: mmc dev 0:0 
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2. We extract and load the Xvisor binary to the physical memory using the command: ext4load 

mmc 0:2 0x200000 uvmm.bin 

3. We extract and load the device tree binaries about the hardware SoC to the physical memory by 

executing the command: ext4load mmc 0:2 0x800000 bcm2837-rpi-3-b.dtb 

4. We extract and load the Guest binaries to the physical memory using the command: ext4load 

mmc 0:2 0x2000000 udisk.img 

5. Last, we boot Xvisor by executing: bootm 0x200000 0x2000000 0x800000 which combines 

all the loaded files from the memory. 

The “bootm” command instantly triggers and boots the Xvisor kernel. Once the Xvisor is loaded, we are 

prompted with the Xvisor# menu. We can confirm that it is fully functional by executing the “help” or 

“version” commands. 

8.2.2 Step 2: Networking Configuration of Source system 

Xvisor provides great flexibility by giving us the opportunity to adjust the configuration based on the needs 

and demands of the user. All the supported functionalities are controlled by a "configuration" file that 

gives us the ability to choose if we want to enable or disable each one of them, such as the network stack, 

which is an optional feature and disabled by default. During the migration process, we make use of the 

ported API functions that the LwIP suite offers. As we explained in the implementation chapter, through 

the source code we enable support for the Network stack as well as support for the USB and Ethernet 

controller.  

First, we confirm that the network TCP/IP stack is enabled and ready for use. Xvisor is equipped with a 

massive list of debugging and verification commands that allow us to identify and troubleshoot the 

currently available configuration and operation as well as monitor some system statistics and analytics 

data. As we noted earlier, by typing “help” it shows us the entire list of the available commands supported 

by Xvisor as is currently built. Figure 8.3 shows a list of the available subcommands as with the required 

parameters that a user needs to pass related to the networking configuration. 
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Figure 8-3 Xvisor net debugging menu 

The use of the “net switch list” and “net port list” commands as illustrated in Figure 8.4, give us all the 

necessary information that we need to know about the configuration of the network virtualization. As we 

can observe, the system makes use of a bridge policy where the USB and Ethernet drivers of both host 

and Guest machines are connected and ported together. Another very useful feature is the “net port list” 

command where the MAC addresses of all the enabled network interfaces are listed. We keep a note of 

the MAC address of the “lwip-netport” where the network traffic generated by the Xvisor interfaces 

passes through as that information is necessary for the reconnaissance phase.   

 

Figure 8-4 Xvisor networking information 

Starting with the configuration of the networking settings, both the source and destination systems are 

members of the same private network and need to communicate by making use of internal IP addresses. 

Since no DHCP server exists inside our private network, Xvisor automatically assigns a link local IPv4 

address from the 169.254.0.0/24 range also known as Automatic Private Internet Protocol Addressing 

(APIPA). For our lab environment we chose to make use of the 192.168.0.0/24 IP addresses block. 

Otherwise, any private address reserved by the Internet Assigned Numbers Authority (IANA) is acceptable 

and valid. 
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Figure 8-5 Xvisor ipconfig debugging menu 

Figure 8.5 above, lists all the available subcommands that the parent “ipconfig” menu provides related to 

the network configuration settings. At first, we execute the “ipconfig show” command in order to identify 

and later confirm the current IP address of the system. In order to configure the IP address of the Xvisor 

the execution of the “ipconfig update <ip_address> <netmask> <default gateway>” sub-command is 

applied with the desired values. Figure 8.6 shows the execution of those commands as well as the IP 

address before and after execution of the update command.  

 

Figure 8-6 Xvisor IP address configuration 

The final part of the configuration phase is to define the number of vCPUs that we want to allocate to the 

Guest machine. By default, at the boot process Xvisor assigns two vCPUs per Guest instance. If it is 

necessary or desired, we can add or remove an allocated vCPU to a Guest machine either during the build 

phase of the Xvisor source code, or during the normal operation. Furthermore, at this stage we must 

modify the source code of the migration process in order to adjust to the IP address of the destination 

system.  

8.2.3 Step 3: Create and start the Guest environment  

Once we have finished with the network configuration, we are ready to start the Guest machine on the 

source instance. Although during the boot process Xvisor creates a template of the Guest machine with 
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the allocation of the number of vCPUs, as well as the Guest address space with all the memory regions, 

the Guest machine is not actually running yet.   

 

Figure 8-7 Xvisor load Guest environment 

We need to trigger (or kick as it is known in the Xvisor language) a Guest machine and then load the Linux 

kernel image from memory in order to start it running. As illustrated in Figure 8.7 above, the “Guest kick 

Guest0” command starts execution of the Guest environment. Interaction with the Guest environment 

can then happen by binding the serial interface to the Guest machine. The command “vserial bind 

Guest0/uart0” does that for us as is presented in Figure 8.8. This allows us to communicate and send 

characters to the Guest machine via a virtual serial interface which Xvisor internally creates for us. The 

“autoexec” command starts loading the Guest Linux kernel image into the Guest0 machine. As we can see 

in Figure 8.8, once the loading process of the Linux kernel has completed, the Linux logo appears in line 

with the traditional bash environment. 

 

Figure 8-8 Xvisor Guest Linux environment 

Xvisor offers a “magic” combination of “Esc + x + q” characters that interrupts the serial connection from 

the Guest machine and returns it back to the Xvisor prompt. During that action, operation of the Guest 

machine does not stop, neither do the actions to save /restore Guest VM state as happens on other 
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hypervisor environments or on x86 architecture systems. The only thing that the magic key combination 

does is to unbind the serial interface back to Xvisor. The Guest machine is still running as a process in the 

background. 

We can confirm the creation of the Guest machine by calling the “Guest list” command as shown in 

figure 8.9. 

 

Figure 8-9 Xvisor list of the available Guest machines 

As discussed in previous chapters, part of the reconnaissance phase is to identify the ID numbers of the 

allocated vCPUs in the Guest machine. During the execution of the CPU live migration process we pass the 

ID identification numbers of the assigned vCPUs in the Guest machine as arguments in order to identify 

which group of registers of which CPUs need to migrate to the destination. We can easily find the ID 

numbers of the allocated vCPUs in a Guest machine by calling the “vcpu normal list”. 

 

Figure 8-10 Xvisor list of normal vCPUs 

As we can see from the output of the command above in Figure 8.10, the vCPUs with ID numbers 27 and 

28 are both allocated to machine Guest0. Keeping note of those, we have collected all the necessary 

information that we need in order to execute and start the migration phase.  

8.2.4 Step 4: Check connectivity with Destination system 

Before we start a CPU live migration process, we first need to confirm and verify connectivity among the 

source and destination systems by using the PING command, giving the IP address of the destination host. 

Figure 8.11 shows, the list of the available subcommands related with ping. The “ping to <ip_address> 
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<count> <size>” command works like the traditional PING command, taking as arguments the IP address 

of the destination and the values of the size and count of packets.  

 

Figure 8-11  Xvisor ping debugging menu 

Figure 8.12 proves that the ping command successfully reaches the destination machine from the Xvisor 

prompt. Furthermore, for troubleshooting purposes, we have enabled some debugging outputs that 

confirm the call and execution of the relative LwIP API functions to send and receive the related ICMP 

packets. 

 

Figure 8-12 Execution of Ping command, testing connectivity 

 

8.3 Configuration of the Destination system 

8.3.1 Step 1: Boot Raspbian 

The Raspbian OS is a very popular operating system based on the Debian Linux distribution specifically 

intended for Raspberry Pi hardware. Like many other Linux distributions, the Raspbian OS provides a user-

friendly graphical interface. Using an SD card, we boot Raspbian OS on the destination RPI. 

8.3.2 Step 2: Networking configuration of the destination 

AS we did on the source host, we first need to configure the Ethernet network interface of the destination 

system to be part of the same local network, giving it an IP address from the 192.168.0.0/24 range. Figure 

8.13 shows the network preferences panel of Raspbian OS where we apply the networking interface 

configuration settings.  
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Figure 8-13 Raspbian Network interface configuration 

 

Figure 8.14 below, shows system details about the installed version of the Linux kernel while we can 

confirm the IP address that we gave the destination system.  

 

Figure 8-14 RPI system information 

8.3.3 Step 3: Start Wireshark 

Wireshark is an, open-source network traffic analyser and monitoring tool that is widely used in many 

enterprise and research projects. Wireshark allows us to capture the traffic sent between the source and 

destination. Through that, we can verify and inspect packet information as well as the migrated data. We 

start Wireshark by listening for any incoming traffic on the Ethernet interface. 
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8.3.4 Step 4: Verify Connectivity with Source System 

Before we start the CPU live migration process, we again need to verify the connectivity between source 

and destination using the PING command. Even if we executed the PING command at the source getting 

a reply from destination it is still important to perform a two-way verification in order to update the local 

ARP table with the pair of MAC and IP addresses for each host. Figure 8.15 shows the successful execution 

of the PING command from the destination to the source, verifying the connectivity between them.  

 

Figure 8-15 Checking network connectivity between source and destination 

8.3.5 Step 5: Initiation of the retrieve function at the destination system 

At this stage, both source and destination systems have completed the initial configuration and 

reconnaissance phase and we are ready to move forward to our migration phase by initiating the 

migration process. So, we set the destination system in “listening” mode, ready to receive and accept the 

migrated CPU state. As we can observe in Figure 8.16, we are calling the udpserver bash script as explained 

in Chapter 7, which creates the UDP tunnel and puts the system in the listening mode, waiting for external 

connections on the pre-configured port. 
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Figure 8-16  Start receiver function on the destination 

8.4 Execution of CPU live migration process 

In order to observe and monitor the CPU live migration process from source to the destination, we make 

use of Wireshark as well as the output of the debugging messages that we have code-embedded and 

enabled in the receiver functions. That will help us to confirm and more easily identify the migration 

process as triggered by the source system.  

We aim to analyse the execution and the output of the migration function as is it called and executed 

through the Xvisor prompt interface on the source system. In Figure 8.17, the call of the “ping senddata 

<ip_address> <vcpu1> <vcpu2>” command takes as arguments the destination IP address and the ID 

numbers of the vCPUs that belong to the Guest machine. Once the command is executed the following 

sequence of actions occur:  

• A packet of 200 bytes is constructed, containing all the information and required headers.  

• In parallel, and mostly for debugging reasons it prints the selected values of the registers from 

both vCPUs that will be migrated to the destination system while in the background, the migrated 

group of registers is temporarily stored into an array that later we pass as data in the UDP packet.  

• As Figure 10.20 shows, a UDP socket is created and bound on port 6002 and the IP address that 

we gave earlier on the source system.  

• The successful creation and bind process as further confirmation of the sent data from the source 

to the destination are confirmed through the debugging messages that are printed on the 

terminal through the migration process.  
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Figure 8-17 Call of CPU live migration function 

At the same time on the destination system, as Figure 8.18 indicates, the receiving script is initiated, 

listening, and waiting for incoming connections and data. As the data is received for verification purposes, 

similar to what we did on the transmission side, we print the received values of the registers. Doing a 

comparison of the received values with the ones to the sender, we can confirm that they match. In that 

way we can confirm the consistency and integrity of the migration process. 

 

Figure 8-18 RPI - Receiving CPU register values 

During the CPU live migration process, Wireshark is running in the background and captures all the 

networking packets. The following Figure 8.19 shows the received packets on the Ethernet interface of 

the destination system. 
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Figure 8-19 Wireshark Main window - UDP packet 

Taking a closer look, by analysing Wireshark’s panels we can gather the following information related to 

the migration process of the CPU state: 

• As the top panel of Wireshark in Figure 8.20 indicates, we can clearly see a UDP packet having as 

a source the IP address that we have configured, 192.168.0.10 (source system) and port number 

6002, received from the system with IP address 192.168.0.11 (destination system) listening on 

port 6002.  

 

Figure 8-20 Wireshark Packet List Pane 
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• Through a further inspection, in Figure 8.21, Wireshark gives us a full description of the content 

of the captured packet. We can see all the details that describe the frame section, the IP header 

and the UDP header while at the end resides the data portion of the packet.  

 

Figure 8-21 Wireshark Packet Details Pane 

• Following, in the third panel of Wireshark's window as Figure 8.22 shows, a data portion of a 

packet is presented. In our case, the values of the CPU registers can be observed. The data of the 

presented packet are in hexadecimal representation. Taking a closer look, we can see the actual 

values of the registers as printed earlier.  

 

Figure 8-22 Wireshark Hexadecimal packet inspection panel 

Figure 8.23 shows in red circles the actual values of the received SP register as well as the PSTATE register.  
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Figure 8-23 PC and PSTATE registers values 

Once we have received the CPU registers, the last step of our live migration procedure is the adoption of 

those values into the current values of the vCPUs at the destination. In order to achieve that, we call the 

“ping adapt <vcpu1> <vcpu2>” command. In Figure 8.24 we can observe the output of the adoption 

function as it takes place through the Xvisor command line interface. The first two outputs of the adoption 

functions, vCPU1 and vCPU2, describe the values of the registers at the destination they currently have 

before the replacement, while the two outputs at the bottom of the figure describe the values of the 

registers after the replacement process.  

 

Figure 8-24 Xvisor - Call of CPU register adoption function 

 

8.5 Evaluation of CPU migration based on the amount of migrated registers 

As we described in Chapter 7, most of the currently available ARM processors suitable for server and data 

centre infrastructures are members of the ARMv7 and ARMv8 versions. The number and size of the 

available registers differs from one version to another, as well as the CPU modes and exception layers as 



162 
 

extensively analysed in Chapter 7. Based on those characteristics, an ARM state migration process differs 

from version to version, as the higher the number and size of the registers, the more time it takes to 

perform and complete a CPU state migration.  

As we discussed earlier, the CPU state migration process consists of three main steps, capture, store and 

transfer the values of registers from source to destination host. Since on ARMv8 version there are 30 

general purpose registers and 4 core registers of 64bit, while on ARMv7 version there are 12 general 

purpose registers and 2 core registers, less time should be required to perform such a process on ARMv7. 

Therefore, it’s important to identify the registers which are necessary to be captured and transfered in 

order to reassemble and resume a system on a migrated host.  

The following experiment is a proof of the above theory. We performed a CPU state migration process 

several times, increasing each time the number of captured registers and measuring the time it takes to 

complete a live migration process to the destination host. Through this experiment we can observe how 

the number of CPU registers affects the overall CPU migration time. In the first instance, we performed a 

migration with just the 4 core registers per VCPU keeping records for the time it took to complete the 

task. The same process is repeated as shown in figures 8.25a to 8.25f- for the number of 8, 12, 17, 20 and 

34 registers per VCPU. 

In order to evaluate the time, it takes to perform and complete a CPU live migration for a defined group 

of registers from source to the destination, we executed the CPU migration process several times. The 

following Figures from 8.25a to 8.25f shows the values of those registers as well as the time it took until 

we successfully migrated those registers to the destination and completed the CPU migration phase.  

Starting with a group of four special registers as we can see in Figure 8.25a, increasing each time by adding 

some of the general-purpose registers which constitute the main state of a User mode. Figure 8.25b shows 

the migration performance with eight (8) registers per VCPU, following this is Figure 8.25c with twelve 

(12) registers, following with seventeen (17) in Figure 8.25d, while Figure 8.25e shows twenty (20) and 

fially Figure 8.25f shows the migration performance of all the general-purpose registers that are available 

to an ARMv8 processor. 
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a) Four registers per vCPU    b) Eight registers per vCPU 

 

   

c)  Twelve registers per vCPU       d) Seventeen registers per vCPU 
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e) Twenty registers per vCPU    f) Thirty-four registers per vCPU 

Figure 8-25 Number of migrated CPU registers a) 4, b) 8, c) 12, d) 17, e) 20, f) 34 

Table 5 summarizes the results of the experiment. The first column shows the number of registers that 

we migrated each time while the second column shows the time in nanoseconds that it took to complete 

the migration. The last two columns for statistical reasons keep the subtraction of the time in nanoseconds 

among the migrations and the conversion of the time in seconds. Furthermore, the results and outcome 

of the experiment are presented in the graph below in Figure 8.26.  

Registers per 

vCPU 

Nanoseconds (ns) Subtraction Seconds (s) 

4 39558973 - 0.039558973 

8 70986854 -31427881 0.070986854 

12 94170851 -23183997 0.094170851 

17 123134306 -28963455 0.123134306 
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Table 5 Correlation of migrated registers with the time completion of CPU state migration 

 

 

Figure 8-26 Graphical representations of CPU registers migration in relation to time 

This experiment proves that by utilizing our novel migration scheme we can perform live migration of the 

CPU state on ARM architectures while we have the flexibility to choose which state we want to preserve 

and migrate from one system to another. However, during the performance of a live migration process 

consistency and stability of the process are two important factors. Therefore, in order to check and 

validate the consistency and stability of our scheme we repeated the same experiment ten consecutive 

times, migrating thirty-four registers in total. We selected the case of 34 registers consisting of the four 

main core registers and thirty general purpose registers since that group describes the state of the User 

CPU mode. Appendix B shows the results from the experiment that took place while Table 6 below lists 

the total migration time of each execution time. Additionally in Figure 8.27 we can observe that the total 
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time of the CPU live migration is around the same levels which proves that there is consistency during the 

migration process and that our migration scheme is stable. 

 

Total time of 34 CPU registers migration experiment results 

1 413941146 6 413935727 

2 413941872 7 413940316 

3 413936093 8 413940259 

4 413937450 9 413942705 

5 413941246 10 413942966 

Table 6 Total time of 34 CPU registers migration experiment results 

 

 

Figure 8-27 Graphical representation of the total time migration of 34 registers 

As we can see, in the first round of the experiment (Table 5) the total migration time of 34 registers was 

2ms less than the second round of the experiments (Table 6). This difference in the measurement of time 

is observed due to several factors such as the replacement and use of different type and length of physical 

networking ethernet cables, and due to the use of an alternative set of RPI hardware boards. Additionally, 

packet congestion during the normal operation of the switch affects and cause that minimal extra delay. 

However, that delay is considered negligible and inside normal operational levels. 
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8.6 Performance Analysis on CPU Host Load 

Sections 8.4 and 8.5 shows that our novel scheme successfully achieve the CPU state migration on ARM 

based Bare metal instances. However, performance always is being an important factor in characterizing 

something efficient enough. Since our thesis and scheme focuses only on the CPU part, we also need to 

analyse and check the performance of the CPU. We mentioned in Section 6.3 that one of the main 

requirements is the utilization of a thin layer of a hypervisor that does not affect or degrade the 

performance of the system. A comparative analysis has been conducted by Xvisor developers between 

Xvisor with XEN and KVM as we mentioned in Chapter 6 which proves that Xvisor on ARM architecture 

occurs lower CPU overhead [269]. Backed up from this analysis, we also need to check that our novel 

scheme does not affect or comes in conflict with that. Therefore, we need to test and measure the CPU 

load of the host cores in the following four states:  

• once we boot the Xvisor hypervisor on RPI,  

• once we boot the Guest instance, 

• running a workload on the Guest instance  

• when the live migration process takes place.  

In that way we will identify and answer in the following questions: 

• Is RPI a good choice for the edge? 

• Is Xvisor hypervisor lightweight or there is CPU performance degradation? 

• Does our novel scheme increase the CPU load during the live migration process? 

Due to the existing limitations of Xvisor at the time that this experiment takes place, we cannot execute 

and perform a heavy workload benchmark application to test the CPU performance. Therefore, as 

alternative solution and in order to keep busy the processor we run multiple counters in the background 

on the Guest instance.  

Figure 8.28 shows the load of the Host CPUs once the Xvisor boots in. From the output we can observe 

the current CPU load of each of the physical host CPUs as well as the number of the vCPUs are assigned 

on each physical CPU. The utilization is very low, which means that the processes running by Xvisor does 

not consume a significant amount of CPU at this stage. 
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Figure 8-28 Host CPU load without a Guest instance 

Figure 8.29 shows the load of the host CPUs after we have booted the Guest instance. As we can notice 

there is a small increase on all the host CPUs as well as an extra vCPU was assigned on the host physical 

CPU core with number 0. This is normal since several additional operations and processes run on the 

background related to both the Xvisor and the Guest instance. That extra vCPU is the one that was 

assigned on the Guest instance, while the second vCPU is not active yet. Once again, the CPU load is not 

too high. 

 

Figure 8-29 Host CPU load with a Guest instance 

Then, we start the workload inside the Guest instance, and we measure the CPU load. In Figure 8.30 we 

can see that the CPU utilization of the first physical host CPU increases due to the processes running on 

the Guest instance. However, still the CPU utilization remains in normal levels.  

 

Figure 8-30 Host CPU load with Guest workload 

Finally, we trigger the CPU live migration process of the vCPUs that are assigned to the Guest instance, 

and we measure the load of the host CPUs during the migration process. Figure 8.31 shows the CPU load 

once the migration starts and at the completion of the process. We can see that there is neither 

performance degradation either CPU load spike when the migration takes place. Also, the active vCPUs 

before the migration took place was three, all assigned on physical CPU 0 and with the completion of the 
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CPU migration the Xvisor initiates and assigns a new vCPU to a separate physical host CPU. That’s a normal 

behaviour since the state of the vCPU transferred to the destination and in order to maintain the 

performance of the source host and not break or corrupt it initiates and assigns a new vCPU.  

 

Figure 8-31 Host CPU load during the CPU live migration 
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Summarizing in Figure 8.32 we observe that the CPU performance of the RPI remains on normal levels 

during the whole process and that the Xvisor hypervisor does not affect system’s performance. We can 

notice that in Phase 1 where CPU load is extremely low while in Phases 2 and 3 CPU load is on regular 

levels. Furthermore, our scheme which takes action on Phase 4 does not affect CPU performance by 

adding extra overhead.  

 

Figure 8-32 CPU load during the four states 

8.7 Findings 

In the previous section, we provided a demonstration of a CPU live migration process implemented on 

ARM based systems with the support of the Xvisor hypervisor. Xvisor takes advantage of the hardware-

assisted virtualization characteristics and functionalities which allow a hypervisor to run on a higher, more 

privileged level than the Guest OS, which means we can gain access and retrieve a CPU state of both 

privileged and unprivileged CPU modes. The experiment as covered in this chapter, proves that our novel 

contribution successfully performs a CPU-only state migration via a UDP socket to a destination Linux 

system.  
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Although our definition of a CPU state is described as the content of the available registers of all the 

supported CPU modes, this may not be all that is needed in a live migration process in order to resume 

from the same point. Currently, there is no supported paper or research that specifies the strictly 

necessary number of groups of CPU registers that need to be migrated in order to maintain CPU state of 

a Guest instance between two hosts. However, taking into consideration the hardware-assisted approach 

on x86 architectures, where it manages content switch operations with the support of a memory-based 

structure called VMCS [59] that keeps the CPU state of both the host and Guest, we could define the 

potential total number of registers that are needed. Based on that, we evaluated the importance that the 

number of the migrated registers may have on the performance and completion time of the CPU 

migration. 

Therefore, we performed our evaluation by considering a group of different numbers of CPU registers, 

measuring the time it takes for the completion of a CPU live migration. The outcome of the evaluation 

process, confirms and shows that defining the precise number of registers that compose a CPU state can 

affect the performance of a CPU state live migration process. ARM provides great flexibility and the 

freedom to choose what state and the number of registers that should be stored and then restored on a 

system. Therefore, on ARM we can configure and achieve a higher level of performance and reduction of 

the overall CPU migration phase providing the right number of registers. 
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9 Conclusions and Future Work 

This chapter gives a conclusion of our thesis while we discuss additional improvements and challenges 

that can be fulfilled. 

 

9.1 Thesis Conclusion 

Virtual machine live migration finds extensive implementation on virtualized infrastructures, however, 

the demand for higher computing performance, network consistency, finer security and privacy acted as 

a catalyst for Bare metal instances on demand.  A major limitation of Bare metal instances however is that 

it does not support live migration due to the lack of a virtualization layer. However, a few studies have 

now succeeded in addressing and developing a live migration scheme for Bare metal instances, some of 

those never found practical implementation while others are applicable only to x86 architectures. At the 

time that this thesis was written, no existing live migration schemes are available on ARM based systems. 

Without that availability, system continuity, service reliability and workflow load balancing on ARM based 

systems become extremely challenging tasks.  

The shift from a cloud based, centralised architectural model to the Edge using Edge Computing paradigms 

brings Micro Data Centres to the fore. More and more practises in the research community explore the 

utilization and adoption of ARM based platforms to the edge as edge computation points. Inspired by this 

we suggest and explore the functionality of Micro DCs consisted by Bare metal ARM based systems 

powered by RPIs where the availability of live migration schemes becomes valuable tool for keeping in 

sync the state among that distributed architecture. 

In order to develop and perform live migration on Bare metal instances, low level access with sufficient 

permissions and privileges to the hardware is needed in order to achieve direct communication with 

several hardware components such as memory, peripherals, network etc. Therefore, in our 

implementation we decided to use a thin hypervisor layer of through which we can gain access to the 

components and processes that we need, while allowing our live migration scheme to become portable 

finding availability on a wider list of systems without being limited to a single vendor and system. Our 

design takes advantage of the distinct exception levels that the ARM architecture provides, where the 

hypervisor runs on the highest exception level with the highest permissions to the underlying hardware 

infrastructure. Through that level we gain access to all the rest of the exception levels, CPU modes and 

hardware components that we need in order to compose and prepare the Guest state for migration. 
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Furthermore, our implementation allows us to read and store the CPU state at a given time, meaning that 

the programmer has the capability to decide and choose what state they want to capture. This can either 

be the CPU state of the Guest instance or the CPU state of some of the processes running on the host 

system. 

In the literature there is no definition about what is considered as "state of a Guest instance", including 

the type and number of registers that make it up. When a VM live migration takes place the state of the 

Guest instance is stored in a file that is transferred from the source to the destination while when the 

same process takes place on x86 Bare metal instances the state is preserved through the high-speed data 

structure called VMCS that is designed to hold Guest state. A VMCS data structure is divided into 6 areas, 

one of which is Guest-state area that describes the Guest state. However, during the execution of a Bare 

metal live migration process, the entire VMCS structure is migrated which means that it consumes more 

storage, bandwidth and increases migration time in order to migrate the Guest state as well as other 

configuration parameters which are none highly importance in our design and implementation. Our 

approach takes advantage of the flexibility that ARM architecture gives to developers to choose the state 

and registers which want to save, and restore, allowing us to achieve higher performance, saving more 

bandwidth, while completing the CPU migration state in less time by focusing on the required registers 

that are necessary to properly reassembly Guest's state on destination system. Although our 

implementation has higher difficulty than other migration solutions since it requires a custom 

configuration, it is considered better approach due to the benefits that provides. 

Our evaluation experiment proves and highlights that the size of the migrated state affects the migration 

time and consequently the total migration time. As we analysed and explained, the higher the number of 

migrated registers, the longer the migration time which opens a new subject for investigation and further 

discussion making important the exploration of the required registers that are needed to reassemble and 

compose the state of the Guest instance at the destination host after the live migration took place.  

 

9.2 Future Work 

Our novel live migration design as described in this thesis can be adopted by many use cases while being 

applied to a broader type of platforms, covering a wider range of ARM processor versions. However, the 

current CPU live migration scheme has some limitations that could be covered in future work. This section 

presents considerations for future work. 
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• Compatibility with other hypervisors 

Although our design and implementation focus on CPU state migration utilizing the Xvisor hypervisor, is 

not limited and tied specific to that hypervisor. Our implementation could work generally on any 

hypervisor that meets the requirements with just few adjustments as well as could work on ARMv7 

architecture. For example, in a case scenario of XEN hypervisor, although it does not meet the 

specifications based on the requirements as explained in Section 6.3.1, there is a special structure that 

defines the VCPU registers similar to Xvisor (Appendix C). The Figure 9.1 shows an example where we 

store both the 32bit and 64bit values of the registers into a buffer, like we did in our implementation 

based on Xvisor’s structure. As we can see, we only adjust the naming format of the registers as declared 

and defined by XEN in the source code. 

/*Put the values of register inside the array*/   

   data_buffer[0] = regs->__DECL_REG(x0,r0); 

   data_buffer[1] = regs->__DECL_REG(x1,r1); 

   data_buffer[2] = regs->__DECL_REG(x2,r2); 

   data_buffer[3] = regs->__DECL_REG(x3,r3); 

Figure 9-1 Storing register values based on XEN VCPU structure 

• Improve network reliability by using TCP 

The current version of Xvisor (0.2.11) although supporting TCP as a transport protocol, does not support 

all TCP functionalities in order to initialize, send and receive data over a TCP channel. To achieve a fully 

functional TCP communication, we need to adjust and configure all the LwIP API calls related to TCP. The 

Xvisor developers are working on this task and this functionality will potentially be supported in a future 

release. Then we could modify our CPU live migration scheme to make use of a TCP channel instead of 

the UDP during the creation process of the socket. Working over a TCP channel increases the integrity and 

consistency of the migrated state through the network during the live migration process.  

However, our implementation is intended to take place over a private network within a MicroDC which 

consists of two hosts where network traffic is low with no or limited external interventions, so, altering or 

affecting the data travelling from the source to destination is considered unlikely to occur. Adopting TCP 

over UDP will guarantee that migrated data will reach the destination host, arriving in the right order. 

• Compatibility with ARMv7  

The ARM architecture has many versions with several changes and core differences among them. Our live 

migration scheme is designed and developed based on the ARMv8 architecture, which makes it 
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incompatible with previous ARM versions. However, we could implement backward compatibility with 

older versions such as ARMv7 or with the upcoming versions (ARMv9) by adding the right naming 

conversions of the registers as referred to by each processor developer’s guide. Through that feature we 

could perform a live migration between systems of the same processor architecture or potentially a mix 

of them.  

Two main differences between ARM versions are the naming formats of the supported registers and the 

range and type of available registers. In order to provide backward compatibility with older ARM versions 

such as ARMv7, we need to include those parameters. This can be done either by including separate 

functions delivered by a distinct menu for each architecture, for example, choosing when you want to 

perform and execute a CPU live migration between ARMv7 or ARMv8 or by discovering dynamically the 

underlying architecture and choosing to migrate the proper group of registers.  

In both cases, we need to hardcode and cover the naming formats for both ARMv7 and ARMv8 

architectures. Inter-compatibility among ARM versions gives us the ability to perform our CPU live 

migration scheme on a wider range of hosted platforms. For example, a RPI of ARMv7 architecture has 32 

bits of registers while a RPI of ARMv8 architecture supports both 32 and 64bit of registers. So, in order to 

perform a CPU state migration on a RPI 2, pointers need to refer to the sample of code in Figure 9.1 where 

that structure defines the group of the supported architecture registers with the right naming definitions 

while on a RPI 3 model B, pointers need to refer to the sample of code as defined in Figure 9.2. As we can 

see, the variables type definition differs while the range of the registers varies too. 

struct arch_regs { 

 /* CPSR */ 

 u32 cpsr; 

 /* Program Counter */ 

 u32 pc; 

 /* R0 - R12 */ 

 u32 gpr[CPU_GPR_COUNT]; 

 /* Stack Pointer */ 

 u32 sp; 

 /* Link Register */ 

 u32 lr; 
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} __packed; 

Figure 9-2 ARMv7 architecture registers structure definition 

 

struct arch_regs { 

 /* X0 - X29 */ 

 u64 gpr[CPU_GPR_COUNT]; 

 /* Link Register (or X30) */ 

 u64 lr; 

 /* Stack Pointer */ 

 u64 sp; 

 /* Program Counter */ 

 u64 pc; 

 /* PState/CPSR */ 

 u64 pstate; 

} __packed; 

Figure 9-3 ARMv8 architecture registers structure definition 

 

• Implementing automation 

The current proof-of-concept implementation requires many configuration changes to be performed 

manually in order to prepare the infrastructure and initiate the CPU live migration process, something 

that could lead to mistakes. Depending on the processor's architecture and execution state, the 

hypervisor can automatically gather and read the CPU registers which are assigned to the Guest instance 

that we need to migrate.  

This is feasible since during the compilation of the source code of the Xvisor we define the number of the 

vCPU that we want to assign to our Guest instance. Furthermore, the Xvisor creates and assigns vCPUs to 

each of the background processes that remains constant throughout its operation. So, we can calculate 

the ID numbers of the vCPUs that belong to the Guest instance and pass them directly when the CPU live 

migration process is called. Through that process, we reduce the configuration time and the risk of a 

potential misconfiguration that could affect the CPU live migration process or even end in failure due to 

invalid data passing.  
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• Extend from Unicast to a Multicast network 

Like most live migration schemes in the literature, similar, current implementations cover the 

performance of the CPU live migration process between two hosts as shown in Figure 9.1 at the left side. 

However, some use cases such as those we mentioned in Section 8.2 where the infrastructure consists of 

a cluster of RPIs, may need to perform a CPU live migration to more than a single board as the right side 

of Figure 9.3 illustrates. In order to perform live migration on such an architecture, we need to change the 

type of the socket. LwIP supports the configuration of a multicast group where we can attach and 

configure all the nodes in the network to be part of that multicast group. Furthermore, we need to make 

use of a valid multicast IP addressing scheme. Using a multicast network instead of a unicast could be 

efficient in cases where a bundle of RPIs work on the same task sharing processing power. A hardware 

failure could bring down the entire cluster so, migrating the state of the cluster to another cluster could 

be achieved through that process. This could be a great feature to Micro DCs where the demand of high 

compute performance leads to the formation of platforms in bundles work as a unit, in order to share 

workload computation, performing faster processing rates. Keeping all platforms in the bundle in sync 

after the migration process requires the support of a multicast network-based transmission. 

 

Figure 9-4 Live migration on a multicast network 

 

9.3 Concluding Remarks 

The design and development of the approach as presented in this thesis introduces a novel CPU live 

migration scheme applicable specifically on ARM based systems. Currently no other such scheme exists 

which is available on ARM. Our approach finds implementation through the Xvisor hypervisor covering a 

wide range of hardware systems and not limited only on Raspberry PI boards where our experiments took 

place. We conducted a series of experiments to evaluate the reliability of the process as well as to prove 

the flexibility that we have on reading registers from the CPU.   
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Our novel approach provides enhancements to modern Edge Computing networks especially in those that 

utilize clusters of single boards such as RPIs to offer higher availability and fault tolerance. By utilizing our 

scheme, the CPU state can be preserved, stored and transferred from a single RPI board to another over 

the network. 

Another contribution of this thesis was to investigate the amount of data that constitutes the essential 

CPU state for a live migration. A CPU is described by several registers as we mentioned in Chapter 6. Some 

of them are responsible for handling the execution of the running applications and the communication 

with the underlying hardware resources while others are responsible for the general operation of the 

processor itself that are not critical in process of the reassembly process of the CPU state at the 

destination. Migrating the entire CPU footprint affects and slows down the live migration process. 

Therefore, it was essential to evaluate the performance of the CPU live migration process in relation to 

the number of registers that need to be transferred in the shortest possible time while maintaining the 

Guest state intact. Our results illustrate the effect of this on total migration time and highlight the gap 

that exists in the literature about the existence of a definition about what is considered as "Guest CPU 

state" and the need to establish it in order to achieve the best possible time for its transfer. This is very 

useful for lowering network overheads and gaining more available bandwidth since more the data that 

flows through the network, greater amount of bandwidth is required while higher latency is occurred. 
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Appendix A 

Source code configuration for CPU live migration performance 

Each of the following sub-appendices contains blocks of source code as take place in Chapter 7 

for the develop and implementation of a CPU live migration process. 

A-1: Send CPU data source code function 

A-2: Prepare network socket to send CPU data 

A-3: Socket configuration 

A-4: Reception script at destination host 

A-5: Receive CPU data source code function 

A-6: Adopt CPU data source code function 
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A-1: Send CPU data source code function 

static int cmd_ping_senddata(struct vmm_chardev *cdev, int argc, char 

**argv) 

{ 

 //Timer initiation 

      u64 timer_stamp = 0; 

      u64 mult, start_tstamp, end_tstamp; 

      start_tstamp = vmm_timer_timestamp(); 

      //Variables definition 

      u8 ipaddr[4]; 

 int id1, id2; 

 struct vmm_vcpu *vcpu; 

 struct vmm_vcpu *vcpu1;  

 struct vmm_vcpu *vcpu2; 

 

 const char *str; 

 irq_flags_t flags; 

       

      //Input arguments validation 

 if((argc < 1) || (argc > 3)) { 

  cmd_ping_usage(cdev); 

  return VMM_EFAIL; 

 } 

      //Conversions to the right format 

 str2ipaddr(ipaddr, argv[0]); 

 vmm_cprintf(cdev, "[+] ---Connected to: (%s) ---[+]\n", argv[0]); 

  

 id1 = atoi(argv[1]); 

 id2 = atoi(argv[2]); 

      //Given vCPU IDs validation 

 vcpu1 = vmm_manager_vcpu(id1); 

 if (!vcpu1) { 
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  vmm_cprintf(cdev, "Failed to find vcpu\n"); 

  return VMM_EFAIL; 

 } 

 vcpu2 = vmm_manager_vcpu(id2); 

 if (!vcpu2) { 

  vmm_cprintf(cdev, "Failed to find vcpu\n"); 

  return VMM_EFAIL; 

 } 

      //Trigger of send data functionality 

      netstack_prefetch_arp_mapping(ipaddr); 

      netstack_send_udpdata(ipaddr, arm_regs(vcpu1), arm_regs(vcpu2)); 

 //End of timer 

      end_tstamp = vmm_timer_timestamp(); 

      timer_stamp = (end_tstamp - start_tstamp); 

      vmm_cprintf(cdev, "timer_stamp = %"RPId64" nanoseconds\n", 

timer_stamp); 

 return VMM_OK; 

} 

 

A-2: Prepare network socket to send CPU data 

int netstack_send_udpdata(u8 *ripaddr, arch_regs_t *regs1, arch_regs_t 

*regs2) 

{ 

 //Variables declaration 

      int s, i; 

 unsigned data_buffer[50]; 

 struct sockaddr_in sa,ra; 

 struct ip_hdr *iphdr; 

 struct udp_hdr *udphdr; 

 ip_addr_t to_addr, from_addr; 

 size_t len = sizeof(struct udp_hdr) + data_buffer; 

 /*Print size of the data structure */ 
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 vmm_printf("***--%u-***\n",sizeof(data_buffer)); 

 /*Print Data - Registers */ 

 vmm_printf("[+] ---Core Registers VCPU1--- [+]\n"); 

 vmm_printf(" %11s=0x%016lx %11s=0x%016lx\n", 

      "SP", regs1->sp, 

      "LR", regs1->lr); 

 vmm_printf(" %11s=0x%016lx %11s=0x%08lx\n", 

      "PC", regs1->pc, 

      "PSTATE", (regs1->pstate & 0xffffffff)); 

  

 vmm_printf("[+] ---Core Registers VCPU2--- [+]\n"); 

 vmm_printf(" %11s=0x%016lx %11s=0x%016lx\n", 

      "SP", regs2->sp, 

      "LR", regs2->lr); 

 vmm_printf(" %11s=0x%016lx %11s=0x%08lx\n", 

      "PC", regs2->pc, 

      "PSTATE", (regs2->pstate & 0xffffffff)); 

 /*Load the values of register inside the array*/ 

 data_buffer[0] = regs1->sp; 

 data_buffer[1] = regs1->lr; 

 data_buffer[2] = regs1->pc; 

 data_buffer[3] = (regs1->pstate & 0xffffffff); 

 data_buffer[4] = regs2->sp; 

 data_buffer[5] = regs2->lr; 

 data_buffer[6] = regs2->pc; 

 data_buffer[7] = (regs2->pstate & 0xffffffff); 

 

 /* Prepare target address */ 

 IP4_ADDR(&to_addr, ripaddr[0],ripaddr[1],ripaddr[2],ripaddr[3]); 

 

 /* Open RAW socket */ 

 if ((s = lwip_socket(AF_INET, SOCK_DGRAM, IP_PROTO_UDP)) < 0) { 

  vmm_printf("%s: failed to open UDP socket\n", __func__); 
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  return VMM_EFAIL; 

 }else 

 { 

  vmm_printf("[+] ---UDP Socket Created!--- [+]\n"); 

 } 

 

 /* Prepare Sender socket address */ 

 memset(&sa, 0, sizeof(struct sockaddr_in)); 

 sa.sin_len = sizeof(sa); 

 sa.sin_family = AF_INET; 

 sa.sin_port = htons(SENDER_PORT); 

 sa.sin_addr.s_addr = inet_addr(SENDER_IP); 

 

 /*Bind the socket locally*/ 

 if (lwip_bind(s, (struct sockaddr *)&sa, sizeof(struct sockaddr_in) ) 

== -1) 

 { 

  vmm_printf("***--Bind to Port num %d failed*** \n", 

SENDER_PORT); 

  /* Close RAW socket */ 

  lwip_close(s); 

 }else 

 { 

  vmm_printf("[+] ---UDP Socket Binded!--- [+]\n"); 

 } 

 /*Prepare Receiver socket address */ 

 memset(&ra, 0, sizeof(struct sockaddr_in)); 

 ra.sin_len = sizeof(ra); 

 ra.sin_family = AF_INET; 

 ra.sin_port = htons(RECEIVER_PORT); 

 ra.sin_addr.s_addr = inet_addr(RECEIVER_IP); 

 

 int sent_data = lwip_sendto(s, data_buffer, sizeof(data_buffer), 0, 
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(struct sockaddr *)&ra, sizeof(ra)); 

 

      //Print Debugging messages 

 if (sent_data < 0) 

 { 

   vmm_printf("***sent failed***\n"); 

  netstack_socket_free(s); 

  lwip_close(s); 

  return VMM_EFAIL;  

 }else 

 { 

  vmm_printf("[+] ---UDP Data Sented!--- [+]\n"); 

 } 

 

 netstack_socket_free(s); 

 lwip_close(s); 

  

} 

VMM_EXPORT_SYMBOL(netstack_send_udpdata); 

 

 

A-3: Socket configuration 

      /* Open RAW socket */ 

 if ((s = lwip_socket(AF_INET, SOCK_DGRAM, IP_PROTO_UDP)) < 0) { 

  vmm_printf("%s: failed to open UDP socket\n", __func__); 

  return VMM_EFAIL; 

 }else 

 { 

  vmm_printf("[+] ---UDP Socket Created!--- [+]\n"); 

 } 

 /* Prepare Sender socket address */ 
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 memset(&sa, 0, sizeof(struct sockaddr_in)); 

 sa.sin_len = sizeof(sa); 

 sa.sin_family = AF_INET; 

 sa.sin_port = htons(SENDER_PORT); 

 sa.sin_addr.s_addr = inet_addr(SENDER_IP); 

 

 /*Bind the socket locally*/ 

 if (lwip_bind(s, (struct sockaddr *)&sa, sizeof(struct sockaddr_in) ) 

== -1) 

 { 

  vmm_printf("***--Bind to Port num %d failed*** \n", 

SENDER_PORT); 

  /* Close RAW socket */ 

  lwip_close(s); 

 }else 

 { 

  vmm_printf("[+] ---UDP Socket Binded!--- [+]\n"); 

 } 

 

 /*Prepare Receiver socket address */ 

 memset(&ra, 0, sizeof(struct sockaddr_in)); 

 ra.sin_len = sizeof(ra); 

 ra.sin_family = AF_INET; 

 ra.sin_port = htons(RECEIVER_PORT); 

 ra.sin_addr.s_addr = inet_addr(RECEIVER_IP); 

 

 int sent_data = lwip_sendto(s, data_buffer, sizeof(data_buffer), 0, 

(struct sockaddr *)&ra, sizeof(ra)); 
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A-4: Reception script at destination host 

#define BUFLEN 200 

#define PORTSERVER 6002 

#define PORTCLIENT 6002 

  

int main(void) 

{ 

    // Variables and structure definitions 

    struct sockaddr_in serveraddr, clientaddr; 

    int s, slen = sizeof(clientaddr), recv_len; 

    unsigned buf[BUFLEN]; 

    //Creation of a Unix Socket 

    if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) 

    { 

    perror("Cannot create socket"); 

    return 0; 

    } 

    //Reserve memory equal to an IP address size 

    memset(&serveraddr, 0, sizeof(serveraddr)); 

    memset(&clientaddr, 0, sizeof(clientaddr)); 

    //Assign an IP address to the socket 

    serveraddr.sin_family = AF_INET; 

    serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 

    serveraddr.sin_port = htons(PORTSERVER); 

    clientaddr.sin_family = AF_INET; 

    clientaddr.sin_addr.s_addr = inet_addr("192.168.0.10"); 

    clientaddr.sin_port = htons(PORTCLIENT); 

 

    //Bind the socket 

    if ( bind(s, (const struct sockaddr *)&serveraddr, sizeof(serveraddr)) 

< 0 ) 

    { 
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    perror("Bind Failed"); 

    return 0; 

    } 

    //Listening for incoming data  

    while(1) 

    { 

        printf("[+] ---Waiting for data....[+]\n"); 

        if ((recv_len = recvfrom(s, buf, BUFLEN, 0, (struct sockaddr 

*)&clientaddr, &slen)) < 0) 

        { 

        perror("recvfrom failed"); 

        } 

        //Print on standard output the received data 

        printf("[+] ---received :%d bytes ---[+]\n", recv_len); 

            if (recv_len > 0 ) 

            { 

            printf("[+] ---VCPU1 registers ---[+]\n "); 

            printf("[+] ---received: SP = %016lx ---[+]\n",  buf[0]); 

            printf("[+] ---received: LR = %016lx ---[+]\n",  buf[1]); 

            printf("[+] ---received: PC = %016lx ---[+]\n",  buf[2]); 

            printf("[+] ---received: PSTATE = %016lx ---[+]\n",  buf[3]); 

 

            printf("[+] ---VCPU2 registers ---[+]\n"); 

            printf("[+] ---received: SP = %016lx ---[+]\n",  buf[4]); 

            printf("[+] ---received: LR = %016lx ---[+]\n",  buf[5]); 

            printf("[+] ---received: PC = %016lx ---[+]\n",  buf[6]); 

            printf("[+] ---received: PSTATE = %016lx ---[+]\n",  buf[7]); 

  

            } 

    close(s); 

    return(0); 

    } 

} 
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A-5: Receive CPU data source code function 

int netstack_receive_udpdata(u8 port){ 

  

 unsigned data_buffer[5]; 

 struct sockaddr_in sa,ra; 

 int s, err, i, slen = sizeof(sa); 

 int recv_len; 

 struct ip_hdr *iphdr; 

 struct udp_hdr *udphdr; 

 ip_addr_t to_addr, from_addr; 

 size_t off, fromlen = sizeof(sa); 

 

 vmm_printf("***--%s-***\n",__func__); 

 /* Open RAW socket */ 

 if ((s = lwip_socket(AF_INET, SOCK_DGRAM, IP_PROTO_UDP)) < 0) { 

  vmm_printf("%s: failed to open UDP socket\n", __func__); 

  return VMM_EFAIL; 

 } 

 /* Set socket option */ 

  i = PING_RCV_TIMEO; 

 lwip_setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &i, sizeof(i)); 

 /* Prepare Receiver socket address */ 

 memset(&ra, 0, sizeof(ra)); 

 ra.sin_len = sizeof(ra); 

 ra.sin_family = AF_INET; 

 ra.sin_port = htons(port); 

 ra.sin_addr.s_addr = inet_addr(RECEIVER_IP); 

 

 /*Bind the socket locally*/ 

 if (lwip_bind(s, (struct sockaddr *)&ra, sizeof(struct sockaddr_in)) 

< 0) 

 { 
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  vmm_printf("***--Bind to Port num %d failed*** \n", 

RECEIVER_PORT); 

  /* Close RAW socket */ 

  lwip_close(s); 

 } 

 memset(&sa, 0, sizeof(sa)); 

 sa.sin_len = sizeof(sa); 

 sa.sin_family = AF_INET; 

 sa.sin_port = htons(SENDER_PORT); 

 sa.sin_addr.s_addr = inet_addr(SENDER_IP2); 

  

 /* Wait for reply */  

 vmm_printf("***Waiting for data....***\n"); 

 off = 0; 

 while (1)  

 { 

 

 if ((off = lwip_recvfrom(s, data_buffer, sizeof(data_buffer), 0,  

   (struct sockaddr*)&sa, &fromlen)) < 0) 

   { 

    vmm_printf("Nothing to received....\n"); 

   }else 

   { 

   vmm_printf("***--%d--...***\n", off); 

   vmm_printf("***received: %02x--\n", data_buffer); 

  

   err = VMM_OK;} 

 } 

 vmm_printf("***Waiting for data ....1***\n"); 

 

  lwip_close(s); 

  netstack_socket_free(s); 
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 lwip_close(s); 

 return err; 

} 

VMM_EXPORT_SYMBOL(netstack_receive_udpdata); 

 

 

A-6: Adopt CPU data source code function 

int netstack_adapt_registers(arch_regs_t *regs1, arch_regs_t *regs2) { 

 unsigned data_buffer[50]; 

  

 vmm_printf("[+] ---Core Registers VCPU1--- [+]\n"); 

 vmm_printf(" %11s=0x%016lx %11s=0x%016lx\n", 

      "SP", regs1->sp, 

      "LR", regs1->lr); 

 vmm_printf(" %11s=0x%016lx %11s=0x%08lx\n", 

      "PC", regs1->pc, 

      "PSTATE", (regs1->pstate & 0xffffffff)); 

  

 vmm_printf("[+] ---Core Registers VCPU2--- [+]\n"); 

 vmm_printf(" %11s=0x%016lx %11s=0x%016lx\n", 

      "SP", regs2->sp, 

      "LR", regs2->lr); 

 vmm_printf(" %11s=0x%016lx %11s=0x%08lx\n", 

      "PC", regs2->pc, 

      "PSTATE", (regs2->pstate & 0xffffffff)); 

 

 /*Store the values of registers inside an array*/ 

 data_buffer[0] = regs1->sp; 

 data_buffer[1] = regs1->lr; 

 data_buffer[2] = regs1->pc; 

 data_buffer[3] = (regs1->pstate & 0xffffffff); 



208 
 

 

      /*Load the values from the array into the registers*/ 

 regs2->sp = data_buffer[0]; 

 regs2->lr = data_buffer[1]; 

 regs2->pc = data_buffer[2]; 

 regs2->pstate = data_buffer[3]; 

 

 vmm_printf("[+] ---Core Registers VCPU1--- [+]\n"); 

 vmm_printf(" %11s=0x%016lx %11s=0x%016lx\n", 

      "SP", regs1->sp, 

      "LR", regs1->lr); 

 vmm_printf(" %11s=0x%016lx %11s=0x%08lx\n", 

      "PC", regs1->pc, 

      "PSTATE", (regs1->pstate & 0xffffffff)); 

  

 vmm_printf("[+] ---Core Registers VCPU2--- [+]\n"); 

 vmm_printf(" %11s=0x%016lx %11s=0x%016lx\n", 

      "SP", regs2->sp, 

      "LR", regs2->lr); 

 vmm_printf(" %11s=0x%016lx %11s=0x%08lx\n", 

      "PC", regs2->pc, 

      "PSTATE", (regs2->pstate & 0xffffffff)); 

 

 return VMM_OK; 

} 

VMM_EXPORT_SYMBOL(netstack_adapt_registers); 
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Appendix B 

Evaluation results of a CPU live migration performance 

Time measurements of CPU live migration performance of 34 CPU registers  

a)    b)  

c)   d)  

e)   f)  

g)   h)  

i)   j)  

Appendix C  

Structure definition of ARM registers on XEN hypervisor system. 

struct cpu_user_regs 

{ 

    /* 

     * The mapping AArch64 <-> AArch32  

     * 

     *         AArch64       AArch32 

     */ 
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    __DECL_REG(x0,           r0/*_usr*/); 

    __DECL_REG(x1,           r1/*_usr*/); 

    __DECL_REG(x2,           r2/*_usr*/); 

    __DECL_REG(x3,           r3/*_usr*/); 

    __DECL_REG(x4,           r4/*_usr*/); 

    __DECL_REG(x5,           r5/*_usr*/); 

    __DECL_REG(x6,           r6/*_usr*/); 

    __DECL_REG(x7,           r7/*_usr*/); 

    __DECL_REG(x8,           r8/*_usr*/); 

    __DECL_REG(x9,           r9/*_usr*/); 

    __DECL_REG(x10,          r10/*_usr*/); 

    __DECL_REG(x11 ,         r11/*_usr*/); 

    __DECL_REG(x12,          r12/*_usr*/) 

    __DECL_REG(x13,          /* r13_usr */ sp_usr); 

    __DECL_REG(x14,          /* r14_usr */ lr_usr); 

    __DECL_REG(x15,          /* r13_hyp */ __unused_sp_hyp); 

    __DECL_REG(x16,          /* r14_irq */ lr_irq); 

    __DECL_REG(x17,          /* r13_irq */ sp_irq) 

    __DECL_REG(x18,          /* r14_svc */ lr_svc); 

    __DECL_REG(x19,          /* r13_svc */ sp_svc); 

    __DECL_REG(x20,          /* r14_abt */ lr_abt); 

    __DECL_REG(x21,          /* r13_abt */ sp_abt); 

 

    __DECL_REG(x22,          /* r14_und */ lr_und); 

    __DECL_REG(x23,          /* r13_und */ sp_und); 

    __DECL_REG(x24,          r8_fiq); 

    __DECL_REG(x25,          r9_fiq); 

    __DECL_REG(x26,          r10_fiq); 

    __DECL_REG(x27,          r11_fiq); 

    __DECL_REG(x28,          r12_fiq); 

    __DECL_REG(/* x29 */ fp, /* r13_fiq */ sp_fiq); 

    __DECL_REG(/* x30 */ lr, /* r14_fiq */ lr_fiq); 
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    register_t sp; /* Valid for hypervisor frames */ 

 

    /* Return address and mode */ 

    __DECL_REG(pc,           pc32);             /* ELR_EL2 */ 

    uint64_t cpsr;                              /* SPSR_EL2 */ 

    uint64_t hsr;                               /* ESR_EL2 */ 

 


