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Abstract: Drought is a prolonged period of low precipitation that negatively impacts agriculture,
animals, and people. Over the last decades, gradual changes in drought indices have been observed.
Therefore, understanding and forecasting drought is essential to avoid its economic impacts and
appropriate water resource planning and management. This paper presents a recent literature review,
including a brief description of data pre-processing, data-driven modelling strategies (i.e., univariate
or multivariate), machine learning algorithms (i.e., advantages and disadvantages), hybrid models,
and performance metrics. Combining various prediction methods to create efficient hybrid models has
become the most popular use in recent years. Accordingly, hybrid models have been increasingly used
for predicting drought. As such, these models will be extensively reviewed, including preprocessing-
based hybrid models, parameter optimisation-based hybrid models, and hybridisation of components
combination-based with preprocessing-based hybrid models. In addition, using statistical criteria,
such as RMSE, MAE, NSE, MPE, SI, BIC, AIC, and AAD, is essential to evaluate the performance of
the models.

Keywords: data pre-processing; drought; hybrid models; machine learning; performance metrics

1. Introduction

Drought has become more common all over the world in the last few decades because
of climate change and global warming [1]. It is one of the most expensive and least
understood natural disasters. It may have devastating consequences on agriculture, water
supply, ecosystems, public health, watershed health, and the economy. Each year, the
United States suffers losses of six to eight billion dollars as a result of droughts [2]. Yan
et al. [3] mentioned that drought is also a major natural disaster in China, with its frequency
reaching 70% in certain places during the summer. Moreover, it causes enormous socio-
economic losses, especially in agriculture. According to the United Nations (2011), drought
conditions in the Horn of Africa in 2011 resulted in significant starvation in Kenya, Ethiopia,
Djibouti, and Somalia [4]. Therefore, it is defined as a complex and poorly understood
phenomenon because of the complexity of its contributing factors and its underlying driven
factors [5]. It is usually caused by a reduction in rainfall over a long time [6]. Furthermore,
in some cases, it occurs due to abnormalities in evapotranspiration and temperature [7].
As a result, it has a long-lasting effect over broad regions, lasting months or even years. It
affects food production and has detrimental impacts on the economic performance of large
areas or whole nations [8,9].
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Climate change has a considerable challenge for human beings in the future since it
has the potential to cause more radical global occurrences with enormous socio-economic
consequences [10,11]. As a result of growing international attention from governments
and scholars, many resources have been devoted to developing measures to mitigate the
effects of climate change and reverse its consequences. It is projected that the impact of
climate change will likely increase in the future due to the global warming effect, which
will increase the evaporation of water. This issue will most likely result in more acute
drought occurrences [12,13]. Additionally, climate change affects the ecology in several
ways, including but not limited to, changing precipitation patterns that may cause drought
and desertification. Moreover, climate change threatens human lives and livelihoods with
several consequences (i.e., depletion of freshwater supplies, population growth, the effect
of climate change and global warming, as well as the increasing frequency and intensity of
droughts). These consequences are either short-term catastrophes or long-term changes in
the climate system [14,15].

Forecasting drought is essential for water supply management, irrigated agriculture,
recreational tourism, environmental monitoring, and the environment’s health [16,17].
Fung et al. [18], and Anshuka et al. [19] reviewed various models and techniques that have
been applied in previous research to forecast drought. No global approach can outperform
all models in all areas of study; thus, it is necessary to evaluate each case separately,
assessing the performance of each technique or the combination of different approaches in
each research field [20].

Traditional models propose that the relationship between dependent and independent
(variables) is linear and can be unsuitable for solving practical application issues [21]. As a
result, the complex character and non-linearity of the drought process require algorithms
that can simulate non-linear time series data. Therefore, artificial intelligence (AI) algo-
rithms in drought forecasting have received important attention [20]. Moreover, various
studies have indicated that AI algorithms outperform traditional methods [22,23]. These
AI algorithms are, for example, artificial neural networks (ANNs) [24], support vector
machines (SVMs) [25], random forests [26], and the adaptive neuro-fuzzy inference system
(ANFIS) [27].

AI has also been used for forecasting droughts by employing a multilayer perceptron
network for stochastic synthesis of daily rainfall time series that preserve the Hurst coef-
ficient and the autocovariance structure of all time scales [28]. This statistical property is
very important in water management applications because it is related to “the tendency of
wet years to cluster into multi-year wet periods or of dry years to cluster into multi-year
drought periods” [29].

The hybrid model is developed by combining several different methods; one of these
approaches serves as the primary model, while the others serve as pre-or post-processing
methods [30]. Various studies have demonstrated that hybrid methods are better than stan-
dalone methods. Therefore, several studies recommended using hybrid models to increase
forecast precision [22,31,32]. Recently, hybrid prediction models have become more popular
than standalone models in hydrology. Figure 1 presents the percentage of studies on hybrid
ML models that were used to predict drought indices over the last four years.

Different types of hybrid models have been created and successfully used to increase
prediction accuracy [33,34]. Therefore, the hybrid models are classified into three categories:

(1) The pre-processing-based hybrid models (PBH): data pre-processing techniques
have an efficient effect on improving the quality of data and selecting the best number of
predictors that lead to enhancing the precision of the forecasting model [35]. Numerous
studies have been conducted by combining the model with data pre-processing to predict
drought, e.g., Zhang et al. [22], Belayneh et al. [23], Mathivha et al. [36], and Djerbouai and
Souag-Gamane [37].

(2) The parameter optimisation-based hybrid models (OBH): The primary idea behind
the OBH models is to use optimisation algorithms to identify the optimal parameters of
the models [34], and combine the models with nature-inspired algorithms for hydrological
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drought prediction such as Adnan, et al. [32], Nabipour et al. [20], Banadkooki et al. [38],
and Kisi et al. [39].

(3) Hybridisation of components combination-based with preprocessing-based hybrid
models (HCPH): Combining two models that have the remarkable performance of predic-
tion models with preprocessing-based hybrid models [34]. Few studies employed this type
of hybrid model, such as Khan et al. [31] and Wu et al. [40].
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Figure 1. A percentage of studies on hybrid ML models used to predict drought indices over the last
four years.

Based on our knowledge, three recent review papers have investigated drought fore-
casting. Anshuka et al. [19] focused on the Standardised Precipitation Index (SPI), the most
widely used drought indicator that the World Meteorological Organisation recommends,
and a meta-analysis was conducted to test the suitability of data-driven models for predict-
ing SPI. The main goal of the second review paper is to give researchers a quick overview of
the models’ principles and historical uses. This would keep them from overlooking a possi-
ble choice of models and save them a lot of time on the problem [18]. Sundararajan et al. [8]
offered a literature survey using machine learning in drought prediction, performance met-
rics, drought indices, and datasets. Therefore, in addition to the previous literature review,
this paper focuses on data pre-processing, data-driven modelling strategies (i.e., univariate
or multivariate), machine learning algorithms (i.e., advantages and disadvantages), hybrid
models, and performance metrics. The general framework of drought prediction and
evaluation is shown in Figure 2.
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2. Drought

Drought is an unforecastable natural calamity that may cause significant threats such
as water shortages and ecosystem deterioration. In addition, water is a vital resource
for agriculture and many other human activities. Thus, a water shortage may negatively
impact agricultural productivity and threaten food security. Water shortage is a significant
concern in different parts of the world [32,41]. Erhardt and Czado [42] mentioned that there
are different types of droughts:

• Hydrological (water supplies are dwindling);
• Meteorological (shortage of rainfall);
• Agricultural (soil moisture deficiency);
• Groundwater (decreased levels, discharge, and recharge of groundwater); and
• Socio-economic (an excess demand for commodities due to water scarcity), which is

driven by several variables.
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The prediction of drought is difficult because of its variability. Thus, it is vital to
employ robust and accurate predicting models [38,43]. Drought forecasting is imperative
since it allows for early warnings and hence more effective risk management. Different
climatic variables are used as inputs to the forecasting model. The technique given here
may be beneficial for decision-makers in reducing its consequences and developing effec-
tive strategies for water resource management on a monthly or seasonal timeline [32,44].
Agricultural production, the economy, and the environment are all negatively affected
by their impacts. For example, from 1999 to 2000, a significant drought in Central and
South-West Asia affected 60 million people and resulted in an estimated $4.29 billion in
economic losses [21,45].

Drought indicators are a scale of hydrological, meteorological, agricultural, or socio-
economic variables that may be used to reference probable its-related stress or deficiency;
its’ indices attempt to determine the extent of the drought’s reach [46,47], and it is consid-
ered an effective instruments for making decisions rather than relying on raw data [48];
despite the existence of several indices, there is no widely accepted index for all kinds of
droughts that take a wide diversity of drought producing factors into consideration [49,50].
The indices include the Standardized Precipitation Index (SPI) [51], Standardized Precip-
itation Evapotranspiration Index (SPEI) [5,52], Groundwater Resource Index (GRI) [38],
Standard Index of Annual Precipitation (SIAP) [53], Precipitation Index (PI) [13], Standard-
ized Hydrological Drought Index (SHDI) [20], Reconnaissance Drought Index (RDI) [54],
Streamflow Drought Index (SDI) [55], and Palmer Drought Severity Index (PDSI) [56].
Tables 1–4 present the classification of SPI, PI, SIAP, and PDSI indices.

Table 1. Classification of drought based on SPI [57].

SPI Values Class

>2 Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
−0.99 to 0.99 Near normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry

<−2 Extremely dry

Table 2. Classification of drought based on PI [13].

PI Values Drought Description

>1.0 Extremely wet
0.75 to 1.0 Very wet
0.5 to 0.75 Moderately wet
0.5 to −0.5 Normal
−0.5 to −0.75 Moderate drought
−0.75 to −1.0 Severe drought

<−1.0 Extreme drought

Table 3. Classification of drought based on SIAP [53].

SIAP Values Classes of Drought Intensity

>0.84 Extremely wet
0.52 to 0.84 Wet
−0.52 to 0.52 Normal
−0.52 to −0.84 Drought

<−0.84 Extreme drought
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Table 4. Classification of drought based on PDSI [58].

PDSI Values Category

PDSI ≤ −4 Extreme drought
−4 < PDSI ≤ −3 Severe drought
−3 < PDSI ≤ −2 Moderate drought
−2 < PDSI ≤ −1 Mild drought

PDSI ≥ −1 No drought

3. Data-Driven Modelling Strategies

Data-driven modelling strategies generally consist of univariate and/or multivariate
models [59]. Based on previous studies, Table 5 summarises the comprehensive details
of two strategies: univariate (i.e., input-itself-output) and multivariate (i.e., more than
one input variable and another output). For instance, a univariate model might just
use a drought index (same time series) as input and output, while a multivariate model
would utilise several parameters (e.g., rainfall, temperature, evaporation, etc.) as input
and a drought index as output. When data needed for forecasting are available, such as
precipitation, temperature, evaporation, and other factors influencing drought, these data
can be used as input variables. When only drought index data are available, predicting
drought index changes must rely only on drought index series with a specific number of
time lags [59,60]. The table demonstrates that most previous studies applied a univariate
strategy, and a few used a multivariate method.

Table 5. Different input strategies.

Ref. Type Input Data Parameter Output Parameter

[61] Multivariate
Twelve multivariate datasets (derived from statistically

significant lagged combinations of precipitation, temperature,
and humidity)

SPI1, SPI 3, SPI 6, SPI 12

[31] Multivariate Rainfall data series with SPI Lag SPI (t + 1)
[35] Multivariate antecedent SPIs and antecedent accumulated monthly rainfall SPI 3, SPI 6
[20] Multivariate SHDI Lag, SPI Lag, and precipitation. SHDI 1, SHDI 3, SHDI 6.

[53] Multivariate Rainfall and SIAP Lag
Water level and SWSI Lag

SIAP
SWSI

[62] Univariate SPI Lag SPI 6, SPI 12
[58] Univariate PDSI Lag PDSI (t + 1)
[63] Univariate MSPI Lag MSPI (t + 1)
[64] Univariate SPI Lag SPI (t + 1)
[65] Univariate EDI Lag EDI (t + 1)

[39] Univariate SPI Lag SPI 3, SPI 6, SPI 9,
SPI 12

[66] Univariate EDI Lag EDI (t + 1)
[67] Univariate sc-PDSI Lag sc-PDSI (t + 1), (t + 3), (t + 6)

[38] Univariate GRI Lag GRI 6, GRI 12,
GRI 24

[32] Univariate SPI Lag SPI 3, SPI 6, SPI 9, SPI12
[25] Univariate PDSI Lag PDSI (t)
[68] Univariate SPI Lag SPI 3
[37] Univariate SPI Lag SPI 3, SPI 6, SPI 12

[54] Univariate RDI Lag RDI 6, RDI 9,
RDI 12

[52] Univariate SPEI Lag SPEI 1, SPEI 3,
SPEI 6

[27] Univariate sc-PDSI Lag
sc-PDSI 1,
sc-PDSI 3,
sc-PDSI 6
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4. Machine Learning Algorithms

Machine learning (ML) algorithms are an implementation of Artificial Intelligence
(AI). ML algorithms are designed with the ability to learn from previous experiences and
perform new tasks. These algorithms are typically divided into supervised learning and
unsupervised learning. Supervised learning employs labelled training data to produce
output data based on past experience. Unsupervised learning is challenging since the
system only has unlabeled data, yet it works independently to find the information [8].
Several machine learning algorithms are employed in prediction, such as artificial neural
networks (ANNs) [53], adaptive neuro-fuzzy inference system (ANFIS) [39], support vector
regression (SVR) [69], and random forest (RF) [61], gradient boosting (GB) [70], k-Nearest
Neighbour (k-NN) [71], and decision tree (DT) [72].

Table 6 shows the advantages and disadvantages of the most popular machine learning
algorithms.

Table 6. Advantages and disadvantages of stand-alone machine learning models.

Model Type Advantages Disadvantages Ref.

ANN
-Ability to simulate and predict
non-stationary and non-linear

time series.

-Sometimes, ANNs have issues
forecasting unstable and

non-stationary time series. If
data pre-processing does not

apply, the ANN will be unable
to forecast and solve issues.

[48,73]

ANFIS
-Use the fuzzy logic and neural
network in a single model to

increase efficiency.

-It needs a lot of training data
to create a precise model, and

these data may not be available
every time.

[27,74]

RF

-Accuracy in modelling
improves as the number of

trees increases.
-Ability to process large

datasets involving
several features

-Applying the model with a
large number of trees causes a

slow training process.
[26,75]

SVR
-It has flexibility for multiple
options due to the availability
of different kernel functions.

-It needs effective parameter
optimisation to provide more

accurate predictions.
[75,76]

5. Data Pre-Processing

Despite the high accuracy of different models in estimating hydroclimate parameters
(for example, rainfall), these models may have limitations when dealing with hydrological
time series that are often non-stationary and cover a wide variety of scales, ranging from
a few minutes to several decades. Data pre-processing may be necessary to overcome
comparable defects and problems [14,77]. According to Maier and Dandy [78], it is essential
to pre-process data suitably before using it in ANN. These strategies are necessary to ensure
that all data is treated equally in the learning model. Data pre-processing is vital for the
majority of hydrologic time series to attain higher prediction performance [79]. It has
been effectively utilised in various fields of study, e.g., monthly rainfall forecasting [80],
urban water demand prediction [81], irrigation water prediction [82], and drought fore-
casting [83]. Data pre-processing includes normalisation, cleaning, and selecting the best
model input [84]. It can be divided into three parts.

5.1. Normalisation

Screening continuous factors for normality is an essential early stage in the analysis,
and the histograms are one of the most important ways of assessing normality [85]. In ML
approaches, data curation is a necessary pre-processing step, beginning with data normali-
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sation to restrict the input value range [86]. As a result, converting continuous variables
is essential for creating time series that are normally or close to normally distributed [87].
Therefore, data normalisation seeks to obtain the identical range of values for each model’s
inputs and produces a time series normally or nearly normally distributed [88]. The natural
logarithm was utilised to normalise the data to decrease the impact of multicollinearity
between input variables [89]. In addition, Z-score normalisation is a traditional stan-
dardisation approach that uses the mean (µ) and standard deviation (σ) to standardise
parameters [90]; it is calculated using Equation (1).

Z− score =
Xi− µ

σ
(1)

where x is the actual value of the dataset parameter i.
Moreover, Min-Max normalisation (Xnorm) is one of the most common and widely

used data normalisation methods. It is a method that linearly transforms variables,
where min and max represent the minimum and maximum values of x [91], as shown
in Equation (2).

Xnorm =
x−min(x)

max(x)−min(x)
(2)

Moreover, Decimal scaling (Xi’) is moving the decimal point of the variable’s values
to achieve the normalised value. The number of decimal points moved depends on the
maximum absolute of value of the variables [92]; it is computed by the Equation (3).

Xi′ =
Xi
10k (3)

k is the smallest integer such that Max (bxc) < 1.

5.2. Cleaning

Data cleaning techniques include treating the outliers and pre-treatment signals [87].
An outlier is a case in which one variable has an extreme value that leads to distorted
statistics. The box and whisker method was employed to identify outliers, which were
then treated. This method significantly improves the accuracy of the suggested prediction
model [93]. Additionally, there are various noise components in each time series, and the
pre-treatment signal approaches (i.e., Wavelet [94], Empirical Mode Decomposition [95],
Singular Spectrum Analysis [96], etc.) are the most effective methods to denoise the original
time series by analysing them into multiple components [88]. As shown in Equation (4), A
time series (T) could be analysed into a trend (X), stochastic (Y), seasonal (Z), and noise
(N) [30].

T = X + Y + Z + N (4)

5.3. A Selecting Appropriate Descriptors

Selecting appropriate predictors to simulate hydrological variables is difficult, specif-
ically in non-linear hydrologic systems [68,97]. In general, choosing the optimal model
input is one of the most significant steps in data pre-processing and developing an accept-
able forecast model [87]. When the data-driven modelling strategy is univariate, different
methods are used to choose the best antecedent lags scenario, e.g., the Mutual Information
technique [88]. On the other hand, various approaches are employed when the strategy is
multivariate, such as dimensionality reduction, which can be achieved by retaining input
features that have large variances and discarding those terms that have small variances (i.e.,
Principal Component Analysis (PCA) is a feature selection approach that can reduce the
model’s dimensionality without impacting its performance.) [86]. Additionally, variance
inflation factor and tolerance approaches are used to determine potential multicollinear-
ity and exclude inputs from ML algorithms.) [14,93,97]. Moreover, automated weighting
techniques can be used, such as Bayesian and frequentist algorithms [98]. According to
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Tabachnick and Fidell [85], the required sample size for the prediction model is based on
the number of predictors (independent variables), as shown in Equation (5) (e.g., if the
number of predictors is four variables, the model needs 104 + 4 = 108 cases).

N ≥ 104 + V (5)

where: N: sample size.
V: number of predictors.
Based on previous studies reviewed in this research, Table 7 summarises data pre-

processing. Most of these studies used one or two data pre-processing steps; furthermore,
several studies did not employ the best model input. Besides, a few studies employed all
the data pre-processing steps.

Table 7. Summary of data preprocessing.

Authors Normalisation Cleaning Best Model Input

Danandeh Mehr et al. [99] Yes No Yes
Ali et al. [61] Yes Yes Yes

Aghelpour et al. [58] Yes No No
Aghelpour et al. [63] Yes No No

Safavi et al. [64] Yes Yes No
Fung et al. [100] Yes Yes No

Zhang et al. [101] No Yes Yes
Khan et al. [31] No Yes No
Pham et al. [35] Yes Yes Yes

Banadkooki et al. [38] Yes No Yes
Adnan et al. [32] Yes No No

Nabipour et al. [20] Yes No No
Mohamadi et al. [68] Yes No Yes

Djerbouai and Souag-Gamane [37] Yes Yes No
Wu et al. [40] Yes Yes No
Soh et al. [52] Yes Yes No

Başakın et al. [27] Yes Yes No
Das et al. [62] Yes Yes No

Belayneh et al. [23] Yes Yes No
Kisi et al. [39] Yes No Yes

6. Hybrid Models

Hybrid models are a relatively new class of hydrological models that have grown in
popularity in recent decades. Fung et al. [18] mentioned the first drought forecasting hybrid
model in the hydrology field in 2007. One or more strategies are combined to form a hybrid
model; one of these techniques works as the main model, while the others are used as
pre-processing or post-processing approaches [88]. Employing hybrid models in drought
prediction can be divided into three categories, namely: pre-processing-based hybrid
models (PBH), parameter optimisation-based hybrid models (OBH), and hybridisation of
components combination-based with pre-processing-based hybrid models (HCPH) [34].
Different studies applied the hybrid models, as shown in Figure 3 and Table 8.
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Figure 3. Classification of hybrid models that were employed for forecasting drought indices.

6.1. Pre-Processing-Based Hybrid Models (PBH)

Data pre-processing is important for the majority of hydrologic time series to attain
higher prediction performance [79]. In pre-processing-based hybrid models, the input data
is pre-processed by different methods, as mentioned in Section 5.

A drought forecasting model that contains singular spectrum analysis (SSA) and
a single least square support vector machine (LSSVM) model. Monthly Standardised
Precipitation Index (SPI) data for the Tseng-Wen reservoir catchment in southern Taiwan
(1975–2015). The findings indicate that SSA-LSSVM2 (LSSVM-based model combining with
SSA utilising the antecedent SPI as input) outperforms LSSVM1 (LSSVM-based approach
using antecedent SPI as an input). Additionally, when the performance of SSA-LSSVM2
and SSA-LSSVM3 (SSA-LSSVM-based approach using antecedent cumulative monthly
rainfall as an input) is compared, it is determined that SSA-LSSVM3 is the best-suited
model for SPI drought forecasting [35].
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Two model types, namely: Artificial Neural Network (ANN) and Support Vector
Regression (SVR). Moreover, the Wavelet Packet Transform (WPT) approach was used for
pre-processing data. The Standardised Precipitation Index (SPI) from 1985 to 2013 in India
was used to build and assess the model. The findings indicate that hybrid strategies (i.e.,
WPT-ANN and WPT-SVR) outperform single machine learning approaches (i.e., ANN
and SVR). For the majority of grid sites, the hybrid WPT-ANN model outperformed the
WPT-SVR model [62].

An artificial neural network (ANN) model forecasts hydrological and meteorological
drought indices. These indices contain the Standardised Water Storage Index (SWSI) and
the Standard Index of Annual Precipitation (SIAP). Additionally, the study applied the
wavelet (W) for denoising the raw data. The data of the Langat River Basin, which is
situated in central Malaysia, over 30 years (1986–2016) was employed to conduct the study.
The results demonstrate that the W method increases the quality of raw data. Moreover,
the combined model (W-ANN) can simulate the SWSI and SIAP indices with R equal to
0.940 and 0.973, respectively [53].

The Discrete Wavelet Transform (DWT) tool combines separately with k-Nearest
Neighbour (kNN), Fuzzy and Support Vector Machine (SVM) approach tools to increase
the accuracy of drought predictions using the Palmer drought severity index (PDSI). The
models employ data from Turkey’s Marmara area from 1960 to 2016. This research demon-
strates that combined, WkNN, W-Fuzzy, and W-SVM models outperform stand-alone
models (i.e., KNN, Fuzzy, and SVM models) in prediction performance. The prediction
performance of the W-Fuzzy model is a little better than that of the W-KNN and W-SVM
models [25].

A hybrid wavelet-neural network (W-ANN) model to simulate the standard precipita-
tion index (SPI 6, SPI 12) in the north of the Haihe River Basin, China, from 1960 to 2010.
The hybrid model was compared with the ANN and ARIMA methods. The outcomes
reveal that W-ANN is the best suited based on several performance metrics [22].

The combined Wavelet (W) with neural networks (W-ANN) technique to forecast the
standard precipitation index (SPI) at three-time scales (SPI 3, SPI 6, and SPI 12) in Algeria’s
Algerois basin (1936–2008). The combined model was compared with the standalone, ANN,
and two traditional stochastic models (ARIMA and SARIMA). The results indicated that
the wavelet method improves data quality and W-ANN offers the best performance based
on different statistical criteria (i.e., NSE, RMSE, and MAE) [37].

The two machine learning models are support vector regression (SVR) and artificial
neural networks (ANNs) with and without using wavelet transformations (WT) to predict
the Standard Precipitation Index (SPI) for the long term. Moreover, these techniques were
compared with the traditional model (ARIMA). The data for Awash River Basin, Ethiopia,
from 1970 to 2005, were employed to build and assess the models. The statistical indicators,
RMSE, MAE, and R2, demonstrate that the WT-ANN technique outperformed all other
models in predicting SPI 12 and SPI 24 [102].

The wavelet transform approach was adopted to denoise the raw data. Two machine
learning models (ANN and SVR) and one conventional model (ARIMA) were used to
forecast the drought indices. The data for Awash River Basin, Ethiopia, from 1970 to
2005, were employed to simulate short-term drought indices (SPI 3 and SPI 6). Several
performance indicators (RMSE, MAE, and R2) were utilised to compare the predicted
outcomes of the data-driven models. The WT method demonstrate a capability to clean raw
data from noise and the hybrid models (WT-ANN and WT-SVR) outperformed standalone
models (ANN, SVR, and ARIMA). Additionally, WT-ANN delivers the best performance
for forecast drought [23].

An adaptive neuro-fuzzy inference system (ANFIS) with and without empirical mode
decomposition (EMD) to forecast the self-calibrated Palmer Drought Severity Index (sc-
PDSI). EMD analyses time series into sub-series and applies ANFIS to each sub-series to
forecast the drought index from 1900 to 2016 for Adana, Turkey. The statistical indicators,
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NSE and MSE, demonstrate that the hybrid EMD-ANFIS model is better than the ANFIS
model when used alone [27].

Three models were used, namely: support vector regression (SVR), artificial neural
network (ANN), and hybrid Wavelet and artificial neural network (W-ANN), to predict SPI
3 and SPI 12 in Ethiopia’s Awash River Basin from 1970 to 2005. All models’ performances
were assessed using MAE, RMSE, and R2. The results demonstrate that wavelet neural
networks (W-ANN) are the best technique for drought prediction [24].

6.2. Parameter Optimisation-Based Hybrid Models (OBH)

New evolutionary algorithms were used to speed up the convergence of the soft
computing models and increase their accuracy [68]. In hydrological research, bio-inspired
optimisation approaches have been effectively used to improve models’ abilities [54]. The
parameters of ML models were determined by using optimisation algorithms [38]. Various
types of metaheuristic algorithms are used to solve such optimisation problems. The meta-
heuristic algorithms emulated mathematical methods by following natural phenomena,
such as a physical annealing process, animal behaviour, biological evolutionary process,
etc. [103].

The ANN models with three meta-heuristic optimisation algorithms, namely the salp
swarm algorithm (SSA), particle swarm optimisation (PSO), and genetic algorithm (GA),
to predict the groundwater resource index (GRI). The study area is the Yazd plain, Iran,
at different timescales (6, 12, and 24 months) (180 months). The GRI was modelled using
five input scenarios: GRI-1 lagged, GRI-2 lagged, GRI-3 lagged, GRI-4 lagged, and GRI-5
month-lagged. The result revealed that hybrid models PSO-ANN (5), SSA-ANN (5), and
GA-ANN (5) exceed other hybrid ANN models. Furthermore, a lower mean absolute error
(MAE) was found in ANN-SSA models using an input scenario (5) [38].

The random vector functional link (RVFL) combined with the particle swarm op-
timisation (PSO), genetic algorithm (GA), grey wolf optimisation (GWO), social spider
optimisation (SSO), salp swarm algorithm (SSA), and hunger games search algorithm
(HGS) to predict SPI (SPI_3, SPI_6, SPI_9, and SPI_12). The data was collected from three
stations in Bangladesh for 30 years. The results reveal that the HGS algorithm performed
better than the other algorithms and significantly increased the RVFL method’s accuracy in
drought forecasting [32].

A hybridisation of artificial neural networks (ANN) with novel nature-inspired opti-
misation algorithms, includes the grasshopper optimization algorithm (GOA), salp swarm
algorithm (SSA), biogeography-based optimisation (BBO), and particle swarm optimization
(PSO) for simulating short-term hydrological drought, from October 1963 to September
2017. The Standardised Hydrological Drought Index (SHDI) was utilised to predict drought
under scenarios of SHDI 1, SHDI 3, and SHDI 6 in the Dez dam in the southwestern region
of Iran. According to the findings, the hybridised model outperformed the traditional ANN.
Overall; PSO outperformed the other optimisation techniques in terms of performance [20].

The adaptive neuro-fuzzy inference system (ANFIS) combined with different meta-
heuristic algorithms, including the genetic algorithm (GA), ant colony algorithm (ACO),
particle swarm optimisation (PSO), and butterfly optimisation algorithm (BOA) to forecast
different time scales of SPI (SPI_3, SPI_6, SPI_9, and SPI_12). Monthly precipitation data
from 1985 to 2015 in Iran were used in this study. The results demonstrate that hybrid
models are better than the standalone model. In addition, the ANFIS-PSO method achieves
the highest degree of accuracy [39].

Four types of machine learning methods were employed to predict SPI 3 in Iran, using
data from 1980 to 2014. These methods are the adaptive neuro-fuzzy interface system
(ANFIS), radial basis function neural network (RBFNN), multilayer perceptron (MLP),
and support vector machine (SVM). The above methods were hybridised with different
metaheuristic algorithms, including a nomadic people algorithm (NPA), the slap swarm
algorithm (SSA), the bat algorithm (BA), and the krill algorithm. Generally, single SVM,
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RBFNN, ANFIS, and MLP models performed less well than hybrid models. Among all the
hybrid models, the ANFIS–NPA method performed the best based on statistical criteria [68].

6.3. Hybridisation of Components Combination-Based with Preprocessing-Based Hybrid
Models (HCPH)

The components combination-based hybrid models (CBH) models aim to improve the
prediction accuracy by combining the remarkable abilities of single predicting models [33].
The classic CBH models typically consist of linear and nonlinear components and are
simulated by statistical and intelligent models [104]. CBH models are combined with
preprocessing-based hybrid models (PBH) to create HCPH models to discard indeterminacy
and extract useful information from raw data [34].

There are three scenarios to use ANN for predicting drought. The first one uses
ANN as a standalone model. Second a combined model includes WT-ANN. Finally, a
novel technique contains WT-ARIMA-ANN. This study analysed 30-year rainfall data for
Malaysia’s Langat River Basin from 1986 to 2016. The WT-ARIMA-ANN technique offers
the best scenario to forecast drought [31].

The model wavelet-ARIMA long-short-term memory (WT-ARIMA-LSTM) was used
to estimate precipitation and predicate drought events through the China Z-Index (CZI)
based on annual precipitation. The data used are monthly from 1967 to 2017 for three
stations in China. The hybrid technique (WT-ARIMA-LSTM) was compared separately
with the standalone models ARIMA and LSTM. The results presented that the hybrid
model had greater prediction accuracy than the ARIMA and LSTM at varying training and
test sets [40].

The WT method to clean raw data and ANFIS and hybrid ARIMA-ANN models were
applied to forecast SPEI (SPEI 1, SPEI 3, and SPEI 6) in the Langat River Basin in Malaysia
from 1976 to 2015. The models were evaluated using RMSE, MAE, R2

adj, Nash-Sutcliffe
Coefficient of Efficiency (NSE), and Willmott’s Index of Agreement. The hybrid technique
(WT-ARIMA-ANN) forecasts the drought index better for both the short and mid-term [52].

The following is a summary of findings from a review of several articles:

1. Numerous studies have demonstrated that combined metaheuristics with ML models
outperform single-model approaches.

2. Combining decomposition techniques with machine learning (ML) models may be
used to increase the performance of ML models.

3. The wavelet method has been proven to be successful in denoising raw data, increas-
ing the results’ accuracy.

Table 8. Summary of studies applying machine learning models for forecasting drought indices.

Authors Region Size of Data Model Best Model Performance Metric

Malik et al. [66] India 1901–2015 SVR-HHO, SVR-PSO SVR-HHO RMSE, MAE, COC,
NSE, WI

Taylan et al. [105] Turkey 1975–2010
ANFIS, SVM, ANN,
W-ANFIS, W-SVM,

W-ANN
W-ANFIS R2, RMSE, K–S test

Adnan et al. [32] Bangladesh 30 years
RVFL, RVFL- (PSO,

GA, GWO, SSO, SSA,
HGS)

RVFL-HGS RMSE, MAE, NSE,
R2

Aghelpour et al. [58] Iran 1960–2018 SVM-DA, ARMA,
RBFNN, SVM SVM-DA RMSE, NRMSE, WI,

R, MAE

Pham et al. [35] Taiwan 1975–2015
LSSVM1,

SSA-LSSVM2,
SSA-LSSVM3

SSA-LSSVM3 RMSE, MAE, R

Ahmadi et al. [54] Iran 1974–2018
SVR, SVR-FA,

SVR-WOA,
W-SVR

W-SVR RMSE, MAE, WI,
NSE



Hydrology 2022, 9, 115 13 of 23

Table 8. Cont.

Authors Region Size of Data Model Best Model Performance Metric

Altunkaynak and
Jalilzadnezam-

abad [25]
Turkey 1960–2016

Fuzzy, kNN SVM,
W-Fuzzy, W-kNN,

W-SVM
W-Fuzzy MSE, CE, R2

Wu et al. [40] China 1967–2017
wavelet-ARIMA-
LSTM, ARIMA,

LSTM

wavelet-ARIMA-
LSTM RMSE, MAE, R2

Malik et al. [65] India 1901–2015 SVR–GWO,
SVR–SHO SVR–GWO MAE, RMSE, NSE,

WI, R
Danandeh Mehr

et al. [106] Turkey 1971–2016 WPGP, AR1, GP, RF WPGP NSE, RMSE

Banadkooki
et al. [38] Iran 15 years

ANN–SSA,
ANN–PSO,
ANN-GA

ANN–SSA NSE, RMSE, MAE

Xu et al. [107] China 1951–2017

ARIMA, SVR, LSTM,
ARIMA-SVR,

LS-SVR,
ARIMA-LSTM

ARIMA-LSTM NSE, MSE, MAE,
RMSE

Alquraish et al. [108] Saudi Arabia 1968- 2019

ARIMA,
ARIMA–GA, HMM

HMM-GA,
ARIMA–GA–ANN

ARIMA–GA–
ANN

RMSE, R2, NSE,
MAD

Nabipour et al. [20] Iran 1963–2017

ANN-GOA,
ANN-SSA,
ANN-BBO,

ANN-PSO, ANN

ANN-PSO RMSE, R2

Das et al. [62] India 1985–2013
ANN, SVR, WPT

-ANN,
WPT-SVR

WPT -ANN R2, RMSE, MAE

Xu et al. [109] China 1951–2017 ARIMA,
ARIMA–SVR ARIMA–SVR RMSE, MAE, R2,

NSE
Danandeh Mehr

et al. [99] Turkey 1971–2016 ENN, ENN-SA ENN-SA NSE, MXL, RMSE,
BIC

Khan et al. [31] Malaysia 1986–2016
ANN, wavelet-ANN,

Wavelet-ARIMA-
ANN

Wavelet-
ARIMA-ANN R, RMSE, R2

Mohamadi et al. [68] Iran 1980–2014

ANFIS, ANFIS-NPA,
MLP–NPA,

RBFNN-NPA,
SVM–NPA

ANFIS-NPA NSE, RMSE, MAE,
PBIAS, R2

Özger et al. [67] Turkey 116 years

M5, ANFIS, SVM,
W-ANFIS, W-SVM,

W-M5, EMD-ANFIS,
EMD-SVM,
EMD-M5

W-ANFIS MSE, NSE, R2

Aghelpour et al. [63] Iran 59 years
ANFIS, ANFIS-ACO,

ANFIS-GA,
ANFIS-PSO

ANFIS-ACO RMSE, MAE, WI

Başakın et al. [27] Turkey 1900–2016 ANFIS, EMD-ANFIS EMD-ANFIS MSE, NSE

Fung et al. [100] Malaysia 1976–2015
W–BS–SVR, multi-
input-W–F–SVR,

weighted-W-F–SVR

Weighted-W–F–
SVR RMSE, R2, MAE

Kisi et al. [39] Iran 1985–2015

ANFIS, ANFIS-PSO,
ANFIS-GA,

ANFIS-BOA,
ANFIS-ACOR

ANFIS-PSO RMSE, MAE, IA

Ali et al. [61] Pakistan 1981–2015
MEMD-SA-RF, KRR,

RF
MEMD-SA-KRR

MEMD-SA-RF MSE, R, RMSE
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Table 8. Cont.

Authors Region Size of Data Model Best Model Performance Metric

Zhang et al. [101] China 1979–2016 ARIMA, W-ANN,
SVM ARIMA R2, MSE, NSE, K–S

Khan et al. [53] Malaysia 1986–2016 ANN, W-ANN W-ANN R, RMSE

Safavi et al. [64] Iran 1969–2009 W-SVM, CS-SVM,
SVM W-SVM R2, RMSE

Soh et al. [52] Malaysia 1976–2015
Wavelet-ARIMA-

ANN,
W-ANFIS

Wavelet-ARIMA-
ANN

R2
adj, RMSE, MAE,

NSE

Zhang et al. [22] China 1960–2010 ARIMA, ANN,
W-ANN W-ANN K–S, R2, Kendall

rank correlation
Djerbouai and

Souag-Gamane [37] Algeria 1936–2008 ANN, W-ANN,
ARIMA, SARIMA W-ANN NSE, RMSE, MAE

Deo et al. [110] Australia 1916–2012
ELM, ANN, LSSVR,

W-ANN,
W-LSSVR, W-ELM

W-ELM R2, WI, NSE, RMSE,
MAE, Pdv

Belayneh et al. [23] Ethiopia 1970–2005 ARIMA, ANN, SVR,
W-SVR, W-ANN W-ANN RMSE, MAE, R2

7. Performance Metrics

In a drought forecast, it is necessary to evaluate the overall performance and capacity
of the prediction model. The criteria used to assess the efficacy of the forecasting model
are essential since it impacts the decision to select the best model or scenario [111]. The
following are the most applied criteria used in the previous studies:

Root mean square error (RMSE) [112];
Mean absolute error (MAE) [113];
Determination coefficient (R2) [114];
The correlation coefficient (R) [115];
Nash-Sutcliffe-efficiency (NSE) [116];
Mean percentage error (MPE) [117];
Scatter index (SI) [118];
Bayesian information criterion (BIC) and Akaike information criterion (AIC) [119];
Absolute average deviation (AAD) [120].

7.1. Mean Absolute Error

The mean absolute error (MAE) is a statistical term that refers to the total of the
absolute variations between predicted and measured [113]. The formula for calculating
MAE is in the following Equation (6):

MAE =
1
N

N

∑
i=1
| Ri− Pi| (6)

where: Pi: Represents predicted value;
Ri: Represent real value;
Ri: Represent mean of real value;
Pi: Represent mean of predicted value;
N: Represents the total number;
i: Represents a single data.

7.2. Root Mean Squared Error

The root mean squared error (RMSE) is the average squared variation between the
predicted and actual output. It finds the data concentration around the best fit line [112,121].
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It is employed whenever the error is significantly non-linear; this is a good indicator of the
accuracy of a forecast [8].

RMSE =

√√√√ N

∑
i

(Ri− Pi)2

N
(7)

7.3. Determination Coefficient

The training-validation data set and the testing data set are being used. The coefficient
of determination (R2) is a statistical measurement of the correlation between the observed
and expected values in a given situation. Using R2 values, which range between 0 and 1,
the complete relationship between the data set and the line drawn across them is shown
by 1, and no relation to the type between the data and the line drawn through them is
indicated by 0 [114,122].

R2 =

 ∑N
i=1(Ri− Ri)

(
Pi− Pi

)√
∑
(

Ri− Ri
)2 ∑

(
Pi− Pi

)2

 2̂ (8)

7.4. Nash-Sutcliffe Efficiency

In 1970, Nash and Sutcliffe designed the Nash-Sutcliffe efficiency (NSE). Additionally,
it evaluates the accuracy of hydrological models [8,116]. The NSE is sensitive to variations
between forecasts and observations that are both additive and proportional in magnitude.
As a result, since NSE squares the values of paired differences, it has a disproportionate
sensitivity to extreme values [37].

NSE = 1−
{

∑N
i=1(Ri− Pi)2

∑N
i=1
(

Ri− Ri
)2

}
(9)

7.5. Mean Percentage Error (MPE)

The mean percentage error (MPE) is the percentage deviation between the measured
and predicted [117], as shown in Equation (10).

MPE =
1
N

N

∑
i=1

Pi− Ri
Ri

(10)

7.6. Scatter Index (SI)

The Scatter Index (SI) is dimensionless and an indicator of a model’s overall relative
accuracy. The model accuracy was considered poor if SI ≥ 30%, fair if 20% ≤ SI < 30%,
good if 10% ≤ SI < 20%, and excellent if SI < 10% [117,118].

SI =
RMSE

Ri
× 100 (11)

7.7. Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)

BIC and AIC are select model metrics, in which a conventional assessment measure is
modified based on the number of data points used for calibration, m, and the number of
free parameters in each model, p [119]. Equations (12) and (13) are employed to calculate
the Bayesian information criterion (BIC) and the Akaike information criterion (AIC).

BIC = m. ln(RMSE) + p. ln(m) (12)

AIC = m. ln(RMSE) + 2p (13)
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7.8. Absolute Average Deviation (AAD)

AAD is the statistical metric that measures the deviation between the model predic-
tions and the experimental results. Generally, the AAD between forecasted and observed
findings is preferred to be as small as possible [123].

ADD(%) =

{
1
N

N

∑
i=1

Ri− Pi
Ri

}
× 100 (14)

8. Future Research

Banadkooki et al. [38] proposed that future research may consider hybrid ANN mod-
els and the influence of climate change on drought modelling. Moreover, various pre-
processing strategies for identifying the optimal input scenario for the models might be
considered. Adnan et al. [32] applied RVFL, RVFL-PSO, RVFL-GA, RVFL-GWO, RVFL-SSO,
RVFL-SSA, and RVFL-HGS to forecast SPI. The recommendation is to make a comparison
between the algorithms and models under investigation and other metaheuristic algorithms
and/or models. Aghelpour et al. [63] recommended that future studies employ optimisa-
tion algorithms such as Firefly, Gray Wolf, Krill herd, etc., to improve ANFIS’s ability to
forecast MSPI. Pham et al. [35] proposed that oceanic/atmospheric circulation parameters
may be used as model inputs for the SSA-LSSVM method in addition to historical precipita-
tion. Moreover, the influence of other data pre-processing techniques (e.g., discrete wavelet
transform) on the LSSVM’s efficiency might be investigated further. Ahmadi et al. [54]
evaluated a single SVR along with the hybrid SVR-WOA, SVR-FA, and W-SVR to predicate
the reconnaissance drought index (RDI). The recommendation is that different AI models
may be combined with various bio-inspired optimisation techniques and wavelet analysis
to develop other kinds of hybrid models.

Moreover, based on analysis of the previous studies in this field, hybrid models can be
improved by the following:

1. Using various data pre-treatment techniques, such as singular spectrum analysis (SSA)
and empirical mode decomposition (EMD).

2. It is suggested to employ a multivariate strategy.
3. The selection of input variables is critical and influences the performance and accuracy

of a model’s output. As a result, it is recommended that more efforts should be put
into determining the optimal input variable combination scenario. Hence, it is also
recommended that other methods should be used to determine the inputs, such as feature
selection methods, feature extraction methods, and dimensionality reduction methods.

4. The use of hybrid metaheuristic algorithms and machine learning techniques in
drought predicting has grown considerably in recent years. Nevertheless, there is still
room for enhancement concerning drought prediction.

5. Applying the hybridisation of pre-processing-based with parameter optimisation-
based hybrid models (i.e., including both PBH and OBH).

9. Conclusions

This research has reviewed the literature on usually applied data-driven strategies
concerning forecast performance and precision. The analysis demonstrated that the per-
formance of various machine learning, probabilistic, and time-series models is typically
consistent and comparable.

Various factors affect the prediction technique’s performance and accuracy; choice and
comparison of techniques were conducted based on data pre-processing, an appropriate
timescale, data-driven modelling strategies (univariate or multivariate), and a metaheuris-
tic algorithm combined with the model. Recent research proved that separate classical
approaches no longer provide the most accurate findings. Accordingly, hybrid models are
the most effective tools that must be used to increase the accuracy of drought predictions. A
comprehensive hybrid model incorporates both pre-processing and metaheuristic algorithm
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techniques. Thus, a key strength of the present study was it represents a comprehensive
examination of all the above factors.

Most of the data on drought is used to develop non-linear predictive models. For this
type of data, models that incorporate only proven effective variables are more accurate
than models that incorporate all available data without testing variables’ efficiency. Conse-
quently, in future research, the efficiency of the variables should be tested (best model input)
before using all of the data as an input to the prediction models and applying normalisation
and cleaning. Moreover, although significant advances in hybrid model techniques have
been made recently, no new techniques, among others, have emerged as the best predicting
method. Therefore, drought prediction remains a research problem, which leaves room for
researchers to enhance hybrid techniques for specific applications.
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Abbreviations

AAD Absolute Average Deviation
ACO Ant Colony Optimization
AIC Akaike Information Criterion
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial neural network
AR1 Autoregressive
ARIMA Autoregressive integrated moving average
ARMA Autoregressive Moving Average
ARIMA–GA Auto-regressive integrated moving average–genetic algorithm
BBO Biogeography-Based Optimisation.
BIC Bayesian Information Criterion
BOA Butterfly Optimization Algorithm
BS Boosting
CANFIS Co-active neuro fuzzy inference system
CE Coefficient of Efficiency
CS Cuckoo Search
DA Dragonfly Algorithm
EDI Effective Drought Index
ELM Extreme learning machine
EMD Empirical Mode Decomposition
ENN Elman Neural Network
F Fuzzy
FA Firefly Algorithm
GA Genetic Algorithm
GOA Grasshopper Optimisation Algorithm.
GP Genetic programming
GRI Groundwater Resource Index
GWO Grey Wolf Optimizer
HGS Hunger Games Search algorithm
HHO Harris Hawks Optimization
HMM–GA Hidden Markov model–genetic algorithm
IA Index of Agreement
KA Krill Algorithm
kNN k- Nearest Neighbour
KRR Kernel Ridge Regression
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K–S Kolmogorov–Smirnov
LSSVM Least Square Support Vector Machine
LSSVM1 LSSVM based model using antecedent SPI as input
LSSVR Least squares support vector regression
LSTM Long Short-Term Memory
LS-SVR Least square- Support Vector Regression
M5 Model Tree
MAE Mean Absolute Error
MAD Mean absolute deviation
MEMD Multivariate Empirical Mode Decomposition
MLP Multilayer Perceptron
MLR Multiple linear regression
MPE Mean Percentage Error
MSPI Multivariate Standardized Precipitation Index
MXL Maximum Likelihood
NPA Nomadic People Algorithm
NRMSE Normalized Root Mean Squared Error
NSE Nash-Sutcliffe coefficient of efficiency
Pdv Percentage peak deviation
PBIAS Percent Bias
PDSI Palmer Drought Severity Index
PSO Particle Swarm Optimisation
R Correlation Coefficient
R2 Coefficient of Determination
R2

adj Adjusted Coefficient of Determination
RBFNN Radial Basis Function Neural Network
RDI Reconnaissance drought index
RF Random Forest
RMSE Root Mean Square Error
RVFL Random Vector Functional Link
SA Simulated Annealing optimization algorithm.
SARIMA Seasonal Autoregressive Integrated Moving Average
sc-PDSI Self-calibrated Palmer Drought Severity Index
SHDI Standardised Hydrological Drought Index.
SHO Spotted Hyena Optimizer
SI Scatter Index
SIAP Standard Index of Annual Precipitation
SPEI Standardized Precipitation Evapotranspiration Index
SPI Standardized Precipitation Index
SSA Singular spectrum analysis
SSA Salp swarm algorithm
SSA-LSSVM2 The LSSVM-based model coupling with SSA using antecedent SPI as input.
SSA-LSSVM3 The SSA-LSSVM-based model using antecedent accumulated monthly rainfall

as input was developed and compared to SSALSSVM2.
SSO Social Spider Optimization
SVM Support Vector Machine
SVR Support Vector Regression
SWSI Standardized Water Storage Index
W Wavelet
WANN Wavelet Artificial Neural Network
W–BS–SVR Wavelet–Boosting–Support Vector Regression
W–F–SVR Wavelet–Fuzzy–Support Vector Regression
WI Willmott’s Index
WOA Whale Optimization Algorithm
WPGP Wavelet packet-genetic programming
WPT Wavelet Packet Transform
WSVM Wavelet-Support Vector Machine
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