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SUMMARY

Binding of particles and spores to surfaces is a natural phenomenonwhich is a pre-
requisite for biofilm formation. Perpendicular force measurements were carried
out using atomic force microscopy cantilevers modified with a polystyrene or
glass sphere. The attachment of the spheres was tested against glass, PVAc,
p(g-MPSco-MMA), p(g-MPS-co-LMA), PMMAsc, and silicon surfaces. The polysty-
rene spheres demonstrated less varied force and strength of attachment mea-
surement to the surfaces than the glass spheres. The force of attachment of the
polystyrene spheres was also influenced by mobility of the co-polymer surfaces.
Surface wettability did not affect the force of polystyrene or glass sphere attach-
ment. The force measurements of the non-biological spheres were similar to
those seen in biological systems with fungal conidia, and this was due to their
size, shape, and binding energies. The use of non-biological systems may present
an insight into understanding the fundamentals of more complex biological
processes.

INTRODUCTION

The binding of particles from the environment such as pollen, bacterial cells, or fungal spore to a surface is a

natural phenomenon, and understanding such interactions is important to improve many industrial and

biological processes. This is of particular importance in controlling the biofouling onto substrata, since

the initial attachment of organic material and microorganisms onto surfaces is a prerequisite of biofilm for-

mation (Whitehead and Verran, 2015). However, the complexities of how surface properties affect particle

binding to a surface are poorly understood. The use of spherical particles may be useful to carry out inves-

tigations to elucidate the fundamental factors that influence surface binding. This is important since the

ability of microorganisms to instigate contamination and biodeterioration of surfaces is a major global

issue, affecting the marine, food, and water distribution industries (Whitehead and Verran, 2009). For

example, once fungal conidia attach, interior and exterior surfaces made from polymers may be degraded

and thus understanding the spore: substratum interactions is of importance to enable biofouling to be

effectively controlled (Whitehead et al., 2020; Vallieres et al., 2020).

The understanding of how a particle and a surface interact is one of the most important aspects in under-

standing surface binding. Surface properties have been acknowledged to contribute to the ability of

spheres and microorganisms to adhere to a surface (Rosenberg and Kjelleberg, 1986). The initial attach-

ment to surfaces by particles is thought to be due to physicochemical interactions (Seale et al., 2008).

The substratum chemistry and its method of production influence both surface wettability and roughness

(Stuart et al., 2010; Wassmann et al., 2017). In recent years, surface topography, physiochemistry, and

chemistry have been found to significantly influence the interactions between substrata and microorgan-

isms (Whitehead et al., 2005; Nomura et al., 2018; Wu et al., 2018; Akhidime et al., 2019).

Advances in the use of atomic force microscopy (AFM) have enabled the direct measurements of the force

of attachment of individual conidia or particles to a surface (Binnig et al., 1986; Bowen et al., 2000; White-

head et al., 2011). The technique involves the attachment of a single sphere or fungal spore at the end of a

cantilever creating a particle probe. The modified cantilever can be used in AFM to enable the direct mea-

surement of the force of adhesion of a single particle in the direction normal to the interacting surfaces
iScience 24, 101962, January 22, 2021 ª 2020 The Authors.
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Figure 1. Strength of attachment of the polystyrene and glass spheres onto the surfaces

Strength of attachment of (A) modified cantilever with polystyrene colloid particles and (B) modified cantilever with glass

colloid particles to polymer surfaces. Error bars represent the standard error of the mean.
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(Binnig et al., 1986; Bowen et al., 2000). However, an understanding of how the use of such non-biological

systems relates to biological systems is unclear. In this study, two chemically defined spherical particles

(glass and polystyrene) were used to produce particle probes by attachment to the cantilever, and their

strength of attachment to surfaces was determined. The results of the non-biological system were

compared against attachment results from cantilevers modified with fungal conidia (Aspergillus niger

1957, Aspergillus niger 1988 and Aureobasidium pullulans) to determine if the non-biological system re-

flected the behavior of a biological system.
RESULTS

Attachment measurements of spheres to surfaces

Tipless cantilevers were modified using polystyrene or glass spheres. The polystyrene spheres were stan-

dardized precision-controlled calibration spheres of 6.6-mm diameter, whereas the glass spheres were not

uniform, with sizes ranging between 6 mm and 10 mm. The force of attachment of the polystyrene and glass

spheres was determined on a range of surfaces which included glass, PVAc, PMMAsc, p(g-MPS-co-MMA),
2 iScience 24, 101962, January 22, 2021



Figure 2. Colloid particles and the interactions of the surface affect the surface area between the spore and the

substratum and hence force of attachment

(A) Rough surface, (B) smooth surface, and (C) co-polymerized surface.
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p(g-MPS-co-LMA), and silicon (Figure 1). The polystyrene spheres attached with the greatest force to the

glass surface (19.9 nN), followed by the PVAc surface (10.9 nN). The polystyrene spheres demonstrated the

lowest attachment to the three PMMA co-polymer surfaces: PMMAsc (1.9 nN), (p(g-MPS-co-LMA) (1.8 nN),

and p(g-MPS-co-MMA) (1.7 nN) (Figure 1A). The force of attachment of the polystyrene sphere on the sil-

icon surface was the lowest (3.7 nm).

The results obtained using the glass spheres revealed that the attachment measurements were much

higher on all the surfaces (range: 24.5 nN–41 nN) than when using the polystyrene spheres (range:

1.7 nN–19.9 nN) (Figure 2B). The highest force of attachment using the glass spheres was demonstrated

on the glass surface (41.0 nN), followed by the PVAc surface (35.3 nN). The lowest strength of attachment

was demonstrated on the PMMAsc surface (24.5 nN). There was no relationship between the surface rough-

ness or wettability and the force of attachment measurements for the glass spheres.

A schematic was devised to explain these interactions (Figure 2). The polystyrene sphere bound to the

rough surface with the greatest number of attachment points (Figure 2A), while on the smooth surface,

the number of attachment points between the polystyrene sphere and the smooth surface was much

less, hence the reduction in the force of attachment measurements (Figure 2B). The force of attachment

of the polystyrene sphere on the surfaces with the dynamic chemistries may have resulted in movement

of the polymer chains, resulting in the least binding energies recorded between the polystyrene sphere

and the surface (Figure 2C). Such changes may not have been observed for the glass spheres since their

irregularity in shape and undefined chemistries may have overridden the detection of such specificities.

Relationship between non-biological results and fungal spores

To determine if the use of spheres could be related to measurements of a biological origin, the data were

compared to those of previous attachment measurements using spores from three fungal species (White-

head et al., 2011). A. niger 1957 conidia had a diameter of �5 mm and they were spherical in shape (Fig-

ure 3A), whereas the A. niger 1988 conidia (Figure 3B) were slightly larger at �6 mm–8 mm in diameter

and they were round with protrusions across the entire surface. A. pullulans conidia ranged from 3 mm

to 4 mm in width and 5 mm–12 mm in length (Figure 3C).

To determine the influence of the spheres on the spread of distribution of the force of attachment results,

previously determined cantilever force measurements (Whitehead et al., 2011) were plotted against the

perpendicular force measurements for the polystyrene and glass spheres. The force measurements were

found to be more tightly grouped for the polystyrene spheres (Figure 4A), whereas they were more widely

distributed for the glass spheres (Figure 4B). Previous works using the perpendicular force measurements

of a biological system with fungal conidia (Whitehead et al., 2011) were also plotted against the cantilever

force measurements to demonstrate the similarities between the biological and non-biological systems

(Whitehead et al., 2011). The modified A. niger 1957 gave a narrowly dispersed range of results (Figure 4C),

whereas the forcemeasurements for the A. niger 1988 and A. pullulans demonstrated a wide distribution of

attachment forces (Figures 4D and 4E, respectively). A hypothesis of the results was demonstrated in a

schematic form. The hydrophobic polystyrene spheres used to modify the tipless cantilevers were of a

consistent shape and diameter (6.6 mm diameter) (Figure 5A). Cantilevers fitted with hydrophilic glass

spheres were chemically heterogeneous and had a range of diameters (5 mm–10 mm) and thus had a wider
iScience 24, 101962, January 22, 2021 3



Figure 3. Images of the fungal spores demonstrating their distinct morphologies

Light microscopy images of (A)A. niger 1957 (scale bar, 5 mm), (B) A. niger 1988 (scale bar, 5 mm), and (C) A. pullulans (scale

bar, 10 mm).
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range of irregularly sized spheres. The hydrophobic A. niger 1957 conidia (�5 mm diameter) were of a reg-

ular size and spherical in shape, similar to that of a polystyrene sphere (Figure 5C).A. niger 1988 conidia had

irregular shaped spiny features (6 mm–8 mm), and the hydrophilic A. pullulans conidia were of ellipsoidal

shape with a range of 5 mm–12 mm (Figures 5D and 5E respectively). Due to the respective size and shape

of the spheres/conidia, the results demonstrated similarities between the non-biological and biological

systems, as was made clear by the narrow distribution of the regular shaped polystyrene spheres and

the A. niger 1957 system. However, the glass/A. niger 1988 and A. pullulans systems demonstrated a

more widespread distribution, where data obtained reflected the irregular size and shapes of the

spheres/conidia.
DISCUSSION

Although there are a number of caveats regarding using spheres to understand more complex biological

interactions, such systems may enable us to understand some of the more fundamental processes of how

microorganisms attach to a surface. Tipless cantilevers weremodified with non-biological spheres to deter-

mine if they could be used to give an insight into more complex biological systems. Regular sized and

shaped, hydrophobic polystyrene spheres and hydrophilic glass spheres which had a wider range of diam-

eters were used to modify tipless AFM cantilevers. Polystyrene is a known hydrophobic surface with a con-

tact angle to water of approximately 85� (Li et al., 2007; Thormann et al., 2008 while glass is more hydro-

philic, with a contact angle of around 57� (Whitehead et al., 2011). Although fungal spores are

chemically complex at the nanoscale, the combined properties of the spore surface will contribute as a

whole to their initial attachment to substrata. One reason for using the non-biological spheres was that

it has been suggested that the polystyrene spheres have some features that resemble biological surfaces,

for example, they are not a smooth surface but have a soft interface consisting of loosely bound and

dangling polymers, are slightly charged in aqueous solution, and are charge regulators (Thormann

et al., 2008). Glass is a chemically undefined surface, as are microbial cells, and thus, glass may be of use

to represent microbial cells in a non-biological system.

In previous studies, it was demonstrated that the surface topographies were within the nanometer range

having Ra values (118 nm [glass] and 0.6 nm [silicon]) (Whitehead et al., 2020). The most non-wettable sur-

faces was p(g-MPS-co-LMA; 108�) while the most wettable surface was silicon (24�) (Liauw et al., 2020).

The strength of attachment measurements for the polystyrene spheres demonstrated that the force mea-

surements were not greatly varied, and this was in line with the smaller and controlled size range of the

spheres. The glass spheres demonstrated a more widespread distribution of the data in line with the broad

range of the shape of the spheres. The polystyrene spheres with the defined size also demonstrated lower

force of attachment measurements than those taken with the glass spheres. With respect to the results for

the polystyrene spheres, the attachment measurements on surfaces with an increased roughness, gener-

ally, demonstrated higher attachment results, while smoother surfaces demonstrated lowered attachment

of the polystyrene spheres.

With respect to size of surface features, it has been shown that surface roughness will affect the total bind-

ing energy between the bacterium and the substratum (Whitehead et al., 2005). Using a 5-mmpolymer latex
4 iScience 24, 101962, January 22, 2021



Figure 4. Distribution of non-biological (sphere) and biological (fungal spore) force measurements

Cantilever strength of attachment measurements plotted against (A) polystyrene sphere strength of attachment measurements, (B) glass sphere, (C)A. niger

1957, (D) A. niger 1988, and (E) A. pullulans (Whitehead et al., 2011).
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sphere as a particle probe, Bowen et al. (2000) found that probe attachment strength increased with

decreasing roughness on stainless steel surfaces except on the smoothest surfaces. This result was in

agreement with previous work by Whitehead et al. (2006) in which AFM measurements carried out on sur-

faces with features of defined dimensions demonstrated that the size of the surface feature and the area of

contact between the cell and the surface influenced the amount of bacteria attachment to a surface. This

effect was suggested to be due to the lowered resistance of the cell attachment to the surface due to lower

cell-surface binding energies.

Interestingly, with the exception of the silicon surfaces, the lowest amount of attachment was demon-

strated on the surfaces that had been spin coated, and this may have been due to mobility on the co-poly-

mer surfaces. Berglin at al., (2008) demonstrated that by changing the side chains in poly(alkylmethacry-

late), they were able to systematically vary the mobility of the polymer chains. It may be that the

movement of the polymer chains in this system resulted in decreased available surface area binding,

reducing the interactions between the conidia or spheres and the surfaces.

The results using the glass spheres demonstrated that the attachment measurements were of a higher

force and range on all the surfaces and there was no relationship between surface roughness or surface

wettability and the force of probe attachment. It may be that the chemical heterogeneity of the glass sur-

face was an additional factor that may account for the higher force of attachment observed when using the

glass spheres or that the shape and hydrophobicity of the spheres influenced the findings with the larger,

more hydrophilic glass spheres producing a more diverse range of results. In agreement with our work, it

has been suggested that one reason why surfaces do not always perform as expected is due to the chemical

properties of the substrata and an influencing factor might be a relatively small number of chemically var-

iable areas. These act as highly adhesive sites andmay influence the overall response of the system to initial

microbial deposition (Ma et al., 2008). Work by Webb et al. (1999) further confirmed that chemical variation

in the surface polymer affected the initial adhesion of fungi. When the adhesion of A. pullulans was tested

against plasticized polyvinyl chloride (pPVC) and unplasticized PVC (uPVC), it was demonstrated that fungal
iScience 24, 101962, January 22, 2021 5



Figure 5. Representation of the sphere : surface and spore : surface interactions

Tipless cantilevers fixed with (A) hydrophobic polystyrene sphere of regular size and shape, (B) hydrophilic glass sphere

which were a range of sizes, (C)A. niger 1957 conidia of regular size and with a spherical shape, and (D)A. niger 1988 which

was of irregular spiny morphology and A. pullulans conidia which were of a range of spore sizes.
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spore adhesion to pPVCwas greater than that to uPVC by amaximum of 280% after a 4 hr incubation period

(Webb et al., 1999).

Comparisons were made with the AFMmeasurements of fungal spores from a previous system (Whitehead

et al., 2011) to demonstrate if a non-biological system using polystyrene and glass modified spheres could

provide results reproducible of biological systems. When the strength of attachment measurements for the

unmodified tipped cantilever and the surfaces were plotted against the spore attachment measurements, a

similar trend was shown, in that A. niger 1957 had a more narrow distribution of results similar to the results

for the polystyrene spheres than either the A. niger 1988 or the A. pullulans. It might be speculated that this

result is due to the regular round shape and size of the spore (A. niger 1957) and the polystyrene spheres. In

contrast, A. niger 1988 has a variable surface: spore contact area due to its spikey structure, and although

A. pullulans is a bigger spore, it is irregularly shaped which could result in its range of differences in contact

with the surface. Thus, it was suggested that the biological aspect of the spore did influence the force of

attachment. This was confirmed by the measurements of the glass spheres being similar to those seen

in the A. niger 1988 and A. pullulans.

It has been suggested that the attachment of a particle to a surface may depend on the rigidity or deform-

ability of the spheres since for a deformable polystyrene sphere will undergo slow conformational changes

during the process of attachment (Sharma et al., 2008). Observations by others have suggested that the

response of a polystyrene spheres is not purely elastic (Thormann et al., 2008). The results from the current

work suggest that the attachment forces were most influenced by the size of the spheres and spores and in

this scenario and this may have occurred due to a matter of scale whereby the application to the biological

conditions negated the observation of the events at the atomic scale. In addition, when the adhesion
6 iScience 24, 101962, January 22, 2021
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between polystyrene spheres and a flat silica substrate in a dry atmosphere (Reitsma et al., 2000) and the

adhesion between two polystyrene spheres in water (Hodges et al., 2004) were investigated, in both cases it

was found that the Johnson-Kendall-Roberts theory,=, which describes how two bodies adhere together

and what deformation they undergo when in contact with each other (Johnson et al., 1971) failed to provide

a reliable prediction of the adhesion force (Thormann et al., 2008). Hence, such contradictions to theoret-

ical expectations may occur. The interesting finding of the A. niger 1988 resembling the force measure-

ments of the glass sphere rather than the polystyrene sphere might be due the spiny surface of the spore

since it is known that small interfacial gaps, due to surface asperities or dust spheres, will strongly influence

the adhesion because attractive surface forces decrease rapidly with increasing separation (Thormann

et al., 2008).

This work suggests that the spheres and spore sizes strongly influenced the results observed. When using

the polystyrene spheres of a defined size, the surface roughness was found to influence the attachment

force to the surface. The glass spheres demonstrated more widely distributed attachment measurements

consistent with conidia morphologies of an irregular shape and size.

CONCLUSION

The polystyrene sphere with the defined size demonstrated a narrower range and lower force of attach-

ment than the glass spheres to the surfaces which coincided with the force measurements demonstrated

by A. niger 1957 conidia. The polystyrene sphere force of attachment was least on the spin coated surfaces

which could possibly have been due to the mobility of the co-polymer surfaces. The glass sphere demon-

strated results that revealed a wider range of higher forcemeasurements, similar to those seen withA. niger

1988 and A. pullulans conidia. Thus, it is suggested that the observed results could be due to the size of the

spheres and conidia utilized on the cantilevers and their binding energies with the surfaces. Overall, the

PMMAsc surface demonstrated the lowest force of attachment measurements for both the polystyrene

and glass spheres.

Limitations of the study

The main limitations of this study included that although this non-biological system demonstrates force

measurements that could be related to fungal spore force of attachment measurements, there are many

caveats since fungal spores are incredibly complex and the amount of influence of the spore biochemistry

on the measurement of interactions will be dependent on whether they are determined at the macroscale,

microscale, or nanoscale. Thus, this system may not be applicable to all spore types and would have to be

correlated accordingly.
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Figure Legend 

 

Figure S1. Ra and contact angle values of surfaces described as in previous work, related to 

Figure 1 (Whitehead et al., 2011; Liauw et al., 2020; Whitehead et al., 2020). 

 

  



Transparent Methods 

Surface production and analysis 

Nine different surfaces presenting different properties were utilised in this study. 

Silicon wafers were purchased from Montco Technologies (PA, USA). Glass cover slips were 

purchased from Scientific Laboratory Supplies (20 mm x 20 mm) (UK). The poly(vinyl 

acetate) (PVAc) surfaces were produced using compression moulding. A hydraulic heated 

press (Press type 202B-50 ton Bradley and Turton Ltd., UK), was heated to 50 ˚C for PVAc. 

A steel frame mould (outer dimensions: 16.3 cm x 19.5 cm, inner dimensions: 8.8 cm x 15.4 

cm) was placed in the centre of a 0.5 mm FEP film (FEP Shelman, UK) and two stainless steel 

sheets (30.2 cm x 23 cm) were placed on either side of the release sheets. The assembly was 

heated for five min and the sheets were removed from the press and separated. Granules of 

PVAc (13.5 g) (BDH, UK) were spread into the centre of the mould and the sheets were placed 

together and placed in the electric press for 10 min. These were removed and immediately 

transferred into a water cooled press (Francis Shaw and Company, UK) for 5 min. The sample 

was removed from the cold press and released from the mould. The spin coated surfaces were 

fabricated by dropping the dissolved polymer onto silicon wafer disks ensuring the entire disk 

surface was covered. The samples were spun at 2000 rpm for 10 - 15 s. The PLMA surface 

used lauryl methacrylate copolymerised with γ- MPS (p(γ-MPS-co-LMA). The PMMAsc 

surfaces used spin coating of 3-methacryloxypropyltrimethoxysilane (γ- MPS) copolymerised 

with methyl methylacrylate (MMA). p(γ-MPS-co-MMA) was produced via the 

copolymerisation of MMA with γ-MPS (in a ratio of 90 to 10) (Whitehead et al., 2011; Liauw 

et al., 2020; Whitehead et al., 2020).  

Strength of attachment measurements 

Strength of attachment measurements using regular cantilevers 



 All the strength of attachments were carried out using an Explorer AFM (Veeco 

Instruments, UK). To measure the adhesion force between the particle probes and the 

substratum, the probe was brought into momentary contact with the surface. AFM strength of 

attachment measurements were obtained from force-distance curves. To convert the cantilever 

deflection to a force, the spring constant of the cantilever and the zero of the force were defined 

and the cantilever deflection (d) was converted into a force (F) through the use of Hooke’s law; 

F  =  kd   (1) 

where k is the cantilever spring constant, which was determined for each cantilever (Whitehead 

et al., 2011). The cantilever was deflected by a distance (d). The corrected curve was 

determined by plotting F as a function of (z – d), where z is the vertical displacement of the 

piezoelectric scanner (Whitehead et al., 2011). To calculate the force, the spring constant was 

multiplied by the displacement (Hookes Law), and the zero of the force was subtracted from 

the image setpoint. The resultant value was converted to nN from nA by multiplying the applied 

force by the reciprocal of the slope and the cantilever spring constant (Whitehead et al., 2011). 

Modification of tipless cantilevers 

Tipless cantilevers (Veeco, UK) were glued onto cantilever stubs (Veeco, UK) using a 

two-phase silver mounting adhesive.  Ten microlitres of glass colloid particles in sterile 

distilled water or 10 µL of suspended polystyrene colloid particles were pipetted into a new, 

sterile, clean Petri dish, and the diluent was evaporated off in a class II flow hood. After the 

diluent had been evaporated, the samples were thoroughly dried in a phosphorous pentoxide 

desiccator for three days. Using double sided tape, a 20 cm x 20 cm glass cover slip was 

attached to an AFM mounting disc (Veeco, UK). A small number of dried conidia were 

removed from the Petri dish placed onto a coverslip. Next, a small amount of cyanoacrylate 

gel (Bostik, UK) was added to the coverslip, attached to the mounting disk and placed into the 

AFM (Whitehead et al., 2011). Using the AFM camera and XY automated translation stage, 



the tipless cantilever was moved to the edge of the cyanoacrylate gel and was lowered in the z 

plane until the cantilever was in momentary contact with the gel, then quickly moved in the z 

plane. The cantilever was then moved across the coverslip until a suitable colloid particle was 

found and was again lowered in the z plane until in contact with a colloid particle. The 

cantilever was left in contact with the colloid particles for 10 s before being lifted vertically. 

Next, the cantilever was removed from the AFM and left for 24 h to allow the adhesive to fully 

cure. All cantilevers with attached colloid particles were examined using light microscopy prior 

to use. Before each experiment the spring constant of the cantilever was determined by 

measuring the mechanical response of the cantilever to thermal noise as a function of time 

using the AFM software and the exact spring constant recorded was incorporated into the 

perpendicular force equations. 

Light microscopy of spores 

              The spores were prepared as in previous work (Whitehead et al., 2020). Light 

microscopy of the fungal spores was carried out using either a x 400 or x 1000 working distance 

objective using a Nikon Eclipse E600 (Nikon, UK). The microscope was mounted with a 

Hitachi HV-D37P colour camera and used a Lucia Image Analysis package (Nikon, UK). 
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