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ABSTRACT Machine learning algorithms have been used for detection (and possibly) prediction of
Alzheimer’s disease using genotype information, with the potential to enhance the outcome prediction.
However, detailed research about the analysis and the detection of Alzheimer’s disease using genetic data
is still in its primitive stage. The aim of this paper was to evaluate the scientific literature on the use of
various machine learning approaches for the prediction of Alzheimer’s disease based solely on genetic
data. To identify gaps in the literature, critically appraise the reporting and methods of the algorithms, and
provide the foundation for a wider research programme focused on developing novel machine learning based
predictive algorithms in Alzheimer’s disease. A systematic review of quantitative studies was conducted
using three search engines (PubMed, Web of Science and Scopus), and included studies between 15 of
January 2010 and 31% December 2021. Keywords used were ‘Alzheimer’s disease(s)’, ‘GWAS, ‘Artificial
intelligence’ and their synonyms. After applying the inclusion/exclusion criteria, 24 studies were included.
Machine learning methods in the reviewed papers performed in a wide range of ways (0.59 to 0.98 AUC). The
main findings showed that high risk of bias in the analysis can be linked to feature selection, hyperparameter
search and validation methods.

INDEX TERMS Machine learning, systematic review, Alzheimer’s disease, GWAS, SNP, genome wide,

review.

I. INTRODUCTION

One of the most significant scientific issues in the human
genome is the study of genetic variants connected to com-
plex illnesses. The bulk of genome-wide association stud-
ies (GWAS) [1] attempt to identify genetic variations that
may be connected to complicated illnesses. Single nucleotide
polymorphisms (SNP) are known to be the most prevalent
genetic variations, with around 10 million SNPs in the human
genome [2].

A single nucleotide site is one in which a significant
fraction of the population has exactly two (of four) unique
nucleotides. There are two known ways in which SNPs
play a significant role in the disorders’ complications. First,
by changing the protein structure. Second, via altering
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the protein quantity. This process is referred to as SNP
functionality.

Genetic association research attempted to explore genetic
risk factors by identifying statistical connections between
genotypes and phenotypes (disease of interest). The most
popular method for determining the genetic connections of
complicated disorders is to conduct case-control studies in
unrelated individuals.

Machine learning (ML) has emerged since a decade an
alternative for genetic predictions and has shown prominence
especially after the developments in deep learning [3]. This
emerged in line with scaling-up of datasets and computa-
tional capacity. In statistical genetics, where the effects of
a large number of factors on an outcome were difficult to
anticipate, ML techniques have been intriguing because of
their capability to operate in high dimensions and identify
relations across genes [4]. There have also been more requests
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FIGURE 1. Big data in GWAS. A pipeline is depicted schematically, beginning with SNPs generated by genotypes platforms, and ending with the
development of analytical models using various big data analytics solutions and tools.

to employ ML to handle the complexity of diseases such as
Alzheimer’s disease [5]. However, the accuracy of machine
learning approaches in predicting Alzheimer’s disease using
genetics is still vague, and a new review of prediction mod-
els across a variety of outcomes and predictors discovered
that logistic regression (LR) provided high accuracy, and
hence the use of machine learning in this research field is
questionable [6].

Various reviews have examined genome-wide associa-
tion research and genetic prediction in relation to ML.
The first conducted by Bracher-Smith et al [7] that exam-
ined machine learning algorithms for identifying mental
health diseases based only on genetic information. Second,
Madhukar et al. [8] discuss bioinformatics ideas for leverag-
ing sequencing data to predict sample-specific medication
susceptibility. Third, Upstill-Goddard et al. [9] provided a
review of machine learning methods in genetic epidemiol-
ogy for detecting gene-gene interactions. The most essential
machine learning approaches and the circumstances that must
be addressed when applying these algorithms to genomic
challenges were discussed in [10]. The goal is to find and ana-
lyze GWAS concerns that require computational approaches
instead of or in addition to biostatistical methods [11]. Data
mining and machine learning computational methodologies,
as well as bioinformatics methods for embedding pre-existing
biological knowledge into data analysis algorithms, were
the focus of other research work carried out by Wu and
Zhao [10]. A review of illness prediction based on single-
nucleotide polymorphisms has been undertaken by Ho et al.
[12]. A recent systematic review of ML algorithms in SNP
data of Alzheimer’s disease is shown by Rowe et al. [13].
However, the main limitation of the research paper provided
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by Rowe et al. [13] is the fact that they have utilized machine
learning as a keyword for their search and presentation
instead of investigating specific ML techniques. Hence, their
review paper does not provide sufficient details on the contri-
bution of various research in relation to the use of ML for the
analysis of SNP data of AD. Their inclusion criteria involved
studies which combined SNP data with other forms of data.
As far as we are aware, there have been no reviews of studies
which have developed ML models to predict AD outcomes
from SNP data specifically.

As aresult, in our review study, we have looked at extensive
literature review for the ability of machine learning (ML)
techniques to predict Alzheimer’s disease risk using genetic
based on the Genome Wide Associations study. The goal
of the review is to identify gaps in the literature, critically
appraised the reporting and methods of the algorithms and
provide the foundation for a wider research program focused
on developing novel machine learning based predictive algo-
rithms in AD. It should be noted that studies in which models
were also tested on simulated datasets or other chronical
diseases alongside Alzheimer’s disease are also considered in
this comprehensive review paper. Preferred Reporting Items
for Systematic Reviews and Meta-analyses (PRISMA) crite-
ria were followed for writing this review.

Il. THEORETIAL BACKGROUND
A. BIG DATA

Big data is a collection of big, structured or unstructured data
sets that a typical database system struggle to manage. “‘Big
data’ refers to the tools and procedures that enable an organ-
isation to produce, utilise, and store huge volumes of data
with storage facilities [14]. Big data is usually defined by five
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characteristics that, within the context of genetics, include:
volume, variety, velocity, veracity and variability. In terms
of volume, GWAS requires the genotyping of thousands or
millions of genotypes for each participant which in total for a
complete GWAS produce a massive amount of data. For vari-
ety, amixture of data types needs to be stored and handled that
is made across several files for genotype data and individuals’
information. For velocity, the fast advancement of GWAS has
been aided by the availability of genotyping technologies.
These genotyping technologies were created expressly for
assaying more than one million SNPs, such as sequencing the
whole human genome in one day [15]. For veracity, errors in
the genotyping process can result in data quality concerns that
are difficult to spot, which can have a significant impact on a
study’s biological results [16]. For variability: GWAS dataset
can be stored in different formats. However, it is preferable to
save the data in a binary formatted file, which results in a large
decrease in file size and a significant increase in computing
performance. Figure 1 shows a graphical representation of the
big data in GWAS.

B. MACHINE LEANRING

Machine Learning (ML) simulates human learning by allow-
ing computers to recognise and gain knowledge from the
actual world, as well as enhance performance on particular
tasks depending on this new information. ML was explored
as a separate discipline in the 1990s [17], despite the fact
that the earliest notions of ML (with different terminolo-
gies) were developed in the 1950s. Apart from computer
science, ML algorithms have being applied in a variety
of fields, including business [18], advertising [19], and
medicine [20].

Learning is the process of gaining information, because
of their ability to reason, humans naturally learn from their
experiences. Conventional computers, on the other hand,
do not learn by thinking rather by following algorithms.
There are several machine learning algorithms presented in
the literature nowadays. They may be divided into groups
based on how they approach the learning process, supervised,
unsupervised, semi supervised, and reinforcement learning
are the four primary classes [21]. Figure 2 shows ML types:
a) Supervised learning works with data that has been labelled;
in the instance of GWAS, the SNPs data is entered as
inputs with corresponding labels, the ML model will auto-
matically generate patterns and produce predictions for new
unseen inputs; b) Unsupervised learning learns pattern from
unlabeled data inputs. in the area of genetics, unsupervised
learning can be used to cluster genes that have a com-
mon characteristic; ¢) Semi-supervised learning, the model
accepts labelled and unlabeled datapoints; d) reinforcement
learning is to feed the model with unlabeled data, then the
model generates predictions, which can be approved by pro-
viding feedback to the model on whether that prediction was
correct or not.

With the growth in processor speed and memory size,
machine learning has become increasingly popular. As a
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result, the discipline currently contains a wide variety of
algorithms that learn, draw conclusions, or infer facts through
mathematical or statistical analysis [22]. The number of
scholarly articles proposing modifications or combinations
of machine learning algorithms continues to rise [23], [24].
As aresult, machine learning algorithms have been classified
according to their intended use.

1) ARTIFICIAL NEURAL NETWORK

Artificial neural network (ANN) is a densely connected
network of hundreds or even millions of fundamental pro-
cessing nodes loosely modelled after the human brain. The
vast majority of today’s artificial neural networks are “‘feed-
forward,” meaning that information only goes one way
through them and they are organized into layers of nodes.
However, there exist other types of ANN that accept feedback
connections. These are mainly known as recurrent neural
networks. They are characterized by their “memory,” which
allows them to impact current input and output by using
knowledge from previous inputs. While typical deep neural
networks presume that inputs and outputs are independent of
one another, recurrent neural networks’ output is reliant on
the sequence’s prior components. While future occurrences
may be useful in establishing the outcome of a series.

Nodes in a layer can be fully or partially connected to the
nodes of a previous layer from which it obtains the data. Simi-
larly, the nodes are connected and send data to the nodes of the
succeeding layer. Figure 3 illustrates an ANN representation.

The process of training an ANN starts by randomly set-
ting the values of weights and thresholds. The input layer
receives the training data, which is subsequently multiplied
and combined in different complex ways until it reaches the
output layer. The values of weights are continually adjusted
throughout the training process.

Initially, the perceptron of a very basic artificial neural
network consisted of only two inputs and one output [25].
This setup enables the creation of a basic classifier that can
discriminate between two groups. ANN then evolved into a
Multilayer Perceptron, which consists of three layers: input,
hidden and output. This development has allowed us to solve
more complex non-linear problems [26].

Due to the increase in the volume of data and the com-
plexity of the problems associated therewith, a new subset of
machine learning algorithms was established known as deep
learning. Deep learning (DL) excelled with its ability to auto-
matically learn characteristics from data and the relationships
between data points [27].

An ANN architecture with numerous hidden layers and
neurons is the basic architecture in deep learning. Various
designs have been suggested, and many of them have found
success in various applications including the analysis of
genetic data. Convolutional neural networks are deep learn-
ing structures inspired by human visual cortex models that
have been widely used in image recognition. Recurrent arti-
ficial neural networks, which imbue neurons with dynamic
behavior, have emerged as the most popular approach
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FIGURE 2. Machine Learning types: a) Supervised learning,
b) Unsupervised learning, c) Semi-supervised learning and
d) reinforcement learning.

for dealing with time series data and natural language
processing [28].

Deep learning is a powerful tool for GWAS data analysis,
mainly because the amount of data is enormous, far beyond
our limited reasoning abilities. In genetic applications,
a deep ANN can be built with nodes representing genetic
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elements (SNPs) and arcs indicating connections (interac-
tions) between the elements.

2) SUPPORT VECTOR MACHINE (SVM)

SVMs are supervised learning algorithms that can be used
to solve issues in classification and regression [29]. In high-
dimensional spaces, where the number of features exceeds the
number of observations, SVMs are well-known for their effi-
cacy. The purpose of SVMs is to find a separating hyperplane
with the maximum distance to each class. Different kernel
functions are available for SVMs, and the selection of a kernel
function depends on both the type of problem and the number
of observations [30].

Data points can be classified into different classes based on
where they fall - on which side of the hyperplane. A hyper-
plane’s dimension depends on the number of features. If there
are only two input features, then it is a line. However,
if there are three input features, then it becomes a plane.
As the number of features increases, similar to genetic data,
it becomes increasingly difficult to imagine the dimensions of
the hyperplane. A support vector is a data point that is closer
to the hyperplane and is more influential on the position and
orientation of the hyperplane. The main idea of SVM is to
transfer data into higher dimensions in order to find a suitable
boundary that separate the classes in nonlinear classification
problems. However, as the number of dimensions increases,
the computations inside that space become more expensive.
SVM uses a kernel trick to overcome this burden, allowing
it to calculate high-dimensional relationships without trans-
ferring data into higher dimensions. In the case of GWAS,
usually there are two classes: cases and controls. Whereas
SNPs represent the features, the SVM is capable of classi-
fying a case and control given the feature set (SNPs). This is
done when the SVM is given labelled data points, i.e., SNPs
and the output. Figure 4 illustrates a support vector machine
model of cases and controls.

3) RANDOM FOREST (RF)

A random forest is a learning algorithm that develops a pow-
erful overall classifier through an ensemble of decision trees.
The trees formed by random forests are usually trained using
the bagging method. The bagging method explains that by
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combining different learning models, the overall performance
can be improved [31].

Because datasets with big size subsets tend to increase
computational complexity, a small subset size decreases the
difficulty of deciding on the number of characteristics to
separate. As a result, reducing the number of features to
be used in the training of the model enhances the algo-
rithm’s learning speed. Figure 5 illustrates the work pro-
cess of a RF model. Firstly, the model randomly selects
individuals from the original dataset to build new datasets.
Each of these newly created datasets will contain the same
number of features (SNPs) as the original one. These will
be referred to as bootstrapped datasets. Several trees are
constructed, and each tree is trained using random features
(subset) from the feature set (input) of the bootstrapped
datasets. When a RF makes a prediction on a new data point,
it will pass the datapoint through each tree and the predictions
are recorded. The model then checks all predictions and
outputs the majority vote as the final prediction. The pro-
cess of combining results from multiple models is known as
aggregation.

The bootstrapping process ensures that the model does
not use the same data in every tree, which helps the model
to be more robust. On the other hand, the random feature
selection helps reduce the correlation between the trees.
RF can be mathematically summarized with the following
equations [32]:

] w
FO) ==+ f ) (1)

n=1

where v, g is the data variable and v represent the dependent
variable.

1 Y
f ) =loghy— 3 logtn () )

m=1
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where Y stands for the total number of classes and y stands for
the particular class (in our case, case or control). Furthermore,
tk is included in the fraction of total votes for class y.

4) NAIVE BAYES
Naive Bayes is a basic learning technique that use Bayes’ rule
in conjunction with the strong assumption that attributes are
conditionally independent given the class [33]. Despite the
fact that this independence assumption is frequently broken
in practice, naive bayes classification accuracy is generally
competitive. Because of this, as well as its computing effi-
ciency, naive bayes is commonly used in practice.

Posterior probability is Bayes theorem is calculated as
follows [33]:

P(clx) = USIDIG 3)
P(x)

where:

P(c) is the prior probability of class.

P(x]c) is the probability of predictor given class.

P(x) is the prior probability of predictor.

In a genetic analysis scenario, let P(c|x) be the probability
for a new data point X=<SNP1, SNP2...SNPn> to belong
to class ¢ (case or control).

Ill. SEARCH STRATEGY

The systematic review relied on the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses
(PRISMA) [90] tool to review studies that have used machine
learning algorithms in the analysis of genome wide asso-
ciation study data. Scopus, PubMed, and Web of Science
were searched for conference and journal articles matching
terms like “machine learning” and ‘“‘genome wide associa-
tion study”. Full search queries are available in the supple-
mentary material file. On 31 December 2021, articles were
searched in their title, keywords, or abstract. The search was
limited to the English language, and date was set between
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1 January 2010 and 31 December 2021. The first author
reviewed all the abstracts for inclusion. Full text was assessed
when the abstract was relevant to the inclusion requirement.

IV. STUDY SELECTION
Through a two-stage screening procedure, we determined
whether the studies retrieved by the search engine were eligi-
ble. We examined the paper titles and their abstracts first, then
eliminated any papers that did not meet the inclusion criteria.
Finally, the complete text of all studies that were considered
relevant was evaluated for eligibility using the same screening
process.

Studies were considered eligible if they met the following
requirements:

e predicting Alzheimer’s disease clinical outcomes or
Alzheimer’s disease alongside other diseases.

e only considering articles that use GWAS as dataset,
excluding any articles based on text or imaging data for
the detection of Alzheimer’s disease.

e primary research rather than review papers.

e The entire manuscript is considered, instead of simply
an abstract or notes.

These requirements were chosen to ensure inclusion of all
studies investigating Alzheimer’s disease, even when another
disease is being studied. The restriction of the genetic data to
be of type GWAS only is because we wanted to investigate the
ability of ML models in this specific area of genetics, which
has become popular during the past decade.

After selecting the relevant papers, an analysis of each
paper was conducted, considering the following questions
and conditions:

1) Which ML models were employed?

2) The type and source of the data.

3) Are there any pre-processing steps conducted?

4) What is the overall performance of the model?

5) Which hyperparameter optimization methods were
utilized?

6) What feature selection techniques are used?

7) Are there any reported genetic markers?

Papers  published between January 2010 and
December 2021 were considered. Prior to this time period,
ML approaches have been applied in research. However,
in the last decade, there has been a surge in interest in machine
learning in biological research; as a result, we only found a
few research studies prior to that period.

Articles focusing on other forms of genetic data, such as
gene expressions or uncommon variants, were not included.
Authors that integrated SNPs with additional types of biolog-
ical markers, such as MRI and PET, were excluded.

V. DATA EXTRACTION

A structured data collection form was created to help in
the extraction of elements. The form includes extraction of
general study characteristics such as author/s, type, study
objective, and publication year as well as the characteristics
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of the population used in the study, such as source of data, fea-
ture size, and sample size. Finally, other ML models and data
pre-processing methods details were also extracted (unbal-
anced outcomes, other data pre-processing steps, ML models,
performance measurements, feature selection methods, and
results).

V1. RESULTS

Following an initial search, we identified a total of 283
articles from Scopus, Web of Science and PubMed databases.
This number was reduced after removing duplicates, resulting
in 165 studies. These were then further reduced to 65 after
evaluating if both titles and abstracts met the inclusion cri-
teria. The full texts were then subjected to a more in-depth
study, with publications that failed to meet the inclusion
requirements after a thorough examination being removed.
At this point, 24 articles remained to be included in the
review. This number of articles is expected due to the rel-
atively new appearance of ML technologies in this specific
are of human genetics as well as the difficulties in obtaining
authorization for large GWAS datasets. Figure 6 shows a
graphic representation of the study selection process.

As shown in Table 1, all of the included studies were
conducted after 2010, with more than 50% of the included
papers published after 2015, four studies published in 2020
[19]-[22] and three in 2021 [23]-[25].

A. AREA OF STUDY

Our extensive research indicated that there were three main
areas where researchers apply machine learning techniques
in genome-wide association studies. In the first domain,
a prediction model was developed to classify healthy and
unhealthy individuals based on their genetic data. The second
domain involved developing multiple intelligent models to
identify new genetic markers associated with a particular
chronical disease of interest. The third method was to develop
models to discover epistatic interactions. The percentage area
of use of ML in GWAS for Alzheimer’s disease is further
illustrated in Fig 7.

B. DATA SOURCES

Large genome-wide association studies datasets were used
for training the ML models in every paper. To test the associ-
ation of each SNP with a phenotype, the genome data of each
participant needs to be recorded.

The majority of the researchers (13 articles) used
the genome wide association study dataset from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Four
articles [34]-[37] used the AD GWAS dataset from the Trans-
lational Genomics Research Institute. One article [38] used a
dataset from the National Alzheimer’s Coordinating Center.
One article [39] used a late-onset AD dataset provided by the
Harvard Brain Tissue Resource Center and Merck Research
Laboratories. Two articles [40], [41] requested datasets from
the database of genotype and phenotype. Further details about
these datasets are available in Supplementary Table 1.

VOLUME 10, 2022



A.S. Alatrany et al.: ML Approaches and Applications in GWAS for Alzheimer’s Disease: A Systematic Review

IEEE Access

g Records identified through

= database searching

< (n=283)

<

=

N

c: \ 4

% Records after duplicates

o removed

(n=165)

en

s
o p—

8 v

O Titles/ Abstract screened Records excluded
5 (n=165) —> (n = 100)
N

- l
=
— Full text articles assessed for Full text articles excluded
— eligibility > (n=41)

en (n=65)
— Dataset contains images and genetics (20)
a8 Not GWAS dataset utilised (8)
- v Not AZ disorder (2)

(D} Studies included in the review not clear methodology/ results (5)
o —24 Prediction model not ML (4)

= (n=24) : :
S Review article (1)

=
ot

FIGURE 6. A visual breakdown of publication selection based on PRISMA guidelines.

C. DATA PRE-PROCESSING

The vast majority of researchers involved some data pre-
processing steps before passing the data to the model. It is
well-recognized that quality control in GWAS data is an
essential pre-processing step for any analysis of genotype
data, especially when studying phenotype associations, as it
can have a strong influence on the end results [42]. QC and
filtering procedures were performed on individuals and their
SNPs in most of the papers using PLANK software. Only
four articles [39], [40], [43], [44] did not conduct any quality
control procedures.

A number of articles [43], [45]-[48] incorporated APOE
(a gene whose polymorphic alleles were the most important
genetic predictors of Alzheimer’s disease risk [49]) geno-
typing into the dataset as a pre-processing step. The authors
De Velasco Oriol et. al. [50] selected the top 2500 SNPs
according to their p-value. An x2 statistical test was used
in [51] to distinguish between the high and low informative

VOLUME 10, 2022
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subsets of SNPs. In [52], the authors retrieved only SNPs on
the 19th chromosome to train their model.
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TABLE 1. Overview of Studies Selected Based on Prisma Analysis

Reference Source of Data Data Size Feature Size Validation Best Algorithm
Abd El Hamid etal. ~ ADNI 391 500 10-fold cross-validation k2
(2019)
Ahmed et al. (2020) ADNI 391 not reported 10-fold cross-validation NB
(Alatrany et al., NACC 364 Not reported Training-test splitting MLP
2021)
(Araujo et al., 2013)  ADNI 374 Not reported out of bag RF
(Briones and Dinu, TGen 1411 199 SNPs 10-fold CV RF
2012)
(Chang et al., 2020)  (ADNI) 364 4,916,249 2-fold cross validation L1-regularized
leave-one-out CV regression
(Cooper et al., TGen 1411 500 five-fold cross validation EBMC
2010)
(De Velasco Oriol ADNI 471 1000 cv ensemble
etal., 2019)
(El Hamid et al., ADNI 391 21 10-fold cross validation SVM
2017)
(Erdogan and Son, GENADA / 1480 958 11-fold-cross validation DT
2014) dbGAP
(Han et al., 2012) TGen 1408 287,479 BN
(Lietal., 2021) ADNI 1461 Not reported 5-fold cross validation Deep Learning
(Moore et al., 2017)  ADNI 718 758 MDR
(Nguyen et al., ADNI 364 Not reported 5-fold cross-validation RF
2015)
(Osipowicz et al., ADNI 485 24998 10-fold cross validation RF
2021) training and test sets
(Romero-Rosales et  NIA 1,830 1,106 (A LASSO
al., 2020)
(Sherif et al., 2015) ADNI 330 435 NB
(Sherif et al., 2017) ADNI 431 8360 MDR
(Stokes et al., 2014)  ADRC 2,229 100 Five-fold cross validation. KNN
TGen
(Wang et al., 2019) ADNI 1017 6970 Deep Learning
LOAD**
(Wei etal., 2011) TGen 1411 20 fivefold cross-validation MANB
(Xu et al., 2020) (ADNI) 785 2943 10-fold cross-validation TV-GroupSpAM
(Zou et al., 2012) TGen 644 312316 RF
(Aflakparast et al., TGen 364 76 755 CSE
2014)

ADNI: ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE, NACC: NATIONAL ALZHEIMER'S COORDINATING CENTER, TGEN: TRANSLATIONAL GENOMICS RESEARCH INSTITUTE,
NIA: NATIONAL INSTITUTE ON AGING, DBGAP: DATABASE OF GENOTYPES AND PHENOTYPES, ADRC: ALZHEIMER’S DISEASE RESEARCH CENTER, LOAD**: LATE-ONSET AD
DATASET PROVIDED BY HARVARD BRAIN TISSUE RESOURCE CENTRE AND MERCK RESEARCH LABORATORIES. MDR: MULTIFACTOR DIMENSIONALITY REDUCTION, NB: NAIVE
BAYES, EBMC: EFFICIENT BAYESIAN MULTIVARIATE CLASSIFICATION ALGORITHM, KNN: K-NEAREST NEIGHBOURS, LASSO: LEAST ABSOLUTE SHRINKAGE AND SELECTION
OPERATOR, BN: BAYESIAN NETWORKS, MLP: MULTI-LAYER PERCEPTRON, TV-GROUPSPAM: TIME-VARYING GROUP SPARSE ADDITIVE MODEL, RF: RANDOM FOREST,
CSE: CucKOO SEARCH EPISTASIS

As GWAS is extremely high in terms of dimensionality,
all researchers tried to reduce their dimensions by select-
ing a subset of SNPs. In most papers, authors used logistic
regression with different p-values, mainly between (10~2 and
107®) to find the most significant SNPs for a phenotype and,
based on that, a subset of SNPs was retrieved for further
analysis. Both [43], [44] used the Boruta algorithm to find
an appropriate set of SNPs for their model. Whereas in [35]
the ReliefF algorithm was utilized. In [53], [54], the authors
extracted a set of known genes related to AD based on
meta-analyses of GWAS catalogued on AlzGene database.
While in reference [50], the authors sorted SNPs according
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to p-value using summary statistics from the International
Genomics of Alzheimer’s Project (IGAP). El Hamid et al
[46] selected SNPs from the top 10 AD candidate genes listed
on the AlzGene database, a Chi Squared Attribute Evaluator
with a ranker search method was used for ranking SNPs in
order to select the most important SNPs to further reduce the
feature set size. In [55], SNPs that resulted from the intersec-
tion of three statistical approaches were selected, including
the Allelic test, the Genomic test, and the regression test.
Number of features selection testing was used in [56] where
they looked at the effectiveness of these tests through the
classification task. Wang et al. [39] considered only the SNPs
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that reside protein coding exons according to GENCODE (a
public research consortium) then further excluded the SNPs
on X-chromosome

D. TECHNICAL DETAILS

From a technical side, eight of the research papers used a
single machine learning algorithm. In what follows, we will
provide the details for the machine learning methods utilized,
as well as model performance, Sample size and Hyperpa-
rameter Search. Summary of machine learning algorithms
employed in the included studies is presented in Table 2.

1) MACHINE LEARNING METHODS

On genetic data from the Alzheimer’s disease neuroimaging
initiative phase 1 dataset, the Naive Bayes, tree augmented
Naive Bayes, and K2 learning algorithms were used for
early detection of the illness. Based on the p-value criterion
(p-value 0.05), the greatest classification accuracy was
attained with 500 SNPs. The NB and K2 learning algorithms
reached an overall accuracy of 98 percent and 98.40 percent
respectively [45]. Based on genetic data from 188 controls
and 176 AD patients, a deep learning model for AZ prediction
was constructed and evaluated. Using Convolutional Neural
Networks and Multilayer Perceptrons, the model attained an
area under the curve of 0.9 and 0.93, respectively [38].

Araujo et al. suggested to use biologically motivated SNP
selection as an input to RF for predicting patient risk of devel-
oping AD. The findings reveal that non-disease-related SNPs
perform similarly to or better than disease-related SNPs.
As the identification of novel relevant markers is the most
important effort in GWAS. These findings suggest that SNPs
from unrelated sets might be new candidates for Alzheimer’s
disease [53]. In a GWAS data collection of 550 controls and
861 cases, two distinct techniques were designed to find SNPs
linked with AD. In the first technique, the authors employed
logistic regression to filter the data depending on a p-value
threshold, resulting in a subset of SNPs that were then used
in by random forest to perform a multi-locus analysis. On the
other hand, in the second technique, pre-select loci for input
into the RF classifier using biological information and logis-
tic regression analysis. The first method yielded 199 SNPs.
Using 10-fold CV in RF modelling, these SNPs, together with
other SNPs that associated to AD, produced a predictive sub-
group for AD prediction with an average error of 9.8%. With
the second method, 19 variations were discovered. These
variations were incorporated of a model that includes APOE
and GAB2 SNPs to predict AD risk, and the model achieved
a 10-fold CV average error of 17.5 percent [34].

Chang et al. introduced GenEpi, a computational pack-
age that uses Ll-regularized regression to find epistasis
related with phenotypes. GenEpi uses a two-stage modelling
methodology to identify both within-gene and cross-gene
epistasis. The ML model was trained and evaluated on genetic
data of 364 individuals. A total of 24 SNPs from 12 genes
were used in the final model. This model has a 2-fold cross
validation accuracy of 0.83 and a leave-one-out CV accuracy
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of 0.83 [58]. When applied to a GWAS dataset of Alzheimer’s
disease that comprises 312,318 SNP of 1411 individuals,
Cooper et al. compares the predicted performance and effi-
ciency of a Bayesian approach to various traditional machine-
learning methods. The findings reveal that the Bayesian
algorithm predicts outcomes as well as traditional approaches
while requiring less overall training time [35].

FRESA.CAD’s (Feature Selection Algorithms for Com-
puter Aided Diagnosis) benchmarking tool was employed
to forecast a person’s hereditary risk of acquiring AD by
construction and evaluating several machine learning models,
including Bootstrap Stage-Wise Model Selection (BSWiMS),
Least Absolute Shrinkage and Selection Operator (LASSO),
and Recursive partitioning and regression trees (RPART). The
ROC AUC varied between 0.60 and 0.70. The BSWiMS,
LASSO, and RPART performed similarly, and the ensem-
ble of approaches performed best, with a ROC score of
0.719 [50]. Support Vector Machine (SVM) classifiers of
various kernels were applied to ADNI data based on chosen
21 variations most related with AD using two techniques,
Correlation-based and Chi-squared. The results show that
an SVM trained model utilising an RBF kernel reached the
highest accuracy of 76.70 percent [46].

The authors [44] ran two types of experiments to see
whether information used to categorise one dataset may be
effectively utilised to classify a completely separate patient
group dataset. In the first experiment, the authors trained a
random forest classifier from features selected from the first
dataset. The resulting model is evaluated using the second
dataset. Secondly, authors picked significant features based
on the first dataset’s training subset and then utilised the
positions of the selected SNPs to create a new random forest
model using the data from the second dataset. In both of
the experiments, the resultant classifier’s performance was
evaluated on patients from the second dataset who had not
utilised in training the tested classifier. The AUC values
for both experiments decreased slightly when compared to
the results from one dataset, but they remained well above
0.5, indicating that all of the models contain some universal
information about genetic differences between AD cases and
controls.

Nguyen et al. propose a ts-RF, a new two-stage strategy
in random forests, for selecting a subset SNPs in GWAS.
The suggested method has been found to be successful
in identifying informative sets of SNPs that may relate to
illnesses [51].

Authors present a novel technique for AD GWAS analysis
that combines both random forests and enrichment analy-
sis to identify new genetic biomarkers based on data from
527 controls and 117 cases [59]. Wang et al. proposed a
deep learning model method that is capable of identify-
ing interactions between SNPs in GWAS data. The model,
named Deep Mixed Model, consists of two components, the
first component acts as a confounding factor correction by
using a CNN, while the second component utilize LSTM
for genetic variants selection [39]. Romero-Rosales et al.
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present a comparison of three ML models: genetic algo-
rithm sand step-wise, as well as L1 (LASSO) approaches
for developing models for Alzheimer’s disease prediction
trained on data of 813 cases and 1,017 controls. In practice,
LASSO models outperformed the other two techniques [41].
Sherif et al. developed a framework for evaluating several
Bayesian network algorithms (naive Bayes, tree augmented
naive Bayes, Markov blanket MB, and minimum augmented
Markov blanket) to predict the condition of the diagnostic
variable, AD case or control. A total of 435 were consid-
ered predictors for naive and tree augmented naive networks.
However, selecting only 11 and 13 SNPs to train and test
Markov blanket and minimum augmented MB respectively
showed improved accuracy [54].

Model-averaged naive Bayes (MANB) technique was used
to predict AZ. The models were trained and tested on the
genetics data of 1411 people. The outputs of the model
were compared to the results of a naive bayes MANB
achieved an AUC of 0.72, which is much higher than NB’s
AUC of 0.59 while maintaining the same training time [37].
Aflakparast et al. presents a novel strategy, cuckoo search
epistasis (CSE), for detecting epistatic interactions in case—
control studies. This technique combines a Bayesian scoring
function with a heuristic search algorithm. CSE was able
to discover interactions that were reported in the literature
[60]. Stokes et al. assess the efficacy of label propagation
(LP), a multivariate graph-based approach for effectively
ranking SNPs in genome-wide data. The top-ranked SNPs
were evaluated in terms of classification performance, and
prior evidence of being linked with AD. LP performed much
better in categorization than other control approaches. There
were 14 SNPs in one dataset among the 25 top-ranked SNPs
found by LP that had evidence in the literature of being linked
with AD [56].

Li et al. present a novel deep-learning genomics technique
and apply it to the multitasking categorization of Alzheimer’s
disease progression. For the DLG model, the ResNet frame-
work was employed using 1461 patients’ genotyping data,
and the results were compared to those obtained using a
basic convolutional neural network structure. When applied
to the course of Alzheimer’s disease, the DLG model can
obtain improved accuracy and sensitivity [47]. Moore et al.
present Crush, a stochastic search technique to explore rela-
tions between genes in genome-wide data as an application
of multifactor dimensionality reduction (MDR). Applying
the approach to an AZ GWAS dataset, results showed that
Crush-MDR was capable of identifying a collection of inter-
acting genes with biological linkages to Alzheimer’s dis-
ease [57]. Xu et al. employed a Time-Varying Group Sparse
Additive Model (TV-GroupSpAM) to carry out a two-stage
SNP selection. First, they divided the genotyping data into
30 subgroups, each with 5000 SNPs. This resulted in a filtered
collection of 2943 SNPs for TV-GroupSpAM. The technique
was then repeated, but this time just with the SNPs that
had been chosen in the initial round. This has resulted in a
final collection of 126 SNPs. TV-GroupSpAM completed the
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analysis in 16 days, which was faster than the two control
techniques [52].

RFs and NB were two prominent algorithms employed
in the evaluated research. NB is known for its ease of con-
struction. However, due to the nature of GWAS data, which
contains strong interrelationships between SNPs, which runs
counter to the naive notion that all input characteristics are
independent [61]. Because of their capacity to avoid over-
fitting, RFs are a popular classifier [62]. However, because
the classifier requires extensive hyperparameter searching,
utilising RFs to predict disease risk may be difficult.

Neural networks are strong prediction algorithms that can
understand non-linear relationships in large and complicated
datasets. In certain cases, NN may infer data associations that
are beyond the purview of other ML approaches. NNs are
notorious for being difficult to employ, tune hyperparame-
ters, and prone to overfitting. Especially, in the case where
a dataset has many more features than observations [63].
As SVMs are well-known for their simplicity and predictive
accuracy, and as a result, they are often used in prediction
modelling [64]. Whereas Bayesian modelling approaches
have various characteristics that make them valuable in a
wide range of genetic data analysis tasks. They enable the
merging of data and domain expertise. They also allow for
easier understanding of the causal links between variables.
While Bayesian models are a valuable technique to describe
expert knowledge, getting the knowledge from the experts in
a manner that can be turned into probability distributions may
be problematic [65].

The process of choosing a model architecture entails bal-
ancing model underfitting and overfitting, often known as the
bias-variance trade-off [66]. When a low-capacity model is
adopted in relation to the issue complexity and dataset size,
underfitting is prevalent. Underfitting can be mitigated by
using a more parameter-rich model or using less regularisa-
tion during training. More serious is model overfitting, which
occurs when the evaluator overestimates the generalisation
performance on previously unknown data. A surprisingly
poor performance on the test set compared to the training set
is an indicator of overfitting. Overfitting is often avoided by
employing a validation set inside the trainset for performance
estimations, as well as numerous regularisation algorithms,
for example, early stopping [67].

2) MODEL PERFORMANCE

AUC was used in over half of the research papers (55%
models) as performance measurement of the models. There
was also information on a variety of categorization met-
rics and model fit assessments such as accuracy, sensitivity
and specificity. Out of bag error was used in few papers
(Supplementary table 8).

Internal validation was reported by around 68% of models.
The most of them used k-fold cross-validation, a resam-
pling technique that includes testing a model on each of
k distinct divisions of a dataset and then training on the
remaining k-1 folds. The most popular method was 10-fold
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TABLE 2. Summary of Machine learning algorithms

Ref ML Models Problem Addressed Dataset Model Feature Selection
Control/c  Performance
ase
[45] Linear Developing a classifier 214/177 0.95-0.99 p-value threshold of 0.05
Quadratic Polynomial, model then selected top 100
cubic polynomial,
Naive Bayes,
TAN,
K2
[38] MLP, Developing a classifier 188/176 0.92-0.93 Logistic regression then Random Forest
CNN model
[53] RF Developing a classifier 205/169 Error out of Bag  Used set of known genes from AlzGene database
model 0.45
[34] RF Identify new genetic 550/861 Not reported Logistic regression
biomarkers
[58] L1-regularized To explore epistasis 241/132 0.83-0.94 ¥2 test
regression with stability interactions.
selection
[35] LR, Developing a classifier 550/861 0.61-0.72 ReliefF algorithm
NB, model
SVM,
EBMC
[50] BSWiMS, Developing a classifier 230/241 0.494-0.719 p-value using summary statics
LASSO, model
RF,
RPART,
KNN with BSWiMS
features,
SVM with mRMR,
ensemble
[46] SVM Developing a classifier 214/177 0.62-0.77 SNPs of top 10 AD candidate genes listed on the
model AlzGene
[44] Fandom forest Developing a classifier 266/219 0.67 Boruta algorithm
model
[51] RF Developing a classifier 188/176 0.62-0.97 Wilcoxon test
SVM model
[59] Random forests with Identify new genetic 527/117 Not reported -
enrichment analysis biomarkers
[39] Deep Mixed Model To explore epistasis 477/540 Not reported SNPs that reside protein coding exons according
interactions to GENCODE
[41] BSWiMS, Developing a classifier 1017/813  0.68-0.844 %2 test
Genetic Algorithms model
Vector Machine,
GALGO,
LASSO,
[54] Na“1ve Bayes Developing a classifier 282/48 0.62-0.66 Top ten AD candidate genes listed on the
Tree augmented na“1ve model AlzGene database
Bayes
Markov blanket
Minimal augmented
Markov blanket
[37] NB Developing a classifier 550/861 0.59-0.72 Laplace parameter
FSNB model
MANB
[60] Cuckoo search epistasis To explore epistasis 550/861 Not reported %2 test
interactions.
[56] KNN Identify new genetic 938/1291  0.52-0.73 chi squared
biomarkers Sigmoid Weighted ReliefF
[47] deep residual network Developing a classifier 622/366 0.58-0.99 Chi-square test
ResNet, model
CNN
[57] Crush-MDR To explore epistasis 718 Not reported Constructed a list of 734 genes using Ingenuity
interactions. Pathway Analysis
[52] TV-GroupSpAM Identify new genetic 785 0.53-0.63 TV-GroupSpAM

biomarkers
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cross-validation (CV). A random split between training and
testing sets was employed in one study for internal validation
[38]. Internal validation was not mentioned in five of the total
studies.

Within studies, the performance of models varied depend-
ing on the machine learning algorithm used, the sample size,
and the number of features. The AUC for Alzheimer’s disease
models ranged from 0.59 to 0.98, with the greatest AUC
observed utilizing a deep residual network [47]. On the ADNI
phase 1 dataset, Nave Bayes produced a similarly high AUC
(0.97 AUC) [43]. In [45] the authors reported the accuracy of
92.68 while using 100 SNPs a feature set size, this has risen
to 98.4 by increasing the number of features to 500 SNPs.
Despite the fact that there are few studies, deep learning
outperforms other techniques of machine learning [38]. The
outcomes of utilizing an ensemble of machine learning algo-
rithms appear to be superior to using a single method [50].

A variety of techniques have been used to genotype-
based categorization of Alzheimer’s disease patients and
healthy controls using GWAS data, with different accuracies
reported. However, because the predicted effect of genotype
on sporadic AD prevalence is minimal, these extremely high
classification accuracies might be the product of overfitting.
Osipowicz et al [44] found that if feature selection is under-
taken before splitting the data into training and testing sets,
the techniques are prone to overfitting. As a result, it was
discovered that it was preferable to avoid selecting features
used to create the model based on data contained in the
testing set. According to the authors, the anticipated classifier
performance for currently available dataset sizes is between
0.55 and 0.7 (AUC), and greater accuracies reported in the
literature are most likely the consequence of overfitting.

Despite of performing well in terms of prediction accuracy
in some datasets, ML still suffers from selecting informative
SNPs and build accurate prediction models.

3) SAMPLE SIZE

In the study of brain illnesses, small sample numbers are a
prevalent problem. The vast discrepancy between the number
of characteristics and the amount of data accessible in genetic
data adds another layer of complexity: A GWAS can include
over a million SNPs, each of which can be considered a
feature; however, the average number of participants is sig-
nificantly lower.

The overall sample size was relatively small, with 11 of
the total research papers using the dataset sizes ranging
from 364 to 485. A dataset of over 1000 samples was utilised
in 9 investigations. A dataset with sample sizes in the 700s
was utilized in two research. One study involved the use of
imbalance class distribution but did not report if any steps
were taken to re-balance the distribution prior to the analysis
[54] (supplementary table 6).

The amount of data utilised in several of the listed research
was insufficient to properly explore the possibilities of
machine learning technologies. Larger datasets can aid in the
accurate selection of candidate SNPs, such as those used in
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meta-analysis [68]. Research can be focused on developing
machine learning models that works well for data were the
number of features much larger than the number of samples,
which is a typical challenge in GWAS. Simulated datasets can
be a good starting point in developing ML models that can be
then tested on real datasets.

4) HYPERPARAMETER SEARCH

The majority of hyperparameter searches went unreported
or were ambiguous, few models being reported as having
been utilized with default parameters. The type of search and
tuning for a single model resulted in ambiguous reporting
since it was unclear whether these circumstances applied to
other models in the research. As a result, it’s possible that
most research considered many hyperparameter options but
did not mention them (Supplementary Table 7).

E. REPORTED GENETIC MARKERS

Most of the studies (19 papers) reported associated SNPs
with Alzheimer’s disease according to their analysis. Five
studies reported the SNP rs429358 as an Alzheimer’s disease
risk factor which is found in the ApoE gene’s fourth exon.
Han [36] found interaction among the SNPs: rs1931565 and
rs4505578 with APOE. A list of high SNPs reported by each
article is stated in Supplementary Table 10.

VII. DISCUSSION

This systematic review contributed to the findings in the
literature by evaluating in detail the ML algorithms used for
detection of Alzheimer’s disease.

The majority of studies conducted for each model only
reported the measurements of either discrimination, or clas-
sification. Only few of the studies publicized the measure
of calibration used within the models [37]. Model building
was based on many fundamental properties, including model
calibration [69]. Model calibration has been identified as a
fundamental aspect which is lacking in the field of generic
prediction literature [70]. The Model Calibration compares
the anticipated probability of the result happening with the
observed probability. When looking at the presented work of
authors, the discrimination measures should also be presented
along with the classification’s measures of specificity, accu-
racy, and sensitivity as they displayed all the available infor-
mation on long projected probabilities. Within genetics and
ML, the most commonly used and available discrimination
metric was the AUC.

The hyperparameter optimization is used to determine how
machine learning models navigate the bias-variance trade off
and learn from the data [71]. It is surprising that this was
unobserved or exposed to only a number of manual tests.
To ensure any of the models are neither under fit nor over
fit, the use of hyperparameters should be investigated in
systematic ways. Hyperparameter selections often decrease
overfitting, hence it is of upmost importance that search is
used within candidate predictors such as genomics. This is
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applicable to those areas which have a minor or small number
of samples over features.

In all of the papers reviewed, there was no presentation of
any decision analytical methods, which are usually used to
assess the clinical values of prediction models. The larger
aim, objective of these research works is to assist doctors
in determining the correct prognosis for patients and aiding
them in treatment and planning the decision making. With this
being said, no research has been seen to address the use of the
model in real-world clinical trials and practices. A number of
reasons varying in description can be given as to why machine
learning cannot be seen and believed to be difficult to use in
the healthcare profession and settings [72]. ML algorithms
are often opaque in terms of how the prediction was formed
and how various predictors contributed to the final decision.
This may have a declining effect on the legitimacy and accept-
ability of the model’s predictions within decision making for
healthcare professionals. For model duplication, a degree of
transparency is needed to be used in other datasets. It was
brought to our attention that most studies model reporting,
along with the model development, were not thorough enough
in their transparency to be permitted to be used in other
datasets. This therefore insinuates that most models will have
an inadequate amount of evidence to support their accuracy
in various settings, as well as being impractical when used in
real-world healthcare settings [73].

Reporting criteria and guidelines for incorporating ML
algorithms have a chance of increasing ML acceptability.
Further studies in the future would profit from attempting
to evaluate clinical utility along with the potential effects
[74]. To begin with, the accumulation of information and
reporting the recommendations for the verification and design
of clinical prediction models would be a sensible starting
point. New research [75]-[77], has dwelled and dived into
the potential ethical issues which may come to light when
using machine learning models. It is of utmost importance
that algorithms and generated models be publicly acces-
sible as well as comprehensive and transparent in their
reporting. This would allow the promotion of clinical utility
along with independent external validation across multiple
contexts.

A. THE CURSE OF DIMENSIONALITY

A well-known problem with genetics data is that the number
of attributes is much larger than the number of sam-
ples, introducing a challenge not only for ML algorithms
but for DL and hence the general statistical approaches
[78]. To avoid the curse of dimensionality, feature selec-
tion and feature extraction are often used [79], [80]. Some
researchers [81]—[84] try using multiple datasets to provide a
larger number of samples to balance the number of features
and samples. Other researchers used association analysis
techniques to reduce the dimensions of the original dataset to
a significantly smaller number, mostly using logistic regres-
sion and selecting only SNPs that passed a threshold level of
p-value [45].
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B. MODEL INTERPRETATION

One of the main concerns when using ML approaches is the
ambiguity in decision-making. Owing to the architecture of
the machine learning algorithms, it is not yet clear how the
learned patterns are formed, therefore making a full image
of how the model reached a specific output from inputs a
difficult task [85]. Researchers, especially those working in
healthcare domain applications, prefer to use white box meth-
ods to understand the decisions made by these applications
since they are very sensitive, and any small error could be
costly [86]. In [47], the last convolutional layer of the last
res-block was made transparent to extract features used to
investigate the interpretability of the DL model.

C. HYPERPARAMETERS TUNING

One of the challenging tasks in ML is the tuning of the
model’s hyperparameters. For instance, ANNs require sev-
eral hyper parameters, including learning rate. A very small
learning rate value could take a long time to converge or
get stuck at a local minimum. In contrast selecting a large
value for the learning rate, it will process parameters faster
but most likely lead to an oscillation. Thus, this is the most
important hyperparameter and a careful decision should be
made. Tuning the parameters is critical step of building
an accurate ML model, there are few practices existing in
choosing the right set of hyperparameters, such as the Grid
search [83] for tuning the parameters of ML. Whereas Bellot
et al [87] used genetic algorithm for hyperparameter opti-
mization. Many researchers randomly test few combinations
of hyperparameters and select the best values according to the
model performance.

D. IMBALANCE CLASSES

Another obstacle that limits the ability of ML models is
when the number of samples is extremely different in each
class. As the aim of ML for classification problems, such as
classifying healthy vs unhealthy [82] or responding to disease
treatment vs unresponsive to the treatment [88], is to obtain an
efficient model for such discrimination cases, a satisfactory
number of samples per class should be provided.

VIIl. RISK OF BIAS

Within each paper that aimed to develop a prediction model,
the risk of bias was estimated for the optimal model. All of the
models showed signs of bias, mainly in the area of analysis.
Risk of bias (ROB) was assessed following PROBAST [89]
guidelines. Participants, predictors, results, and analysis are
the four areas that PROBAST is divided into. There are a
total of 20 questions in these four categories to help with
structured ROB judgement. The answers to these questions
are recorded in supplementary ROB Table. Participants’ ROB
was rated low in all the included studies. PROBAST for
predictors is designed to help the researcher determine if
the processes for measuring biomarkers were the same for
all study participants. Procedures for collecting predictors in
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FIGURE 8. Risk of bias of studies included in the review.

references [35], [37], [40], [41], [56] were not provided. As a
result, ROB for predictors was judged to be unclear. The
procedures for collecting biomarkers are outlined in public
materials provided by ADNI. For all subjects, predictors
generated from blood samples or MRI images were gathered
using the same techniques. As a result, the procedure of
acquiring predictors was assessed to have a low ROB for
articles that used the ADNI dataset.

During analysis, the models showed a high ROB (as illus-
trated in Fig 8). It should be noted that the amount of the
data used to create the model, the incorrect or unjustifiable
handling of missingness, the removal of registered individ-
uals prior to analysis, predictor selection using univariable
approaches, and inability to account for overfitting were all
common causes.

IX. CONCLUSION

In order to decide where to focus their research efforts, GWAS
researchers need a comprehensive picture of the trends in
ML algorithm utilization. This paper offers a rigorous exam-
ination of the machine learning techniques employed in the
GWAS of Alzheimer’s disease.

A total of 24 research publications were included follow-
ing meticulous filtering based on exclusion criteria. There
has been, and currently is a rising interest in the utiliza-
tion of ML to aid in predicting AD results. Deep learning
algorithms are becoming more popular in GWAS analysis,
especially when conventional Artificial Neural Networks are
used. Approaches of transfer learning are still a study topic.
The trends and opportunities described are confirmed by a
chronology of the number of primary studies published in
recent years.

Regardless of the incursion of research publications,
A very limited number of papers met the standard criteria
of clinical prediction tools, with non-making their models
obtainable in a format which is either evaluable or usable.
When speaking of the improvements and enhancements of
current machine learning prediction algorithms and how they
are built and verified, we can identify a few aspects which can
be looked into, beginning with the use of a larger scale data
source which is also richer and more diverse in the data it
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withholds, along with an improvement in model architecture,
and finally, providing thorough reports on the development
method used and the final model. To be able to use such
approaches and evaluate their use, highly required improve-
ments are needed within reporting and ML research design.
Within this specific framework, the use of guidelines, along
with reporting requirements used for implementing ML algo-
rithms, could aid in the surge in value of investigations.
Future work will investigate ML models that have been
applied to genetic and image data for Alzheimer’s disease.
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