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Breast cancer patient 
characterisation and visualisation 
using deep learning and fisher 
information networks
Sandra Ortega‑Martorell1*, Patrick Riley1, Ivan Olier1, Renata G. Raidou2, 
Raul Casana‑Eslava3, Marc Rea4, Li Shen5, Paulo J. G. Lisboa1 & Carlo Palmieri6

Breast cancer is the most commonly diagnosed female malignancy globally, with better survival rates 
if diagnosed early. Mammography is the gold standard in screening programmes for breast cancer, 
but despite technological advances, high error rates are still reported. Machine learning techniques, 
and in particular deep learning (DL), have been successfully used for breast cancer detection and 
classification. However, the added complexity that makes DL models so successful reduces their 
ability to explain which features are relevant to the model, or whether the model is biased. The main 
aim of this study is to propose a novel visualisation to help characterise breast cancer patients using 
Fisher Information Networks on features extracted from mammograms using a DL model. In the 
proposed visualisation, patients are mapped out according to their similarities and can be used to 
study new patients as a ‘patient‑like‑me’ approach. When applied to the CBIS‑DDSM dataset, it was 
shown that it is a competitive methodology that can (i) facilitate the analysis and decision‑making 
process in breast cancer diagnosis with the assistance of the FIN visualisations and ‘patient‑like‑me’ 
analysis, and (ii) help improve diagnostic accuracy and reduce overdiagnosis by identifying the most 
likely diagnosis based on clinical similarities with neighbouring patients.

Abbreviations
BI-RADS  Breast Imaging Reporting and Data System
CLAHE  Contrast Limited Adaptive Histogram Equalisation
CNN  Convolutional Neural Network
FI  Fisher Information
FIN  Fisher Information Network
MDS  Multidimensional Scaling
ML  Machine Learning
MLP  Multi-Layer Perceptron
ROI  Region of Interest

Breast cancer is the most commonly diagnosed female malignancy globally with over two million women diag-
nosed annually with 685,000  deaths1. Outcomes from breast cancer are linked to the stage at diagnosis, with 
early diagnosis associated with better survival  rates2. The principle underpinning screening for breast cancer is 
that detecting the disease at an early stage and the institution of effective management, treatment and follow-up 
earlier in the disease process will improve the patients’ outcomes. The NHS breast cancer screening programme 
commenced in 1988 following the Forrest  report3 and is based on three-yearly mammography to detect changes 
in the breast tissue that may indicate the presence of cancer. The potential benefits and the harms of mammog-
raphy, particularly overdiagnosis, have been extensively discussed, most recently in the Marmot  report4.
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Magnetic resonance imaging (MRI) can also be used to detect breast cancer and it is a more comprehensive 
test used for screening, recommended especially for high-risk patients. However, a breast MRI has a much 
higher false-positive rate than mammography as they highlight both cancerous and benign tumours with little 
difference in the characteristics of both, triggering more tests and biopsies. Breast MRIs are also costlier than 
mammograms and are less available. The UK’s National Institute for Health and Care Excellence does have a 
stratified surveillance programme for patients in different risk groups (including breast density) on who should 
be offered a mammogram, an MRI or  both5. Having a mechanism helping to elucidate further insights from 
mammograms to reduce overdiagnosis as well as missing cancers would be highly beneficial, especially before 
the need to request a biopsy.

The application of Machine learning (ML) in healthcare, and particularly breast cancer classification, has 
proven to be successful. Various studies in the problem  area6–11 have shown the suitability of ML to discriminate 
between tumours and classify effectively in a manner of approaches. More recently, models  developed12–14 using 
deep learning (DL), a subset of ML algorithms, have shown the capability to attain strong predictive outcome 
measures, although at the expense of sacrificing the ability to explain how the model arrived at its conclusions 
or was making its decisions.

Convolutional Neural Networks (CNN) are one of the most representative DL algorithms, extensively used 
in many aspects of medical image analysis, and allowing for great progress in this area in recent  years15. CNNs 
consist of multiple layers of artificial neurons, each of them extracting features that are passed to the next layer 
for more complex representations or features, which eventually will enable the recognition of objects, etc. This 
work studies features that are extracted from the deepest layer (before the dense layer) of a CNN model, called 
convolutional features. This is done to take advantage of the CNN model’s effective representation of the infor-
mation, which has led to highly accurate prediction results reported in this  area14,16–20.

As ML models become more complex, such as CNN models, the level of explainability reduces, i.e. it becomes 
more difficult to understand what variables/features the model is taking into account to make a prediction, or 
whether the model is biased. Common approaches such as Saliency Maps and GradCAM have been used to 
help understand which parts of an image a CNN model found of interest to make a prediction. However, recent 
 studies21,22 have reported that the evaluation of these techniques in carefully-designed user studies has lagged 
behind technique development, in some cases providing explanations that users cannot understand or find too 
complex.

Understanding how a model makes predictions is especially relevant in healthcare applications, and it is a 
major driver for clinical take-up, enabling clinicians to accept and trust these technologies so that they become 
part of routine clinical  practice23. Hence our focus in this work is to propose a novel method that provides that 
explanation, not in the form of saliency features, but instead as a smart representation of the complete dataset 
in a low-dimensional space, that can provide intelligence about a specific data point based on its neighbouring 
data points. This is what we call a ‘patient-like-me’ approach.

The proposed patient-like-me approach could help not only to identify the most likely patient’s diagnosis but 
even potentially the patient’s prognosis based on the clinical similarities with some other patients. It could also 
inform the possible course of treatment, as it would allow checking the kind of treatments or therapies that were 
(and were not) successful for those nearby cases, playing a role in the decision-making process of a clinician. 
Lastly, it could help reduce overdiagnosis as well as missing cancers.

To achieve this, our method involves the use of the extracted convolutional features to form new input data 
to train a Multi-Layer Perceptron (MLP). This is then followed by the creation of a Fisher Information (FI)24–26 
network using probability density estimates over the classes involved in the study, used to inform a learning 
metric (FI metric) in a latent variable space. The FI metric measures dissimilarity for small changes between the 
data points according to their degree of relevance with respect to class membership. The resulting visualisation 
of the latent space can be used to project the current and future observations, enabling the analysis of individual 
cases in the context of all the other cases. Used in a medical application, this can be used to provide a represen-
tation for all patients and to enable the study of individual ones, which enhances the clinical understanding, 
confidence, and take-up.

This global view of the data derived by the FI metric displays a meaningful structure that implicitly informs 
about underlying class probabilities. The FI network framework, which has been successfully used in previous 
 studies27–30, can be used not only to create a meaningful neighbourhood mapping to visualise data but also to 
create an interpretable retrieval-based classifier, as connection weights contain accurate information about data 
points’ similarity. For the proposed methodology, an FI network is constructed using probability density esti-
mates, which are calculated across five classes from a model created by Shen et al.16, to produce a visualisation 
of the latent space of breast cancer patients using convolutional features extracted from mammography images. 
Shen’s mammogram patch model discriminates between five classes—four lesions and one image background—
and is used to inform a transfer learning model on full images over two classes detecting the presence of cancer 
or not in a full mammogram.

We expect that a visualisation of the latent space obtained with the FI network will help elucidate the underly-
ing data structure, with the ultimate aim of assisting the diagnosis of new patients. The latter can be achieved by 
projecting new unseen instances/observations into this latent space, given that a huge amount of information can 
be learnt from the closest neighbours, which would be potentially relevant to those new patients. The proposed 
approach will be compared against a new state-of-the-art method called uniform manifold approximation and 
projection (UMAP)31, which has been  reported32 to be more efficient than t-distributed stochastic neighbour-
hood embedding (t-SNE)33 in terms of computation time and data representation.

For the analysis and evaluation of the proposed method, we used an existing, publicly available dataset of 
mammograms, namely the Curated Breast Imaging Subset of the Digital Database for Screening Mammography 
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(CBIS-DDSM)34. This dataset has been used previously for classification  tasks14,16–18,35–38, for which the primary 
focus is to attain strong predictive performance, achieved using DL.

The aims of this study are, from the methodological point of view, to:

1. Propose a novel visualisation of a meaningful neighbourhood mapping containing accurate information 
about data points’ similarities that can provide intelligence about neighbouring data points.

2. Ensure that the resulting visualisation can be used for training and independent test cases, enabling the 
analysis of future observations in the context of all the other cases.

And from the clinical point of view, to:

1. Apply this methodology to breast cancer data and assess whether the visualisation of all patients can assist 
the study of individual ones (‘patient-like-me’ approach).

2. Facilitate the analysis and decision-making process in breast cancer diagnosis with the assistance of this 
novel visualisation and help improve diagnostic accuracy and reduce overdiagnosis.

Methods
Description of the dataset. In this study, we used a publicly available dataset, the Curated Breast Imaging 
Subset of the Digital Database for Screening Mammography (CBIS-DDSM)34, which is a standardised version 
of the Digital Database for Screening Mammography (DDSM)39. The DDSM is a rich mammography data-
base, containing over 2000 scanned film mammography studies with verified pathology information from 1246 
women. The CBIS-DDSM includes a subset of the DDSM data selected and curated by trained mammographers. 
Within the dataset, updated regions of interest (ROI) from the images have been provided and the pathologic 
diagnosis is also included.

For this dataset, both craniocaudal (CC) and mediolateral oblique (MLO) views are available for most of 
the exams, which are the views usually used for routine screening mammography. It also contains associated 
metadata for each lesion, including the BI-RADS assessment (BI-RADS stands for Breast Imaging Reporting 
and Data System). The latter is traditionally used to assess lesions found in different mammography images into 
categories, depending on their severity. BI-RADS score ranges from 0 to 6, however in this dataset, only scores 
from 0 to 5 are available. This dataset contains both breast masses and calcifications and holds a pathology label 
for each case, which is either benign or malignant with verified pathology information. We used the same split 
separation of training and test cases followed by Shen et al.16, which used an 85–15 split at the patient level, 
stratified to maintain the same proportion of cases per class in the training and test sets.

Visualising the latent space of breast cancer patients—proposed methodology. The main 
objective of this study is to create a visualisation of the latent space of breast cancer patients that represents 
the variability that can be found in the dataset, from which we gain insights on how different patients can be 
related, leading to the development of a ‘patient-like-me’ approach. To achieve this, we propose a methodology 
illustrated in Fig. 1.

Extracting CNN features and developing MLP model. To study a CNN classifier as proposed, this work required 
a strongly performing deep learning model. The Resnet50-based  model40 is a 5-class patch classifier, trained on 
patches of mammograms around the lesion. Using the CBIS-DDSM dataset, the five classes are: calcification 
malignant, calcification benign, mass malignant, mass benign and (image) background. It is used later in Shen’s 
work to develop a new classifier through transfer learning to inform a 2-class full image model, discriminating 
between the presence or not of cancer. A description of any data pre-processing, how the patches were attained 
and the curation of the five classes is described in Shen et al.16.

This method can be computationally expensive and therefore to reduce the extracted 2,048 extracted CNN 
features, PCA has been used for dimensionality reduction. Out of the 2048 CNN features, 1,363 principal com-
ponents are kept after applying PCA, representing nearly 67% of the original number of features, and capturing 
90% of the variance. This CNN is used as a feature extractor in this work—the outputs of the penultimate layer 
are extracted and used as the dataset for this work.

Using the CNN features as the input dataset, an MLP was developed to discriminate between the five classes. 
The MLP was initialised with random weights, one hidden layer of 30 nodes and an output layer, a learning rate 
of 0.01 and a momentum of 0.9. Weight decay regularisation was implemented at a rate of 0.2. As a five-class 
classifier, the activation function was soft-max.

Creating the latent space of breast cancer patients. Firstly, the FI metric is derived using the probability densities 
of the classes estimated with the MLP and is then used to calculate pairwise distances. The FI is usually defined 
in terms of the joint distribution of data values, x, and a parameter set, θ , by integrating over the data to obtain a 
function of a given parameter. In Ruiz et al.26 this is reversed and the posterior probability of class membership 
p(c|x) , estimated with an MLP, forms the basis to calculate the FI by summing over both classes, so that it is a 
function of a given data point, x, as follows (see Eq. 1):

(1)FI(x) =
∑

c

(

∇xlogp(c|x)
)(

∇xlogp(c|x)
)T

p(c|x) = −
∑

c

∇2
x logp(c|x)p(c|x)
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where ∇x is the gradient with respect to x . The theoretical justification for this equation is explained in Appendix 
A of Ruiz et al.26. It has the standard form of the FI, expressed in two equivalent ways.

It is well known that the FI matrix is a metric which therefore generates a Riemannian space over the range 
of the input data. This forms the basis for using the posterior probability to map the data into a structure based 
on similarity, which is measured locally by the quadratic differential form in Eq. 2:

The distance between a pair of data points is ideally measured along a geodesic, but this is computationally 
very expensive. It is shown in Ruiz et al.26 that a good approximation is obtained in a computationally efficient 
manner with the Floyd-Warshall  algorithm41,42. This involves calculating the shortest path between distant points 
by hopping from each data point to a nearest neighbour, estimating the geodesic distance between neighbouring 
points by integrating (2) over a straight-line path, for which an analytical expression is given in Ruiz et al.26 (this 
is Eq. 11 in the referred  study26).

Using the distance matrix, the similarity matrix is then calculated through the use of a Gaussian radial kernel, 
which produces an adjacency matrix that defines the network structure (see Eq. 3).

where the Gaussian kernel width σG is a natural length which was taken to be the average pairwise geodesic 
distance between points belonging to the same predicted label.

Multidimensional scaling is utilised to represent the data in a low-dimensional Euclidean space, by match-
ing as closely as possible the distance between respective cases in higher dimensional Riemannian space. Since 
this is now a projective space, the possibility of using signal-processing techniques is enabled, still retaining 
the structural representation identified by the FI matrix. The obtained visualisation of the patients’ latent space 
facilitates the ‘patient-like-me’ approach.

Application to new, unseen patients. To satisfy the ‘patient-like-me’ objective of this paper, test cases are pro-
jected onto the latent space of trained observations. It is expected that, without informing the model of the 
pathology of the cases in the test set, some characteristics of these cases will be revealed as they would fall in the 
proximity of similar cases. To achieve this, the test data go through similar steps in the methodology as the train-
ing data, which is also illustrated in Fig. 1. Firstly, CNN features were extracted from the test set and PCA was 
applied, performing the same data transformations followed for the training set. Then, the trained MLP model 
was applied to the test data to estimate the class probabilities of each observation, which were then used as part of 
the calculations of the FI distances from each test case to each of the training cases. Based on this, and mapping 
the test cases back to the Euclidean space, each of them is then projected on the pre-constructed latent space 
(created using the training data), where it can then be visualised and analysed against its neighbouring cases.

(2)d(x, x +�x)2 = �xTFI(x)�x

(3)A = exp

(

−
�x2

σ 2
G

)

Figure 1.  Proposed methodology. Utilising the FIN to create a visualisation of the latent space of cancer 
patients, exploiting the predictive capabilities of a deep learning model.
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Results
Model results. Although the classification results are not the focus of this work, they have been included to 
structure the discussion of utilising the visualisation to assess the capabilities of the patch model in Shen et al.16. 
Table 1 shows the confusion matrix for the independent test set. The overall accuracy in the test set is 72%.

Exploration using Principal Component Analysis (PCA). PCA analysis on the extracted features has 
been used to visualise the separation of the classes without applying the FIN process, as well as for dimensional-
ity reduction before the process. Figure 2 shows the first two principal components (PC) when applying PCA 
on the convolutional features, where the data points represent the patient’s mammograms colour-coded by the 
four true (originally assigned) labels and the background area. Figure 2A visualises the training data and Fig. 2B 
visualises both the training and test data, both before applying the FIN methodology. Although some grouping 
can be seen across both training and test, the mixing of the classes is apparent. All classes overlap in the centre 
of the visualisation, and both malignant classes are deeply mixed. There is some improvement with the benign 
classes however mixing still occurs.

Visualisation using Uniform Manifold Approximation and Projection (UMAP). UMAP31 is a 
non-linear dimension reduction algorithm that can be used to learn an embedding of the data for an alternative 
‘patient-like-me’ approach. It is a versatile method that can be used in unsupervised and supervised ways. In this 
study, both versions (unsupervised and supervised) of UMAP were applied to the set of extracted convolutional 
features. As expected, the supervised UMAP performed better than the unsupervised, and several tests were 
performed varying different parameters, e.g. the number of neighbours. Figure 3 shows the results obtained with 
supervised UMAP for training and test sets when using 15 neighbours and 42 random states. The groupings in 
Fig. 3 seem much more clear than those obtained with PCA (Fig. 2), although still there is mixing, especially 
notorious in the test set. It is also interesting to see how a good proportion of the class that represents image 
background was well separated from the rest of the lesions.

FIN visualisations of the training cases. Figure 4A shows the visualisation of the latent space obtained 
with our proposed approach using the FIN methodology on the convolutional features derived from the DL 
model of the five-class classifier. Similar to Figs. 2 and 3, the data points also represent the patient’s mammo-
grams colour-coded by the four true (originally assigned) labels and the background area. However, as opposed 
to Figs. 2 and 3, only very limited mixing can be seen.

Figure 4B shows the visualisation but of how the model predicted the training cases. This is an expected result 
and gives a view of how the classification process of the CNN model works. In Fig. 4B the classes are very well 
separated with most of the mixing occurring between the background and the calcification malignant classes. 
This figure can be used to assess how well the FIN representation reflects the MLP classifier. Through comparison 
of the visualisation with the true labels applied and the MLP predictions applied, the FIN representation looks to 
be suitable. The MLP structure is well reflected in this study and can be seen as a reliable mapping of the training 
cases, for which test cases will be projected onto at a later stage.

Projecting the test cases onto the trained embedding. Figure 5 shows the correctly classified test 
cases of each class highlighted as a black marker on top of the more transparent training cases. These are the 
cases that have been classified correctly. For the test subset of the data, the background class contains the most 
correctly classified cases, with an accuracy of 89.6%. It is possible to see some of these correctly classified cases 
slightly spread out although these appear to be concentrated around the benign classes. The next best perform-
ing is the mass malignant class, with 66.3% of those test cases correctly classified.

The visualisation in Fig. 5 shows that the correctly classified cases are projected within the well-defined 
class groups. However, not all cases are correctly classified. A more detailed analysis of some of these incor-
rectly classified cases has been conducted, to assess the model and better understand the reasons behind the 
misclassifications.

Detailed analysis of individual cases. Similar to the previous section, it is proposed that these trained 
embeddings can be utilised as a part of a decision support system for clinicians and radiologists in the diagnostic 

Table 1.  Confusion matrix of the CNN classifier for the test set. The rows are normalised (each sums to 
one) to show the correctly classified proportion in each class, namely: Background, Calcification Benign, 
Calcification Malignant, Mass Benign and Mass Malignant.

Test set confusion matrix (72% 
overall accuracy)

Predicted

Background Calcification Benign Calcification Malignant Mass Benign Mass Malignant

Actual

Background 0.90 0.04 0.02 0.03 0.02

Calcification Benign 0.30 0.57 0.09 0.01 0.03

Calcification Malignant 0.13 0.26 0.46 0.03 0.11

Mass Benign 0.25 0.02 0.01 0.57 0.15

Mass Malignant 0.10 0.01 0.10 0.12 0.66
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Figure 2.  Visualisation using Principal Component Analysis. Convolutional features extracted are projected on 
the first two principal components (PC). Data points represent patient mammograms, which are colour-coded 
by their assigned label. (A) shows only the training data; (B) only the test data.
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Figure 3.  Visualisation using supervised UMAP. Supervised UMAP is applied to the set of extracted 
convolutional features. As in Fig. 2, data points represent patient mammograms, which are colour-coded by 
their assigned label. (A) shows only the training data; (B) only the test data.
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process of a patient’s treatment care plan, which could help reduce the need for a pathological label in several 
cases. Through the extraction of the convolutional features, using the same pre-trained model can lead to the 
new case being projected onto the embedding. This can provide new insight into the case as it can be studied in 
the context of the neighbouring cases in the embedding, i.e. a ‘patient like me’ analysis.

Figure 6 shows a ‘patient like me’ analysis of four correctly classified cases. Additional metadata, unseen by 
the classifier and also unseen by the proposed FIN approach, has been included to assess these individual cases 
and understand the outcome of the classification to validate the proposed approach. Figure 6 highlights the 
location of where these four selected test cases were projected in the trained embedding, along with a selection 
of neighbouring cases, and their corresponding ROI patches. All malignant cases shown here have high BI-
RADS scores of 4 and 5, suggesting concern and high suspicion of malignancy, respectively. For the calcification 

Figure 4.  Visualisation of the training cases in the latent space of the FIN embedding. Cases/patient 
mammograms are represented by points: (A) colours representing the true, original labels; (B) colours 
representing the MLP prediction labels.
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malignant cases in Fig. 6, they are all of the type amorphous or pleomorphic. This follows clinical literature as 
these are more likely to be malignant  lesions43. Similarly, for the malignant mass cases, these are all of irregular 
or lobulated shapes which are more likely to be malignant.

Figure 7 presents a similar ‘patient like me’ analysis for four cases that were misclassified. Importantly for these 
cases, the metadata can provide insight into why the cases were misclassified. For example, for both case 1569—a 
calcification benign case incorrectly classified as calcification malignant—and case 420—a mass malignant case 
incorrectly classified as mass benign—the associated metadata shows that the BI-RADS score assigned is 4 (BI-
RADS was not a feature in the classification, and is denoted from studying a mammogram alone, pre-pathology). 
This score of 4 is defined as ‘suspicious of malignancy’, with a score of 3 or 5 leaning towards benign or malignant, 
respectively. This could support the fact that the cases were misclassified.

Figure 5.  FIN map: all training cases and correctly classified test cases according to the MLP. Correctly 
classified test cases (black stars) projected into the trained FIN embedding, where every case is represented by a 
point—transparency was added mainly to allow for overlapping cases to be seen, and as a result, areas with the 
majority of cases in one class will display a more solid colour.
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Figure 6.  ‘Patient like me’ analysis of four selected cases that were correctly classified. Top left: patient 1678 
(calcification benign); top right: patient 534 (calcification malignant); bottom left: patient 1332 (mass benign); 
and bottom right: patient 146 (mass malignant).. Cases are represented by points with added transparency as 
in Fig. 5. Black stars are the correctly classified test cases in each of the four groups, and the selected cases are 
represented with solid red circles. Neighbouring cases were also selected and visualised (empty black circles) for 
each of the four previous cases.
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Discussion
The focus of this work is to propose an ML methodology able to (1) facilitate the analysis and decision-making 
process in breast cancer diagnosis, which is key for the reduction in mortality from breast cancer; (2) help 
improve the diagnostic accuracy, to avoid both, false negatives (missed cancers) and false positives (which 
involves a psychological impact and recall for further tests)44; and (3) help reduce overdiagnosis, one of the 
major harms reported of the well-established breast cancer screening  programmes4. To achieve this, the proposed 
methodology was applied in this study to mammography data, to visualise all patients in a single latent space 
from where comparisons and associations between patients can be made, aiding diagnosis and further clinical 
investigations.

To illustrate how it works, the proposed methodology started from a pre-trained model available in the 
 literature16, which provides a 72% classification accuracy on test data. This pre-trained model is a 5-class patch 

Figure 7.  ‘Patient like me’ analysis for four misclassified cases. Patient 1569 is a misclassified benign 
calcification (classed as malignant calcification), patient 1545 is a misclassified malignant calcification (classed 
as malignant mass), patient 630 is a misclassified benign mass (classed as benign calcification), and patient 420 
is a misclassified malignant mass (classed as benign mass). The selected cases are represented with black solid 
circles.
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classifier implemented and used in Shen et al.16 as an intermediate step to determine whether there is cancer 
or not in a mammogram. However, this methodology is not restricted to the specific pre-trained model refer-
enced—it can also be applied to any other available or newly trained model.

The trained embeddings shown in Fig. 4 provide clear indication of the quality and usefulness of the separa-
tion using the FIN framework, showing its ability to greatly improve the five class separation as compared with 
the ones obtained on the same data with PCA (Fig. 2) and the supervised UMAP (Fig. 3). Figure 4 also shows 
that this methodology can accurately represent the model trained using the CNN features derived from the mam-
mograms, and produce a visualisation of a latent space where a large set of patients are mapped out according 
to their similarities. The major benefit of the latter is that not only further knowledge and understanding can 
be generated, but also that new patients can be added or projected onto this embedding, which would provide 
intelligence about them based on their neighbouring patients in the visualisation.

As per the patient-like-me analysis, we have shown that it is possible to study a new case (that has been unseen 
to the classifier) in the context of those around it, to gain extra insight into it. For example, the correctly classi-
fied cases (as shown in Fig. 6) can be used as examples of correctly labelled and classified patients. Studying the 
associated training cases within the embedding can strengthen the confidence in the findings arising during the 
investigation of new patients.

The proposed method has not been correct in the classification of 28% of the test cases since the proposed 
approach relies on the quality of the initial CNN model to produce the embedding. However, it is worth noting 
that several of those misclassified cases (as shown in Fig. 7) had BI-RADS scores that would indicate suspicion of 
malignancy, the borderline score in this classification, which may justify the decision made by the classifier based 
on the features extracted automatically from the mammograms. The selection of the model is justified through its 
strong predictive capabilities originally, and its use is for the features of the publicly available dataset and model.

It is intended that the FIN methodology proposed can be used to provide useful and insightful visualisations 
to clinicians and radiologists, for the use of this extra information to assist in a ‘patient like me’ approach to 
attain further insights into the workings of the classifier and visualisations. To improve this further, future work 
could consider the use of active  learning45 to continuously improve the embedding. Before any pathology is 
taken, a case can be projected onto the FIN embedding and studied in the context of their neighbouring cases. 
Then, where pathology is taken, this information can be included and the methodology updated to improve the 
model, leading to a better ‘patient like me’ approach for future patients.

One of the endeavours of this study was to exploit the predictive capabilities of a deep learning model. The 
FIN methodology has helped to further the understanding of how the CNN classification process works in this 
study. The Fisher Information metric has provided a robust mechanism to maximise the separation between 
the different classes, whilst retaining the cohesion of the group of cases with similar characteristics and has 
allowed for a visual representation of a pre-trained model which exploits the predictive capabilities of an image 
classification task using CNN. Associated information using clinical literature is able to append reasoning to the 
classification, such as information on the shape or type of lesion and the BI-RADS scores. This assists with the 
link between the human clinician and the machine learning classifier.

The use of the FIN methodology shows that this process can be applied to represent clinical data, classified 
through a CNN model which is very powerful but traditionally difficult to interpret. A Fisher-informed approach 
can add insight into the predictive capabilities and as described, can assist in the breast cancer diagnostic process.

In summary, in this study we propose a novel visualisation using FIN containing accurate information about 
data points’ similarities that can provide intelligence about neighbouring data points. This was successfully 
applied to training and independent test cases and enabled the analysis of breast cancer data using a ‘patient-
like-me’ approach. We showed how this visualisation could be used in a clinical setting to better understand the 
characteristics of a patient and facilitate the analysis and decision-making process in breast cancer diagnosis, 
which may help improve diagnostic accuracy and reduce overdiagnosis. A limitation of the proposed method is 
that the calculation of the FI distances when creating the embedding may be slow depending on the number of 
data points and the sizes of the images. However, existing implementations can be used in a high-performance 
computing cluster which can reduce the time considerably.

Data availability
The dataset analysed in the current study is publicly available in the Cancer Imaging Archive repository, https:// 
wiki. cance rimag ingar chive. net/ displ ay/ Public/ CBIS- DDSM.
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