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1. Introduction 

Modern ships and advanced fishing equipment have transformed fishing into a more 

practical and faster field of activity (Marchal et al., 2007). Fishing is one of the occupational 

groups with high risk (Hasselback and Neutel, 1990, IMO, 2020, McGuinness et al., 2013a). It 

is estimated that over 24,000 fishermen die and approximately 24 million fishermen are injured 

each year (Fernando and Rubén, 2006). According to FAO (2001), the accident occurring rate 

in the fishing industry in Australia is 17.7 times higher than other industries. Roberts (2004) 

stated that the fatal incidents experienced in fishing activities in the UK are twice more than 

those on commercial vessels. Moreover, Lincoln and Lucas (2010) reported that the fatal 

occupational accident rate experienced in the fishing industry of the USA is 35 times higher 

than other occupational groups. The fact that occupational accidents frequently occur on fishing 

vessels, and with a high mortal accident rate compared to other industries, obliged the 

International Maritime Organization (IMO) to take strict safety measures on fishing vessels 

(Uğurlu et al., 2020a). Despite modern-advanced fishing equipment and rigid regulations taken 

to prevent accidents, accidents in fishing activities still continue.  

Case studies investigating accidents occurring on fishing vessels in Poland and the UK 

have taken their place in the literature as the first scientific research on safety in the fishing 

industry (Bowdler, 1954, Burns, 1955, Ejsmont, 1958). Following these pioneering studies, the 

concept of safety in the fishing industry has become a multi-disciplinary field of research and 

has begun to be widely investigated. Many authors have prepared numerous papers in the last 

decades on this field.  Roberts (2004) examined a total of 616 fatal accidents that occurred on 

fishing vessels in the UK between 1976 and 1995 and found that 73% (454 accidents) of the 

accidents occurred during fishing activities. Lucas and Lincoln (2007) concluded that 24% of 

occupational accidents on fishing vessels in Alaska occurred as a result of man overboard, and 

these accidents were primarily caused by slipping, losing balance, heavy weather conditions 
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and alcohol. Petursdottir et al. (2007) examined the fatal accidents that occurred on fishing 

vessels in Iceland between 1980 and 2005. They found that occupational accidents occurred on 

fishing vessels were mostly caused by the sinking, man overboard and being hit by an object. 

Frantzeskou et al. (2012) conducted surveys with 100 fishermen in Greece to determine the 

health and safety risk of fishing vessels. In this study, the accident exposure rate of the 

fishermen was found to be 28%; 14% of them stated that they had fallen into the sea at least 

once. McGuinness et al. (2013a) and McGuinness et al. (2013b) surveyed fatalities and injuries 

in the commercial fishing fleet of Norway. The results show that there is a considerable 

reduction in fatalities and injuries number in the fishing fleet of Norway thanks to preventative 

strategies. Moreover, Domeh et al. (2021) presented a Bayesian Network application for risk 

assessment of man overboard cases in fishing vessels. “Failed to use fall arrest system” was 

demonstrated as the main pre-existing condition to cause a man overboard accident. In the 

effects of accidents perspective, Kaustell et al. (2019) focused on occupational injuries and 

diseases of fishermen in Finland. Dislocation, sprain and strain were found the most prevalent 

injury types for Finn fishermen. Furthermore, Soykan et al. (2021) tried to point out the fatality 

rate of accidents in the fishing industry in Turkey. The fatal accident rate in the fishing industry 

was determined much higher than in many other industries such as mining, construction and 

transportation.   

Inadequate procedures, work preparation, training and insufficient experience are referred 

to as potential causes for maritime accidents in the literature (Coraddu et al., 2020; Chang and 

Lin, 2006; Puisa et al., 2018; Graziano et al., 2016). These phenomena, all of which are human 

error-based, may also be key factors for fishing vessels. Obeng et al. (2022), for example, 

revealed that inadequate training and insufficient experience are the risk causal factors for 

fishing trawlers. Moreover, Lazakis et al. (2014) conducted a comprehensive review of the 

factors contributing to accidents and near-miss incidents occurring on fishing vessels in the UK. 
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The study concluded that trawlers have more occupational accidents than other fishing vessel 

types and, the majority (89%) of these occupational accidents were based on human error.  

Thorvaldsen et al. (2020) focused on the occupational health, safety and work environment of 

Norwegian fishermen. They demonstrated that the work environment may affect the fishers’ 

health condition with strain and acute injuries being the most common injuries due to a poor 

working environment. 

Consequently, Table 1 summarizes aforementioned studies carried out within the scope 

of occupational accidents on fishing vessels. 

 

Table 1. Current studies on the analysis of occupational accidents occurred on fishing 

vessels 

 

Learning lessons from past accidents is critically important for reducing and preventing 

the occurrence of them (Uğurlu et al., 2015). However, the lack of reliable and valid accident 

data is a serious limitation to doing so (Pirdavani et al., 2010). Data on occupational accidents 

is still not reliably reported in most countries around the world (Jacinto and Aspinwall, 2004, 

Uğurlu et al., 2017). The commercial concern of the ship-owners is thought to be significant in 

failing to collect the occupational accident reports regularly and systematically (Jensen et al., 

2014). The reporting rate of marine accidents is 59% in Norway, 44% in the UK and 90% in 

Canada (Hassel et al., 2011). According to the study by Thomas and Skjong (2009), only 30% 

of fire and explosion accidents in chemical tankers are reported. Wang et al. (2005) emphasized 

that the reporting rate is also limited in fishing vessels activities. Particularly, minor fisher 

injuries are not reported regularly and reliably (McGuinness et al., 2013b).  

Unreported marine accidents are still an important issue for the maritime industry. 

Conducting studies based on unreported marine accident data enables researchers to reveal the 

causes of accidents that have not been brought to light, and to strengthen the shortcomings of 
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accident investigations. In this perspective, many studies were conducted based on unreported 

accidents data (Uğurlu et al., 2017, Hassel et al., 2011, Frantzeskou et al., 2012). Unlike studies 

in the literature, in this study, unreported occupational accidents that occurred on Turkish 

fishing vessels were analysed. A two-stage approach combining the Bayesian Network (BN) 

and Association Rule Mining (ARM) methods, was utilized for the analysis of accidents. As a 

result of the study, not only the causes of the accidents and the environmental conditions 

affecting the occurrence of the accidents but also the relationship between them, were examined 

(via BN). In addition, in this study, the minimum requirements required for the occurrence of 

occupational accidents on fishing vessels were determined by taking the accident data into 

consideration (via ARM). This study provides a hybrid model for the analysis of occupational 

accidents on fishing vessels. 

The remaining sections of the paper are structured as follows. Section 2 and Section 3 

introduce the modelling theories to be utilized, followed by Section 4, which provides the 

proposed methodology and its explanation. Experimental results of the methods implemented 

and discussions with other studies are presented in Section 5. Finally, Section 6 concludes the 

study including the final evaluation of the results. 

 

2. Bayesian Network 

 Bayesian Networks (BNs) are widely employed in quantitative risk assessments, 

especially in non-precision information estimates under uncertainty (Petra et al., 2016, Ni et al., 

2016, Li et al., 2014). A BN is a graphical model that encodes probabilistic relationships among 

a group of variables (Martin et al., 2009, Jensen et al., 2009). In general, a BN consists of two 

main parts, the graphical part where the nodes and edges are shown, and the quantitative part 

where the variables are expressed by conditional probability tables (Wang et al., 2013; Cakir et 

al., 2021). There are 4 types of nodes in a BN: Root node, parent node, child node and result 
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node (Trucco et al., 2008, Loughney and Wang, 2018). The absence of an edge between two 

nodes in a network indicates that there is no possible relationship between these variables 

(Bhattacharya, 2012). There are no restrictions on the number of parent or child nodes that the 

network may have (Korb and Nicholson, 2004). 

Conditional probability logic must be known in order to calculate the probability values 

of nodes in the BN. They can be expressed by statements such as “B occurs given that A has 

already occurred” and “given event A, the probability of event B is ‘p’”, which is denoted by 

𝑃(𝐴|𝐵) = p. This especially means that if event A occurs and everything other than A is 

unrelated to event B, then the probability of B is ‘p’. Conditional probabilities are part of the 

joint probability of the intersection of A and B, 𝑃(𝐴 ∩ B).  

 

𝑃(𝐴 ∩ B) = 𝑃(𝐵|𝐴) ×  𝑃(𝐵) = 𝑃(𝐴|𝐵) ×  𝑃(𝐴) (1) 
 

Suppose (Bi, i, ∈ n) is a countable collection of events. Let A be another event and 

suppose P(Bi) and P(A|Bi) for each i ∈ n are known. Then the total probability formula is: 

 

𝑃(𝐴) = ∑ 𝑃

𝑛

𝑖=1

(𝐵𝑖)𝑃(𝐴|𝐵𝑖) (2) 

 

There are n number of B events that intersect with the A event; the probability of 

event Bi given event A is known: 

 

                                                  𝑃(𝐵𝑖|A) =
𝑃(𝐴|𝐵𝑖) × 𝑃(𝐵𝑖) 

𝑃(𝐴)
             𝑖 = 1,2,3, … . , 𝑛 (3) 

 

3. Association Rule Mining (ARM) 

Data mining, whose main purpose is to understand data, is defined as a process of 

producing knowledge from a large amount of data (Han et al., 2011). There are three main 
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components of data mining: Clustering, classification and prediction. Extracting knowledge 

from data is performed depending on these three basic components (Wu et al., 2008). One of 

the most important and frequently used functions of data mining is ARM. Compared with 

traditional parametric and non-parametric methods, ARM has a flexible structure. The most 

advantageous aspects is that it has a simple structure and does not need dependent variables 

(Győrödi et al., 2004). The disadvantage of the ARM method is that there are irrelevant or 

unnecessary rules created in high-dimensional data sets. Certain restrictions can be used to filter 

these rules. The purpose of this filter is to discover important association rules and speed up the 

search process. The fields where the method is most frequently employed are medicine and 

health (Nahar et al., 2013), transportation (Changhai and Shenping, 2019, Weng and Li, 2019), 

and finance (Ho et al., 2012).  

The rule structure emerging in ARM can be exemplified as follows. Assuming that the 

consequent variable is a serious accident, the association rule structure can be formed as: “If 

{𝑆𝑡𝑟𝑜𝑛𝑔_𝑤𝑖𝑛𝑑 =  𝑌𝑒𝑠, 𝐿𝑜𝑜𝑘𝑜𝑢𝑡_𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =  𝑌𝑒𝑠, 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 =  𝑌𝑒𝑠} → class 

“serious”. ‘Class’ denotes a predetermined target or dependent variable.  ‘Serious’ is the label 

of a class to which records can be assigned. This rule states that serious accidents may occur as 

a result of a combination of strong wind, lookout failure and operational errors (Weng and Li, 

2019). The mathematical definition of ARM is as follows. 

Suppose there are a set of attributes I = {a1, a2,…am} and a set of transactions D = {t1, t2, 

…, tn} called items and dataset, respectively. Each transaction has a unique feature and contains 

a subset of items ti ⊂ I called an itemset. The association rule is an extraction X → Y, where X 

and Y are two itemsets, and holds X ∩ Y = ∅. X is called as the antecedent (Left Hand Side 

(LHS)) and Y is called as the consequent (Right Hand Side (RHS)) (Agrawal and Srikant, 1994). 

In ARM, there are two metrics that measure the importance and significance of the rules: 
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“support” and “confidence”. “Support” defines the number of database records within which 

the association can be observed (Sinthuja et al., 2017). 

                               support (X → Y) = 
𝑋𝑈𝑌

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑏𝑎𝑠𝑒 
   (4) 

 

On the other hand, “confidence” refers to the ratio of all data containing X U Y to all data 

containing X in the dataset, and is defined by Equation (5). "Support (X)" is the number of 

transactions that contain X. "Support (X U Y)" is the number of transactions involving X and Y 

together. 

 

                                                      confidence (X → Y) = 
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋)
                                            (5) 

 

There are many proposed ARM algorithms in the literature. However, the most widely 

recognized and used ones are Apriori, Predictive Apriori and Tertius. These algorithms have 

been applied in many studies (Patil et al., 2011, Weng and Li, 2019). Therefore, in this study, 

the association rules were proposed using a Predictive Apriori algorithm, which is an extended 

form of the Apriori algorithm, to explore the unreported fishing vessel accidents’ contributory 

factors. The ARM application was performed utilizing the Weka tool, version 3.8.3 (Frank et 

al., 2016).  

The Predictive Apriori algorithm, proposed by Scheffer (2001), is an algorithm extended 

from the Apriori algorithm. The algorithm is based on the principle of providing the maximum 

accuracy by evaluating the support and confidence values of the association rules together. 

Unlike the Apriori algorithm, in the Predictive Apriori algorithm, in order to measure the 

importance and meaningfulness of association rules, the support and confidence parameters are 

gathered under a single criterion called predictive accuracy (Mutter et al., 2004). The Predictive 

Apriori algorithm takes the support value into account in addition to the confidence value in 
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measuring the rules. It uses the Bayesian framework in implementing the algorithm procedure 

(Nahar et al., 2013). This procedure is described by Scheffer (2001) as follows: “Let D be a 

database whose individual records r are generated by a static process P, let [x → y] be an 

association rule. The predictive accuracy c ([x → y]) = Pr [r satisfies y|r satisfies x] is the 

conditional probability of y ⊆ r given that x ⊆ r when the distribution of r is governed by P.” 

The mathematical definition of predictive accuracy is defined by Equation (6) (Scheffer, 

2001): 

𝐸(𝑐(𝑟)|�̂�(𝑟), 𝑠(𝑋)) =
∫ 𝑐𝐵[𝑐, 𝑠(𝑋)](�̂�(𝑋 → 𝑌))𝜋(𝑐)𝑑𝑐

∫ 𝐵[𝑐, 𝑠(𝑋)] (�̂�(𝑋 → 𝑌))𝜋(𝑐)𝑑𝑐
 (6) 

 

where 𝐸(𝑐(𝑟)|�̂�(𝑟), 𝑠(𝑋)) is the expected predictive accuracy of a rule r (X→Y), �̂� denotes the 

confidence, 𝑠(𝑋) denotes the support of X, B refers the binomial distribution, and π defines the 

prior accuracy. 

As a result, considering the above mathematical definition, the relationship between 

support 𝑠(𝑋) and confidence �̂�(𝑋 → 𝑌) to represent the predictive accuracy c(X→Y) of rule 

(X→Y) is represented with a three–dimensional diagram illustrated in Figure 1. 

  

Figure 1. Contributions of support 𝑠(𝑋) and confidence �̂�(𝑋 → 𝑌) to predictive accuracy 

c(X→Y) of rule (X→Y) (Scheffer, 2001) 

 

4. Method 

 In order to ensure maritime safety and sustainable maritime trade, it is very important 

for all stakeholders of the industry to carry out studies on unreported marine accidents. 

Therefore, this study is aimed to collect and analyse the data of unreported occupational 

accidents that occurred in commercial fishing activities. In this study, occupational accidents 

on fishing vessels with a full length of 12 meters and over between 2000 and 2018 are 
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investigated. The fishing vessels are limited to trawlers and purse seiners operating in Turkey. 

It is the responsibility of Turkish Accident Investigation Board (KAIK) to prepare and store 

accident investigation reports for marine accidents on Turkish flagged vessels. However, the 

number of accident reports related to fishing vessels in the database is very low. In order to 

ensure maritime safety and sustainable maritime trade, it is very important for all stakeholders 

of the industry to carry out studies on unreported marine accidents. Therefore, this study is 

aimed to collect and analyse the data of unreported occupational accidents that occurred in 

commercial fishing activities. Accident data was collected through face-to-face interviews with 

fishermen at the ports where fishery cooperatives are located. As a result of the interviews, a 

total of 173 unreported occupational accidents are obtained. The accident data collected in this 

study is related to cases of injuries, disability or deaths. Cases such as ship loss, environmental 

pollution or ship structural damage are not included in the scope of this study.  

This study revealed that Bayesian Network and ARM methods could be used in a hybrid 

way within the scope of accident analysis. An accident network structure that summarizes 

occupational accidents in fishing vessels with the Bayesian network approach has been 

revealed. This network structure allows users to predict the risk of occupational accidents on 

fishing vessels under variable conditions. With the Predictive Apriori algorithm, the minimum 

conditions required for occupational accidents to occur on fishing vessels can be determined. 

The study consists of the following 4 steps. 

Step 1: In the first step of the study, a Microsoft Excel based database with data obtained 

from fishermen is created. In accident investigation studies, data pre-processing is applied to 

make the data for analysis available before starting the analysis. For this purpose, many 

researchers identify descriptive information as well as reasons that play a role in the occurrence 

of accidents. The database contains descriptive information such as operation status, ship type, 
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hull length, accident consequence, weather and sea condition, the hunting equipment causing 

the accident, the time of the accident (daylight or night) as well as the causes of the accident. 

Step 2: In Reason's Swiss Cheese Model, the events leading to accidents are grouped 

under two main headings: Latent factors and active failures. Active failures are the visible side 

of accidents. According to this model, each accident contains active failures, and behind the 

active failures there are latent factors (Reason, 1990, Uğurlu et al., 2018). In the modified 

human factor classification system (HFACS-PV) proposed by Uğurlu et al., (2018) for the 

analysis of marine accidents, it has been observed that marine accidents do not occur only as a 

result of active failures and latent factors, but also every active failure requires appropriate 

operational conditions (environmental factors) to result in an accident. Operational conditions 

are not a pre-condition (latent factor) that leads to unsafe act, but a necessary complementary 

factor for unsafe act to result in an accident. Each marine accident needs at least one operational 

condition. Operational conditions include the internal-external operational environment in 

which the accident occurred, meteorological conditions and malfunctions that prevent ship 

movement. They proved the validation of this classification (latent factors, active failures, and 

operational conditions) with 4 studies (Uğurlu et al., 2018, Uğurlu et al., 2020a, Uğurlu et al., 

2020b, Sarıalioğlu et al., 2020). In this study, the causes of occupational accidents on fishing 

vessels are categorized by considering this hierarchical structure. At this step of the study, the 

data obtained in the previous step is thoroughly examined, and active failures, latent factors and 

environmental factors of accidents are identified. Based on such data, an accident network is 

created that summarizes the occurrence of occupational accidents on fishing vessels. The BN 

method is used for the establishment of the accident network. The fact that the BN model does 

not depend on a single variable and can be made inference for all variables in the network makes 

it an effective decision-making and analysis tool (Uğurlu et al., 2020b). The relationship 

between nodes, and conditional probability tables can be established using two main 
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approaches. The first one is based on statistical data obtained from the database and the other 

one is based on expert opinions. In practice, if needed, these two approaches can be used in a 

combined way. For example, while numerical parameters can be obtained from a database, the 

network structure may be created taking the expert opinion into account (Cheng and Greiner, 

2001, Pristrom et al., 2016; Uğurlu et al., 2020a, Uğurlu et al., 2020b). In this study, a combined 

approach is chosen for use. The network structure is established by taking expert opinions into 

consideration; conditional probability tables are created based on the data obtained from the 

database. The experts interviewed in this study are knowledgeable in the fields related to 

maritime, fishing and hunting operations. Explanatory information about the expert group is as 

follows: 

Expert 1: Maritime expert on accident investigation with experience in marine accidents, 

occupational accidents and fishing vessel accidents - 1 person. 

Expert 2: Marine engineer specialized in hunting technologies, design of fishing gear, 

underwater technologies, and management of fishing vessels - 2 persons. 

Expert 3: Marine engineer specialized in fisheries management, fish farming, aquaculture 

marketing and fishing vessels - 2 persons. 

Expert 4: Master mariner with 10 years of experience on fishing vessels - 2 persons 

Step 3: In the third step of the study, a total of 3 axiom tests are applied to demonstrate 

the accuracy of the network (accident network). Axiom tests are used for validation in many 

BN studies (Pristrom et al., 2016). Sensitivity analysis is performed after proving the validity 

of the network, as well. With sensitivity analysis, the effect of nodes on accident occurrence 

can be observed (Uğurlu et al., 2020b). The BN created in this study summarizes the occurrence 

of occupational accidents on fishing vessels. With this network, accident investigators can 

predict the occurrence of occupational accidents under changeable conditions (operational 

conditions, active failures and latent factors). Furthermore, the effect of the measures taken to 
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prevent accidents on fishing vessels can be observed. In this study, all calculations and analyses 

are conducted using the software tool named Genie. Genie is selected for use due to its easy 

and understandable user interface (Fusion, 2017). 

Step 4: Marine accidents occur as a result of chain errors. Identifying combinations of 

factors leading to accidents allows accident investigators to understand how accidents occur 

(Uğurlu et al., 2015). ARM is a useful method especially in extracting the implicit knowledge 

within databases and discovering the association rules among a set of variables (Nahar et al., 

2013). In this study, the BN method explains the occupational accidents that occur on fishing 

vessels with the conditional probability approach. The ARM method, on the other hand, defines 

the minimum conditions required for the occurrence of an occupational accident. Similar to the 

BN, data pre-processing is also required in ARM. For this purpose, the antecedent and 

consequent variables to be used in the application should be determined (Agrawal and Srikant, 

1994, Sinthuja et al., 2017). In this study, ARM variables are obtained from the accident 

database created in the first step of the study. The antecedent variables in the ARM method 

include the operational conditions under which the accident occurred, and the general 

characteristics of vessels and the demographic profile of seafarers.  The consequents, which are 

called “class” variables, on the other hand, are accident type and accident consequence. These 

9 variables used in the ARM application are: 

I- Education level: nominal – 3 values: uneducated (having no diploma but can read and 

write), primary education (having primary education diploma), and at least high school 

education (having at least high school or higher education diploma). 

II- Vessel length: nominal – 2 values: <24 (under 24 m), ≥24 (greater than or equal to 24 m). 

III- Vessel type: nominal – 2 values: trawl, seine. 

IV- Experience: nominal – 2 values: <10 (under 10 years), ≥10 (greater than or equal to 10 

years). 
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V- Weather and sea condition: nominal – 2 values: good (4 Beafourt and below), bad (5 

Beafourt and above). 

VI- Day status (Time): nominal – 2 values: daylight (06:00/17:59), night (18:00/05:59). 

VII- Sleeplessness: nominal – 2 values: no (at least 8 hours sleep over the last 24 hours), yes 

(less than 8 hours sleep over the last 24 hours); classified regarding the sleep time duration 

recommendation report prepared by Hirshkowitz et al. (2015) on behalf of Sleep 

Foundation of US. 

VIII- Accident type (class variable): nominal – 3 values: man overboard, hit by an object, and 

jamming. 

IX- Accident consequence (class variable): nominal – 3 values: injury, disabled, dead. 

 

4.1. Occupational Accidents on Fishing Vessels 

The most frequently observed occupational accidents on fishing vessels are man 

overboard (66 accidents), hit by an object (65 accidents) and jamming (42 accidents). 73% of 

fatal accidents, 83% of disability and 68% of injuries occurred in purse seine (Table 2). The 

most frequently observed accident category in purse seine vessels is hit by an object, whereas 

man overboard in trawl vessels. One of the interesting findings of the study is that occupational 

accidents are concentrated in fishermen with 10 years or more experience (49%). 67% of the 

accidents are associated with seafarers’ lack of sleep which is the main cause of fatigue. 79% 

of accidents occurred on fishing vessels with a length of 24 meters and over. 

 

Table 2. General distribution of occupational accidents on Turkish fishing vessels. 
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4.2. Bayesian Network Applications 

The BN created in the study consists of 4 levels: Level 1 - latent factors, Level 2 - active 

failures, Level 3 - operational conditions (environmental factors), and Level 4 - accidents 

(Figure 2). Each node in the network represents a cause of the accident or an operational 

condition. The BN (accident network) is created considering the accident data (based on 

interviews), the way accidents occurred and expert opinions. Table 3 shows the nodes in the 

BN created in this study with their abbreviations, probability values, parents and child nodes. 

 

Figure 2. Accident network (Bayesian network) structure used in this study 

Table 3. Content of the Bayesian network 

 

4.2.1. Factors that Play a Role in the Occurrence of Occupational Accidents on Fishing 

Vessels 

4.2.1.1. Latent Factors 

 The latent factors are represented in green in the BN (Figure 2). Many researchers 

emphasize that latent factors in accidents are difficult to identify (Gordon, 1998, Uğurlu et al., 

2018). In this study, latent factors are examined at two sub-levels: Pre-conditions for unsafe 

acts (dark green) and inconveniences (light green) leading to the formation of these pre-

conditions. (Figure 2). Pre-conditions for unsafe acts are examined under 4 nodes as non-

conformity in hunting gear, inappropriate personal protective equipment, lack of situational 

awareness and lack of communication.  

Non-conformity in Hunting Equipment: Nowadays, fishing gears have been developed in 

parallel with technologies (Szczepanek et al., 2018, Uğurlu et al., 2020a). However, these 

technological developments, which provide great convenience to the employees, bring new risk 

factors (Kim et al., 2019, Sur and Kim, 2020). Non-conformities in fishing gears (such as 
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windlass, net, fish pumps, net reels, davit and mast equipment) are considered under this node. 

There are two parent nodes for this node: Malfunction in the fishing gears and hunting 

equipment experience (Figure 2).  

Inappropriate Personal Protective Equipment: Protective equipment is personal protective 

safety equipment designed to prevent a hazard in working conditions or to protect the employee 

in case of danger. These include personal equipment such as hard hats, lifejackets, safety shoes, 

gloves and seat belts. When the accident is unavoidable (Hollnagel, 2016), protective 

equipment provides the last barrier, helping mitigate consequences. Parent nodes that play a 

role in the formation of inappropriate personal protective equipment are protective equipment 

ergonomics defect (uncomfortable equipment), insufficient training and lack of equipment. 

Situational Awareness: Lack of situational awareness affects seafarers' perception of existing 

risks and may lead to an accident (Sanfilippo, 2017). This may occur as a result of fatigue, 

alcohol or busyness with another work (Hystad et al., 2017, Last et al., 2017). There are two 

factors that affect fatigue formation in the BN established in the study. These are excessive 

workload and sleeplessness. 

Communication and Coordination: Lack of communication and coordination on fishing 

vessels is caused by bad team synergy, hearing barrier and vision barrier. Fishing is teamwork. 

Disagreements and personal conflicts among the fishermen can cause tensions within the team. 

This situation, which is called bad team synergy, weakens the communication and coordination 

among the fishermen. On fishing vessels, main engines, auxiliary engines and fishing gears are 

the main source of noise. Noise causes temporary hearing loss. This situation in the BN is called 

as hearing barrier. Obstacles on deck, poor lighting and strong sun rays weaken the vision. This 

situation in the BN is called as vision barrier. 
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4.2.1.2. Active Failures 

In this study, the events causing the accident are named as active failures. Most accident 

reports contain detailed information about active failures. Focusing on active failures is the first 

step to understanding accident occurrences (Uğurlu et al., 2018). Therefore, active failures are 

the main focus of accident investigations (Li and Harris, 2006). Accident investigators can 

easily reveal possible latent factors by analysing the active failures in-depth. In this study, non-

conformities causing active failures are addressed under the pre-conditions for unsafe acts. 

 

4.2.1.3. Operational Conditions 

Accident occurrences are inevitable when active failures are combined with inappropriate 

operational conditions (Uğurlu et al., 2018). Each accident event involves at least an active 

failure and an operational condition (Sarıalioğlu et al., 2020, Uğurlu et al., 2020). The 

operational condition is divided into 2 sub-categories as internal and external environment 

(Uğurlu et al., 2020b). They are shown in blue in the BN. Internal environmental factors are 

conditions, which can be partially controlled by fishermen. In this study, it is named as an 

inappropriate operational environment. The preconditions that lead to an inappropriate 

operational environment are a messy working environment and slippery ground. The presence 

of fishing gears such as nets and ropes on fishing vessels causes a crowded and mixed working 

area (Fulmer and Buchholz, 2002). Failure to stack the nets properly after fishing activities and 

leaving the ropes scattered pose a risk to fishermen. These situations are shown as a messy 

working environment in the BN. Fishing activities are usually carried out on the deck which is 

the main location of occupational accidents occurrences onboard (McGuinness et al., 2013b). 

Seawater spillage, oil spillage and sea creatures create a dangerous working environment for 

fishermen while working on deck. They are called slippery ground in the BN. External 

environmental factors are conditions that occur outside the control of fishermen. Weather and 

sea conditions, and day status are considered as external environmental factors. 
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4.2.1.4. Result Nodes 

The BN in this study has 3 result nodes: Man overboard, hit by an object, and jamming. They 

are represented by orange in the BN. Table 3 provides explanatory information about the result 

nodes. The most common causes of man overboard are slippery surface, loss of balance and 

entanglement in the fishing gear. Being stuck in a rolled rope and catching by a capstan are 

evaluated as jamming. Hit by an object, on the other hand, is associated with falling of any 

object, rope breaking and crashing lifting equipment. 

 

4.2.2. Test Case for Bayesian Network 

 Child node "Fatigue" (Yes/No) is chosen for the calculation example. This node has two 

parent nodes, namely "Workload" (Excessive/Normal) and "Sleeplessness" (Yes/No) (Figure 

3), which are root nodes.   

 Based on the accident data, the initial (marginal) probability values of these two root 

nodes are calculated as follows. The "Excessive Workload" is seen in 58 of 173 accidents. 

Therefore, the initial probability value for the “Excessive” state of the “Workload” node is 

calculated as 58/173 = 0.3352 (33.52%). The probability value for the “Normal” state is 1-

0.3352 = 0.6648 (66.48%). The initial probability value for the “Yes” state of the 

“Sleeplessness” root node is 32.94% (57/173), and the initial probability value for the “No” 

state is 67.06% (1-0.3294) (Figure 2). 

 

Figure 3. Bayes network structure for the "Fatigue" node 

Table 4. Conditional probability tables for the "Fatigue" node 

 

According to the BN created in the study, there are a total of 4 combinations in which 

"Fatigue” is "Yes" or "No". The conditional probability values for these 4 combinations are 

presented in Table 4. Based on these conditions, the posterior probability values for the "Yes" 
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and "No" states of the "Fatigue” node are calculated as 35% and 65%, respectively. The 

posterior probability value for the "Yes" state of "Fatigue" is obtained as follows: 

P(Fatigue (Yes)) = [(P(Fatigue(Yes)|Workload(Excessive), Sleeplessness(Yes)) × 

P(Workload(Excessive)) × P(Sleeplessness(Yes))] + 

[(P(Fatigue(Yes)|Workload(Excessive), Sleeplessness(No)) ×  

P(Workload(Excessive) × P(Sleeplessness (No))] + 

[(P(Fatigue(Yes)|Workload(Normal), Sleeplessness(Yes)) ×  

P(Workload(Normal)) × P(Sleeplessness(Yes))] + 

[(P(Fatigue(Yes)|Workload(Normal), Sleeplessness(No)) ×  

P(Workload(Normal) × P(Sleeplessness(No))] 

= (0.98×0.34×0.33) + (0.41×0.34×0.67) + (0.58×0.66×0.33) + 

(0.05×0.66×0.67) 

                             = 0.35 (35%) 

The posterior probability value for the "No" state of "Fatigue" is: 

    = 1-0.35 

    = 0.65 (65%) 

The nodes in the network and their posterior probability values are shown in Figure 4.  

 

4.2.3. Validation 

Axiom tests are conducted to prove the validity of the network established in the study 

and the conditional probability tables it contains. Axiom tests are widely used by many 

researchers in Bayesian studies (Uğurlu et al., 2020a, Uğurlu et al., 2020b, Salleh et al., 2017). 

This study includes 3 axiom tests: Axiom 1, Axiom 2 and Axiom 3 tests.  

 

Figure 4. Nodes in the network and their posterior probabilities 

 

Axiom 1: The increase or decrease in the probability values of each parent node should cause a 

relative increase or decrease in the child node (Uğurlu et al., 2020a). The "Man Overboard" 

child node is chosen for the example. The parental nodes of this node are "Operational 

Environment", "Weather and Sea Condition", "Unsafe Act", and "Day Status" (Figure 4). As a 
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result of the test, it is observed that the increase (100%) and decrease (100%) of the parental 

nodes caused an increase and decrease in the child node in the corresponding direction (Table 

5). Axiom 1 tests are applied for all nodes and similar results are obtained.   

 

Table 5. Axiom 1 test results for the "Man Overboard" node. 

 

Axiom 2: The impact of the gradual change in the probability values of each parent node (10%, 

20%, 30%, …, 100%) on the child node is expected to be consistent (Yang et al., 2008). The 

"Hit by an Object" node is chosen as an example to demonstrate the Axiom 2 test. The parent 

nodes of this node are "Weather and Sea Conditions", "Unsafe Acts" and "Day Status" (Figure 

4). A gradual increase of each of these nodes causes a corresponding increase in the probability 

of the child node (Figure 5). Similar tests are made for the result nodes of "Man Overboard" 

and "Jamming" (Figure 6-7). The obtained results satisfy Axiom 2.  

 

Figure 5. Probability changes of the "Hit by an Object" node 

Figure 6. Probability changes of the "Man Overboard" node 

Figure 7. Probability changes of the "Jamming" node 

 

Axiom 3: The individual effects of parent nodes on child nodes are expected to be less than 

their combined effects (John et al., 2016). As an example, for Axiom 3, the "Unsafe Act" node 

is selected. The parent nodes of this node are "Non-conformity in Hunting Equipment", 

"Personal Protective Equipment", "Situational Awareness" and "Communication and 

Coordination". When the negative expressions of these parent nodes are made 100% 

individually, the probability values for the "Yes" state of the "Unsafe Act" node are observed 

51%, 47%, 53% and 50%, respectively. When these four parent nodes’ negative statements are 

made 100% together, it is found that the probability value for the "Yes" state of the "Unsafe 
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Act" node is 100%. Axiom 3 test is applied to all child and parent nodes. The obtained results 

are in line with Axiom 3. 

 

4.2.4. Sensitivity Analysis 

Sensitivity analysis can be used to identify the most critical nodes in the BN causing 

system failure. Sensitivity analysis allows researchers to observe the impact of each node on 

the result nodes (Dai et al., 2019, Wang et al., 2017). In this study, sensitivity analysis is applied 

for each level of the network. Thus, researchers can observe major vulnerabilities that play a 

role in the accident occurrence at each level with a view to recommending preventive solutions. 

In this study, there are 30 nodes in total, excluding the result nodes. The probability values of 

each node are set first 0 (0%) and then 1 (100%). Thus, the effect of each node on the result 

nodes is observed. The sensitivity analysis results are illustrated in Figures 8-11. 

 

Figure 8. Sensitivity analysis results for a) "Man Overboard", b) "Hit by an Object", and c) 

"Jamming" 

Figure 9. Sensitivity analysis results for "Pre-condition for Unsafe Acts" 

Figure 10. Sensitivity analysis results for "Operational Conditions" 

Figure 11. Sensitivity analysis results for "Unsafe Acts" 

 

4.3. ARM Applications 

4.3.1. Test Case for Association Rule Mining 

In the ARM application, initially, itemsets consisting of one or more items are 

determined. Then, the frequency of occurrence of the determined itemsets in the dataset is 

calculated which is defined as the support count (α). The ratio of the support count (α) to the 

number of data (N) is determined as support (s). N denotes the total number of data sets, which 

refer to a total of 173 unreported occupational accidents, used in the study (i.e., the total number 
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of rows within historical data). Confidence (c), on the other hand, is the ratio of the total number 

of X U Y itemsets to the total number of data containing the set of X itemset where X is called 

as the antecedent and Y is called as the consequent. To show the calculation process, a test case 

is conducted with a sample dataset series from the dataset used in this study. In the test case, 

“education level, vessel type, weather and sea condition” (antecedent variables (X)) and 

“accident type” (consequent variable (Y)) are selected. The values of these variables are shown 

in detail in Step 4 in the method section of the study. The sample dataset for the test case is 

shown in Table 6. 

 

Table 6. Sample dataset for test case of ARM 

 

Considering Equations (4), (5) and (6), association rules extracted using the Predictive Apriori 

algorithm can be exemplified as follows: 

Sample rule 1: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
𝛼({𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 , 𝑡𝑟𝑎𝑤𝑙, 𝑚𝑎𝑛 𝑜𝑣𝑒𝑟𝑏𝑜𝑎𝑟𝑑})

(𝑁)
=  

2

7
= 0.28,  

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
𝛼({𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 , 𝑡𝑟𝑎𝑤𝑙, 𝑚𝑎𝑛 𝑜𝑣𝑒𝑟𝑏𝑜𝑎𝑟𝑑})

𝛼({𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 , 𝑡𝑟𝑎𝑤𝑙})
=

2

2
= 1 

 

If {education_level = primary_education ∩ vessel_type = trawl} => class man_overboard 

(support = 0.28, confidence = 1, predictive accuracy = 0.91 (Figure 1)). 

 

Sample rule 2: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
𝛼({ 𝑔𝑜𝑜𝑑, 𝑗𝑎𝑚𝑚𝑖𝑛𝑔})

(𝑁)
=  

2

7
= 0.29, 

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
𝛼({𝑔𝑜𝑜𝑑, 𝑗𝑎𝑚𝑚𝑖𝑛𝑔})

𝛼({𝑔𝑜𝑜𝑑})
=

2

4
= 0.5 

 

If { weather_and_sea_condition = good} => class jamming (support = 0.29, confidence = 

0.50, predictive accuracy = 0.46 (Figure 1)). 
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4.3.2. Application of ARM on Fishing Vessel Accidents Dataset 

In this study, two experiments are performed on the dataset set for ARM application. The 

first experiment revealed the rules considering man overboard, jamming and hit by an object. 

In the second experiment, the association rules for the accident consequence (injury, dead and 

disabled) together with the accident type are discovered. The Predictive Apriori algorithm is 

employed to extract the association rules regarding these consequent variables. Because of the 

unbalanced distribution of data, nine rules with the highest predictive accuracy level for each 

consequent variable are selected. The details of these two experiments are given below. 

 

4.3.2.1. Association Rule Mining to Find Out Accident Type Conditions (The First 

Experiment) 

In the first experiment, man overboard, jamming and hit by an object are determined as 

consequents. Six of the nine rules for the hit by an object class are attributed to the vessel length 

greater than or equal to 24 m and seine fishing vessels. The result indicates that accidents 

occurring on large seine type fishing vessels are likely to be due to hit by an object. On the 

other hand, the ARM results reveal weather and sea condition as a good indicator for accident 

type. More specifically, jamming and hit by an object are correlated with good weather and sea 

condition, while man overboard is attributed to bad weather and sea condition All rules based 

on the accident type created by the Predictive Apriori algorithm are shown in Table 7 in detail. 

 

Table 7. Rule extraction for accident type using the Predictive Apriori algorithm 

 

4.3.2.2. Association Rule Mining to Find Out Accident Consequence Conditions (The 

Second Experiment) 
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In the second experiment, injury, dead and disabled are determined as consequents. 

Predictive Apriori discovered the results for injury, dead and disabled especially for education 

level. It is revealed that accident risk increases as the education level decreases. Fishermen with 

at least high school education, for example, are less likely to experience an occupational 

accident due to man overboard and hit by an object accidents. On the other hand, according to 

the rules produced by Predictive Apriori, it should be noted that accidents experienced by 

fishermen with 10 years or more experience are likely to result in fatal accidents due to hit by 

an object. All rules based on the result created by the Predictive Apriori algorithm are shown 

in Table 8. 

 

Table 8. Rule extraction for accident consequence using the Predictive Apriori algorithm 

 

5. Result and Discussion  

Determining which combinations of factors cause an accident event is a complex 

problem, especially when it comes to human factors (Coraddu et. al., 2020). Innovative 

approaches or hybrid models for determining the human factors that contribute to maritime 

accidents are frequently used within the scope of accident analysis recently. These approaches 

help us understand the accident occurrences in detail and determine preventive measures to 

prevent the recurrence of these accidents (Babaleye et al.2020, Navas de Maya et al., 2020, 

Navas de Maya et al., 2021). Within the scope of maritime accident analysis, many analysis 

models such as Human Factors Analysis and Classification System (HFACS), BN, Fault Tree 

Analysis (FTA), Event Tree Analysis (ETA), Cognitive Reliability and Error Analysis Method 

(CREAM), Hazard & Operability Analysis (HAZOP) have been used in a hybrid way to make 

in-depth analysis in the literature. Unlike the studies in the literature, BN and ARM methods 

were used in a way demonstrated in this study. The Bayesian network presented in this study 
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enables both qualitative and quantitative analysis of the factors that lead to the occurrence of 

occupational accidents on fishing vessels. The Predictive Apriori algorithm, on the other hand, 

determines the minimum conditions required for the occurrence of occupational accidents on 

fishing vessels. This study revealed that BN and ARM methods can be used within the scope 

of accident analysis. The important results of the study are given below. 

The data used in this study shows that 71% of occupational accidents occurred on seine 

vessels and 29% on trawlers, which is not fairly supported by the literature. McGuinness et al. 

(2013b) and Lazakis et al. (2014) identified the trawler fleet has the highest occupational 

accidents rates of injury occurrence.  The most common occupational accident category on 

Turkish fishing vessels is man overboard (Table 2). Domeh et al. (2021) also highlighted that 

man overboard is a major accident scenario for fishing vessels. Furthermore, Abraham (2001) 

stated that the rate of man overboard in all accidents has 27% in the USA, 27% in Norway, 30% 

in Denmark and 33% in Iceland. In the report published by MAIB (2008), it was reported that 

33% of the fishing vessel accidents that occurred in the UK were man overboard. The rate of 

man overboard for Turkey in this study was calculated as 38% (Table 2). 32% of the man 

overboard accidents observed in Turkish fishing vessels resulted in deaths, 65% in injuries, and 

3% in being permanently disabled. When the BN sensitivity analysis results were analysed, the 

factors that play a role in man overboard were found as inappropriate operational environment, 

bad weather and sea conditions, unsafe acts and day state (night). These results show that 

operational conditions are a dominant factor in man overboard (Figure 8). Fishing gears, setting 

and hauling which is the most risky work conducted onboard in fishing vessels (McGuinness 

et al., 2013b), and the space they occupy on decks, lead to a tight working area (Fulmer and 

Buchholz, 2002). Failure to stack nets properly in this congested working area, leaving the ropes 

scattered, and slippery ground cause an inappropriate working area on fishing vessels. The BN 

and sensitivity analysis results established in the study support this argument (Figure 4 and 
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Figure 10). It was revealed that the most important factor that plays a role in the formation of 

an inappropriate working area is slippery ground. Fishing activities are usually carried out from 

the deck. Seawater, oil and sea creatures create a dangerous environment for fishermen working 

on the deck (ILO, 2014). Especially, wet nets and uncleaned sea creatures caught in the net's 

eyes pose a great risk in terms of falling into the sea. According to a study by Jensen et al. 

(2014) in the USA, 30% of the occupational accident that occurred on the fishing vessels 

resulted in man overboard and the reason for 33% of them is slippery surface. Wang et al. 

(2005) stated that 2.7% of fishing vessel accidents in the UK were caused by slippery surface. 

This rate is 12.14% in occupational accidents that occur in Turkish fishing vessels (slippery 

ground). Preventing accidents caused by slippery surface is possible with the installation of 

non-slippery deck surfaces and the use of protective equipment. The use of protective 

equipment can prevent the occurrence of occupational accidents on fishing vessel.  It was stated 

as a common problem during the interviews with fishermen that the structure of the protective 

equipment is not designed for fishing activities. Many fishermen said that they are not able to 

perform fishing activities with protective equipment. Protective equipment designed for 

merchant ships is used on fishing vessels. In the report published by MAIB (2008), it was seen 

that in only one of the 65 man overboard accidents, the fisherman was wearing a lifejacket. In 

the study by Lang (2000), many fishermen emphasized that they are reluctant to wear the 

lifejacket due to impracticality and difficulty in working. Although much protective equipment 

has proven itself, a study conducted in Sweden notes that the personal protective equipment is 

not used in the 73% of occupational accidents on fishing vessels (Törner et al., 1995). Similar 

to the studies in the literature, the results of this study reveal that the protective equipment used 

on fishing vessels should be designed considering the nature and working environment of the 

fishing activities. Thus, the risk of accident or the impact of its consequences can be minimized. 
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The data used in this study also shows that 38% of occupational accidents occurred as a 

result of hit by an object, 38% man overboard and 24% by jamming. Considering all 

occupational accident categories, the death rate in the accidents is 27% and the rate of 

permanently disability is 9%. These results of the study again reveal that the fishing activities 

are a dangerous occupation, as stated by the studies in the literature (Fulmer and Buchholz, 

2002, Håvold, 2010). According to the results of the BN sensitivity analysis, the factors that 

play a role in the accident formation for hit by an object and jamming were found to be unsafe 

act, heavy weather and sea conditions and night. Although unsafe act is in three accident 

categories, it is more significant in hit by an object and jamming accidents (Figure 8). 

Preconditions playing a role in the occurrence of unsafe act are insufficient situational 

awareness, non-conformity in hunting equipment, non-ergonomics of personal protective 

equipment and lack of communication and coordination. (Figure 9). The most important reason 

for insufficient situational awareness was found as fatigue (Figure 11). Fatigue is one of the 

accident factors that cause human errors resulting from excessive workload and insomnia (Kurt 

et al., 2016, Navas de Maya et. al., 2018). In many recent studies, it has been revealed that there 

is a relationship between maritime accidents and fatigue (De Maya and Kurt, 2020, Fan et al. 

2021). Along with the increasing operational demands on ships, the decrease in the number of 

crew triggers fatigue. Fatigue prevents a job from being carried out safely (Uğurlu et. al., 2021). 

Many fishing vessel crews have to carry out intense work throughout the season in order to 

generate income. This intense work tempo causes excessive workload and fatigue. Accidents 

are inevitable with the effect of fatigue caused by excessive workload and sleeplessness. This 

issue can be addressed by a quota application to all fishing vessels. A quota application can 

reduce competition in fishermen, as a result the excessive workload and fatigue caused by 

sleeplessness will be prevented. Other non-conformities that play a role in the formation of the 

unsafe act are presented in Figure 11. 
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BN sensitivity analysis results show that heavy weather and sea conditions are significant 

in man overboard (38%) and jamming (26%) accidents. Lucas and Lincoln (2007) found that 

47% of man overboard accidents that occurred on fishing vessels in Alaska occurred in heavy 

weather and sea conditions. Fishermen can get information about weather and sea conditions in 

advance, with today's technology. Nowadays, heavy weather and sea conditions are no longer 

a fate for seafarers. However, ship owners may prefer to hunt by taking the risk of accident in 

fishing in such dangerous weather conditions. In the study by Woodley (2000), it is emphasized 

that the weaknesses in the rules and applications related to fisheries management cause this.  

In this study, an ARM method (Predictive Apriori algorithm), which predicts accident 

type and accident consequences, was employed in order to better understand the cause-effect 

relationship between antecedent and dependent variables. The ARM application is based on the 

accident data created in the first step of this study. This database includes antecedent variables 

such as day status, weather and sea condition and experience (Tables 7 and 8). In this study, the 

Predictive Apriori algorithm determined the minimum conditions (rules) required for the 

occurrence of each occupational accident (Table 7). In addition, the Predictive Apriori 

algorithm created rules by considering results of the accidents as well as the accident category 

(Table 8). The first 2 rules with the highest accuracy revealed by the Predictive Apriori 

algorithm for fatal man overboard, hit by an object and jamming (occupational accident types) 

that occurred on fishing vessels are listed below (Other rules created by the algorithm are 

presented in Tables 7 and 8 in detail): 

 

Fatal man overboard accident: 

Rule 1: If {education level = primary education ∩ vessel type = seine ∩ weather and sea 

conditions = bad} => class man overboard (fatal) (98.18%). 
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Rule 2: If {education level = primary education ∩ vessel length = ≥24 ∩ weather and sea 

conditions = bad ∩ day status = night ∩ sleeplessness = no} => class man overboard (fatal) 

(96.47%). 

Fatal hit by an object accident: 

Rule 1: If {vessel type = seine ∩ experience = ≥10 ∩ weather and sea conditions = good ∩ 

day status = daylight ∩ sleeplessness = yes} => class hit by an object (fatal) (90.59%). 

Rule 2: If {education level = primary education ∩ vessel type = seine ∩ experience = ≥10 ∩ 

weather and sea conditions = bad ∩ day status = night} => class hit by an object (fatal) 

(68.92%). 

Fatal jamming accident: 

Rule 1: If {education level = uneducated ∩ vessel type = trawl ∩ experience = 10>} => class 

jamming (fatal) (93.73%). 

Rule 2: If {education level = uneducated ∩ vessel type = trawl ∩ sleeplessness = yes} => class 

jamming (fatal) (93.73%). 

In many accident analyses studies on grounding and sinking of merchant ships, it is 

emphasized that the lack of education and bad weather conditions are the factors that cause 

accidents (Uğurlu et al., 2020b). The rules produced by ARM in this study show that there is a 

similar situation for fatal man overboard accidents on fishing vessels (Rule 1-2). Laasjord 

(2006) and Laursen et al. (2008) stated that hit by an object is one of the most important causes 

of deaths in fishing vessels and these accidents mostly occur in trawl vessels. However, in this 

study, it was revealed that hit by an object is the second most fatal accident type after man 

overboard accidents, and the accidents of this type were concentrated in seine vessels. In this 

study, as in studies by Törner et al. (1995), Antoa et al. (2008) and Kaustell et al. (2016), the 

ARM results determined that jamming accidents are one of the most common accident causes 

in trawl vessels. 
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6. Conclusion 

Fishing, which is carried out in an environment away from health and rescue services, is 

inherently difficult and dangerous. Even simple movements in rough seas are difficult and 

tiring. Fishermen are working between complicated fishing gears in a narrow and moving area 

in all weather conditions regardless of day and night. This causes the fishing activities to be 

considered a very dangerous occupation in many countries.  

In this study, a hybrid model that can be used in the analysis of occupational accidents on 

fishing vessels is suggested. A network structure that enables the qualitative and quantitative 

analysis of occupational accidents on fishing vessels with the Bayesian network method has 

been put forward and, with the ARM method, on the other hand, the minimum conditions 

required for the occurrence of these accidents are determined. The BN presented in this study 

summarizes the occurrence of occupational accidents on fishing vessels. With the conditional 

probability approach used in the BN, it becomes possible to analyse active failures, latent 

factors and operational conditions that cause occupational accidents and to observe how these 

factors affect the occurrence of accidents. In addition, this network allows predicting the 

occurrence of an accident under changeable conditions. In other words, the network structure 

allows modelling and evaluation of fishing vessel accident scenarios. For example, changes in 

situational awareness can be observed in the event of fatigue (yes = 100%) and alcohol use (yes 

= 100%) for a fisherman. Thus, the impact of situational awareness on the occurrence of an 

accident can be estimated by considering the sea situation, day condition and working area. 

In this study, ARM was also applied using the Predictive Apriori algorithm to analyse 

occupational accidents resulting in deaths, injuries and disability on fishing vessels. The 

application is based on the descriptive variables of the study (education level, vessel length, 

etc.). Many studies within the scope of accident analysis are conducted by considering the 
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causes of accidents. In this study, in addition to BN modelling, an analysis of occupational 

accidents in fishing vessels was carried out with ARM based on descriptive variables of the 

dataset. The algorithm creates accident occurrence rules by considering the influencing factors 

affecting accidents. These rules allow for understanding how occupational accidents occur on 

fishing vessels. Thus, necessary measures can be determined to prevent the occurrence of 

occupational accidents.   
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Table 1. Current studies on the analysis of occupational accidents on fishing vessels 

References Journal name Methodology Investigation area Time-period Data source Data size 

Roberts (2004) Occupational and 

Environmental 

Medicine 

Descriptive / 

Explanatory 

UK 1976-1995 Registrar General 

for Shipping 

and Seamen, 

MAIB 

616 

Wang et al. 

(2005) 

Accident Analysis 

and Prevention 

Descriptive / 

Explanatory 

UK 1994-1999 MAIB 370 

Lucas and 

Lincoln (2007) 

American Journal 

of Industrial 

Medicine 

Descriptive / 

Explanatory 

Alaska 1990-2005 Alaska 

Occupational 

Injury 

Surveillance 

System 

71 

Petursdottir et 

al. (2007) 

International 

Maritime Health 

Descriptive / 

Explanatory 

Iceland 1980-2005 Statistics Iceland 168 

Laursen et al. 

(2008) 

International 

Journal of Injury 

Control and Safety 

Promotion 

Linear regression Denmark 1989-2005 Danish Maritime 

Authority 

114 

Allen et al. 

(2010) 

International 

Maritime Health 

Descriptive / 

Explanatory 

UK - Questionnaire 81 

Roberts et al. 

(2010) 

International 

Maritime Health 

Linear 

Regression and 

Spearman’s Rank 

Correlation 

UK 1948-2008 MAIB 1039 

Frantzeskou et 

al. (2012) 

International 

Maritime Health 

Chi-squared Greece - Questionnaire 100 

McGuinness et 

al. (2013a) 

Safety Science Descriptive / 

Explanatory 

Norway 2000-2011 Norwegian 

Maritime 

Authority 

2359 

McGuinness et 

al. (2013b) 

Safety Science Descriptive / 

Explanatory 

Norway 1990-2011 Norwegian 

Maritime 

Authority 

281              

Lazakis et al. 

(2014) 

Journal of Shipping 

and Ocean 

Engineering 

Descriptive / 

Explanatory 

UK 1991-2009 MAIB 2688 

Antao et al. 

(2016) 

Safety Science Descriptive / 

Explanatory 

Portugal 2002-2003 Mutua dos 

Pescadores 

73 

Kaustell et al. 

(2016) 

International 

Maritime Health 

Descriptive / 

Explanatory 

Finland 1996-2015 The Farmers’ 

Social Insurance 

Institution 

1954 

Kaustell et al. 

(2019) 

International 

Maritime Health 

Descriptive / 

Explanatory 

Finland 1996-2015 Finnish Workers’ 

Compensation 

Centre 

392 

Thorvaldsen et 

al. (2020) 

Aquaculture Frequency 

Analysis 

Norway - Questionnaire 447 

Soykan et al. 

(2021) 

Journal of Fisheries 

and Aquatic 

Sciences 

Mann Whitney-U 

Test 

Turkey 2013-2019 Turkish Social 

Security 

Institution 

2188 

 

 

 



Table 2. General distribution of occupational accidents on Turkish fishing vessels 
  Man overboard Hit by an object Jamming Grand total 

Trawler 

Fatal 6 2 5 13 

Disabled - - 3 3 

Injury 17 9 9 35 

Purse seine 

Fatal 15 16 2 33 

Disabled 2 - 11 13 

Injury 26 38 12 76 

Vessel length 
<24 18 6 12 36 

≥24 48 59 30 137 

Sea state 
Bad 36 25 12 73 

Good 30 40 30 100 

Day status 
Night 52 48 29 129 

Daylight 14 17 13 44 

Sleeplessness 
No 29 20 12 61 

Yes 37 45 30 112 

Experience 

1-5  20 10 5 35 

6-10 19 23 11 53 

>10 27 32 26 85 

 

 



Table 3. Content of the Bayesian network 

Node category Name of the node Abbreviation 
Negative 

expression 

Probability 

(%) 
Parent Nodes 

Latent 

failures 

Inconveniences (light 

green) caused the 

formation of pre-

conditions 

Error in equipment selection EES Yes 4 - (Root node) 

Planned maintenance PM Postponed 23 - (Root node) 

Overfishing OF Yes 13 - (Root node) 

Familiarization FAM Insufficient 47 - (Root node) 

Training T Insufficient 47 - (Root node) 

Sleeplessness S Yes 33 - (Root node) 

Workload W Excessive 34 - (Root node) 

Malfunction in fishing gears MFE Yes 15 EES, PM, OF 

Hunting equipment experience HEE Bad  49 F, T 

The number of personal protective equipment NPPE Lack 70 - (Root node) 

The ergonomics of personal protective equipment EPPE Bad  80 - (Root node) 

Fatigue FAT Yes 35 S, W 

Alcohol ALC Yes 3 - (Root node) 

Busyness with another work BAW Yes 8 - (Root node) 

Team synergy TS Bad  1 - (Root node) 

Hearing barrier HB Available 7 - (Root node) 

Vision barrier VB Available 12 - (Root node) 

Pre-conditions for 

unsafe acts 

Non-conformity in hunting equipment NCHE Yes 31 MFE, HEE 

Personal protective equipment PPE Inappropriate 82 NPPE, EPPE, T 

Situational awareness SA Insufficient 23 FAT, ALC, BAW 

Communication and coordination  CC Inadequate 13 TS, HB, VB 

Active failures Unsafe act UA Yes 40 CC, SA, PPE, NCHE 

Operational conditions 

Sea water SW Available 6 - (Root node) 

Oil  OIL Available 2 - (Root node) 

Sea creatures SC Available 4 - (Root node) 

Slippery ground SG Yes 12 SW, OIL, SC 

Messy working environment MWE Yes 3 - (Root node) 

Operational environment OE Inappropriate 13 SG, MWE 

Weather and sea conditions WSC Bad  42 - (Root node) 

Day status DS Night 75 - (Root node) 

Accident type 

Man overboard MOB Yes 46 OE, WSC, UA, DS 

Hit by an object HBO Yes 26 WSC, UA, DS 

Jamming J Yes 30 WSC, UA, DS 



Table 4. Conditional probability tables for the “Fatigue” node 
Fatigue 

Workload Sleeplessness 
Yes No 

0.98 0.02 Excessive  Yes  

0.41 0.59 Excessive No 

0.58 0.42 Normal Yes 

0.05 0.95 Normal No 

 

Table 5. Axiom 1 test results for the “Man Overboard” node 

Condition 

Operational environment 

(inappropriate)  

% 

Man overboard 

(yes)  

% 

Normal 13 46 

Worst 100 84 

Best 0 40 

Condition 

Unsafe act 

(yes) 

% 

Man overboard 

 (yes)  

% 

Normal 40 46 

Worst 100 62 

Best 0 35 

Condition 
Weather and sea conditions (bad)  

% 

Man overboard 

 (yes)  

% 

Normal 42 46 

Worst 100 68 

Best 0 30 

Condition 

Day status  

(night) 

% 

Man overboard 

(yes)  

% 

Normal 75 46 

Worst 100 52 

Best 0 29 

 

 

Table 6. Sample datasets for the test case of ARM 
Itemset no Itemset 

1 Primary education, trawl, bad, man overboard 

2 Uneducated, trawl, good, jamming 

3 At least high school, seine, good, jamming 

4 Uneducated, trawl, good, hit by an object 

5 Primary education, seine, bad, hit by an object 

6 Uneducated, trawl, bad, jamming 

7 Primary education, trawl, good, man overboard 

 

 

 

 

 

 



Table 7. Rule extraction for accident type using the Predictive Apriori algorithm 
  Man overboard rules (MR), Jamming rules (JR), Hit by an object rules (OR)  

 

 If {……} => class man overboard 

If {……} => class jamming  

If {……} => class hit by object  

Antecedent variables  MR JR OR MR JR OR MR JR OR MR JR OR MR JR OR MR JR OR MR JR OR MR JR OR MR JR OR 

Education level 

Uneducated  +   +   +   +      +      +   +  

Primary education +  +   +    +        +  + + +  +   + 

At least high school    +   +  +       +         +   

Vessel length 
(<24) + +   +   +     + +   +      +  +   

(≥24)   +      +   +    +     +   +    

Vessel type 
Seine   +   +    +  +  + +   +  +       + 

Trawl  +  +   +    +  +      +       +  

Experience 
(<10)   +  + +    + +    + +  +   +   + +  + 

(≥10)            +  +     + +        

Weather and sea 

conditions 

Good  + +  + +  + +        + +  + +   +    

Bad +           + + +        +      

Day status 
Daylight         +      +       +      

Night    +    +     + +  +   + + +       

Sleeplessness 
Yes      + +    + +       + +   +  + + + 

No          +            +      
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Table 8. Rule extraction for accident consequence using the predictive Apriori algorithm  
  Injury rules (IR), Dead rules (DR), Disabled rules (AR)  

 

 If {…… ∩ man overboard or jamming or hit by an object} => class injury 

If {……∩ man overboard or jamming or hit by an object} => class dead 

If {……∩ man overboard or jamming or hit by an object} => class disabled 

Antecedent variables 

Man 

overboard 

Hit by an 

object 
Jamming 

Man 

overboard 

Hit by an 

object 
Jamming 

Man 

overboard 

Hit by an 

object 
Jamming 

  IR DR AR IR DR AR IR DR AR IR DR AR IR DR AR IR DR AR IR DR AR IR DR AR IR DR AR 

Education level 

Uneducated    +    +     +    +         +  

Primary education + +     +   + +   +    + + +  + +  +   

At least high school                            

Vessel length 
(<24)                            

(≥24)    +       +       +  +       + 

Vessel type 
Seine  +  + +    +    + +              

Trawl        +  +       + + +      +  + 

Experience 
(<10)       + +            +  +    +  

(≥10)     +         +         +    + 

Weather and sea 

conditions 

Good    + +        +     +       +  + 

Bad  +     +  + + +   +  +      + +     

Day status 
Daylight +    +    +         +        + + 

Night           +  + +  +       +  +   

Sleeplessness 
Yes     +           + +  +    +     

No  +         +         +        

Predictive Accuracy 
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The algorithm did not generate rules for disabled class variable considering hit by an object and man overboard. 
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Figure 1. Contributions of support 𝑠(𝑋) and confidence �̂�(𝑋 → 𝑌) to predictive accuracy c(X→Y) of rule (X→Y) (Scheffer, 2001) 

 



  

Figure 2. Accident network (Bayesian network) structure used in this study  

 

 

 

 

 



 

 

 

 

Figure 3. Bayesian network structure for the "Fatigue" node 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4. Nodes in the network set up in the study and their posterior probabilities 

 

 

 

 



 

Figure 5. Probability changes of the "Hit by an Object" node 

 

  

Figure 6. Probability changes of the "Man Overboard" node 
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Figure 7. Probability changes of the "Jamming" node 
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c) 

Figure 8. Sensitivity analysis results for a) “Man Overboard”, b) ”Hit by an Object, and c) 

“Jamming” 
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Figure 9. Sensitivity analysis results for “Pre-condition for Unsafe Acts” 

 

 

 
 

Figure 10. Sensitivity analysis results for “Operational Environment” 
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Figure 11. Sensitivity analysis results for “Unsafe Acts” 
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