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Recent revolutionary advances in deep learning (DL) have fueled several breakthrough achievements in various complicated
computer vision tasks. �e remarkable successes and achievements started in 2012 when deep learning neural networks (DNNs)
outperformed the shallow machine learning models on a number of signi�cant benchmarks. Signi�cant advances were made in
computer vision by conducting very complex image interpretation tasks with outstanding accuracy. �ese achievements have
shown great promise in a wide variety of �elds, especially in medical image analysis by creating opportunities to diagnose and treat
diseases earlier. In recent years, the application of the DNN for object localization has gained the attention of researchers due to its
success over conventional methods, especially in object localization. As this has become a very broad and rapidly growing �eld,
this study presents a short review of DNN implementation for medical images and validates its e�cacy on benchmarks.�is study
presents the �rst review that focuses on object localization using the DNN in medical images. �e key aim of this study was to
summarize the recent studies based on the DNN for medical image localization and to highlight the research gaps that can provide
worthwhile ideas to shape future research related to object localization tasks. It starts with an overview on the importance of
medical image analysis and existing technology in this space. �e discussion then proceeds to the dominant DNN utilized in the
current literature. Finally, we conclude by discussing the challenges associated with the application of the DNN for medical image
localization which can drive further studies in identifying potential future developments in the relevant �eld of study.

1. Introduction

In recent decades, the usefulness of medical imaging has
increased the understanding and analyzing symptoms of
diseases. Medical imaging techniques include X-ray, com-
puted tomography (CT), and magnetic resonance imaging
(MRI) [1]. �ese technologies have been used for di�erent
purposes based on the organ that is suspected for imaging
and diagnosis. In the clinical setting, analysis of the medical
image was usually conducted by trained experts such as
radiologists and physicians in order to diagnose and un-
derstand the disease. However, these experts usually faced
fatigue owing to pathologic variations and because this type

of analysis requires laborious and tedious work [2]. In this
sense, automated image analysis tools play an essential role
in supporting clinicians to improve their examinations.
Since the 1960s, researchers and doctors have attempted to
take the advantage of computer-aided interventions [3].
Several tasks such as classi�cation, segmentation, and lo-
calization are involved in the process of medical image
analysis. Nevertheless, object localization (or detection) is
considered a prerequisite of all previous tasks involved in
medical image analysis. �e key task of localization involves
the detection of a speci�c region of interest (ROI) in a
medical image, e.g., kidneys in MRI scans. All tasks of in-
terpretation, such as the extraction of features, object
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recognition, classification, and segmentation, largely depend
on the quality of localization. 'erefore, accurate localiza-
tion has become a critical step for medical image analysis.
Consequently, designing robust and quick object localiza-
tion methods will beneficially support the therapeutic
process with regard to diagnosis, stratification of patients,
treatment preparation, intervention, and follow-up [4].

Recently, numerous machine learning algorithms have
been utilized for the task of localization leveraging the
available medical image repositories. However, traditional
machine learning methods depend on handcrafted low-level
features that cannot effectively and professionally represent
images. Various techniques and approaches have been de-
veloped in recent years to combat these difficulties. Lately,
the explosive growth of data and the increased computing
capacity has led to the design of more appropriate tools such
as DL tools. Accordingly, the literature on medical imaging
gained great attention for exploring the DNN in approxi-
mately 2012. Sahiner et al. [5] noted that studies using DL for
radiological images increased significantly between 2016
( ∼ 100) and 2017 ( ∼ 300). DL models provide more ef-
fective representations of complex high-dimensional data-
sets through their high-level professional information
processing.

'is study aims to present a comprehensive review of
recent implementations proposed to train a DNN for ROI
localization in medical images acquired from different
modalities such as CT, MRI, and X-ray. As far as we are
aware, this study presents the first review on object locali-
zation using DNN approaches for medical images. Besides,
the study has twofold purposes. First, it orients the reader
with the required background knowledge of the study, es-
pecially regarding the challenges related to medical image
analysis. Second, it evaluates critically the existing literature
on applications of DL approaches for medical image lo-
calization and provides possible recommendations for fur-
ther developments.

'e rest of this study is structured as follows: Section 2
presents the most popular DNNs developed for localization
tasks. In Section 3, we highlight the major challenges that
occur in medical image analysis. In Section 4, the meth-
odology of the research is represented. In Section 5, the key
content of the study which includes the evaluation of the
reviewed literature is presented. Section 6 enlists the rec-
ommendations for resolving the identified challenges in
enhancing the existing DNN approaches. In the end, the
concluding remarks of the study with possible future re-
search directions are discussed.

2. Motivation and Contribution

With the rapid advancement of the DNN, numerous survey
works on medical image analysis are published in the lit-
erature. But to our surprise and knowledge, no study focused
solely on examining the publications that utilize the DNN in
the field of medical image localization. Motivated by this
fact, the prime impetus of our study was not only to present a
literature review in the domain of medical image localization
based on DNN approaches but to emphasize research ideas

for a new researcher by highlighting the gaps in the existing
literature. Unlike most of the reviews on medical image
analysis which are targeted at specific modalities or specific
organ applications, our work will summarize all previous
DNN works for medical image locations under one roof for
aspiring researchers. As a result of this extensive research
approach, we expect our work to offer researchers a one-stop
point for analyzing the latest developments in the DNN as
well as the research efforts focused on localizing the ROI in
medical images. Furthermore, the following are the technical
contributions of our work:

(a) Provides a systematic review of recent developments
of DL approaches for localizing ROI in medical
images acquired from different imaging modalities
such as CT, MRI, and US

(b) Presents the background knowledge on dominant
DNN approaches to nonexperts in the medical
community

(c) Conveys the noteworthy results from reviewed
studies in a precise and easy to understand way
emphasizing certain aspects such as used experi-
mental data, the proposed DNN architecture for
localization, and the achieved research outcomes

(d) Sheds light and explores the challenging aspects of
existing DL advances for the medical image locali-
zation process

(e) Outlines future directions that can inform re-
searchers of possible prospects for research and
development of effective DL models in the area of
research interest

3. Deep Neural Networks (DNNs)

Deep learning has had remarkable success in a range of
application fields in recent years. Machine learning is a fast-
developing topic that has been applied to a wide range of
conventional and new application fields. Various approaches
have been developed based on various learning categories,
such as supervised, semisupervised, and unsupervised
learning. DL is a category of machine learning developed
either using hierarchical learning approaches or deep ar-
chitectures of learning. Learning is the process of estimating
model parameters for the learned model to accomplish a
certain task. In artificial neural network (ANN), for instance,
the weight matrices are the parameters to be estimated. On
the contrary, DL is designed with multiple layers between
input and output layers. 'is hierarchical structure design
enables to perform nonlinear information processing in
multiple stages which can be used for pattern classification
and feature learning. Here, representation learning is a
learningmethod that is based on data representation and it is
stated in recent work that DL-based representation learning
uses hierarchical structures in which lower-level concepts
are defined in terms of high-level concepts and vice versa. In
some research works, DL is termed a universal learning
technique owing to its potential to resolve a wide range of
issues in a wide variety of contexts. To put it another way, DL

2 Computational Intelligence and Neuroscience



is not task-specific. In the literature, there are several types of
the DNN including the convolutional neural network
(CNN) and long short-term memory (LSTM). 'e most
successful and promising classes of DL architecture that have
been proposed in the literature for medical image locali-
zation are discussed in this section as follows.

3.1. Convolutional Neural Network (CNN). 'e CNN is one
of the most widely utilized DL models in the field of
computer vision, especially for image classification owing to
its superior accuracy in comparison to other ML models.
Despite the CNN outperforming other DL models, it de-
mands more processing power and memory. 'erein, the
training process of the CNN is carried out on centralized
high-performance systems. Since Krizhevsky et al. [6] won
the ImageNet competition in 2012, CNNs have acquired
tremendous popularity as an effective approach for image
categorization in several disciplines. 'e CNN’s main ad-
vantages are that it is a self-learned and self-organized
network without supervisory needs [7]. 'e CNN archi-
tecture contains three sorts of layers: convolutional, pooling,
and fully connected. Also, contrary to other DL models, at
least one layer of a CNN uses convolution operations. 'e
regular layers of the CNN are explained in detail.

(a) Convolutional layers: A convolutional layer includes
a collection of filters where the parameters need to be
learned. 'e filter height and weight are smaller than
the input. 'e filter is pushed over the input width
and height, and the dot products between the input
and the filter are measured at each spatial position in
order to compute an activation map. 'en, the
convolutional layer output is computed by piling the
activation maps of all filters. By downsampling the
representation, the pooling layer decreases the
number of parameters that need to be computed.

(b) Pooling layer: pooling operations produce single
numbers of each region by taking small grid regions
as input. Typically, either the max function (max-
pooling) or the average function (average pooling)
are utilized for computation.

(c) Dropout layer: during the training phase, dropout
sets the outgoing edges of hidden units (neurons
creating hidden layers) to 0 at random.

3.2. Fully Convolutional Network (FCN). CNN architectures
used patch-based approaches to classify the center pixel by
analyzing a small patch of the whole image. Because of the
large number of overlapping patches, these solutions needed
an enormous amount of memory as well as exceptional
computer power. 'e FCN architecture was proposed by
Long et al. [8] to solve this problem using fully convolutional
network architectures that can directly translate input im-
ages to ground truth pixel by pixel.

In this way, the FCN greatly enhances the efficiency of
training and the performance of models. 'e conventional
FCNs used different scale bilinear upsampling methods to
produce segmentation output with the same width and

height as the input. 'ese processes cause information loss
and thereby reduce prediction accuracy. To enhance the
performance FCN localization, high-resolution activation
maps are combined with upsampled outputs and supplied to
the convolution layers to gather the required output. 'e
FCN has been the gold standard for image localization tasks
since it was developed in 2015 [9]. 'e advanced FCN uses
skip connections and creates U-Net replacing bilinear
upsample operations of the FCN. An example of an FCN is
shown in Figure 1.

3.3. U-Net Architecture. In the realm of computer vision,
semantic medical image analysis is of the utmost importance
owing to its applicability in the supervised and texture
feature extraction processes. U-Net and R-CNN are the two
most widely used DL models in the analysis of medical
images. Inspired by the promising performance of the FCN,
Ronneberger et al. introduced U-Net [10], integrating spatial
and deep semantics via skip connections and encoder-de-
coder pathways. Here, the encoder blocks use convolution
layers to form contracting paths. Similarly, the decoder
blocks form expanding paths with deconvolution layers. In
U-Net, contracting paths are employed to collect context
information while expanding paths to enhance localization
precision. Furthermore, it uses skip connections between
encoder-decoder pathways which look like U-shaped
pathways. 'e structure of the U-Net network is shown in
Figure 2.

3.4. Recurrent Neural Network (RNN). In the RNN, the
connections are recurrent in the network and enable to
remember the previous input patterns. Consecutive slices
are associated because the ROI is assumed to be distributed
across many surrounding medical imaging slices (e.g., CTor
MRI). 'e RNN captures data from the input slices in se-
quence. Since past and future input values can be used in a
number of ways to modify the output value, new recurrent
architectures have been proposed in the literature as an
upgrade to the original RNN.

'e LSTM is the most common category of the RNN. In
several ways, LSTMs provide advantages over traditional
neural feedforward networks and RNNs. 'is is due to their
ability to actively remember patterns over long time periods.
'e LSTM’s chainlike architecture enables it to store
knowledge for longer periods of time, thus addressing one of
the RNN’s challenges [11]. 'e LSTM integrates a memory
unit that includes details about the inputs and is controlled
by a variety of completely connected gates as shown in
Figure 3. 'erefore, the LSTM is able to extract localized
spatiotemporal features. 'e three major parts of the LSTM
are as follows:

(a) Forget gate: removes knowledge that is no longer
required to complete the mission. 'is step is es-
sential for the optimization of network performance.

(b) Input gate: responsible for loading cells with inputs.
(c) Output gate: sets the necessary information and

outputs.
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Since the LSTM has the ability to explore spatiotemporal
features from videos, it has been considered for a number of
applications to automatically localize ROIs in medical
videos.

3.5. Challenges of Medical Image Analysis. Generally, it is a
major challenge to analyze medical images visually. 'is is
because these images suffer from inherent noise and low
spatial resolution [12]. 'e variety of cell forms, edges, sizes,
localized features, and organ locations has created a chal-
lenge for the efficient localization of objects during the
analysis of medical images. One of the major obstacles in the
localization of diagnostic images is the heterogeneous nature

of the target organ. A target organ or lesion can differ
enormously from patient to patient in scale and shape [13].
For example, the identification of vertebrae is quite difficult
owing to the image artifacts generated by surgical implants,
similarity in vertebrae appearance, and irregular patholog-
ical curvatures [13]. 'e difference in contrast between the
ROI and the background needs to be taken into account
when these images are used for automatic object localization.
Furthermore, object localization needs to be matched with
the template regardless of the displacement, rotation, size, or
deformation of the object. Several methods are proposed in
the literature for feature extraction that can aid in improving
the precision of image localization. Traditional machine
learning methods are built on handcrafted features which
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required a priori knowledge, and thereby these methods
frequently failed to address these issues successfully.

Another challenge that can be faced when dealing with
medical images is that obtaining the ground truth label
images is difficult, especially when dealing with abnormal
cases. 'is requires a substantial amount of technical expert
knowledge to label images, and it is computation-intensive
task. Each target object can be different according to tissue
types and the shapes of organs. Furthermore, medical image
localization usually involves 3D volumes. Analyzing 3D
medical images can provide details of the human organ and
can assist in detecting cancers, infections, abnormalities in
organs, and traumatic injuries [14]. 'erefore, more ap-
propriate methods and techniques should be used for 3D
volumes. However, for machine learning methods employed
to deal with this type of data, a major issue that needs to be
addressed is the efficiency of capturing high-dimensional
parametric spaces. For instance, a 1024-dimensional input to
the classifier is produced by a patch of 32× 32 pixels.
However, a 3D map of 32× 32× 32 has 32,768 voxels [15]. In
contrast, 2D can increase the computation time as well the
probability of overfitting, especially when the data are
limited [16]. A vector with such a large input poses many
problems, and the requirement for representative image
features requires significant manual engineering effort.

Recently, robust and automatic medical image analysis
approaches that can deal with these issues were in high
demand to enhance the clinical process from diagnosis, the
stratification of patients, treatment preparation, interven-
tion, and follow-up [11, 17, 18]. Researchers are attempting
to overcome these challenges in order to find the optimal
methods for medical image analysis. For the past few de-
cades, the implementation of DNNs to localize ROIs in
medical images has been greatly increased. Also, it can be
noticed from the literature that DNNs are widely applied for
medical image analysis such as MRI [12], and traditional
handcrafted features can be effectively replaced by the DNN.
In DNNs, initial layers of filters are involved in extracting
low-level image features and succeeding layers of filters are
involved in learning higher-level image features.

Furthermore, DNN models offer a robust and efficient
method to automatically locate ROIs in different types of
medical images. DNNs can deal with the limitations of label
datasets by applying weakly supervised learning. 'is im-
plies that training the network for classification tasks ach-
ieves a localization task, and no extra labels are necessary. To
solve the 3D issues, a DNN can be employed to automatically
extract features from the raw images hierarchically. Later,
these features are utilized in detecting the ROIs in 2D which
can thereby enable to localize ROIs in 3D. 'is study will
give an overview of using DNNs in medical image locali-
zation tasks.

4. Research Methodology

As stated earlier, the purpose of this systematic review is to
discover and present literature on DL approaches developed
for medical image localization via the formulation of re-
search questions and the selection of relevant research

articles. 'is study adopts the research methodology out-
lined by Kitchenham et al. [19]. 'e subsections that follow
details review procedure, criteria for inclusion and exclu-
sion, search and selection process proposed in the adopted
methodology.

4.1. Review Process. Following the concept, guidelines, and
measurements stated by Kitchenham et al. [19], we began
our research with the establishment of a thorough review
procedure. 'is procedure outlines the review context,
search strategy, research objectives, and quality evaluation
criteria for study selection and data analysis.

'e review procedure is one that distinguishes a sys-
tematic review from a standard literature review. Also, it
makes the review more consistent and less biased by the
researchers. 'e reason for this is that researchers are re-
quired to disclose a search strategy and criteria for the in-
clusion or exclusion of existing studies in the review.

4.2. Data Collection Process. 'e method of data collection
involved comprehensive research that presented DNN ap-
plications for localizing ROIs in medical images. 'ese
studies were studied to gather the appropriate information
on the topic. 'e key purpose is to include a sample of the
DNN applications. 'e three stages of the data collection
process were as follows:

(i) Search phase: in this phase, articles were identified
from reputable journals using keywords such as
localization, DNN, CNN, and medical images.

(ii) Selection phase: in this phase, articles were chosen
and classified to meet the purpose of the survey.
'en, the eligible articles were objectively analyzed.

(iii) Review phase: in this phase, the chosen articles were
reviewed, and the qualitative review results are
described in our study.

4.3. Search Process. 'e search strategy adopted in our study
involves both automated and manual search methods. 'e
automated search method enabled the identification of
primary research and helped to broaden the review view-
point. 'erein, we expanded the review including more new
research on the review process. In accordance with Kitch-
enham et al.’s recommendations [19], we used the manual
search method on the studies discovered by automated
search to locate the study references.

In the automated search process, an extensive search for
primary articles related to research title and keywords was
conducted in virtual databases including IEEE Explore, ISI
Web of Knowledge, Springer, and Elsevier to identify rel-
evant research publications under the study. 'e literature
from blogs, books, and magazines was not considered in the
review process as the quality verification of those kinds of
literature is not reliable. 'e keywords for the search process
were derived from our study title and hypothesis. 'e search
string used in the review process is as follows:
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(i) (Medical image localization) and (deep learning or
deep neural)

(ii) (MRI or CT image) and (localization) and (deep
learning or deep neural)

(iii) (ultrasonic or ultrasound image) and (localization)
and (deep learning or deep neural)

4.4. Selection Process. 'e selection was constrained to re-
trieve related studies published in the interval of the past five
years from 2015 to 2020. In the search process, nearly 200
studies were extracted. Later, a manual screening process
was conducted to select the most relevant literature. In the
screening process, the duplicate articles, articles in which the
application of the DNN for localization was not clearly
described, and articles without full text were excluded. After
exclusion, 94 articles were considered and accepted for
further study. Table 1 and Figure 4 show the temporal
distribution of these 94 articles against the past five years.

5. Evaluation of Reviewed Studies

'ere are varieties of applications of DNNs for localization
tasks. 'is section addresses these applications and groups
them based on the region that needs to be localized.

5.1. Vertebrae Localization. Degenerative disc disease is
amongst the most frequent health problems that develop
with age and causes lower back pain in adults. In this di-
rection, the localization of the intervertebral disc (IVD) plays
a crucial part in the detection of abnormalities [4]. Fur-
thermore, with the recent development of technologies in
the medical imaging domain, the emphasis on the automatic
localization of IVDs is viewed as significant for the diagnosis
of spine disease and for measurement quantification. Also, it
is recognized as a crucial element for preoperative planning
and postoperative evaluation of spine problems such as
spinal stenosis, disc/vertebrae degeneration, scoliosis, and
vertebral fractures [13, 20]. Identifying vertebrae is difficult
because neighboring vertebrae generally share similar
morphologies [11]. In reality, diseases frequently alter the
anatomical structure of a vertebral column, making it dif-
ficult to distinguish the boundaries of the vertebrae [11].

In the past decade, several ML techniques are developed
for automatic vertebrae localization in CT [11, 13, 21] and
MRI volumes [20]. However, these methods fail to extract
the diagnostic features that are most essential for accurate
diagnosis of spinal disease. Recently, with the popularity of
the DNN, researchers have employed DNNs to localize IVDs
or vertebrae from volumetric data or 2D images [22–24].'e
application of the DNN showed great promises with
quantification measurement that is required for accurate
diagnosis and early treatment of spine diseases. For example,
the authors [21] employed a CNN on a public dataset of 224
arbitrary-field-of-view CT images taken from pathological
cases. 'e researchers found that the CNN could detect
vertebrae with 96% accuracy in less than 3 seconds. 'e

authors determined that a CNN can deal with clinical di-
agnosis and therapy applications.

Another interesting approach to integrating image
features fromMRIs and CTs and automatically rectifying the
position of vertebra is presented in [22]. 'e researchers
designed the transformed deep convolution network
(TDCN) for multimodal vertebra recognition. Feature
learning is accomplished by using convolution-restricted
Boltzmann machines (CRBMs). 'en, the learned features
can expose some unique microstructures in MR, CT, or MR/
CT feature fusion. 'ese feature maps are sent to two RBMs
for multimodal feature fusion. 'ese features and pose
rectifications are naturally unified in a multilayer DNN.
'ese methods are evaluated on MR and CT datasets (60
MRI includes T1-weighted and T2-weighted scans (T1 and
T2 included) and 90 CT volumes) taken from different
pathology cases (i.e., fractures and spondylolisthesis). 'e
experiment results showed that the transferred CNN
achieved 90% accuracy.'is mode was able to provide a fully
automatic location, name, and pose of each vertebra for
routine clinical practice. 'e author declared that this new
network could provide better promise for organ recognition
with cross-modality images [22].

Automated localization of vertebrae in 3D spinal images
has been addressed by several researchers in past literature.
Chen et al. [13] presented CNNs to explore higher-level
features from 3D CT images in order to automatically locate
vertebrae. 'ey designed a joint learning model with a CNN
(J-CNN). 'is takes into consideration the appearance of

2015
8%

2016
13%

2017
11%

2018
17%

2019
20%

2020
31%

Figure 4: Trending chart depicting the temporal distribution of the
chosen articles.

Table 1: Temporal distribution of primary articles accepted for the
study.

Year Number of articles
2020 29
2019 19
2018 16
2017 10
2016 12
2015 8
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vertebrae as well as the pairwise conditional dependency of
neighboring vertebrae. Later, experiments were conducted
to evaluate the proposed approach on MICCAI 2014
computational challenge data. 'ey achieved smaller lo-
calization errors of 8.82mm.

In [22], Cai et al. identified vertebra locations using a 3D
deformable hierarchical model (DHM).'e proposedmodel
employs unsupervised learning to combine features
extracted from many modalities and rectifies vertebral po-
sitions automatically. Also, the combination of features from
CT and MR images enhances the discrimination ability of
the feature representation and thereby boosts the vertebra
patten invariance. 'is enables to analyze the images cap-
tured with varying protocols, resolutions, contrasts, orien-
tations, and sizes. Generally, DNNs are capable of rectifying
position and feature fusion. 'erein, the proposed solution
adopts unsupervised feature learning by stacking two layers
of a convolution-restricted Boltzmann machine. 'e fea-
tures extracted from these two layers are processed by
stacking two restricted Boltzmann machines to achieve
feature fusion. 'e system consists of two key modules. 'e
local presence module in DHM extracts the cross-modality
features and provides initial identification of the vertebra
landmarks. 'e global geometry module in DHM uses
point-based registration to match the spotted landmarks
with the global spine model. 'e proposed system is able to
identify locations, labels, and poses for local vertebrae.
Furthermore, it can offer 3D spine reconstruction for desired
spine sections or even the whole spine. 'is recognition
method captured the local and global spine information
from MRs and CTs. Chen et al. [13] employed a CNN with
six layers to localize ROIs on 224 spine-focused CT scans.
'e intensity-based features of each selected voxel are passed
to the CNN as an input. 'e CNN output represents the
estimated relative distances between the voxel and the center
of each vertebral body. 'ese outputs are then transformed
into absolute voxel locations in the image. 'e researchers
found that the CNN can localize all visible vertebrae with an
error of 18.2 in less than 3 seconds, whereas the random
forest method achieved a mean error of 20.9 in more than
minutes.

Jamaludin et al. [20] used a CNN to detect and localize
multiple abnormalities in T2-weighted sagittal lumbar
MRIs. 'e CNN model was trained to predict six different
radiological scores and then generated six heat maps.
Brighter hotspots in these heat maps were strong evidence
for that region to affect the classification. 'e CNN was
trained on only the “weak” supervision of class labels. It
correctly localized pathology hotspots. 'e result demon-
strated that the CNN can achieve good performance on
multiple radiological scores, for example, disc narrowing,
marrow changes, and endplate defects.

Motivated by a sequence in the vertebral order, Liao et al.
[11] suggested a combination of an FCN and RNN to learn
both the short-range and long-range contextual informa-
tion. 'is method leverages the representational potential of
the RNNwhile trying to integrate existing information about
the spine scan. Such integration is essential because an FCN
does not automatically know the morphology of an ROI,

particularly when operating in 3D. 'is is because the
computational complexity limits the scope of the network. A
3D FCN was used to effectively extract the short-range
contextual features around the target vertebrae. LSTM is
used to extract the long-range contextual features around the
vertebrae of the visible spine column.

'e idea is to use the FCN to convert a CT scan image
into a sequence of spatially ordered vertebrae sample fea-
tures. 'en, the sequence features are passed to LSTMwhich
has previously learned to encode the long-range contextual
features among samples in the first stage. 'e SpineWeb
dataset was used in this study [11]. 'ere are 302 CTscans in
this dataset. 'e authors claimed that their proposed ap-
proach outperformed previous studies by a significant
margin with a 6.47 mean error. 'e experiment result
demonstrated that the 3D FCN can encode the 3D spatial
information of CT volumes to produce a more robust model
than the 2D counterparts. Another interesting approach was
published by Zheng et al. [25], who suggested a new ap-
proach to overcome this challenge by applying two steps.
First, a simple network is applied for the initial testing of all
voxels to capture a small number of optimal features.'en, a
more accurate classification with a DNN is applied.

To increase the detection accuracy, deep learned image
features are integrated with Haar wavelet features. 'is
approach was tested on 455 patients to diagnose carotid
artery bifurcation in a head-neck CT dataset. 'e authors
showed promising results: they achieved a mean error of
2.64mm. 'e authors suggested that the proposed method
can be generalized to detect other 3D landmarks. Chen et al.
[26] extended the 2D FCN into a 3D variant with end-to-end
learning and inference, where voxelwise predictions were
created. In their study, two different approaches were
employed: one is a 2D FCN with deep feature representa-
tions by using adjacent slices, and the other is a 3D FCNwith
flexible 3D convolutional kernels. 'ese two approaches
were tested on the 3D MRI data of MICCAI 2015 challenge
on automatic intervertebral disc localization and segmen-
tation. 'e results proved that the 3D FCN obtained a better
localization accuracy than the 2D FCN. Most of the previous
studies dealt with localization as a classification task, and as
such, generalized models of DL are leveraged. However, only
a few approaches dealt with the localization of landmarks
and regions directly from the image space [27]. For example,
Payer et al. [28] used a CNN to directly detect landmark
locations. 'ey used a Gaussian to represent landmark maps
as ground truth input data, and the CNN was straight
trained to detect this landmark map. 'ey evaluated dif-
ferent types of CNNs on 2D and 3D hand images. Each CNN
was trained to find the presence of Gaussian heat spots
centered at the landmark locations. In this study, the authors
used the CNN with a large kernel and the CNN with
downsampling techniques called (Downsampling-Net), and
U-Net, as well as a novel SpatialConfiguration-Net. 'e last
model was designed based on the integrated local appear-
ance of landmarks with spatial landmark configurations that
modeled anatomical variations.

'e localization performance of the CNN was evaluated
on two different datasets. 'e first one was 895 publicly
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available X-ray images of hands with 37 marked landmarks.
'e second dataset was 60 3D gradient-echo hand MR scans
with 28 marked landmarks. 'e 2D CNN has six convo-
lution layers, whereas Downsampling-Net has multiple
blocks containing two convolution layers followed by
pooling layers. After the last block, two additional convo-
lution layers are joined. 'e U-Net consists of a contracting
path similar to Downsampling-Net, and an increasing path
composed of upsampling blocks, concatenation with the
same level of output from the contracting path, and last, two
convolution layers. 'e 2D SpatialConfiguration-Net has
three convolution layers followed by a spatial configuration
block. 'e experimental result demonstrated that heatmap
regression based on CNNs obtained a good localization
performance for both 3D and 2D datasets. In addition,
SpatialConfiguration-Net was robust on limited amounts of
training data. 'e previous study showed a reasonable
method for hand X-ray images, although the authors [29]
declared that this method could not adapt well to body parts
and scan protocols in which the area of orientation, size, and
acquisition differs. Yang et al. [29] developed the deep
image-to-image network (DI2IN). In DI2IN, the function
layer concatenation is similar to 3D U-Net. 'e shortcut
bridges to decode layers are set up directly from the encoder
layers. 'e DI2IN was trained on 1000+ 3D CT volumes
from different patients. 'e result outperformed other state-
of-the-art methods with a 90% localization accuracy.

Multimodality MR images for the same subject can be
attained using various scanning configurations. 'is shows
valuable and comprehensive information which can help to
provide more robust diagnoses and treatment. DNNs have
been taken into consideration to analyze this type of medical
image. For example, in [9], an FCN was used on multi-
modality 3DMR data. 'e authors aimed to develop a novel
multiscale and modality dropout learning model to locate
IVDs from four-modality MR images. 'e first step was to
design a 3D multiscale context FCN in order to learn high-
level features. 'ese features can improve the representation
capability of the network to deal with the scale variation of
anatomical structures. Second, to accompany the informa-
tion from different modalities, a random modality voxel
dropout strategy was used to enhance the performance of
IVD localization. 'e approaches were tested on 24 sets of
3D multimodality MR scans acquired from 12 patients. 'e
dataset was obtained from the 2016 MICCAI Challenge on
Automatic Localization and Segmentation of IVDs from
Multimodality MR Images 2. 'e experiment outperformed
the MICCAI-2016 challenge with a dice score of 91.2% [9].
Table 2 provides the list of various studies illustrating the
efficiency of the DNN for the analysis and the localization of
abnormalities in medical images.

5.2. Anatomical Plane Localization in Foetal Ultrasound (US).
'e automated localization of the anatomical planes in foetal
US images is another critical clinical problem to be
addressed. 'is is attributed to a variety of factors such as
noise and the small size of the foetus images. Recent methods
used for plane localization focused on only detecting planes

within specific body regions. In recent years, DNNs are also
utilized for the localization of scan planes and important
frames of US images. For example, Ghesu et al. [76] de-
veloped an adaptive DNN powered bymarginal space DL for
aortic valve localization in US images. 'e proposed model
is able to detect nonrigid object boundaries. A dataset
consisting of nearly 2891 volumes of images collected from
869 patients is employed to test and validate the correctness
of the model for aortic valve localization in 3D US images.
'emean error achieved in this study was 1.83mm. Another
study [77] focused on using a transferred CNN (T-CNN) to
represent high-level features appearing on the foetal ab-
dominal standard plane in US images. US video was ob-
tained from a sweep on pregnant women (between 18 and
40weeks of gestational age). Every video was obtained from
one patient and contained between 17 and 48 frames. 'ree
US standard planes, namely, abdominal, face axial, and heart
four-chamber view were used to collect training set with
approx. 45000 US images. 'e T-CNN outperformed the
state-of-the-art method for foetal abdominal standard plane
(FASP) localization with 89.6% accuracy.

'e authors [78] extended the work of Ghesu et al. by
developing a knowledge-transferred RNN (T-RNN) to lo-
calize the foetal standard plane. 'e T-RNN consists of a
CNN and LSTM model. 'e researchers attempted to
combine a deep hierarchical spatiotemporal feature ex-
tractor learning model. Detection was first implemented by
using a joint-learning CNN to locate ROIs in US images.
'en, LSTMwas used to explore the temporal features based
on the ROI features in two successive frames extracted using
the CNN model. At last, the score for each frame was
computed by taking the average of all LSTM model pre-
dictions. 'en, the frame with a score higher than a de-
termined threshold is detected as a standard plane. 'e
proposed approach was compared with the T-CNN. 'e
effectiveness of the integrated T-RNN was demonstrated by
the results obtained from three US standard planes. 'e
T-RNN showed better accuracy with 0.908, 0.867, and 0.867
on the three standard planes, respectively. 'e T-RNN
showed an ability to explore spatiotemporal features for
standard plane localization in US images.

Baumgartner et al. [79] also employed the CNN model
for standard plane localization in US video frame data.
Besides, CNN performance was evaluated on 1003 mid-
pregnancy scans. 'e experimental results showed the CNN
potential to detect standard planes with a recall and pre-
cision of 80% and 69%, respectively. 'e researchers con-
cluded that the CNN allows for real-time inference with
precise localization for anatomical planes in foetal US
images.

Another work aimed to address the challenges of US
foetal imaging by emphasizing the key features in US images.
Kumar, et al. [80] designed a new general approach for
localization based on training two CNNs to learn the sa-
liency features. 'ese learned features can discriminate
different planes in US images. 'e best result achieved was
93.7% for the head, 82.6% for the femur, and 71.6% for the
spine. Another article [81] introduced a new CNN based on
a VGG-16 model called sonography (SonoNet). SonoNet
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Table 2: State-of-the-art literature on the DNN for localization of abnormalities.

Reference Adopted
DNN Dataset used Research findings

Onthoni et al.
[30]

Pretrained
CNN

10,078 CT images from autosomal dominant
polycystic kidney disease mAP� 94% localization of polycystic kidney

Roy et al. [31] STN Italian COVID-19 lung ultrasound database (ICLUS-
DB), containing 277 LUS videos from 35 patients

F1-score of 65.1 for localizing COVID-19 lesion
on LUS images

X. Wang et al.
[32] U-Net 630 CT scans Accuracy of 0.901 for localizing of the COVID-

19 lesions

Noothout et al.
[33] FCN

Two datasets, one containing 61 olfactory MR scans
and another consisting of 400 cephalometric X-rays

from ISBI 2015 grand challenge images

Distance errors were 1.45mm for the the right
and 1.55mm for the lift in the localization of the

coronary ostium
Cano-Espinosa
et al. [34] U-Net CT images DICE coefficients of 0.875, 0.914 for PMA and

SFA, respectively, in CT images

W. Jiang et al.
[35] ResU-Net

Dataset containing 60 cases of MR images from 30
patients available for MICCAI WMH segmentation

challenge
DICE coefficient of 0.832 for localizing WMH

Zhou et al. [36] CNN MRI images taken from 1537 patients Dice distance of 0.501 ± 0.274 for breast cancer
localization

Lin et al. [37] U-Net MRI (169 patients with cervical cancer stage IB–IVA
captured; diffusion-weighted (DW) images)

Positive predicted value 0.92 for cervical tumors
localization in (MRI)

Trebeschi et al.
[38] CNN 140 patients with biopsy proven locally advanced

rectal carcinoma (LARC)
Dice Coefficient 0.68 for localization of rectal

cancer in MRI

Liang et al. [39] CNN FFDM images for 779 positive cases and 3018
negative cases Positive 0.52 localization of breast cancer

Naseer Bajwa
et al. [40] CNN

Online retinal fundus image database for glaucoma
analysis and research. High-resolution fundus (HRF)

image database optical coherence tomography
(OCT) and color fundus images of both the eyes of 50

healthy persons

Accuracy 100% for localized optic disc

Reena and
Ameer [41] AlexNet Microscopic blood images (257 cells belonging to five

types of leukocytes)
Mean average precision 98.42% for leukocytes

localization

Fan et al. [42] CNN Four datasets, namely, BCSI, LISC, and two other
medical datasets

Dataset 1 0.99544, Dataset 2 0.99432, BCSI
0.98947, and LISC 0.98443

Huang et al. [43] VGG-16 Diffusion kurtosis images of 59 patients with epilepsy
lesions in the hippocampus Accuracy 90% for localization of epileptic foci

Heutink et al.
[44] CNNs 123 temporal bone CT scans were acquired with two

UHR-CT scanners Error 8% for localization

Cheng et al. [45] CNN PXR dataset (frontal pelvic radiograph) Accuracy of 95.9% for localization of hip
fractures on plain frontal pelvic radiographs

González-
Gonzalo et al.
[46]

VGG-16 'e kaggle DR dataset with 35,126 images from
17,563 patients

False positive 0.71 for localization of diabetic
retinopathy (DR) and age-related macular

degeneration abnormalities
Mwikirize et al.
[47] CNN 2D B-mode US images Localization of needles inserted both in-plane

and out-of-plane US image

Man et al. [48] U-Net NIH dataset with 82 contrast-enhanced abdominal
CT images

Recall rate 0.9 for pancreas localization on CT
images

Y. Q. Jiang et al.
[49] GoogleNet 8046 microscopic ocular images Mean intersection over union 0.863 for

localizing basal cell carcinoma
Roggen et al.
[50] Mask R-CNN X-ray images from 12 abdominal cancer patients

Shen et al. [51] CNN NYU breast cancer screening dataset Accuracy 78.1% for localized malignant lesions

Joel et al. [52] CNN 637 cone beam CT volumes 'e mean curve distance 0.56mm for
localization of the mandibular canals

Winkler et al
[53] CNN Six dermoscopic image sets. Each set included 30

melanomas and 100 benign lesions Accuracy 93.3% for melanoma localization

H. Wang et al.
2020 [54] CheXLocNet SIIM-ACR pneumothorax segmentation dataset

2079 radiographs
Dice score of 0.72 for localized pneumothorax

lesions in chest radiographs
Poon et al. [55] DL 291,090 colonoscopy videos Polyp-based sensitivity � 96.9 %

Urban et al. [56] CNN 8,641 images from screening colonoscopies collected
from 2000 patients Accuracy, 95% for polyp-localization

Ouyang et al. DL CXR (NIH ChestX-ray14 and CheXpert)
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employed weak supervision to learn from labeled images
only and localize 13 standard scan planes. 'e SonoNet
consisted of 3 fully connected layers and 13 convolutional
layers. 'e study evaluated 2694 2D US images taken from
gestational women between the ages of 18 and 22 weeks. A
training set with 50 images that were collected from each of
the 13 standard scan planes was used to train SonoNet.'ese
images were used as ground truth after they were labeled
manually with bounding boxes. 'e intersection over union
(IOU) metric was computed to find the similarity of the
automatically determined bounding box to the ground truth.
'e result demonstrated an accuracy of 77.8%. 'e key
points of the above discussed literature that use the DNN for
anatomical plane localization in foetal ultrasound are given
in Table 3.

5.3. Anatomical Structure Localization in MRI. In nonin-
vasive neuroanatomical investigations, segmentation of the
whole brain on a structural MRI is crucial. In [82], the
authors presented a new method called Spatially Localized

Atlas Network Tiles (SLANT) leveraging the advantage of
canonical image processing techniques and deep learning
approaches for segmenting the whole brain. 'e proposed
method distributed multiple independent sets of 3D net-
works to cover the overlapping subspaces in the Atlas
space. Furthermore, the authors constructed auxiliary la-
bels from 5111 unlabeled scans to enhance the learning
performance of the proposed SLANTmethod on 133 labels
while using just 45 manually labeled training data. In three
validation cohorts, the proposed method achieved 0.78,
0.73, and 0.71. Furthermore, the proposed method lowered
the computing time from more than 30 hours to
15minutes. In [83], an FCN-based model called VP-Nets
was used to show a new, more efficient way to detect
multiple brain structures in 3D foetal neurosonography.
'e model required limited training data and was learned
from weakly labeled volumetric images. Its use is readily
transferable to different medical imaging modalities if
detection is desired. 'e prediction accuracy of models
with different depth and feature channels was reported.'e
findings showed that the proposed model generalized

Table 2: Continued.

Reference Adopted
DNN Dataset used Research findings

Guan et al. [58] CNNs ChestX-ray14 collects 112,120 frontal-view images of
30,805 patients [59]

AUC 0.871 for localizing pneumonia infection in
CXR

Rajaraman et al.
[60] CNNs Radiological Society of North America (RSNA) CXR

dataset [61] mAP 0.317 for localizing abnormalities on CXR

Rajaraman [62] VGG-16 CXR [63] Accuracy 93.6% for localizing pneumonia
infection in CXRs

Kermani et al.
[64] NF-R-CNN 3250 axial CMR images for 65 patients with ARVD Mean error 7.33 ± 8.1 for heart localization in

cardiac MR images

Vaiyapuri et al.
[7] DL

'e dataset holds a total of 500 CT images, with 250
images of pancreatic tumor and 250 images of

nonpancreatic tumor

Near-optimal ACC of 0.9840, and a max ACC of
0.9935 on CT images towards pancreatic tumor

localization

Groves et al. [65] CNN 3825 US images RMSE of 0.62 and 0.74mm in the axial and
lateral, respectively

Xue et al. [18] CNN IHC images of colon tissue Accuracy, 92.69% for protein subcellular
localization

Al Arif et al. [66] FCN 296 lateral cervical spine X-ray images Dice similarity coefficient of 0.94 for spine
localization

Won et al. [67] CNN MR images Accuracy 77.5% for localizing the center position
of the spine canal

Peña-Solórzano
et al. [68] CNN 3D whole body CT scans

Dice scores of 0.99, 0.96, and 0.98 were obtained
in the axial, coronal, and sagittal views for femur

localization

Goyal et al. [69] CNN 1775 images of DFU Mean average precision of 91.8% for diabetic
foot ulcers localization (DFU)

Afshari et al [70] CNN 479 imaging captures the metabolic activity of tissue
(PET scans) taken from 156 patients [71]

Localization error 14mm for localized
anatomical objects in PET scans

Sarikaya et al
[72] CNN Video data of ten surgeons performing six different

surgical tasks
Precision of 91% for localization in robot-

assisted surgery RAS videos

Davidson et al.
[73] CNN

290 images of 142 healthy retinas and 148 retinas
afflicted by Stargardt disease, acquired from 8

subjects with Stargardt disease

Dice score of 0.9577 for cone localization in
images of healthy retinas

Dolz et al. [4] U-Net IVD dataset is 16 3D multimodal MRI images Localization error was 0.4

Arik et al. [74] CNN Cephalometric X-ray image dataset which includes
19 anatomical landmarks

75.58%, 75.37%, and 67.68% accuracy for
localizing sella, gonion and articulate landmarks

van der putten
et al. [75] CNN 494,355 endoscopic images Accuracy 92%
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effectively across the dataset. Also, the visualization of the
3D saliency volume revealed the potential of the proposed
solution in locating essential structures in 3D space without
the need for supervision.

5.4. Landmarks Localization in Medical Image. Another
interesting implementation of the DNN was to localize
landmarks on the distal femur surface. Yang et al. [17] used
CNNs to identify these landmarks. Here, three sets of 2D
MRIs acquired along three respective planes were processed
using CNNs. 'e intersection of the three 2D slices with the
highest classification output defined the location of ROIs in
3D. Another study by Kong et al. [84] used the frames of
cine-MRI of the heart to identify the end-systole and end-
diastole. Here, the researchers developed a temporal re-
gression network named TempReg-Net. 'e proposed
network combined an LSTM with a CNN where the LSTM
was employed to translate the temporal features and the
CNN was employed on cardiac sequences to encode the
spatial features. In addition, TempReg-Net was trained to
introduce a new loss function to enhance the prediction
accuracy of the label structures.'e network demonstrated a
mean difference of only 0.4 frames when validated on
cardiac sequence datasets. Also, another piece of literature
published in 2015 [12] presented a new method based on the
CNN for left ventricle localization of cardiac MRI. Here, the
CNN performed feature extraction with six layers com-
prising kernels of different sizes. A database of 33 patients
was used in this study. 'e research findings proved the
potential of the proposed CNNmodel in terms of sensitivity,
specificity, and accuracy achieving 83.91%, 99.07%, and
98.66%, respectively.

Another study [85] developed a landmark detection
system by using an FCN. 'e aim of this system is to locate
22 landmarks in 3D head CT scans. 'e system is based on
two models. 'e first model is based on an FCN trained only
on images, and the model was pipelined with the second
model, where these inputs provide spatial information. 'e
second model is trained from images as well as spatial
features that are provided by the first model.'is integration
of learned features is called the Atlas location auto-context.
'e FCN is built with six layers. 'e authors claim that the
performance of the FCN was better than that of the decision
forest methods. Furthermore, they declared that the FCNs
showed precision that is nearly similar to that of a human
observe [85].

Other approaches were developed by combining num-
bers of CNNs. For example, Bob et al. [86] developed a DNN
model combining three CNNs for ROI localization. Here,
the proposed model was employed on anatomical regions
such as descending aorta, aortic arch, and heart. Further-
more, each CNN in the proposed model was employed to
automatically analyze one orthogonal image plane and lo-
calize the ROI in that plane. Later, the output was combined
to provide a 3D bounding box around it.'e performance of
ROI localization was evaluated by computing median dice
scores.'e result of this experiment showed that the average
dice measure in determining bounding boxes around the

ROI, namely, aortic arch, descending aorta, and heart were
0.70, 0.85, and 0.89, respectively.'ese achievements proved
the potential of the CNN for the 3D localization of ana-
tomical structures [86].

Yan et al. [87] focused on designing a two-stage DL
model to identify a body part where the first stage of
learning involved discovering the local regions and the
second stage of learning aimed at learning the identifiers
from the discovered local regions for discriminating the
body parts. During the pretraining phase, the proposed
CNN adopted multi-instance learning for extracting the
most discriminating identifiers from the training slices.
Later, the pretrained CNN is further boosted in boosting
phase using the discovered local regions. 'us, the authors
claimed that the proposed solution outperforms the global
image-based context models. Besides, the proposed model
leveraged the benefits of multi-instance learning and was
capable of automatically discovering the local region
without the need for manual annotations of local regions in
the provided training set. 'e proposed solution outper-
forms the state-of-the-art approaches on both synthetic
and whole body datasets.

A reliable organ localization method was presented by
Xiaoguang et al. in [88] with substantial anatomical and
contextual variability from 3D volumes. 'e search space in
3D spatial is divided into two parts: slice and pixel. Both of
these parts are modeled in 2D space. Different learning
architectures were used for each component to leverage the
respective modeling power to three orthogonal orientations
in a global and local context. In learning-based localization
methods, slice scanning along each orientation is used in-
stead of the usual patch-based scanning. 'is greatly min-
imized the number of model assessments. 'e target organ
location is determined by combining data from three ori-
entations and learning architectures. In this experiment, 499
CT scans were used to evaluate this method. 'e result
showed the robustness and promise of the presented
method.

Using a CNN, De Vos et al. developed an automated
localization method in [89] for one or more anatomical
structures in 3Dmedical images.'is is done by recognizing
their existence in 2D image slices. Furthermore, a single
CNN is employed in the proposed solution to learn and
identify the anatomical structures in 3D medical images.
Spatial pyramid pooling is used to enable the CNN to
evaluate slices of varying sizes. All slices of the CNN are
combined to form 3D bounding boxes after detection. 'e
experiment study employed abdominal CT, cardiac CT
angiography, and chest CT images. Here, chest CT identified
aortic, ascending, and descending arch, and heart whereas
abdominal CT scans identified the liver and cardiac CT scan
identified the left ventricle. Here, the difference between the
centers and edges of reference bounding boxes that were set
up automatically and by hand were used to assess locali-
zation. 'e proposed solution produced best results when
the structural border was well defined (e.g. aortic arch) and
worst results when the border was not well defined (e.g.
liver). 'us, the proposed solution delivered more accurate
and robust results in locating multiple structures.
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'e automated localization of pulmonary nodules on CT
scans was also investigated based on DNNs. In [90], an
automated approach for pulmonary nodule localization on
lung CT is presented. 'e approach segmented voxel-level
nodule accurately despite it involving weak supervised
learning and just image-level labels as training data. Fur-
thermore, the proposed solution modifies the image clas-
sification CNN to learn discriminative regions from feature
maps of convolutional units at various scales, and a unique
candidate-screening approach is presented to identify the
real nodule location. 'e proposed weak supervised DNN
for pulmonary nodules localization outperforms a fully
supervised CNN-based algorithm on the public LIDC-IDRI
dataset.

Another interesting application of the CNN was to
detect coronary artery calcium (CAC) score in coronary
CT angiography (CCTA) [91]. 'is study included CCTA
images of 50 patients, and these images were split evenly
among the five groups with the highest risk of heart
disease. 'e CNN was trained to identify CAC voxels. 'e
learned features extracted from the CNN were classified
using a Random Forest. 'e volume of the CAC was
quantified for each patient and then compared to the
manual annotations of CCTA image. 'e results showed
that the CNN was able to automatically detect CACs and
was quantified in CCTA. According to the researchers,
this strategy may eliminate the requirement for a CT scan
for CAC scoring, which is usually performed prior to the
CCTA scan. 'ereby, the proposed solution is expected to
lower the radiation dosage given to the patient during CT.
Although the localization of weakly supervised objects is
technically useful because they avoid the need for fine-
grained annotations, especially in the domain of medical
imaging, the unavailability of priors may have difficulty
dealing with this type of learning.

In [92], the authors designed a weak supervised self-
transfer learning (STL) framework in order to localize a
lesion. Both classification and localization networks were
integrated on STL networks to enhance the localization
performance by focusing on the correct lesions without any
types of priors. Experimental results on chest X-rays and
mammogram datasets demonstrated that 'e STL

framework has significantly better localization than previous
weakly supervised localization approaches. Table 4 provides
a literature review on the application of the DNN for
landmark localization.

6. Key Findings and Recommendations

'emost challenging problem that most researchers could
face when dealing with medical images is the limitation of
the dataset. 'e recent achievements and successes of
DNNs are due to their training on large datasets such as
ImageNet. Here, the appearance of these images varies
greatly in terms of color and intensity. Also, these images
vary in characteristics as they are captured at different
angles and distances. On the contrary, medical images are
ambiguous in nature and characteristics. Consequently,
variation is less compared to the typical image datasets.
Besides, DNNs are not efficient in learning when the
training samples are limited. 'erefore, there is an es-
sential requirement to train DNNs on relevant feature
representations of medical images which require enor-
mous training samples. 'is is considered the most
challenging problem that most researchers could face
when dealing with medical images. In this way, medical
images can be used to fine-tune CNN models that have
already been trained on datasets of natural images. 'is
method, called transfer learning, has been used in a wide
range of medical imaging applications with great success.
Even though DNNs require extensive computational re-
sources for their successful implementation, 3D DNNs
have excelled in several fields with outstanding perfor-
mance. Also, training 3D DNNs demands a large number
of parameters, and this situation is exacerbated further in
3D medical images and restricts medical image resizing
without considerable loss of information. 'is area of
research is still in its infancy.

In DL, feature representation learning is a tedious and
complicated task as it is very difficult to ensure whether the
model is effective in capturing the most discriminative
features from the given datasets that are required for the
successful accomplishment of subsequent tasks. DNNs have
demonstrated their promising performance in handling raw

Table 3: State-of-the-art literature on the DNN for localization of anatomical structure.

Reference Adopted
DNN

Dataset
used

Research
findings

Baumgartner et al.
[79] CNN US video frame data with 1003 midpregnancy

scans
Precision, 69%
and recall, 80%,

Ghesu et al. [15] Adaptive DNN with marginal space learning 3D US images collected from 869 patients with
2891 volumes

Accuracy,
45.2%

Chen et al. [77] CNN with transfer learning 11,942 foetal abdominal US images collected
from pregnant women

Accuracy,
89.6%

Chen et al. [26] Extended (Chen et al., 2015b) with LSTM to
extract spatial temporal features

11,942 foetal abdominal US images collected
from pregnant women

Accuracy,
90.8%

Baumgartner et al.
[81] CNN based on a VGG-16 model 2694 2D US images taken from gestational

women
Accuracy,
77.8%
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images without the requirement for manual preprocessing
and feature extraction process. DNNs are superior in
identifying and learning the discriminating features from
the image data. Although CNNs have enabled feature
encoding in latent space to be much easier, it is highly
crucial to evaluate if other variants of the DNN are capable
of learning features that are generalizable across datasets
as highlighted in [14]. Finally, the ultimate challenge is the
unavailability of labeled image datasets, the high expense
required in labeling the datasets, and the absence of
consensus among the experts over the given labels.
However, this challenge can be addressed by leveraging
the advantage of data augmentation techniques to gen-
erate examples with known ground truths.

7. Conclusion and Future Directions

Different implementations of DNNs were addressed by
various publications. Localization with DNNs tends to be the
most common overall technique for recognizing organs,
regions, and landmarks with acceptable results. Many
studies used DNNs by adapting weak learning to enhance
localization performance. Other studies focused on com-
binations of features such as spatial and temporal features by
using two types of DNNs (CNN and RNN). RNNs have
demonstrated potential in localization performance in the
temporal domain. 'e combination of different feature
domains enhances the discrimination of feature represen-
tation and allows to process the images automatically with
different contrasts, resolutions, protocols, and even different
sizes and orientations.

Despite the application of the DNN in the field of
medical image localization has shown tremendous progress,

these methods are still inferior to the performance experts
giving room for further improvements. Hence, future re-
search can focus on employing some notable DL structures
such as quantum learning, ensemble learning, and U-Net.
Also, the researchers can enhance the state-of the art DNN
methods with advanced pretraining and training strategies.
Apart from that, the performance of state-of-the-art DNN
methods can be investigated against the class imbalance
problems and efforts can be put forward to develop tech-
niques that can achieve performance gain under class im-
balance data.

'e key limitation of this review is that it presents only
the most popular DNN architectures and their applica-
tions for medical image localization. Furthermore, at-
tributed to the enormous corpus of active research in
medical image analysis, this review does not include all
variants of the DNN. Almost the majority of the DNN
architectures reviewed in this study are supervised
models. Due to the limited allowed margin of error, su-
pervised DNN approaches are involved in most of the
proposed medical image localization tasks. Unsupervised
DNN architecture is uncommon in biomedical imaging,
although research is underway.

Summing up, this review work provides an insight into
designing an efficient DNN structure for medical image
localization tasks and also puts forward a few directions for
future researchers to leverage fully the potential of the DNN
for accurate localization tasks.
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generated during the current study.

Table 4: State-of-the-art literature on application of the DNN for landmark localization.

Reference Adopted DNN Dataset used Research findings

Yang et al.
[17] CNN with shape statistics 'ree sets of 2D MRI slices

Minimum error rate of
1.61% for landmark

localization
Kong et al.
[84]

LSTM with a CNN with new loss
function MRI cardiac sequences collected from 420 patients Average frame difference

(aFD), 38%
Emad et al.
[12] CNN with different kernel sizes MRI cardiac sequences collected from 33 patients Accuracy, 98.66%

de vos et al.
[86] Fusion model with three CNNs Dataset containing 100 low-dose CT images Median dice score of 89%

for heart

Yan et al. [87] CNN with multistage and multi-
instances learning

Two datasets: first with synthetic dataset and later
with whole body CT scan dataset Accuracy, 89.8%

Lu et al. [88] Different DL architectures considering
the orthogonal orientations 499 patient CT body scans Error rate < 2.0 on average

for organ localization

de vos et al.
[89] CNN with spatial pyramid pooling

'ree different datasets with 200 chest CT, 100
cardiac CTangiography (CTA), and 100 abdomen

CT scans, respectively

F1-score > 95% for all
three datasets

Feng et al. [90] CNN extracts features at different scales
for voxel-level nodule segmentation Public LIDC-IDRI dataset Accuracy, 88.4%

Wolterink
et al. [91]

Leverages CNN for feature extraction
and Random Forest for coronary artery

calcification
Cardiac CTangiography (CCTA) from 50 patients Accuracy, 0.8

Hwang and
kim [92]

STL with joint optimization of
classification and localization

simultaneously
Two datasets, namely, CXR and mammogram Accuracy, 83.69
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