
Alsaffar, MM, Hasan, M, McStay, GP and Sedky, M

 Digital DNA lifecycle security and privacy: An overview

https://researchonline.ljmu.ac.uk/id/eprint/17149/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Alsaffar, MM, Hasan, M, McStay, GP ORCID logoORCID: 
https://orcid.org/0000-0003-1363-8719 and Sedky, M (2022) Digital DNA 
lifecycle security and privacy: An overview. Briefings in Bioinformatics, 23 
(2). ISSN 1467-5463 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Digital DNA Lifecycle Security and Privacy: An Overview 1 

Alsaffar1, M., Hasan1, M., McStay2, G.P., Sedky1, M. 2 

1 Department of Computing, AI and Robotics, School of Digital, Technologies and Arts, Staffordshire 3 
University, College Road, ST4 2DE, Staffordshire, United Kingdom. 4 

2 Department of Biological Sciences, School of Health, Science and Wellbeing, Staffordshire 5 
University, College Road, Stoke-on-Trent, Staffordshire, ST4 2DE, United Kingdom. 6 

Corresponding author muhalb.alsaffar@research.staffs.ac.uk  7 

 8 

Key points 9 

 The digital DNA life cycle describes all the processes and usages once the DNA has been 10 
sequenced. 11 

 One’s privacy is threatened if their anonymised DNA is leaked; the threat level can be as high 12 
as creating somebody’s face image. 13 

 Attempts to secure genomic data can fail or may not always scale to cover actual life data. 14 
 A new approach powered by a Machine Learning (ML) solution is required to protect 15 

genomic data. 16 
 17 
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Abstract   22 

DNA sequencing technologies have advanced significantly in the last few years leading to 23 

advancements in biomedical research which has improved personalised medicine and the discovery 24 

of new treatments for diseases. Sequencing technology advancement has also reduced the cost of 25 

DNA sequencing, which has led to the rise of Direct-To-Consumer (DTC) sequencing e.g. 26 

23andme.com, ancestry.co.uk etc. In the meantime, concerns have emerged over privacy and 27 

security in collecting, handling, analysing, and sharing DNA and genomic data. 28 

DNA data is unique and can be used to identify individuals. Moreover, this data provides information 29 

on people’s current disease status and disposition e.g. mental health or susceptibility for developing 30 

cancer. DNA privacy violation does not only affect the owner but also affects their close 31 

consanguinity due to its hereditary nature.  32 



This paper introduces and defines the term ‘Digital DNA Lifecycle’ and presents an overview of 33 

privacy and security threats and their mitigation techniques for pre-digital DNA and throughout the 34 

digital DNA life cycle. It covers DNA sequencing hardware, software and DNA sequence pipeline in 35 

addition to common privacy attacks and their countermeasures when DNA digital data is stored, 36 

queried, or shared. Likewise, the paper examines DTC genomic sequencing privacy and security. 37 

1. Introduction  38 

DNA and genomic data security is vital to one’s privacy. It can uniquely identify the owner and 39 

contains information about the individual’s disposition to numerous diseases such as Alzheimer’s 40 

and the likelihood of developing others e.g. mental disorders or other phenotypic traits [1]. 41 

Moreover, genomic data disclosure is not limited to a fixed period and does not only involve the 42 

owner. Due to the hereditary nature of the DNA, an adversary obtaining a target’s genomic data can 43 

also predict a wide range of relevant traits to their close relatives and future descendants [2]. 44 

Genomic security is vital; if an adversary manages to gather one’s genomic information, the 45 

adversary would then be able to predict phenotypes such as facial structures. The ability to predict 46 

physical traits and demographic information based on whole-genome sequences using Machine 47 

Learning (ML) has advanced over the years [3]. Physical traits prediction is a significant threat to 48 

privacy, and it also has important legal and ethical implications. The ability to predict physical traits 49 

will also affect the suitability of current informed consent, the practicality and value of de-50 

identification of the supporting genomic information e.g. genomic owner’s name and address [4]. 51 

Predicting facial structures based on whole-genome sequences has advanced even further. Research 52 

by Qiao et al. [5] demonstrated that facial characteristics such as cheeks, mouth shape and other 53 

facial features are related to as few as six genes and can be predicted from genomic data. Richmond 54 

et al. [6] give a brief overview of the various facial genetics variants that influence facial phenotypes.  55 

There are many threats to one’s privacy if the genomic information falls into the wrong hands. 56 

Genetic blackmailing is one of the main concerns. An adversary could identify individuals by 57 



combining websites such as peoplefinders.com and publicly available (even though anonymised) 58 

genomic data from sources such as 23andme.com [7].  59 

Genomic Discrimination (GD) is another concern as highlighted by Joly et al. [8]. The authors 60 

emphasised that there is no standard global approach to tackle GD. Many countries do not protect 61 

against GD, and approaches in countries that passed legislation to protect against GD suffer from 62 

many limitations such as the lack of public visibility, restrictive and non-flexible approaches with 63 

narrow protection (for example, the protection does not cover life insurance or travel insurance) and 64 

these legislations contain complex procedures. 65 

These risks also affect the DNA data owner’s kin due to correlation. Humbert et al. [9] demonstrated 66 

a novel reconstruction attack to infer the genomic data of individuals based on the genotype of their 67 

relatives which was achieved by using statistics in combination with Mendel’s hereditary laws. 68 

Despite privacy risks, genomic research is vital to improving human health such as applying 69 

translational genomic discoveries into clinical settings that enables the development of tailored 70 

interventions and the design of prophylactic approaches [10]. The use of the DNA and genomic data 71 

are also crucial for forensics and criminal investigations [11], paternity [12] and prenatal testing [13]. 72 

In recent years many reviews have been published regarding genomic security and privacy. These 73 

reviews generally tackle a specific issue or part of the overall digital DNA sequencing and usage such 74 

as privacy and privacy-preserving solutions for DNA sequence alignment and querying [14], [15], 75 

storing, sharing genomic data privacy and privacy-enhancing technologies [16], [17], [18], regulatory 76 

framework and consent [19], privacy while using the Cloud Computing [20], classification of genomic 77 

data privacy attacks and privacy-preserving solutions [21], [22],privacy-preserving techniques for 78 

genomic data [23] and review to Physical  DNA sample security and digital DNA privacy [24]. To the 79 

authors’ knowledge, no prior work has been presented as an overview for genomic security and 80 

privacy that covers the digital DNA security and privacy for pre-and post-DNA sequencing and DTC 81 

genomic testing. 82 



This article contributes an overview of privacy and security of the physical DNA, hardware and 83 

software security used for DNA sequencing and genomic sequencing and usage processes. It 84 

discusses some of the latest literature on how the current methods employed to anonymise the DNA 85 

are insufficient to prevent individuals from being identified. It explores the privacy vulnerabilities 86 

and their current countermeasures in sequencing hardware and software. The paper introduces the 87 

term digital DNA lifecycle to encapsulate all the steps that follow the output of the DNA sequencers 88 

such as sequencing pipeline, genomic data querying, and sharing. It also reviews the vulnerabilities 89 

within DTC DNA testing and finally draws conclusions based on the information presented.   90 

This paper is structured as follows. Section 2 introduces the concept of digital DNA lifecycle where 91 

the authors identify the legitimate access and the steps/phases for possible threats. In section 3, 92 

security vulnerabilities for the DNA Sequencing process and their countermeasures are discussed. 93 

Section 4 focuses on post-sequencing privacy vulnerabilities and their countermeasures. Section 5 94 

highlights vulnerabilities associated with querying and sharing DNA and genomic data as well as 95 

common DTC vulnerabilities and methods used to protect the genomic data are examined. Finally, 96 

section 6 draws some conclusions based on the information presented in the previous sections.  97 

2. Digital DNA lifecycle 98 

DNA is a double helix structure that contains genetic information encoded as a sequence of building 99 

blocks called nucleotides [9]. The whole human genome consists of 3.2 billion base pairs. Over 99.9% 100 

of the genome is identical between two individuals. The remaining 0.1% is the variation that can be 101 

in the form of single nucleotide changes i.e. Single Nucleotide Polymorphisms (SNPs) along with 102 

insertions, deletions, inversions and translocations. This variation leads to the presence of alleles, 103 

variants of a locus (a sequence at an exact unique location in the genome) that are responsible for 104 

particular traits and phenotypes. However, as the human genome is diploid, most low loci are 105 

biallelic where Loki can take two possible alleles [25].  106 



DNA sequence building blocks correlate to each other e.g. the presence of a specific nucleotide 107 

sequence in a particular location indicates and correlates to another nucleotide sequence presence 108 

in another location. This correlation is called Linkage Disequilibrium (LD) [26] which will be 109 

considered in one of the methods to secure genomic data in section 4. 110 

The digital DNA lifecycle starts with DNA sequencing which requires a patient or customer to provide 111 

a sample (saliva, blood or hair etc.) to a clinic or a DTC organisation. DNA is extracted and sent to a 112 

DNA sequencing lab as shown in Figure 1. DNA is prepared for sequencing; then sequencers are used 113 

to sequence DNA where the output is generally presented in Sequence Alignment Map (SAM) format 114 

which is transformed to more usable forms via software. The output from this software is digital 115 

DNA files i.e. assembled digital DNA (using resources such as Ensembl [27]). The next step in the 116 

digital DNA lifecycle is to align the software output files to a reference genome. Once the DNA has 117 

been aligned, it can be saved on a storage account (local or remote) where a primary analysis could 118 

be performed or a variant file could be extracted.  119 

The digital DNA file can also be shared with other organisations where secondary analyses could be 120 

carried out such as functional genomics which helps researchers answer some questions, for 121 

example, quantifying the correlation between polymorphisms and complex diseases such as cancer. 122 

This type of research relies on secondary or tertiary analysis and data sharing [28]. 123 

During the digital DNA life cycle, DNA and digital DNA are accessed legitimately by multiple groups of 124 

people such as lab technician, scientific researcher, IT personnel who maintains the infrastructure or 125 

the software used for DNA analysis etc. who need and have the right to access and work on the DNA 126 

sample. However, Digital DNA privacy is exposed to every stage such as the risk of trojans and 127 

malware infecting DNA sequencers or infrastructure to leak information. There are also flaws within 128 

DNA sequencing software that can be exploited to allow arbitrary code executions. DNA sequences 129 

privacy can be unmasked by an attacker while clinicians or researchers are querying or sharing 130 

digital DNA data. An attacker achieves this by using data aggregation, correlation, likelihood ratio or 131 

linkage attacks etc. There are also threats originating from DTC genomic testing where the privacy of 132 



the DNA is at risk from carefully constructed queries submitted to these sites and vulnerabilities of 133 

DTC websites themselves.134 



 

 

Figure 1. Digital DNA life cycle  

DNA privacy vulnerabilities summary, where the patient has their DNA extracted, or a customer sends a saliva sample to a direct to consumer lab. The researcher refers to 
anybody with a legitimate need and has the right to access and work on the DNA sample (this can be a lab technician, scientific researcher, IT personnel who maintains the 
infrastructure or software used for the DNA analysis etc.). The figure shows that Human DNA is vulnerable at every stage where a threat actor can attempt to view or gain 
unauthorised access to that user’s DNA.  



3. Preparation stage vulnerabilities  112 

3.1. Encoding malware in a strand of DNA 113 

An active research area into molecular computing has shown that digital data can be encoded into a 114 

synthetic strand of DNA. Synthesised DNA is commercially manufactured using phosphoramidite 115 

chemistry [29]. 116 

3.1.1. Problem domain  117 
Ney et al. [30] demonstrated an adversary’s ability to encode a malicious computer code into a 118 

synthesised DNA sample. The authors were able to exploit a feature within the Linux operating 119 

system which allowed them to receive a copy of all the network traffic generated in the DNA 120 

alignment computer as shown in Figure 2. Even though the experiment was unreliable since the 121 

sequence reads were not 100% accurate, this implied that DNA could encode a malicious code.  122 

3.1.2. Available solutions 123 
The risk of DNA based attacks can be mitigated by ensuring sample source i.e. close monitoring of 124 

the biological sample from collection through sequencing. Besides, there are already regulations to 125 

prevent the synthesis of known dangerous DNAs such as synthesising harmful viruses [30] which 126 

could also be applied to a malicious code. However, sometimes it is not possible to trace the 127 

synthesised sample’s origins because some biotech companies want to keep some sequence 128 

information confidential to protect their intellectual properties. Gallegoset al. [31] developed a 129 

method to create a digital signature for molecules of DNA to confirm the sample integrity, identity 130 

and to establish authorship with robustness to handle minor mutations. 131 

In 2009, several of the largest DNA synthesis companies joined together to form the International 132 

Gene Synthesis Consortium (IGSC). IGSC developed the Harmonized Screening Protocol which offers 133 

practical guidance on implementing a safe DNA synthesis protocol. IGSC also created a Regulated 134 

Pathogen Database (RPD) which contains sequences and organisms subject to regulatory control or 135 

licensing. It published instructions on screening any requested synthesis against their RPD [32]. 136 



Even though it is possible to include harmful, malicious code into the IGSC database or enforce it 137 

through regulations, this has not been done yet. Researchers have yet to further explore this subject 138 

to determine how viable it is to create such an exploit. 139 

 140 

Figure 2. DNA encoded malware adapted from [30] 141 

3.2. DNA sequencing hardware  142 

The security of the DNA sequencers and downstream hardware is essential for data integrity.  143 

3.2.1. Problem domain  144 
Ali et al. [33] examined the vulnerabilities in the digital microfluidic biochip’s supply chain. The 145 

microfluidic biochip can be used in a DNA sequencer hardware. The researchers identified that 146 

malware e.g. trojans could infect microfluidic biochips used in DNA sequencers, and the trojan is 147 

then used in various ways such as leaking or modifying information. Fayans et al. [34] pointed out 148 

that it is common for staff to use their office hardware for personal use, hence, increasing the 149 

chance of picking up malware that can only target and infect medical types of equipment that are 150 

not as protected as standard IT equipment. The researchers also point out the possibility sequencing 151 

machine can also be compromised at the time of manufacturing. 152 

Another vulnerability to DNA privacy stems from DNA sequencers hardware sequencing technology, 153 

as DNA sequencers commonly sequence thousands of samples from different sources 154 

simultaneously; this technique is known as multiplexing. Multiplexing relies on assigning unique 6 to 155 

8 digit identifiers to each sample; these identities can then be used to identify the sample during the 156 

demultiplexing process. The demultiplexing process (which is the process of separating the samples 157 



from each other) is not perfect; a wrong DNA sequence could be assigned to the incorrect identifier 158 

which is known as sample bleeding [30]. Sample bleeding commonly exceeds 1% on some widely 159 

used sequencing platforms [35].  160 

Ney et al. [30] demonstrated that multiplexing could be used as a side-channel attack to sabotage or 161 

influence a sequencing run or reveal information about the sample itself.  162 

3.2.2. Available solutions 163 
Ali et al. [33] suggested several methods to improve the security of microfluidic biochips such as 164 

using the digital watermark or utilising code analysis at the actuation sequences to detect if trojans 165 

are inserted. Ney et al. [30] suggested assigning two identifiers to the sample instead of one or 166 

altering the algorithm used e.g. Long Template Protocol [36] to minimise sample bleeding. 167 

3.3. DNA sequencing software  168 

DNA sequencing software is another significant part of the DNA sequencing pipeline as the DNA 169 

sequencers initial output is rarely usable; meaningful data is usually obtained from downstream 170 

processing and analysis. These downstream processes are typically carried out in stages where the 171 

end of each step feeds into the start of the next one [37].  172 

3.3.1. Problem domain  173 
Most of these programs are written by small research groups and might not have been subjected to 174 

software security scrutiny. Many software used in the downstream process are written in C, C++ and 175 

Java. These languages are known to be vulnerable to a buffer overflow flaw [37]. Fayans et al. [34] 176 

highlight that vulnerabilities with the genomic software could be exploited to gain unauthorised 177 

access to the computer or network resources and can also be used to leak information, crash or 178 

disrupt various services, especially if the software is running with higher privileges. 179 

Ney et al. [30] assessed a sample software covering every stage of the DNA downstream pipeline. 180 

The sample was grouped into specific categories and found to use many known insecure 181 

functions/commands such as “strcpy” as shown in Table 1.  182 



3.3.2. Available solutions 183 
Ney et al. [30] suggested that software security can be improved by following software security best 184 

practices including regular patching and updates. 185 

Table 1: Sample software which is used in DNA analysis that was found to have insecure function call or static buffer 186 
declaration, the number has been normalised by the number of appearance to 1000 lines of code [30] 187 

Category Program Version 
Lines 

of 
Code 

Normalised Count (Total Count) 

strcat strcpy sprintf vsprintf gets 
static 

buffers 
NGS Analysis 

Preprocessing 
fastx-toolkit 0.0.14 3189 0.314 (1) 0.314 (1) 0 (0) 0 (0) 0 (0) 14.425 (46) 

fqzcomp 4.6 2066 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 23.223 (48) 

Alignment 

bowtie2 2.2.9 58377 0 (0) 0 (0) 0 (0) 0 (0) 0.017(1) 3.272 (191) 

bwa 0.7.15 13496 1.926 (26) 2.223 (30) 0.222 (3) 0 (0) 0 (0) 10.966 (148) 

hisat2 2.0.5 80930 0 (0) 0 (0) 0 (0) 0 (0) 0.012(1) 2.508 (203) 

STAR 2.5.2b 14760 0 (0) 0.136 (2) 0.271 (4) 0 (0) 0 (0) 3.388 (50) 

De novo 
assembly 

MIRA 4.0.2 69,853 0.014 (1) 0.115 (8) 0.115 (8) 0 (0) 0 (0) 1.904 (133) 

velvet 1.2.10 22,794 1.228 (28) 2.106 (48) 1.185 (27) 0 (0) 0 (0) 2.588 (59) 

SOAPdenovo2 2.04-r240 37,010 0 (0) 0.351 (13) 3.161 (117) 0 (0) 0 (0) 4.945 (183) 

Alignment 
processing 

samtools 1.5 56,979 0.351 (20) 0.228 (13) 0.509 (29) 0 (0) 0 (0) 30247 (185) 

bcftools 1.5 77,707 0.090 (7) 0.283 (22) 0.360 (28) 0 (0) 0(0) 4.375 (340) 

RNA-seq cufflinks 2.2.1 68,539 0.058 (4) 0.817 (56) 1.984 (136) 0.029 (2) 0 (0) 4.844 (332) 

ChIP-seq PeakSeq 1.3 6,806 0.147 (1) 3.967 (27) 3.526 (24) 0 (0) 0 (0) 7.787 (53) 

          

3.4. Summary 188 

DNA Sequencing hardware and software is vulnerable to misuse and errors (unintentional or 189 

otherwise). Figure 3 shows a summary of preparation stage vulnerabilities which consists of three 190 

levels; the top layer is the vulnerability source, the middle layer describes the attack vector and the 191 

bottom layer demonstrates the methods used to mitigate or reduce the risk of the attack vector. 192 

Extracted DNA sources can be tampered with to disrupt the sequencing cycle or create malware e.g. 193 

a worm that can infect the downstream computers and allow the attacker to receive a copy of their 194 

network communication. To reduce the risk, it is important to ensure that the DNA source is trusted 195 

and tracked which can be achieved by digitally signing DNA molecules.  196 

Two vulnerabilities reside in the DNA sequencer hardware i.e. trojans which can infect sequencer 197 

hardware, and the sequencers multiplexing flaw (sample bleed). Both flaws allow the attacker to 198 

infer or influence the sequenced samples. To reduce the risk of trojans, sequencers boot sequence 199 



check to ensure the boot code have not been modified. And to use multiple identifiers to minimise 200 

the effect of the sample bleed. 201 

DNA sequencing software is another vulnerability source in the preparation stage where insecure 202 

function calls within the software can cause side-channel attacks or allow the attacker arbitrary code 203 

execution. Software security best practice guidelines should be used to mitigate and reduce the risk. 204 

 205 

Figure 3. Summary of vulnerabilities associated with the preparation stage and their countermeasures 206 

 207 

4. Analysis and storing stage vulnerabilities  208 

4.1. DNA sequence read  209 

DNA Sequence read lengths depend on the sequencer’s model or technology and newer sequencer 210 

models tend to produce longer DNA read segments. Over the past few years, many methods for 211 

securing these reads have been developed. However, these methods have been mainly for short 212 

reads and have become less effective in protecting DNA with long read segments [38].  213 

4.1.1. Current solutions 214 
Cogo et al. [39] introduced a technique to classify and split DNA sequence reads to either privacy-215 

sensitive or non-sensitive sections depending on which criteria they meet based on the reference 216 

knowledge database. Decouchant et al. [38] introduced a new method to secure DNA reads using 217 



the bloom filter-based approach to identify sensitive reads. This approach tests if the reads are part 218 

of a previously built dictionary of known sensitive reads. 219 

Fernandes et al. [40] introduced a novel method built on the existing bloom filter to classify the read 220 

data into sensitive and non-sensitive reads. The approach presents multiple levels of sensitivity 221 

classifications and access. Suppose an adversary managed to mount an attack and gain access to one 222 

partition of the sequence reads within a given sensitivity level. In that case, the adversary will not 223 

infer any more sensitive data from the other parts due to different access requirements. Gholami et 224 

al. [41] proposed separating the reading stage from the concatenation of the DNA fragments stage 225 

which happens within the DNA sequencer. The proposal is to outsource and distribute the reading 226 

stage and add ambiguity to prevent unauthorised assembly at the outsourced service. 227 

4.1.2. Critical analysis  228 
Hasan et al. [42] argued that using a pre-defined dictionary has a fundamental flaw where a sensitive 229 

read might not be picked up as it is not defined in the dictionary. This sensitive read will then be 230 

passed as non-sensitive (even though the dictionary can be updated with these entries afterwards). 231 

Moreover, the sequences read are not always 100% accurate. Hence, sensitive reads might not be 232 

picked up even if the DNA segment is part of the dictionary due to sequence read errors. However, 233 

the bloom filter method has a built-in tolerance for reading errors.  234 

All but one of the above solutions do not discuss their approach if the login credentials of research 235 

lab personal have been compromised or even if the data has been accessed by honest but curious 236 

research lab personnel. 237 

4.2. DNA alignment  238 

DNA read alignment (a process of aligning the read DNA strands to a reference genome) is the next 239 

significant step in genomic data preparation. DNA alignment is computationally intensive; hence, 240 

many research groups outsource this to a third party such as a Cloud provider [43]. A public Cloud 241 

provider is available for use by everyone, increasing the risk of data disclosure [14]. Also, Cloud 242 

service providers do not guarantee that an intruder cannot access the data [38].  243 



4.2.1. Current solutions 244 
Many solutions have been devised to address the safety of outsourcing the computation to an 245 

untrusted third party. Many security solutions rely on homomorphic encryption or one of its variants 246 

as a measure for protection. Using homomorphic encryption can take up to 5 minutes on 25 base 247 

pairs sequenced. An alternative privacy-preserving solution that utilises multiparty computation can 248 

take 4 seconds for 100 base pairs. These two approaches do not scale to a whole-genome sequence 249 

dataset containing multi-million base pairs [44]. 250 

Another option that is becoming more accessible is using a hybrid cloud. The speed on the hybrid 251 

cloud has improved by utilising a secure Seed-and-extend read mapping algorithm. The algorithm 252 

splits the computation such that the public cloud finds the exact seed matches using encrypted 253 

seeds, and the private cloud extends the seed matches using unencrypted data [44]. The second 254 

approach suggested by Popic et al. [45] is to preserve the read mapping’s privacy for a hybrid cloud 255 

using BALAUR. BALAUR preserves read mapper for hybrid cloud based on locality-sensitive hashing 256 

and k-mer voting. It divides the computation between the trusted private client and the untrusted 257 

public cloud. It operates in two phases; the first phase identifies a few candidates’ positions in the 258 

DNA strands where they can be aligned. These candidates are then assessed securely in the public 259 

cloud against an already hashed and indexed dictionary that was pre-prepared using the private 260 

client. This method is significantly faster than modern long read mappers, as the technique offloads 261 

50–70% portion of the alignment to the cloud. However, Zhao et al. [46] created a new algorithm for 262 

aligning short reads where encrypted data is aligned in the public cloud while encryption and 263 

decryption occur in the private cloud. This algorithm produced results matching non-secure read 264 

mapping. 265 

Another suggested method is the use of Intel’s Software Guard Extension (SGX). This extension 266 

allows the user to create a protected enclave in an untrusted and less secure area [47]. SGX enclave 267 

has limited memory space, making it impractical for a large data set [48]. Sketching algorithms can 268 

be used alongside to address the memory limitation of Intel SGK. The sketching algorithm classifies 269 

and divides the original data, then re-structures it to fit into the Intel SGX enclave [48]. Lambert et al. 270 



[49] introduced a novel method called MASK AI alongside Intel SGX. The utility provides a two-tier 271 

hybrid system; the first tier aligned masked reads in the public cloud while the second tier refines 272 

the first tier results. 273 

Völp et al. [50] point out that adversaries can acquire variant information using the access patterns 274 

the algorithm generates despite using secure enclave alignment. The researchers present several 275 

solutions such as memory randomisation or cache access equalisation to hide access patterns or 276 

equalisation and keyed hashes, encrypting secret shuffle of the reference DNA. 277 

4.2.2. Critical analysis  278 
BALAUR uses a lot of memory and requires substantial network bandwidth [49]. While Zhao et al. 279 

[46] created an algorithm that works on short reads, most modern sequencers produce long reads 280 

which might render this approach to be less beneficial for real-world usage. The use of Intel SGX is 281 

limited by the size of the enclave which can vary depending on the number of processors and the 282 

memory size [51]. This approach could work for a small data set; however, adding processing power 283 

and memory can be proven to be costly if there is a need for a larger enclave in the cloud. 284 

4.3. DNA data storage  285 

Storing genomic data is the most common step after DNA alignment. However, there are no 286 

standard rules to imply the retention and return policies and where to store the data which means 287 

that research labs are expected to have their own standards. Most research labs store the genomic 288 

data in the patients’ medical records. Doing this may result in unintentional or malicious access by a 289 

third party [52]. Vinatzer et al. [53] point out a lack of a mechanism to enforce adequate user 290 

authentication. Most databases do not implement strong password requirements by default, and 291 

access control is usually implemented when data is uploaded but rarely relevant when downloading 292 

digital DNA data. Elgabry et al. [14] highlighted that an adversary could gain access to genomic 293 

information by exploiting vulnerabilities within the database used to host the data. For example, 294 

they can exploit database authentication weakness in MongoDB (the database used by Genomics 295 

England) [54].  296 



4.3.1. Current solutions 297 
Secure storage for DNA and genomic data is vital to ensure data confidentiality, integrity, and 298 

authenticity. Huang et al. [55] introduced a novel method to reduce the storage requirement for 299 

alignment data called Selective retrieval on Encrypted and Compressed Reference–oriented 300 

Alignment Map (SECRAM) to reduce storage requirements while allowing selective genomic data 301 

retrieval. The approach enables random querying of subregions from genomic files in an encrypted 302 

form and preserves privacy during the downstream processes such as variant calling. Hwang et al. 303 

[56] presented an alternative solution to SECRAM to reduce the storage requirements for alignment 304 

data called Decentralised storage and compressed Reference-orientated alignment Map (D-RAM). 305 

The approach minimises the storage requirement by utilising reference base and bzip2 compression 306 

and preserves privacy by using the decentralised storage architecture. 307 

Once the data is aligned, the outcome of the process can be a variety of genomic data. 308 

Homomorphic encryption can be used to encrypt stored genomic data; nevertheless, it is susceptible 309 

to brute force attacks [57]. Hosseini et al. [58] presented a tool to compress and encrypt FASTA files 310 

called CRYFA with low overhead DNA encryption and a compression capable of recognising various 311 

digital DNA file formats. CRYFA operates in two phases; phase one divides the DNA file into blocks 312 

and shuffles them, and phase two is to encrypt the file with AES standard encryption. CRYFA 313 

rearranges the file blocks to prevent an adversary from using low data complexity or Known-314 

Plaintext-Attack (KPA) to decrypt the file. 315 

Another encryption method that has been devised to overcome the possibilities of using a brute 316 

force attack against standard encryption methods is the use of honey encryption. Huang et al. [59] 317 

adapted honey encryption to encrypt genomic data. Genomic data files encrypted using honey 318 

encryption can be decrypted using any password entered; though, the correct genomic sequence 319 

will only appear if the correct password is used. In addition, this encryption method considers LD 320 

when encrypting genomic data. By considering genomic LD, this method avoids producing unrealistic 321 

genomic data when an adversary tries to access the encrypted data using a brute force attack. 322 



Sousa et al. [60] discussed the rise of outsourcing storage to Cloud providers. They introduced a 323 

novel privacy-preserving algorithm to store a large amount of genomic data in a public Cloud. Their 324 

approach enables researchers to search for variants efficiently and in confidentiality while protecting 325 

data privacy. Their approach utilises optimal encoding for genomic data variants and combines it 326 

with homomorphic encryption and private information retrieval. Chen et al. [61] introduced a novel 327 

approach to storing genomic data in the cloud while balancing privacy and efficiency. The 328 

researchers utilised a graph-based database (Neo4j) with homomorphic encryption combined with 329 

Garbled Circuit. 330 

4.3.2. Critical analysis  331 
Using SECRAM to store alignment data seems a viable alternative to the de factor standards [43]. 332 

However, since the data is stored in centralised storage that the organisation manages, it might not 333 

be possible to guarantee the privacy of the data [56]. Storing data in a distributed storage 334 

environment when using D-RAM might not be feasible for some organisations due to cost or 335 

protecting their intellectual property. Using tools such as CRYFA to encrypt the stored data will 336 

protect the genomic data while at rest. However, it does not allow researchers to use the data while 337 

encrypted. 338 

4.4. Summary 339 

The DNA analysis and storage stage which includes sequencing pipeline and post-sequencing storage 340 

is at risk of unauthorised access and the disclosure of private information if the data is not 341 

adequately protected. Therefore, researchers have utilised various methods to prevent 342 

unauthorised data viewing. Figure 4 shows a summary of analysis and storing stage vulnerabilities. It 343 

consists of three levels; the top layer is the vulnerability source, the middle layer is the environment 344 

where the vulnerabilities can reside and the bottom layer is what can be done to mitigate or reduce 345 

the risk of these vulnerabilities.  346 

Sensitive DNA sequence reads can be viewed if not sufficiently protected. Sequence privacy can be 347 

accomplished by using Classifications methods that classify reads into privacy-sensitive or non-348 



sensitive sections. Another approach is distributing the sequencing operation to multiple 349 

organisations, where each organisation will sequence a segment of the initial DNA.  350 

Four methods can be used to protect DNA privacy during alignment i.e. encryption, classification, 351 

secure enclave and multiparty computation. Memory randomisation or cache equalisation can hide 352 

access patterns to the reference DNA while aligning using a hybrid cloud. 353 

Encryption or encryption with compression and distributed storage can be used to preserve the 354 

privacy of the DNA data while stored (also known as data at rest) in a local, remote or cloud 355 

environment.  356 

 357 

Figure 4. Summary of vulnerabilities associated with analysis and storing stage and their countermeasures 358 

 359 

5. Querying, sharing, and Direct-to-Consumer stage vulnerabilities 360 

5.1. Querying genomic data 361 

Querying private genomic data is essential for personalised medicine, paternity, ancestry, and 362 

forensics. However, it constitutes a privacy risk to the participants’ data.  363 



5.1.1. Problem domain  364 

According to Almadhoun et al. [62], membership inference attacks are the main vulnerability for 365 

genomic data owners. Samani et al. [63] showcased that correlation can be utilised for a genotype 366 

with hidden genomic data. Each individual has about 4 million differences in their genetic makeup to 367 

a reference sequence. It is possible to predict up to 40% of these differences with less than 1% error. 368 

This inference attack could happen if the adversary has access to genome data in the same 369 

population as the victim’s data. This is achieved by relating genomic information to other publicly 370 

available information. 371 

Henriksen-Bulmer & Jeary [64] highlighted aggregation of information method to identify 372 

individuals’ genomic data. An adversary can identify an individual using aggregation by utilising 373 

multiple datasets, assuming that at least one of these data sets will include a social network or a 374 

search engine followed by a public dataset. An example of public datasets is shown in Table 2.  375 

5.1.2. Current solutions 376 

To reduce the risk of membership inference, Almadhoun et al. [62] stated that data owners attempt 377 

to reduce the risks by providing statistical answers to these queries. However, this approach has 378 

proven ineffective, as membership inference can be performed using the correlation between SNPs. 379 

To address this issue, Differential Privacy (DP) is used to protect the data. DP preserves privacy while 380 

sharing statistical information about a dataset by providing a mathematically rigorous approach 381 

(such as the Laplace mechanism) to prevent the risk of membership inference. The researchers 382 

debated the decreased effectiveness of DP when used on genomic data with interdependent data 383 

tuples (i.e. data structure that contains a number of elements) in the dataset.  384 

Wang et al. [65] discussed the use of privacy-preserving computation for genomic data and 385 

showcased a novel method that utilises predicate encryption to query genomic data securely. The 386 

method is designed to help with precision medicine, where the patient genomic data is saved in the 387 

semi-trusted Cloud provider and accessed by a semi-trusted authorised party. The method has a low 388 

network overhead, but it is computationally intensive.  389 



Ding et al. [66] suggested using a range query to query genomic data while maintaining privacy and 390 

security. The query is based on the Range proofs method which assures the requester that the 391 

required value is in the range provided. However, it does not disclose the actual value. Briguglio et 392 

al. [67] introduced a framework for ML with encryption that can predict a condition in a given 393 

genomic data while preserving its privacy. The researchers utilise ML predictive powers and 394 

homomorphic encryption to protect the privacy of the individuals in the genomic data set. 395 

5.2. Sharing genomic data  396 

Genomic research can provide a significant advantage in understanding health and disease, and it 397 

similarly presents promising prospects to speed up research by generating information-rich genome 398 

datasets. However, these benefits will only reach the production level if researchers and clinicians 399 

can access, compare and seek patterns in genomes belonging to many healthy and diseased 400 

individuals [68].  401 

5.2.1. Data sharing limiting factors 402 

Different data sources need to be brought together from multiple organisations to improve 403 

accuracy. As one organisation does not necessarily have all of the necessary information, several 404 

open-access genomic data sharing platforms appeared in the last decades; an example is shown in 405 

Table 2. However, sharing health data has to follow strict rules such as Health Insurance Portability 406 

and Accountability Act (HIPPA) in the USA. Also, organisations that attempt to share genomic data 407 

sources have the associated risk of privacy violation or informed consent violation and threat to 408 

participants’ blood relatives [42].  409 

Individual genomic data acts as a distinctive fingerprint that rarely changes; it includes sensitive 410 

information about the individual such as disease status or susceptibility to specific diseases. Sharing 411 

genomic information can also represent a privacy risk for family members as they correlate with the 412 

individual. An individual’s genomic data can leak information about their family which can be 413 

accurately calculated through aggregate statistics. The process of predicting a family member’s DNA 414 

can be achieved using the genetic dragnet method; this method is currently used for forensic 415 



purposes by which DNA samples are gathered from the suspect’s family to construct the suspect 416 

DNA [69]. Berger & Cho [70] demonstrated that the common practice of anonymising data to enable 417 

data sharing is ineffective against linkage attacks. 418 

5.2.2. Sharing standards  419 

There are mainly two systematic approaches to sharing genomic data. The first approach relies on 420 

having a central repository where all genomic data and associated information is kept. Genomics 421 

England uses this approach [71]. This approach allows researchers to log in and work on a unified 422 

dataset. 423 

A second approach is a decentralised approach where each organisation keeps its data and allows 424 

access as a peer-to-peer network. For example, the BEACON project uses this approach [72]. 425 

BEACON [73] is a project by the Global Alliance For Genomic Health (GA4GH). Its purpose is to 426 

secure genomic data sharing. The BEACON project was designed to make it difficult for an adversary 427 

to re-identify an individual because the access is restrictive, and the researcher can only receive a 428 

“yes” or “no” to their genomic query [74]. 429 

Another approach for genomic data sharing which can be used as a centralised approach is Genome-430 

Wide Association Study (GWAS) [75] or the decentralised approach which is the Federated GWAS 431 

[76]. GWAS is set up to provide a repository with a large population to produce reliable statistical 432 

results by using personal identifiable genetic markers. However, privacy concerns are making people 433 

reluctant to contribute [77]. For researchers, genomic data provide an immense benefit if combined 434 

with the patients’ Electronic Health Records (EHRs). Hance, Harvard Medical School and the 435 

Massachusetts Institute of Technology (MIT) developed Informatics for Integrating Biology and the 436 

Bedside (i2b2) framework (now maintained by tranSMART Foundation). This solution can be 437 

implemented on a single site [78], [79] or can combine data from multiple sites [80].  438 

Each of these approaches has its limitations. Storing data in a centralised location will act as a single 439 

point of failure. Another drawback is the reliance on the centralised location’s ability to keep the 440 



data private and confidential. A decentralised approach will require a higher cost to ensure data 441 

security and privacy; also, it will require each site to maintain interoperable network security [81]. 442 

5.2.3. Current problems and solutions  443 

There are flaws in how GWAS (whether centralised or federated) provides information e.g. Cai et al. 444 

[82] presented a successful attack algorithm using genotype to identify individuals. He et al. [83] 445 

demonstrated the ability to infer genotypes and phenotypes using genomic information of 446 

individuals or the individuals’ relatives information from GWAS based on belief propagation inserted 447 

into a factor graph. Wang et al. [84] successfully evaluated two attacks types: trait inference and 448 

identity inference based on Bayesian network through minging public GAWS statistics. Zhang et al. 449 

[85] explained how exploiting GWAS statistics can infer traits from a given SNP genotype or a 450 

genotype from a given trait or a trait from a given unknown trait. The researchers were able to infer 451 

the information using three layers Bayesian network based on the Independence of Casual 452 

Influences (ICI) modules.    453 

To tackle some of the flows in GWAS, many researchers introduced novel methods to protect 454 

participants’ privacy. For instance, Zhang et al. [86] utilised secret sharing for multiparty 455 

computation while utilising Hamming distance for secure sequence comparison. Wan et al. [87] 456 

discussed sharing statistically aggregated genomic data (a statistically aggregated method for 457 

anonymising genomic data began in the mid-2000s). This approach was aimed to standardise the 458 

way genomic data is accessed through a centralised repository. While Bonte et al. [77] provided a 459 

solution by combining homomorphic encryption with multiparty computation to provide accurate 460 

statistics while preserving privacy. Privacy is achieved by returning yes/no to indicate a significant 461 

correlation without revealing the statistical value itself.  462 

Wu et al. [76] introduced a privacy-preserving framework for federated GWAS where genomic data 463 

is computed locally within each participating institute, and only aggregated local statistics are 464 

exchanged within the study network. Pascoal et al. [88] introduced  Dynamic, Private and Secure 465 

(DyPS) GWAS which is a federated GWAS system where each biocentre shares its statistics without 466 



revealing its data. All statistics are computed securely within Intel SGX while preserving privacy by 467 

safely releasing aggregated statistics after passing several privacy checks i.e. Likelihood-ratio test. 468 

Wang et al. [89] pointed out that the current GWAS privacy-preserving solutions focused on 469 

protecting individuals. If an attacker compromised GAWS statistics and identified an individual, the 470 

attacker could infer information regarding the individual’s relatives using the Transmission 471 

Disequilibrium Test (TDT). The researchers developed a privacy solution to protect the families’ 472 

privacy built on differential privacy using the Shortest Hamming Distance (SHD) score method which 473 

balanced privacy and utility.  474 

With all the suggested modifications of the GAWS results, Halimi et al. [25] pointed out that the 475 

researchers must verify the accuracy of the results obtained from the GWAS, especially if the results 476 

source data have noise to maintain differential privacy. The authors devised a framework for result 477 

verification while preserving the data’s privacy; they achieved this by probabilistically calculating the 478 

correctness of the results.  479 

 480 

Simultaneously, other researchers showed some of the drawbacks of the BEACON platform. Even 481 

with such restrictions, it is possible to identify individuals with an accuracy of 95% by using the 482 

Likelihood Ratio Test (LRT) [90]. 483 

Raisaro et al. [91] proposed three approaches to reduce the risk of re-identification in BEACON. The 484 

first approach costs the number of accesses per user for each genome, while the other two 485 

manipulate the system to obfuscate the presence of the rare alleles. Demmler et al. [92] provided a 486 

solution that can be an addon to secure BEACON. The researchers’ solution allows private multi-487 

variant and multi-property queries that obfuscate which elements it accessed and what parts match 488 

the query to private aggregated data from multiple sources. 489 

 490 

Raisaro et al. [78] pointed out that i2b2 cohort explorer lacked protection beyond patient de-491 

identification and access control and presented a privacy-preserving solution based on encrypting 492 



patients’ data with somewhat homomorphic encryption and delivering the results with the concept 493 

of differential privacy. 494 

Human genomic data sharing plays a big part in understanding health and disease as a result. Many 495 

researchers try to introduce new approaches to preserve participants privacy while using and 496 

sharing the data. For example, Chen et al. [93] presented PRINCESS, a framework for international 497 

collaboration to analyse rare disease genetic data while safeguarding patients’ privacy. PRINCESS 498 

utilise SGX to facilitate secure and distributed computations. Raisaro et al. [81] suggested using 499 

homomorphic encryption and its variants to secure shared genomic data. It allows other parties to 500 

query the data while the data is encrypted. The researchers introduced a new approach for sharing 501 

genomic information via MedCo which is a system that allows many organisations and clinics to 502 

share their data in a hybrid decentralised system by distributing trusts between the storage and 503 

processing units to form a federated incorporated network. Schneider et al. [94] designed an 504 

efficient distributed privacy-preserving protocol that is based on multiparty computation using 505 

approximated Edit Distance(ED) to protect Similar Sequence Queries (SSQs). A new method has been 506 

suggested by Ozercan et al. [95] for multiparty data sharing which uses blockchain; the method uses 507 

a decentralised approach in storing the data. The blockchain method integrates with the existing 508 

solutions used in different organisations. Another approach for using blockchain was introduced by 509 

Grishin et al. [96] where genomic data is encrypted and shared by multiple independent parties. The 510 

encryption key is split between parties. Any request to access the data and user consent is stored in 511 

a blockchain. 512 

Some researchers direct their efforts to secure specific fields in genomic studies e.g Gürsoy et al. 513 

[97] introduced a new method to reduce private information leakage from functional genomics. The 514 

researchers presented techniques to minimise common privacy risks that were quantified by 515 

adopting statistical techniques. Jagadeesh et al. [98] provided a secure multiparty computation for 516 

genomic diagnoses without revealing patient genomes based on two approaches. The first approach 517 

transforms the patient genome into vectors that indicate the relevant variants after simple 518 



operations. The second approach uses a cryptographic method to perform private computations. 519 

Akgün et al. [99] produced a privacy-preserving multiparty computation approach to identify 520 

disease-associated variants and genes based on a combination of arithmetic and boolean sharing in 521 

the same computation. The researchers’ approach was faster and more accurate than the previous 522 

solution, and It could also allow cross-institution collaborations which were very useful in the case of 523 

rare diseases. 524 

Sharing genomic information securely is important irrespective of which approach or tool an 525 

organisation uses to share their data. An adversary can sniff data packets that research institutes 526 

send and receive to obtain sensitive genomic data such as using  shodan.io, a data-sharing tool used 527 

by many research institutes [8]. It is essential to protect the network traffic. Kelleher et al. [100] 528 

created a protocol to obtain shared genomic data called htsget which is based on HTTP(s) GET 529 

requests and it works with Transport Layer Security (TLS) encryption which uses OAuth2.0 tokens to 530 

authorise data requests. 531 

Wan et al. [87] point out the need for a trade-off between privacy and utility; they highlighted that 532 

concentrating on what is possible might not be probable; the researchers use Game theory to 533 

provide a method to measure risk vs protection. This can help data sharers to find the best 534 

protection strategy. 535 

 536 

 537 

Table 2: An example of Genomic Public data sets (source genomic data sets websites) 538 

Genomics Public data set URL 

OpenSNP https://opensnp.org/  

Genome-Wide Association Studies (GWAS) https://www.ebi.ac.uk/gwas/ 

Global Alliance for Genomics and Health (GA4GH) https://www.ga4gh.org/  

1000 Genomes Project https://www.internationalgenome.org/data/  

The 100,000 Genomes Project https://www.genomicsengland.co.uk/about-genomics-
england/the-100000-genomes-project/  

The Cancer Genome Atlas (TCGA) https://www.sevenbridges.com/tcga/  

International Cancer Genome Consortium https://daco.icgc.org/ 



Genome in a Bottle https://jimb.stanford.edu/giab-resources  

National Institutes of Health (NIH) https://www.nih.gov/  

The Human Connectome Project http://www.humanconnectomeproject.org/  

Pan-UK Biobank https://pan.ukbb.broadinstitute.org/  

Nucleotide BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi  

RefGenie http://refgenie.databio.org/en/latest/  

GnomAD https://gnomad.broadinstitute.org/  

Open Targets https://www.opentargets.org/  

5.1. Direct-to-Consumer genetic testing  539 

DTC genetic testing is another threat to privacy. These companies collect genomic data from 540 

individuals who may not fully understand the full impact on themselves or their families and future 541 

blood relatives. Some DTC companies and the services they provide are listed in Table 3. DTC uses 542 

the genomic data beyond the service provided, as the terms of the service for most of them do not 543 

clearly state how customers’ data will be used or whom the data will be shared with. DTC privacy 544 

threats stem from the fact that they are not a health provider. Hence, they do not have to follow the 545 

same rules and regulations imposed on health care providers such as HIPPA  in the USA [101]. 546 

Laestadius et al. [102] found that DTC does not provide sufficient information regarding how their 547 

data will be treated. They also found that most DTC companies fail to mention the risks of re-548 

identification and genetic discrimination.  549 

DNA and genomic data production are very beneficial for genuine research and usage purposes. 550 

Nevertheless, genomic data are similarly commercially very valuable. For example, in 2018, 551 

GlaxoSmith Kline bought thousands of customers personal data from a commercial DNA testing kit 552 

provider, 23AndMe, for $300 million [103]. 553 

Table 3: Popular Direct-to-Consumers (DTC) companies, the approximate customer numbers and the primary service 554 
provided by them (source DTC websites) 555 

Direct-to-Consumer 
Company 

Consumer 
Numbers  

Service Provided Notes 

GedMatch      
(https://www.gedmatch.com) 

1.3 Million 
Autosomal DNA 
genealogy service  

Owned by Verogen (forensic science & 
sequencing), the GedMatch database 
was breached by hackers in July 2020 

Ancestry         
(https://www.ancestry.co.uk) 

over 15 Million 
Autosomal DNA 
genealogy and family 
history service  

  

23andMe       
(https://www.23andme.com) 

12 Million 
Autosomal DNA 
genealogy and health 
predisposition service  

  



My heritage   
(https://www.myheritage.com) 

4.65 Million 
Autosomal DNA 
genealogy and family 
history service  

  

FTDNA            
(https://www.familytreedna.com) 

951 thousand  
Autosomal DNA and 
mitochondria DNA 
genealogy service  

  

Genome link  
(https://genomelink.io) 

No data 
Genetic trait analysis 
service  

Users don’t need to keep their data on 
the site 

I search me   
(https://www.ichrogene.com) 

No Data Genetic trait analysis 
service  

  

 556 

Sharing genomic data via DTC websites as shown in Table 3 or via clinical research websites as 557 

shown in Table 3, has its own associated risk of re-identification. Bonomi et al. [101] showcased 558 

various methods such as anonymising genomic data with health privacy to reduce the risk of re-559 

identification. Health privacy is a method that masks SNPs and limits the disclosure of sensitive 560 

phenotypes of the genomic data. The authors also highlighted the recent development in regulations 561 

and guidelines to preserve consumers’ privacy in a DTC setting even though it is in its early stages. 562 

Ney et al. [104] examined the open design and the broad Application programming interface (API) 563 

offered by some DTC websites. The researchers showcased the number of security vulnerabilities in 564 

GEDmatch API and demonstrated the ability of an adversary to extract a large percentage of the 565 

genetics markers from other users (including medically sensitive markers) by typically formatting 566 

genetic data files and running standard queries. 567 

Voluntary best practices for genetic information use and security are being established by The 568 

Future of Privacy Forum (FPF) [105] which is working with leading DTC companies (23andMe, 569 

Ancestry, Helix, MyHeritage, and Habit) and promotes transparency in the way that the data is used. 570 

The Future of Privacy Forum is also working on enhanced consumer protection and consumer 571 

consent to encourage people to donate their DNA for research [106]. 572 

Hansson et al. [107] questioned the need to change the regulatory requirements in order to increase 573 

the protection for genomic data; the researchers pointed out that stricter legal regulations will be 574 

detrimental to genomic research. The researchers discussed the term “harm” caused by leaked 575 

genomic data to the study participants and the need to balance it with the benefits, especially when 576 

it comes to rare genetic disorders. 577 



5.2. Summary 578 

DNA data is at risk of re-identification attacks when the data is queried and shared. There is also the 579 

vulnerability associated with how genomic information is shared and used in DTC settings. Figure 5 580 

shows a summary of the risks and their countermeasures. It consists of three levels; the top section 581 

is the vulnerability source, the middle section is the attack vector and the bottom section 582 

demonstrates the methods used to mitigate or reduce the risk of that attack vector. 583 

Genomic data querying vulnerability sources have three associated attack vectors: aggregation of 584 

information, aggregation of statistics and correlation attacks. To reduce the risk of these threats, 585 

differential privacy, range query, encryption with statistical calculation capability, privacy-preserving 586 

computation or ML with encryption methods can be used as countermeasures. 587 

Sharing genomic data have many privacy risks i.e. belief propagation, inference, linkage and 588 

likelihood ratio test attacks. However, several countermeasures can be utilised to secure data 589 

sharing and preserve data privacy such as sharing statistical results, statistically aggregated data, 590 

using multiparty data sharing, and multiparty computation with secret sharing and many others; 591 

there is also the need to use Transport Layer Security (TLS) when sending and receiving shared 592 

genomic data. 593 

DTC emerged as a significant threat to genomic privacy as it is not always clear how customers’ data 594 

will be used due to the complexity of the DTCs’ terms and conditions. There are also many 595 

vulnerabilities associated with the DTCs’ websites such as the ability to identify individuals through 596 

carefully constructed queries, coupled with vulnerabilities with the DCTs’ websites API. To 597 

countermeasure these attack vectors, DTCs should use best practice guidelines introduced by the 598 

future of privacy forums coupled with anonymising genomic data using health privacy. 599 



 600 

Figure 5. Summary of vulnerabilities associated with querying, sharing and direct to consumer genomic testing stage and 601 
their countermeasures 602 

6. Conclusion  603 

Genomic research is vital in finding new treatments and understanding complex diseases, plays an 604 

essential role in forensics and understanding our heritage. Equally, genomic security is fundamental 605 

to one’s privacy. There are many attempts to secure genomic data; however, some of these 606 

solutions fall short in protecting our genomic data or do not scale to cover actual life data.  607 

In this overview, the term digital DNA life cycle has been introduced, digital DNA data privacy, 608 

security threats and possible countermeasures have been investigated. The overview covers the 609 

threats to pre-digital DNA and throughout the digital DNA lifecycle and shows that the DNA is under 610 

threat at every stage. At the pre-digital DNA stage, DNA that is obtained from non trusted sources 611 

can disrupt the sequencing cycle or create a worm that can infect the downstream computers or 612 

trojans that can be used to target DNA sequencer hardware hance, DNA source authenticity and 613 

security is paramount. There are also vulnerabilities in DNA sequencing software where insecure 614 

function calls within the software can cause side-channel attacks or allow the attacker arbitrary code 615 

execution. This can be avoided by following software development security best practices. 616 

There are many privacy risks throughout the digital DNA lifecycle such as threats stemming from 617 

DNA sequence reads, sequence alignments and storage where data can be viewed if not sufficiently 618 



protected, or the danger of individuals being identified by an attacker while Querying genomic data 619 

using various methods such as aggregation of information attack or correlation attacks same goes 620 

for genomic data sharing where linkage and likelihood ratio test attacks can be used to identify 621 

participants. Some of the methods used to manage the risks are differential privacy, data 622 

aggregation and encryption.  Another threat to privacy has risen from DTC as an attacker can identify 623 

individuals through carefully constructed queries, coupled with vulnerabilities with the DCTs’ 624 

websites API. DTC companies should utilise best practice guidelines while anonymising their health 625 

data using health privacy to reduce their customers’ risks. 626 

Real-time checking, combining adaptive security solutions, e.g. the use of ML to detect illegitimate 627 

access coupled with developing international regulations and awareness of these risks, etc., would 628 

increase confidence in genomic privacy and encourage more donors to participate in research. 629 

However, there is also a need for these security and privacy solutions not to slow down or add extra 630 

burdens on the researchers to take full advantage of what genomic research can provide. 631 
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