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a b s t r a c t 

Glaucoma is a leading cause of irreversible vision impairment globally, and cases are con- 

tinuously rising worldwide. Early detection is crucial, allowing timely intervention that can 

prevent further visual field loss. To detect glaucoma an examination of the optic nerve head 

via fundus imaging can be performed, at the center of which is the assessment of the op- 

tic cup and disc boundaries. Fundus imaging is noninvasive and low-cost; however, image 

examination relies on subjective, time-consuming, and costly expert assessments. 

A timely question to ask is: “Can artificial intelligence mimic glaucoma assessments 

made by experts?” Specifically, can artificial intelligence automatically find the boundaries 

of the optic cup and disc (providing a so-called segmented fundus image) and then use the 

segmented image to identify glaucoma with high accuracy? 

We conducted a comprehensive review on artificial intelligence-enabled glaucoma de- 

tection frameworks that produce and use segmented fundus images and summarized the 

advantages and disadvantages of such frameworks. We identified 36 relevant papers from 

2011 to 2021 and 2 main approaches: 1) logical rule-based frameworks, based on a set of 

rules; and 2) machine learning/statistical modeling-based frameworks. We critically eval- 
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uated the state-of-art of the 2 approaches, identified gaps in the literature and pointed at 

areas for future research. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Glaucoma is one of the leading causes of global vision im-
pairment A and the second most common cause of blindness
globally ( 86 ). By 2040, it is estimated that 112 million indi-
viduals globally will have the disease ( 90 ). With the aging
global population ( 86 ), there will be a corresponding increase
in glaucoma cases that will continuously challenge our re-
sources worldwide ( 76 ). The global burden of vision impair-
ment and/or blindness from glaucoma is significantly associ-
ated with a decrease in quality of life, physical functioning,
and mental health ( 22 ). Although irreversible, early diagnosis
of glaucomatous optic neuropathy allows for treatment to be
implemented that may slow or prevent glaucoma progression
and blindness. 

Currently, in the United Kingdom (UK), glaucoma detec-
tion is opportunistic, most frequently accomplished by op-
tometrist assessment in the community ( 42 ). Around half of
the glaucoma patients in the community remain undiagnosed
( 16 ). A recent population-based study in Northern Ireland sug-
gests that the majority of people with glaucoma are unde-
tected, and two-thirds of glaucoma patients within the study
were unaware of having the disease ( 63 ). 

Although a worldwide problem, the burden of glaucoma is
higher within developing countries ( 30 ), and the disease dis-
proportionately affects African and Asian countries ( 78 ). More-
over, studies indicate that more than 11.2 million individuals
in India are affected by glaucoma, constituting approximately
one-fifth of the global burden of the disease ( 81 ). In the UK,
hospital eye services (HES) are the busiest outpatient service
in the National Health System (NHS) and are responsible for
8.3% of all outpatient activity B . Glaucoma accounts for 25% of
HES appointments. Individuals with, or at risk of, glaucoma
are detected by community optometrists and referred to HES,
15%–20% of the new referrals will have glaucoma and around
50% will be discharged at the first visit, costing the NHS up-
wards of £75m/year ( 10 ). 

Given this worldwide problem of glaucoma detection, the
urgent question is how close we are to having accurate ar-
tificial intelligence (AI)-enabled glaucoma detection ( 42 ) and
whether such AI can then be explained to the clinician and
patient. The answer to this question is two-fold: we need to
understand the process of detecting glaucoma in clinical prac-
tice, and then we need to determine if artificial intelligence
can accurately detect glaucoma while also providing key ex-
planations, mimicking the clinician’s reasoning. 

1.1. The detection of glaucoma by a clinician 

Glaucoma is a chronic progressive optic neuropathy in which
changes in the structure of the optic nerve head (ONH) ( Fig. 1 A)
and retinal nerve fiber layer (RNFL) are associated with visual
defects. Structural changes are manifested by a slow, yet pro-
gressive, narrowing of the neuroretinal rim, indicating degen-
eration of retinal ganglion cells axons, and astrocytes of the
optic nerve ( 13 ). To evaluate the narrowing of the neuroretinal
rim (NRR) the clinician needs to identify the boundary con-
tours of the cup and disc. Such contours then help when ex-
plaining to the patient the reasoning behind the diagnosis,
and thus help the patient to participate in the discussion and
treatment decision. Given the significance of patient involve-
ment in the decisions regarding their care and the importance
of AI explainability, this review focuses on AI that provides op-
tic cups and optic disc contours. 

Glaucoma detection is a challenging and lengthy process,
relying on multiple examinations and clinical expertise. The
National Institute for Health and Care Excellence (NICE) in
the UK recommends examination of the ONH via a technique
called fundus imaging ( 22 ). Imaging modalities are key for
evaluating structural abnormalities in the ONH. Such struc-
tural abnormalities often precede the development of visual
field loss ( 87 ). 

One method of fundus imaging is color images collected by
fundus cameras ( Fig. 1 ). 

Another fundus imaging technology is optical coherence
tomography (OCT), which can provide 3-dimensional infor-
mation to aid glaucoma diagnosis. The interpretation of color
fundus image vs OCT is different, though both essentially
evaluate the structure of ONH. OCT outputs provide numer-
ical and graphical representations of the peripapillary retinal
nerve fiber layer compared to age-matched normative data in
an objective way. A report can be generated from this out-
put (dependent on the OCT platform used). This report as-
sists clinicians in the interpretation and the identification
of glaucoma-related abnormalities thus OCT can require less
clinical expertise than the interpretation of a color optic disc
image. 

Fundus cameras are advantageous owing to their relatively
low cost compared to their imaging counterparts such as OCT
and Heidelberg Retinal Tomography (HRT). Yet, they provide
images that are of suitable quality to detect abnormalities
in the ONH for evaluating ocular health ( 92 ). Owing to their
cheaper cost, fundus cameras are readily available in a range
of settings including rural community centers, local ophthal-
mologist offices, and hospitals. Although in recent years, OCT
imaging has become cheaper and more widely available to
optometrists in economically stronger countries. Low-cost
portable fundus cameras have been developed that can be
more readily utilized for wider population-based screening of
glaucoma in lower resource settings or isolated communities.

Portable fundus cameras are becoming increasingly acces-
sible and viable ( 11 ) even within economically less fortunate
countries. These recently developed smaller mobile cameras
enable high-quality imaging of the ONH at a considerably
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Fig. 1 – Fundus photograph examples (A- left) with labels of the optic nerve head and (B - right) with 

(Inferior-Superior-Nasal-Temporal) ISNT quadrants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lower cost, providing a more cost-effective alternative to table-
top devices ( 26 ). Potentially, portable fundus cameras can be
used to identify suspects in glaucoma screening programs,
outside of the hospital setting (communities or optometry
centers). Once an individual is suspected to have glaucoma
based on the fundus imaging, they must undergo a compre-
hensive glaucoma evaluation including an assessment of vi-
sual acuity, IOP, gonioscopy, and visual fields. Therefore, this
review focuses on AI that utilizes fundus images. 

1.2. Detecting glaucoma via artificial intelligence (AI) 

AI is a computer system that can perform tasks that normally
require human intelligence such as glaucoma detection via
examination of fundus images. AI methods are developed by
applying technical expertise (in data science, mathematics,
and computing – also known as algorithmic expertise) to inter-
rogate the data, which leads to producing fast and intelligent
computer algorithms. Often, but not always, human intelli-
gence (such as knowledge of rim thinning in glaucoma) is also
applied in synergy with algorithmic intelligence. AI is an um-
brella term that encapsulates machine learning algorithms,
which in turn include deep learning (DL) methods. In recent
years we have seen a significant increase in the utilization
and development of AI, alongside momentous developments
in technology C . Automated algorithms are already being used
in some clinics including ophthalmology ( 7 ) such as the FDA-
approved AI-based device that detects diabetic retinopathy D . 

Technological advances mean that the creation of AI-
enabled glaucoma detection methods via the modality of fun-
dus images is a realistic proposition ( 68 ). Several portable fun-
dus cameras have been developed; such devices are small, in-
expensive, and are becoming straightforward enough to be
operated by laypersons ( 48 ). A recent review on the use of
telemedicine in glaucoma highlights that machines that are
less operator-dependent should give more objective results
even when they are operated by less experienced personnel
at remote sites ( 56 ). 
If AI-enabled glaucoma detection methods using fundus
imaging could be deployed in screening mechanisms, this
could aid in reducing human error (e.g., observer bias and
fatigue) and be used for large-scale screening at a low cost.
This could provide much-needed eye care services to re-
mote rural areas, particularly in nations where there is a
scarcity of qualified, skilled, and competent ophthalmologists
( 60 ). In the near future, automated image interpretation for
screening, referral decision-making, and patient monitoring
is likely to play a crucial role in frontline eye care. Even in
resource-rich care settings such as the NHS in the UK, referral
refinement with AI has the potential to address the staggering
outpatient appointment demand while reducing false positive
referral rates E . 

What remains unclear is the full state of AI-enabled
glaucoma detection, namely the frameworks that utilize
fundus cameras while providing the contours of the op-
tic cup and disc. To understand the potential application
of AI-enabled glaucoma detection, we must first answer
many questions (i.e., how accurate are the AI methods,
how suitable/appropriate are they, and how have they been
trained/tested/validated). Following this, we can then iden-
tify the next steps to further develop AI-enabled glaucoma
detection. 

1.3. There are two AI approaches for glaucoma detection 

AI for glaucoma detection can be split into two approaches:
one-step and two-step. In a one-step approach, the AI de-
tects glaucoma in a single step. The only way to do it is via
deep learning black-box approaches, also called end-to-end
approaches. The two-step approach to glaucoma detection is
to proceed in 2 steps. In the first step, AI can be applied to find
the optic cup and disc contours, then a second step uses the
information from the first step for the derivation of the au-
tomated decision rule for glaucoma detection. One-step ap-
proaches do not find nor provide the contours of the optic cup
and optic disc (i.e., they do not provide segmentation). 

https://doi.org/10.1016/j.survophthal.2022.08.005
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This review solely focuses on two-step AI approaches for
two primary reasons. Firstly, two-step AI approaches may have
advantages over the one-step approaches that are unknown
to the AI community at large. Secondly, reviews of solely two-
step approaches are absent from the literature. Previous re-
views have already extensively covered one-step/end-to-end
approaches see ( 2 ,17 ,64 ,91 ). A detailed comparison of the two
approaches is in Section 3.6 . 

1.4. Overview 

Our key objectives are: ( 1 ) to outline and clarify the main AI
terminology used with AI-enabled glaucoma detection such
that the review is accessible to ophthalmologists, and ( 2 ) to
provide a detailed overview of the state-of-art AI-enabled
glaucoma detection methods that use segmented fundus im-
ages - highlighting the two approaches used when using fun-
dus imaging, and ( 3 ) to provide a discussion on the progress of
AI-enabled glaucoma detection methods and highlight areas
that require further work. 

In the following sections, we provide a clinical and tech-
nical background and define the terminology referred to
throughout this review. Section 3 then defines the methods
used for the literature search and outlines the key informa-
tion extracted from the reviewed papers. Section 4 explains
the methods employed in this review and Section 5 covers the
results of the review. Lastly, Section 6 provides a discussion,
conclusions, and future work recommendations. 

2. Clinical terminology and brief background 

2.1. Cup-to-disc ratio 

The cup-to-disc ratio (CDR) is a universally acknowledged pa-
rameter for describing glaucomatous neuropathy, obtained
from assessment of the ONH. There are different variants of
the CDR parameter however, the primary two are the vertical
cup-to-disc ratio (vCDR) and the area cup-to-disc ratio ACDR. 

The vCDR is defined as: 

vC DR = 

Vertical C up Diameter 
Vert ical Disc Diamet er 

The ACDR is defined as: 

ACDR = 

Area o f Cup 
Area o f Disc 

Although well used in practice, the CDR parameter is lim-
ited in cases of genetically large or small optic disc, large op-
tic cup cases, and in cases where myopic ONH changes are
present ( 65 ,21 ); in such instances, the CDR can be misleading
( 41 ) and lead to errors in diagnosis. Other morphometric fea-
tures such as the rim-to-disc ratio (RDR) and horizontal cup-
to-disc ratio (hCDR) can also be considered. In contrast to the
CDR, a decrease in the RDR indicates glaucomatous neuropa-
thy. The ACDR provides a 2-D feature-based measurement al-
lowing structural changes of the ONH to be assessed. 
2.2. Neuroretinal rim area ratio 

nThe reuroretinal im (NRR) is the area between the optic cup
margin and the optic disc margin which comprises retinal
nerve fiber axons. When using fundus images, the NRR is
the area left behind when subtracting the optic cup from the
disc. The NRR is divided into four quadrants: inferior, superior,
nasal, and temporal as shown in Fig. 1 B. 

The NRR area ( 89 ) is calculated as: 

NRR = 

Area in In ferior Quadrant + Area in Superior Quadrant 
Area in Nasal Quadrant + Area in Temporal Quadrant 

The four quadrants of the NRR are typically expected
to satisfy the inferior-superior-nasal-temporal (ISNT) rule
(I > S > N > T) ( 65 ). Whilst the cup-to-disc ratio parameter fo-
cuses on the optic cup size with respect to the optic disc, the
ISNT rule focuses on the NRR width i.e., the area between the
boundary of the optic cup and disc ( 65 ). The ISNT rule follows
that the inferior rim is thicker than the superior rim, which is
thicker than the nasal rim, which is thicker than the temporal
rim in a healthy eye ( 24 ). Any violation of the ISNT rule can
be seen as a sign of glaucomatous neuropathy. However, this
is not always the case (i.e., a healthy NRR can violate the rule)
( 89 ). As such, the ISNT rule is not recognized as a diagnostic
test, but rather a clinical tool. 

2.3. Disc damage likelihood scale 

The Disc Damage Likelihood Scale (DDLS) is a grading pro-
tocol that divides glaucomatous progression into 10 stages
while accounting for optic disc size ( 85 ). The advantage of
this method is in higher inter-observer repeatability ( 87 ) and
higher agreement with the gold standard ( 21 ) than the verti-
cal CDR. The DDLS method has proved to be time-consuming,
requiring a detailed grading protocol with a standard set of
images for comparison purposes. Also, it necessitates further
training of clinicians. 

3. Technical terminology and brief 
background 

Within the AI community, many terms are used interchange-
ably; we define the key terminology used throughout this re-
view. 

3.1. Fundus image segmentation 

In medical image processing, image segmentation refers to
the (typically automated) partitioning of an image into multi-
ple clinically meaningful segments ( Fig. 2 ). Fundus image seg-
mentation is the process of finding the visible boundaries (or
“contours”) of the optic cup and disc. Manual image segmenta-
tion can involve a trained expert, such as a clinician or grader,
manually annotating the boundary of the optic cup and disc.
Whereas automatic image segmentation is accomplished by
mathematical algorithms. To date, there have been a large
number of AI methods proposed for automatic image segmen-
tation of the ONH. Popular approaches include level-set-based
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Fig. 2 – Examples of the automatic optic cup and disc segmentation in fundus images centered on the optic nerve head. The 
yellow contour represents the optic cup boundary, and the blue contour represents the optic disc boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithms, threshold-based algorithms, and clustering-based
algorithms ( 9 ,94 ). The resulting annotation of the boundaries
is what we call the segmented image . 

3.2. Image features 

In the AI community, the term “image feature” refers to a vari-
able or parameter derived from an image. Two types of image
features can be extracted from fundus images: namely, clini-
cally interpretable features and abstract features. 

Clinically interpretable features are features with clinical
meaning (e.g., vCDR and NRR area). These clinical features
have been developed over many years by expert ophthalmolo-
gists and can be intuitively explained to a patient. In contrast,
we can also consider mathematically derived abstract features .
Such features may not be clinically interpretable as they are
constructed via a mathematical or statistical process. 

3.3. Probability of glaucoma 

In general, AI calculates the probability of glaucoma for an un-
seen new fundus image as a number between 0 and 100% (e.g.,
90%). This probability is interpreted as follows: given the train-
ing set that AI used and the mathematical/statistical method
that the AI is built on, the AI believes that the chance of glau-
coma is 90%, i.e., among the 10 images that look like the new
image, 9 do have glaucoma and 1 does not. The value of the
probability of glaucoma should be calculated to reflect the
prevalence in the population of interest via e.g., Bayesian up-
dating rule. If the probability provided by AI is 50%, then the AI
is not certain if the new image is glaucomatous or not; how-
ever, if the probability is 99%, this does not mean that AI is cer-
tain that it is glaucoma. The probability estimates provided by
AI (e.g., produced by softmax or by statistical predictive algo-
rithms) need to be calibrated to be clinically meaningful (see
e.g., 1,93 ), as well as uncertainty needs to be ascribed to the
probability estimates produced by AI models. For example, if
the new image is not represented well in the training dataset,
then AI is not sufficiently trained to judge the new image, and
therefore it should be able to express its uncertainty F . The cal-
culation of uncertainty of AI is a complex problem and is a
current area of intensive research. 
3.4. Image classification 

We use the term “image classification” to refer to the auto-
mated process of determining the category to which a given
fundus image belongs e.g., healthy, or glaucomatous group (bi-
nary classification); or healthy, suspected glaucoma or glau-
coma group (multi-class classification). This process is also re-
ferred to as image discrimination ( 23 ) or disease prediction. To
achieve the classification, AI can apply a threshold to the es-
timated probability of glaucoma, e.g., if the image’s estimated
probability is higher than the threshold, the image is classi-
fied as glaucoma. If AI is uncertain in the calculated probabil-
ity, then such uncertainty will propagate into the uncertainty
of the classification. 

3.5. Classifier 

We use the term “classifier” to refer to a mathematical or sta-
tistical or machine learning method used within the AI frame-
work to estimate which disease category the patient belongs
to (glaucomatous, suspected glaucomatous, or healthy). Popu-
lar classifiers are support vector machines and logistic regres-
sion. 

3.6. AI framework 

We use the term “AI framework” to encapsulate the whole pro-
cess of automatically classifying a given fundus image into
a group (glaucomatous, suspected glaucomatous, or healthy).
This process can comprise many steps including (but not lim-
ited to) image segmentation, feature extraction, and using the
image features (via various methods) for discrimination of
glaucomatous neuropathy. The framework’s final step is to
provide the classification output for a given image. 

One-step AI framework . Some AI frameworks do not require
and do not produce segmented images. They learn a link be-
tween the fundus images and the disease status and then di-
rectly provide their estimate of the disease group. To build
such AI, a so-called end-to-end image classification method is
needed. Such computation can be enabled via DL algorithms
( 58 ) (e.g., convolution neural networks). This is possible due
to their complex interior working architectures with complex
transformations across multiple layers. 

https://doi.org/10.1016/j.survophthal.2022.08.005
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Two-step AI framework. Other AI frameworks produce a seg-
mented image as the first step. In this step, the segmented im-
age can provide clinically interpretable features (e.g., CDR ra-
tio and NRR area), or abstract features (e.g., texture and color
features). The second step then uses such features and pro-
vides an estimate of the disease group. In general, these two-
step frameworks have increased interpretability as they have
the potential to provide the clinician and patient with the
segmented image, which allows demonstration of the part of
the image leading to the AI’s output for a patient ( 50 ) and fa-
cilitates further investigation. The concept of a two-step AI
framework is not new. One recent example is the work of De
Fauw in 2018 ( 27 ) for diagnosis and referral of retinal disease,
however, their work does not include glaucoma. 

One of the criteria by which one-step and two-step AI
methods are compared is interpretability. This is one of the
key elements of building trust, especially in high stake sce-
narios such as disease detection. Interpretability means that
AI can explain its conclusion about a patient, i.e., what part
of the image was most crucial in the conclusion and why AI
has provided the respective output CF . This is related to GDPR
Article 15, which stipulates that individuals have the right to
access their data G . This includes an obligation for the con-
troller to provide meaningful information about the logic in-
volved and the significance and envisaged consequences of
processing the individual’s data via AI H . The principles out-
lined by the High-level expert group on AI appointed by the
European Commission (HLEG) I state that it should be possible
to demand a suitable explanation of the AI system’s decision-
making process. Not only does this impact the patient but it
also puts responsibility onto the controller (i.e., the clinicians
implementing the AI) to quantify and fully understand the
AI to provide such information to the requesting individuals.
More discussion on desired AI properties can be found in (80,
F,I,J ). 

Advantages of two-step AI frameworks: 

1) At the interface of the two steps, the boundaries of
the optic disc and cup are provided. This enables clin-
icians access to intermediate representation that illus-
trates which part of the rim is narrowing and thus sug-
gesting the presence of glaucoma (interpretability). This
can be integrated into clinical workflows and AI qual-
ity monitoring. This can be interrogated by human ex-
perts if they want to see why a recommendation has
been made. This means that clinicians can remain in
the process of making a diagnosis. Such knowledge is
advantageous for patients too, as it shows the areas of
narrowing of the optic rim and then this offers the pos-
sibility for a patient to appeal the output of AI, as well
as a possibility to participate in shaping AI design and
operation. All mentioned points are crucial for building
trust. Additionally, there is a utility of fundus images be-
yond the optic disc for glaucoma diagnosis ( 45 ). 

2) Two-step frameworks may require smaller datasets for
training than one-step frameworks that utilize DL. This
statement is supported by the following points. Firstly,
the fact that two-step methods may need less data can
be explained by looking at the architecture of the AI.
One-step approaches that use a DL architecture learn
via complex multi-level representation transformations
across many layers, with large numbers of parameters
to estimate. These transformations are non-linear and
are not designed manually but learned via the training
data. That is, the network learns by examples, finding
its own way of discerning between ground truth labels
(i.e., glaucoma vs healthy). As a result, they require vast
amounts of data to learn such patterns. Although in re-
cent years we have seen a ‘rise of data’ there is still not
an abundance of high-quality accessible data within the
field of glaucoma. This is even more problematic when
requiring data with high-quality annotations (ground
truth) and a good sample of examples (patients, cohorts,
imaging devices, etc.). This can be highlighted by the ex-
ample of two proposed works. The two-step framework
for glaucoma detection by MacCormick and coworkers
( 62 ) achieved an accuracy of AUROC 99.6% and 91.0%,
in internal and external validation respectively, while
using approximately 300 images for training. Whilst a
one-step DL framework proposed by Li and coworkers
( 57 ) achieved comparable accuracy but required 30,000
images for training. 

Secondly, the one-step DL approach must address the issue
of dealing with lots of redundancy in the data, and a small set
of labels assigned to the whole image mean that little ground-
truth information is made available. The use of the whole fun-
dus image in DL methods means that the methods have a
large amount of data to handle, much of which may be redun-
dant – with the most important information appearing to lie
in the boundaries of the ONH. Thirdly, in areas outside of oph-
thalmology, it has also been observed that neural networks
can be made more data-efficient if they utilize contours ( 38 ). 

Disadvantages of two-step AI frameworks: 

1) They are prone to compound errors. This is due to the
sequential nature of two-step frameworks – it inher-
ently gives rise to compounding errors. An error in the
first stage of segmentation will then transpire through-
out the framework and could lead to errors in the sec-
ond stage and incorrect predictions. In model training,
it is possible to use this as a tool for improvement. The
AI developer can evaluate the AI performance in isola-
tion (i.e., segmentation and classification performance).
They can further explore any misclassifications that oc-
cur and work back to deconstruct why these are hap-
pening (i.e., segmentation error) and implement meth-
ods to improve upon this. One-step frameworks do not
directly have the capacity to be interrogated in such
ways but are not at the same risk of compound errors. 

2) They require more domain expertise and more time
for technical work for AI model development. Firstly,
even though they need less training data, such train-
ing data need more clinical annotations (i.e., annota-
tions of the boundaries of cup and disc). Secondly, the
clinical knowledge needs to be elicited and then used to
craft the AI model (e.g., knowledge about rim thinning
in glaucoma). Thirdly, the technical team needs to find
ways to incorporate the knowledge into the AI model,
thus more time is needed for AI development. This all
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enables increased interpretability, as well as lowers the
need for vast amounts of training data (see Advantages
1 and 2). 

Further comments on two-step vs one-step AI frameworks
for glaucoma detection: 

1) We previously highlighted (Advantage 1) that two-step
AI frameworks can be constructed to facilitate expla-
nation of the final decision, i.e., they are interpretable
by design. Such frameworks are able to explain why
they arrived at a conclusion that an eye has glau-
coma. In contrast, the one-step frameworks relying on
black-box approaches, such as DL, do not provide an
explanation without post hoc descriptive methodol-
ogy; however, recently the AI community is working on
bringing interpretability to DL. This remains an ongo-
ing and active research area. The interpretability of DL
is being researched in two ways. Firstly, there is a re-
search effort to make DL interpretable by design. Exam-
ples are in detecting bird species and car models ( 20 ),
or text classification ( 19 ). Such methods have not been
implemented for glaucoma detection. Secondly, there
is an intention to develop a ‘post-hoc interpretability’
for DL as an additional analysis. Here, one interprets a
trained DL method by fitting explanations as to how it
performed the classification. This can be then visual-
ized (i.e., saliency maps). One can find regions of the im-
age that led to the classification output (i.e., opening the
black box). Yet, whilst such post-hoc methods can aid an
expert user to understand what data is most relevant to
how the AI works, it provides limited insight into how
that information is used. It should be noted, this un-
derlying requirement of interpretable and explainable
AI does not have to come at the cost of accurate AI ( 79 ).

2) Two-step AI frameworks may be easier to generalize and
are less prone to overfitting issues than the one-step
methods If AI has been ‘over-fit’ to specific training data,
then the AI cannot be used reliably to make conclusions
on future data, i.e., it lacks generalizability. The prob-
lem of overfitting can be mitigated to a degree for one-
step frameworks that utilize DL with techniques such
as dropout, early stopping, and regularization yet each
technique has its drawbacks and overfitting remains an
issue in many approaches. 

3) Two-step AI frameworks may be less computationally
intensive than one-step AI frameworks i.e., they need
lower computational power. However, the computa-
tional intensity is (to some extent) mitigated for DL via
state-of-the-art computational algorithms and hard-
ware. 

3.7. Evaluating the performance of AI 

Careful evaluation of AI is required to understand the AI’s per-
formance capabilities; that is, how well the AI agrees with
the gold standard. By the “gold standard” (also referred to as
ground truth), we refer to the decision of a clinical expert on
whether the eye has glaucoma or not. There is no single mea-
sure that alone would be enough to evaluate the performance
of AI. Hence, a combination of measures is required to give a
complete overview of the AI framework’s capabilities. In what
follows we briefly mention the most important measures for
evaluating the performance of AI. 

Confusion matrix. The confusion matrix ( Table 1 ) is used
to give an overall representation of the performance of the
AI’s framework. Using this confusion matrix, key performance
metrics are derived. 

The true positives ( T P ) are the glaucomatous observations
that have been correctly classified, whereas the true negatives
( T N ) are the non-glaucomatous observations that are correctly
classified as non-glaucomatous. The false positives ( F P ) are the
non-glaucomatous observations that are incorrectly classified
as glaucomatous, and the false negatives ( F N ) are the glau-
comatous observations that are incorrectly classified as non-
glaucomatous. 

The accuracy metric is the proportion of correctly classified
images. Sensitivity (aka true positive rate) is the proportion
of actual positive cases (i.e., glaucomatous) that are classified
as positive. Specificity (aka recall) is the proportion of actual
negative cases (i.e., healthy) which are classified as negative. 

The positive predictive value (PPV) is the probability that an
individual with a positive reference test truly has the disease
whilst the negative predictive value (NPV) is the probability
that an individual with a negative reference test truly does
not have the disease. 

Sensit ivit y = 

T P 
T P + F N 

Speci f icity = 

T N 
T N + F P 

Accuracy = 

T P + T N 
T P + T N + F P + F N 

Posi tive Pred icti ve Value ( PPV ) = 

T P 
T P + F P 

Nega tive Pred icti ve Value ( NPV ) = 

T N 
T N + F N 

False positives are mistakes that potentially could lead
to unnecessary further testing/referrals. Arguably false nega-
tives are more serious in glaucoma as the disease is not iden-
tified and treated at the earliest stage. The detection of glau-
coma would then occur at later stages, resulting in advanced
and irreversible ONH damage and possible visual field loss,
impacting the patient significantly. To this end, an effective
framework (with high sensitivity) for the detection of poten-
tial glaucomatous subjects at the earliest stage is paramount.

Area under receiver operating characteristic curve (AUROC).
A Receiver Operating Characteristic (ROC) curve plots the
true positive rate ( sensit ivit y ) vs the false positi v e rate
( 1 − speci f icity ) at all classification thresholds. The AUROC is
defined as the area under the ROC curve. If we are presented
with a pair of eyes, one with glaucoma and one without glau-
coma, then the AUROC metric is interpreted as the probabil-
ity of correctly distinguishing the glaucomatous eye from the
non-glaucomatous eye. An AUROC of 0.5 is the equivalent to
the flip of a coin. 
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Table 1 – Confusion matrix. 

Predicted Class 

Negative (0) Positive ( 1 ) 

Actual Class Negative (0) True Negative ( T N ) False Positive ( F P ) 
Positive ( 1 ) False Negative ( F N ) True Positive ( T P ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal and external evaluation of AI. AI methods are tested
to compute the aforementioned performance metrics (i.e., ac-
curacy, sensitivity, AUROC, etc.) AI must be evaluated on data
that have not been used within its training component. There
are two methods for evaluating AI: internally and externally.
In internal evaluation, the dataset can be split into two parti-
tions, one is used for training and one for testing (e.g., 70:30
split). Hence, an image can either be in the training or testing
set, but not in both. 

Another approach to internal evaluation is k-fold cross-
validation. When using k-fold cross-validation, the dataset is
randomly split into k equally sized partitions; ( k − 1 ) parti-
tions are used for training the classifier and the final partition
is used for testing. This is repeated k times with the perfor-
mance metrics being retained each time. The final metric pre-
sented is the average of the k splits. Generally, the value of k is
set to five or 10 for optimal bias-variance trade-off ( 44 ). Such
evaluation approaches are called internal as all images come
from the same source (i.e., the same cohort), and hence it may
not be sufficient for evaluating the generalizability of the AI. 

Conversely, external evaluation consists of testing the
framework on data from a different source (then the data used
for training). This could be a dataset acquired from a different
cohort or device. Whilst internal testing gives insight into the
performance capabilities of the framework, external testing is
required as it provides an understanding of the generalizabil-
ity of the framework with unseen data from different sources.

3.8. Reporting guidelines for AI in healthcare 

With the ongoing developments of AI for health applications,
there has been an increase in published guidelines for the re-
porting of the methods. The key information that should be
reported includes the imaging device, contextual study set-
ting, detailed cohort information and data processing meth-
ods(33). With the use of AI, further detail is required to be re-
ported comprising the technical aspects of the methods pre-
sented. Recently, new standards specific to reporting studies
of machine learning/AI interventions have been in develop-
ment. This includes TRIPOD-ML, SPIRIT-AI and CONSORT AI
( 33 ) under the EQUATOR initiative K . 

4. Methods 

We performed a comprehensive literature search, details of
which can be found in the Method of Literature Search sec-
tion. A table was used to extract all relevant information from
the selected papers. For this review, we extracted informa-
tion regarding the authors, year of publication, approach to
classification, data used (sample size, availability of the data
publicly, number of data annotators, imaging device details),
techniques used for segmentation, validation techniques ap-
plied, performance metrics of the methods (accuracy, sensitiv-
ity, specificity and AUROC). The key terms were agreed upon by
a collection of professionals with a range of experiences. This
included mathematicians/statisticians and experienced clin-
icians. Two people reviewed titles and abstracts (LC and GC),
and any disagreements were reconciled via consulting with a
third person (BW). While this review is primarily focused on
assessing the classification of glaucoma following segmenta-
tion, we do provide details about methods for segmentation
as this is a key step in the pipeline and can heavily influence
classification results. 

5. Results 

5.1. Papers included 

We identified a total of 1080 papers ( Fig. 3 ) to meet the keyword
search ( Section 7 ). After the removal of 252 duplicates, papers
were screened based on titles and abstracts. A total of 623 pa-
pers were removed following title and abstract screening due
to unsuitability for this review. The remaining 205 papers were
screened based on text. Of these, 169 papers were removed
due to unsuitability for this review, leaving 36. There were 3
main reasons papers were labeled as unsuitable in this review
(from most prevalent): ( 1 ) they proposed a one-step AI frame-
work that did not require any segmentation of the fundus im-
ages, ( 2 ) they focused purely on segmentation and provided no
framework for classification of glaucomatous optic neuropa-
thy, ( 3 ) they did not present a 2-step approach with fundus im-
ages. A total of 63 papers were identified in 2021. From the 21
papers collected for full-text reading, 5 papers were excluded-
for not using segmentation, 4 were excluded as they proposed
no classification (only segmentation), 1 was excluded for us-
ing solely OCT, and 1 was excluded for unclear reporting. The
final number of papers that met eligibility criteria ( Section 7 )
for this review was 36. 

5.2. Characteristics of identified papers 

We have highlighted two distinct approaches to the classifi-
cation of glaucoma from segmented images. We termed the
first approach the logical rule-based framework due to the
use of straightforward threshold rules (IF-ELSE statements)
based on clinically interpretable imaging features. The second
is machine learning/statistical modeling frameworks which
exploit the imaging features in a range of classification mod-
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Fig. 3 – Flow diagram of papers included within the review. 

Fig. 4 – Pathways of frameworks for two-step AI-enabled glaucoma detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

els/algorithms for glaucoma detection. In this review, 12 pa-
pers were identified as using the logical rule-based frame-
work, while 24 papers used machine learning/statistical mod-
eling frameworks. 

5.3. Logical rule-based AI frameworks for glaucoma 

detection from segmented images 

We use the term logical rule-based frameworks to refer to
frameworks that use a set of simple IF-ELSE rules ( Fig. 4 ). For
such methods to work, the optic cup and disc are first seg-
mented, then some clinically interpretable imaging features
are obtained from the segmented image. Such clinically inter-
pretable imaging features can include variations of the CDR
(i.e., vCDR ratio, ACDR and RDR) and measurements from the
NRR (i.e., NRR area, area in quadrants, ISNT rule compliance).
These features are then used in the framework via IF-ELSE
formats for glaucoma classification as presented in ( Table 2 ).
In the following text, we reflect on the key aspects of the re-
viewed papers that apply a logical rule-based AI framework. 

Clinical features used by logical rule-based AI frameworks. The
success of the logical rule-based frameworks is highly depen-
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Table 2 – Details of the reviewed papers proposing logical rule-based AI frameworks. Afll papers considered two groups (glaucoma vs healthy), except for Issac and Dutta 
(2019) and (Soorya et al, 2018) whom both had three groups (healthy, glaucoma or suspected glaucoma): if the features obtained from the fundus image did not meet the 
criteria for glaucoma or healthy group, this was then classified as suspected. (- represents information not provided). 

Paper Features Feature Rule for Glaucoma 
Classification 

Accuracy Sensitivity Specificity Testing Data Datasets 

(Boži ́c-Štuli ́c et al., 2020) 1 ACDR > 0.3 96.8% - - 200 1 
(Dutta et al., 2014) 1 vCDR > 0.75 90.0% - - 10 1 
(Agarwal et al., 2015) 1 ACDR > 0.3 90.0% - - 20 1 
(Ahmad et al., 2016) 1 vCDR > 0.5 92.0% 93.0% 88.0% 100 1 
(Dutta et al., 2018) 1 ACDR > 0.26 83.0% - - 101 1 
(Soorya et al., 2018) 1 vCDR > 0.7 97.0% 96.5% 98.0% 215 1 
(Mvoulana et al., 2019) 1 ACDR > 0.63 98.0% 100.0% 94.4% 51 1 
(Ong et al., 2020) 1 ACDR > 0.5 86% 

∗ BAC 82.0% 89.0% 133 1 
(Das et al., 2016b) 2 vCDR vCDR > 0.5 AND 

ISNT violation 
94.0% 92.6% 94.5% 244 5 

ISNT 
(Issac and Dutta, 2019) 3 ACDR ISNT rule violation 

AND 

vCDR > 0.6 OR ACDR < 0.25 

93.0% 94.0% 96.0% 364 1 
vCDR 
ISNT 

(Vijapur and Kunte, 2017) 3 ACDR ACDR > 0.4 
OR 
RDR < 0.6 
OR 
VRI < 0.2 

- 93% (Private 
Database) 

92% (Private 
Database) 

150 (Private 
Database) 

2 

RDR 87% (HRF) 87% (HRF) 30 (HRF) 
VRI 

(Neto et al., 2021) 1 ACDR > = 0.3 - 82% 86% 660 3 
1 vCDR > = 0.5 - 89% 79% 

1 HCDR > = 0.5 - 82% 64% 
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dent on the imaging features used. From the 12 papers identi-
fied, nine of the papers used one feature, one paper combined
2 features, and2 papers combined three features for their pro-
posed detection rule ( Table 2 ). The most frequently used fea-
ture was the ACDR, used by seven different frameworks. Fol-
lowing this, the vCDR was used by 6 frameworks, and a vari-
ation of the ISNT rule was exploited by two frameworks. The
features of vessel ratio index (VRI) and RDR were both used
once in combination with other features. 

Logical rule-based AI frameworks using one feature. Variants
of the CDR parameter have proven to be popular due to their
clinical value, interpretability, and cheap computation from a
segmented fundus image. However, some authors have criti-
cized the use of a CDR feature alone, stating that the feature
is a limited and incomplete parameter for classifying glauco-
matous neuropathy ( 3 ,43 ,61 ). 

The vCDR was used alone in a detection rule by Dutta and
coworkers ( 32 ) with a reported accuracy of 90%. This frame-
work was tested on a small sample of 10 images thus, only one
image was incorrectly classified. The one incorrectly classified
image displayed a vCDR of 0.6 which their rule classified as
healthy yet the ground truth from ophthalmologists marked
the observation as glaucomatous. Although a small study, this
example highlights why using the vCDR alone can be prob-
lematic. Clinically, it is known that healthy individuals with a
large disc can display large vCDR values, and conversely, glau-
coma patients with a small disc can have small vCDR values L .
The authors also recognized this pitfall and propose that fu-
ture work should consider incorporating other clinically inter-
pretable features. 

Three other reviewed papers considered the vCDR alone.
Ahmad and coworkers obtained an accuracy of 92%, sensitiv-
ity of 93%, and specificity of 88% ( 6 ). While Sooryaand cowork-
ers obtained an accuracy of 97%, a sensitivity of 96.5%, and
specificity of 98% ( 60 ). Both frameworks ( 60 ,6 ) only tested their
approach on a dataset acquired from one source which lim-
its the conclusions that can be made about the frameworks’
generalizability. Conversely, Neto and coworkers proposed 3
rules for glaucoma classification using the features of vCDR,
hCDR and ACDR independently ( 70 ). They found the optimal
results when using the vCDR, this gave a sensitivity of 89%
and a specificity of 79%. Thus, although vCDR may be a lim-
ited parameter when used independently, it is better than the
parameters of hCDR and ACDR in this case ( 70 ). Note that Neto
et al tested their approach on a larger database of 660 images
( Table 2 ). 

Further work by Dutta and coworkers ( 31 ) proposed the use
of the ACDR independently. The authors stated that the pa-
rameter of the ACDR is more appropriate than the vCDR pa-
rameter for glaucoma classification. They reasoned that the
vCDR parameter assumes that the optic cup and disc are vir-
tually circular; thus, the parameter will not account for any
shape irregularities that occur with glaucoma neuropathy. 

When using the ACDR alone, the reported accuracies from
three papers ranged from 83% ( 31 ) to 90% ( 4 ) and 96.8% ( 14 )
( Table 2 ). Note that all three papers did not provide the met-
rics of sensitivity or specificity and used only one dataset.
Two other papers ( 67 ,72 ) also used the ACDR parameter alone.
Mvoulana et al’ ( 67 ) analysis yielded an accuracy of 98%, sen-
sitivity of 100% and specificity of 94% and Ong et al’ analysis
( 72 ) yielded a balanced accuracy of 86% and a sensitivity and
specificity of 82% and 89% respectively. 

Logical rule-based frameworks using two or more features.
Rather than using one feature alone, Das et al ( 25 ) proposed
combining the vCDR with the ISNT rule for their detection
rule. They classified an image as ‘healthy’ if the vCDR < 0.5
and it satisfies the ISNT rule, otherwise, the image was la-
beled as glaucomatous. Upon inspection of the framework’s
misclassifications, they determined that these occurred due
to the segmentation step rather than the features used ( 25 ).
Thus, highlighting the importance of accurate segmentation
methods in the first step of the framework. 

Vijapur and Kunte ( 95 ) used the 3 features of ACDR, rim-
to-disc ratio, and vessel ratio index ( Table 2 ). The authors
cite that their detection rules were determined after con-
sultations with ophthalmologists to ensure they were clin-
ically relevant and appropriate ( 95 ). Their framework intro-
duced the novel idea of segmenting blood vessels and ac-
counting for this within glaucoma classification. However, fur-
ther external testing is required to evaluate whether the ves-
sel ratio index feature is generalizable to images from other
sources. 

Three clinically interpretable imaging features: vCDR ratio,
ACDR & ISNT rule compliance were used by Issac and Dutta
( 46 ), the authors used a logical rule presented in a hierarchi-
cal IF-ELSE format ( Table 2 ). This framework resulted in an ac-
curacy of 93%, sensitivity of 94%, and specificity of 96% ( 46 ).
In frameworks when rules are used in a hierarchical format
such as this, it is important to note which features are first
in the chain. While it is widely used in practice, the ISNT
rule is shown to be less reliable than the vCDR parameter;
thus, more errors could occur by applying the ISNT rule first
( 75 ). 

Das and coworkers proposed the use of vertical cup-to-
disc ratio in combination with the ISNT rule ( 25 ), the method
was tested on four publicly available datasets and one private
dataset. This framework resulted in an accuracy of 94%, sen-
sitivity of 92.6%, and specificity of 94.5% ( 25 ). Following this,
Issac and Dutta used the ACDR parameter with the vCDR pa-
rameter and the ISNT rule, yielding an accuracy of 93%, sen-
sitivity of 94%, and specificity of 96% ( 46 ). Finally, the paper
by Vijapur and Kunte used the ACDR with the RDR parameter
and vessel ratio index ( 95 ). They obtained a sensitivity of 93%
and specificity of 92%; the accuracy of the framework was not
provided ( 95 ). 

5.4. Machine learning/statistical modeling-based AI 
frameworks for glaucoma detection from the segmented 

image 

The machine learning or statistical modeling–based AI frame-
works differ from the logical rule-based AI frameworks as they
implement a mathematically complex classifier to perform
the classification of glaucoma. Alike to the logical rule-based
AI frameworks, they can make use of clinically interpretable
features extracted from a segmented fundus image, but differ-
ent from the logical rule-based AI frameworks, they can also
create and utilize abstract features and exploit these within
machine learning or statistical modeling classifiers. The fol-
lowing section presents the findings of the 24 papers identified
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in this review that implement a machine learning or statistical
modeling-based AI framework. 

5.4.1. Machine learning/statistical modeling-based AI classi-
fiers and their reported performance 
The machine learning/statistical modeling frameworks dif-
fered from one another by the type of classifiers they imple-
mented ( Table 3 ). Support vector machines (SVM’s) were the
most popular classifier, being used in 11 out of 17 papers. The
clustering methods of M-Mediods and K-nearest neighbours
(K-NN) were used by one paper each and the ensemble clas-
sifiers of Random Forest (RF), dynamic ensembling and XG-
Boost were all proposed once. Additionally, two papers used
Linear Mixed Effects (LME) modeling. The remaining frame-
works proposed a variant of a neural network (NN) for classi-
fication. Note that, Table 3 only presents the optimal classifier
used in the frameworks. That is, many papers propose a range
of classification models/algorithms and present the classifier
which worked optimally. The type of optimal classier also de-
pends on the dataset used. 

Support Vector Machine Classifiers. A total of 11 studies used
support vector machine classifiers, and two different kernel
functions were selected within these. The radial basis func-
tion (RBF) kernel was used by five frameworks and the linear
kernel was used by four frameworks. From the papers using
the RBF kernel, Issac and coworkers ( 47 ) obtained an accu-
racy of 94%, sensitivity of 100%, and specificity of 90%. Krish-
nan and coworkers ( 55 ) only provided the F1 score as a met-
ric, which was 91%. The framework proposed by Agarwal and
coworkers obtained an accuracy of 90%, sensitivity of 100%
and specificity of 80% ( 5 ); while the framework by Khalil and
coworkers combined two support vector machines with RBF
kernels and achieved an accuracy of 92.9%, sensitivity of 87.5%
and specificity 90.84% ( 52 ). Khalil and coworkers found signif-
icant improvement in classification capabilities was achieved
by combining the outputs of the support vector machine clas-
sifiers and considering a range of structural and textural fea-
tures. A more recent study by Kang and coworkers resulted in
an accuracy of 85.06%, sensitivity of 81.95% and specificity of
88.28% ( 49 ). 

From the four papers that used support vector machine
classifiers with linear kernels, Narasimhan and Vijayarekha
only provided the metric of accuracy which was 95% ( 69 ).
Mukherjee and coworkers obtained an accuracy of 87%, sen-
sitivity of 86.4% and specificity of 90% ( 65 ). More recently,
Pathan and coworkers achieved an accuracy of 96.66%, sen-
sitivity of 100% and specificity of 95% with the publicly avail-
able DRISHTI database but on external testing with a private
database, this reduced to an accuracy of 90%, sensitivity of
93.47% and specificity of 91.2% ( 59 ). Xu and coworkers pro-
posed a linear kernel SVM in combination with a decision rule
( 96 ). Firstly, if RNFLD were present this was marked as glau-
coma. If not, then the SVM was applied for the decision out-
put. This novel method resulted in a sensitivity and specificity
of 96.1% and 95.6% respectively. Furthermore, Xu and cowork-
ers implemented external testing; this achieved the metrics of
98.4% sensitivity and 94.1% specificity; indicating the general-
izability of their adopted approach. Deepika and Maheswari
did not specify the kernel used, this framework yielded an ac-
curacy of 91.67%, sensitivity of 90% and specificity of 93.3%
( 29 ). Likewise, Yunitasari and coworkers did not specify the
kernel used; their proposed framework achieved an accuracy
of 95%, sensitivity of 91.4% and specificity of 95.6% ( 97 ). 

Clustering classifiers Clustering methods were used by two
frameworks. The k-nearest neighbors algorithm (K-NN) was
proposed by Lotankar and coworkers, achieving an accuracy
of 99.2%, sensitivity of 86.7% and specificity of 84% ( 59 ). The
framework of Akram and coworkers used a clustering method
of M-Medoids ( 8 ). They proposed that there is variation in
the number and distribution of the samples within the two
classes (healthy & glaucomatous) and via employing multi-
variate m-modeling and classification, they could handle mul-
timodal distribution of samples within the two classification
groups ( 8 ). This method was tested on five datasets; the ac-
curacy across the datasets ranged from 86.7% to 94.4%, sen-
sitivity from 75% to 93.3% and specificity from 87.1% to 97.1%
( 8 ). 

Random Forest classifier. A Random Forest classifier was pro-
posed by Zahoor and Fraz ( 98 ). This method resulted in an ac-
curacy of 95.3%, sensitivity of 96.31% and specificity of 95.33%.
However, the authors state the use of the publicly available
High-Resolution Fundus Image (HRF) database but removed
nine of the total 36 fundus images without explanation. 

XGBoost classifier. Afolabi and coworkers proposed an XG-
Boost classifier resulting in an accuracy of 88.3% and AUC of
93.6% via 5-fold cross-validation ( 3 ). 

Dynamic ensemble method. Zulfira and coworkers imple-
mented a dynamic ensemble classifier, they used three pub-
licly available datasets independently; the accuracy ranged
from 90% to 91%, sensitivity from 86% to 90% and specificity
from 86% to 89% ( 100 ). Their choice of a dynamic ensemble
classifier was to handle the imbalanced datasets (i.e., different
numbers of images for the three groups: healthy, mild glau-
coma and severe glaucoma). 

Linear mixed-effects statistical modeling. A linear mixed-
effects (LME) modeling approach was used by two papers
( 61 ,54 ). This framework was originally proposed by Mac-
Cormick and coworkers and yielded an AUROC of 99.7%, sensi-
tivity of 100% and specificity of 98.3% on internal testing. The
proposed framework then employed external validation us-
ing the publicly available RIM-ONE V3 dataset, the AUROC ob-
tained was 91% ( 61 ). A disadvantage of such an approach is in
requiring the segmented image of healthy eyes to follow a sta-
tistical model with a plausible number of parameters. This is
not always possible, however, in the case of glaucoma, this was
a suitable approach. The authors determined that the con-
tours of the optic cup and disc appeared to be two-centered
ellipses in healthy eyes and additionally, they included a tech-
nique to account for each eye displaying different disc sizes–
all of which were captured in the statistical model. Using this
information, the classification of glaucoma was then based
on a deviation of the contours from the model of healthy
eyes. 

This framework was then improved by Adithya and
coworkers who incorporated further relevant parameters
(ACDR and group variance) to improve the model perfor-
mance. They achieved an AUC of 0.997 via internal testing and
0.969 on external testing ( 54 ). 

Neural network classifiers. A multi-layer perceptron was pro-
posed by Perdomo and coworkers with the final stage being
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Table 3 – Details of the reviewed papers proposing machine learning/statistical modeling-based AI frameworks. Twenty papers considered binary classification (glaucoma 
vs healthy). Four papers (Khalil et al, 2017), (Perdomo et al, 2018), (Yunitasari et al, 2021) and (Zufira et al, 2021) proposed three classes (glaucoma, suspect glaucoma, and 

healthy). Krishnan et al, 2020 used only F1 score as a quality of classification metric, which was 91%. 

Paper Classifier Features Features Data Accuracy Sensitivity Specificity AUROC Validation 

(Zahoor and Fraz, 2018) Random Forest 10 Area of OC & OD, ACDR, Area of 
NRR, HCDR, vCDR, Area of ISNT 
regions ( 4 ) 

RIM-ONE & HRF 95.3% 96.3% 95.3% - - 

(Deepika and Maheswari, 
2018) 

SVM 4 ACDR & 3 statistical features from 

blood vessels 
HRF 91.7% 90.0% 93.3% - 60:40 

(Issac et al., 2015) SVM 

(RBF kernel) 
3 ACDR, NRR Area & Blood Vessel 

Ratio 
Private 94.0% 93.8% 94.0% - LOOCV 

(Lotankar et al., 2015) K-NN 4 vCDR, ACDR, RDAR & H-VCDR Private 99.2% 86.7% 84.0% - 10-Fold CV 

(Pathan et al., 2021) SVM (linear kernel) 10 ACDR, NRR Area, Colour ( 4 ) & 

Texture ( 4 ) features 
DRISHTI 96.7% 100.0% 95.0% - 10-Fold CV 

Private 90.0% 93.5% 91.2% - 
(Kausu et al., 2018) MLP 2 ACDR & Texture Feature (Energy) Private 97.7% 98.0% 97.1% - 10-Fold CV 

(Krishnan et al., 2020) SVM (RBF kernel) 1 vCDR DRISHTI - - - - 50:50 
(Agarwal et al., 2015) SVM (RBF kernel) 2 ACDR & RDR Private 90.0% 100.0% 80.0% - 70:30 
(Akram et al., 2015) M-Mediods 10 vCDR & RDR 

Spatial Features ( 5 ) 
Spectral Features ( 3 ) 

DRIVE 92.5% 83.3% 94.1% - 70:30 

DIARETDB1 94.4% 75.0% 96.3% - 
DRIONS-DB 93.6% 86.7% 94.7% - 
HEI MED 86.7% 84.2% 87.1% - 
MESSIDOR 89.0% 84.0% 94.4% - 
HRF 91.1% 93.3% 90.0% - 
GlaucomaDB 90.8% 85.7% 92.9% - 

(MacCormick et al., 2019) LME 24 pCDR (24 CDR’s) ORIGA - 96.6% 99% 99.7% 70:30 & 100 
bootstrapped 
samples 

RIM-ONE - - - 91.0% External 
Validation 

(Narasimhan and 
Vijayarekha, 2011) 

SVM 

(linear kernel) 
2 ACDR & ISNT Ratio Private 95.0% - - - 70:30 

(Mukherjee et al., 2019) SVM (linear kernel) 8 vCDR, ACDR, dCDR, notch factor, 
S&I Distance, ISNT rule. 

Private 87.0% 86.4% 90.0% - 5-Fold CV 

(Karkuzhali and 
Manimegalai, 2017) 

FFBPNN 3 vCDR, ISNT Ratio & DOO DRISHTI 100.0% 100.0% 100.0% - 50:50 

(Kang et al., 2020) SVM (RBF kernel) 8 vCDR, ISNT score, length, area, 
distance from OD 

Private 85.1% 82.0% 88.3% - 60:40 

( continued on next page ) 
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Table 3 ( continued ) 

Paper Classifier Features Features Data Accuracy Sensitivity Specificity AUROC Validation 

(Khalil et al., 2017) SVM (RBF kernel) 62 vCDR, RDR, Cup shape & 

texture/intensity features 
GlaucomaDB 94% 96% 92% - 10-Fold CV 

(Raja and Ramanan, 2019) DLRNL 6 ACDR, NRR Area, BVR & Texture 
features 

HRF 89.0% - - - - 

(Perdomo et al., 2018) MLP 19 Geometric ( 2 ), Ratio ( 7 ), Distances 
( 4 ) & Axis ( 4 ) features 

RIM-ONE & DR 89.3% 89.5% 88.9% 82.0% 70:30 

(Zufira et al., 2021) DES-MI (Dynamic 
Ensemble Method) 

7 6 Features from GLCM 

(contrast, dissimilarity, 
homogeneity, energy, correlation, 
angular second moment) 
& ACDR. 

RIM-ONE 91% 86% 87% - 5-fold CV 

KAGGLE 90% 90% 86% - 
MESSIDOR 91% 90% 89% - 

(Xu et al., 2021) Simple rule on 
RNFLD then SVM 

(linear kernel) 

3 RNFLD presence, MCDR (mean cup 
to disc ratio) and ISNT score 

Private - 96.1% 95.6% 98.1% 80:20 

Private 98.4% 94.1% 98.3% External 
Testing 

(Mansour et al., 2021) Perceptron based 
Convolutional 
Multilayer Neural 
Network 

2 vCDR & Holistic Features DRISHTI - - - 97.1% - 

(Yunitasari et al., 2021) SVM 7 vCDR, optical disc area, optical cup 
area, optical disc perimeter, optical 
cup perimeter, optical disc 
circularity and optical cup 
circularity. 

Private and 
DRISHTI 

95% 91.37% 95.86% - 50:50 

( continued on next page ) 
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Table 3 ( continued ) 

Paper Classifier Features Features Data Accuracy Sensitivity Specificity AUROC Validation 

(Singh et al., 2021) MLP 20 Homogeneity 
Contrast 
Correlation 
Standard deviation disc 
Mean disc 
Entropy disc 
Energy disc 
Standard deviation cup 
Mean cup 
Entropy cup 
Energy cup 
Radius disc 
Area disc 
Radius cup 
Area cup 
Cup-to-disc ratio 
Inferior region area 
Superior region area 
Nasal region area 
Temporal region area 

DRIONS 95.82% 98.59% 98.6% - 70:30 

(Adithya et al., 2021) Linear Mixed Effects 
Model 

27 pCDR (24 CDR’s), ACDR & 2 
variance parameters 

ORIGA 0.989 0.974 - 0.997 50:50 

DHRISTI 0.947 0.923 - 0.969 External 
Testing 

(Afolabi et al., 2021) XGB (Extreme 
Gradient Boost) 

10 CDR at 10 locations RIMONE V3, 
DRISHTI GS 

88.3% - - 93.6% 5-Fold CV 

https://doi.org/10.1016/j.survophthal.2022.08.005
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composed of two fully connected layers with 64 hidden and
3 output units ( 74 ). The batch size, the number of epochs and
optimal features were determined via a grid search. The bi-
nary classification achieved an accuracy of 89.3%, sensitivity
of 89.5%, specificity of 88.9% and AUC 82%. Using multi-class
classification (healthy, suspected glaucoma, and glaucoma),
they provided the metrics of precision and recall which were
0.76 and 0.72 respectively. 

Raja and Ramanan proposed the use of Damped Least-
Squares Recurrent Deep Neural Learning Classification (DL-
RNL) ( 77 ). The classification was performed on the output
layer using soft sign activation functions resulting in an ac-
curacy of 89% however, no other performance metrics were
specified. The paper by Karkuzhali and Manimegalai ( 50 )
considered a range of networks, the best performance was
found when using the Feed Forward Back Propagation Neu-
ral Network (FFBPNN) and the Distributed Time Delay Neu-
ral Network (DTDNN); each of these provided an accuracy of
100% and sensitivity and specificity of 100%. Note that they
tested on a small subsection of the publicly available DRISHTI
dataset consisting of just 26 images. Kausu and coworker-
sused a multi-layer perceptron and obtained an accuracy of
97.67%, sensitivity of 98% and specificity of 97.1% ( 51 ). Note
they did not provide any detail of the multi-layer percep-
tron (i.e., number of neurons in each layer, hyperparameter
tuning etc.). 

More recently, Singh et al proposed an MLP using twenty
clinical features ( Table 3 ); on internal testing, this resulted
in an accuracy of 95.8% ( 82 ). They found that the MLP pro-
vided higher performance metrics than other popular ma-
chine learning classifiers ( K.N.N., S.V.M. and Naïve Bayes).
Mansour and coworkersproposed a perceptron-based convo-
lutional multilayer neural network, the performance metric of
AUC was 97.1% on internal testing ( 62 ). 

5.4.2. The machine learning/statistical modeling AI frame-
works utilize clinically interpretable image features as well as
abstract image features 
The machine learning/statistical modeling-based AI frame-
works reviewed used clinically interpretable and abstract im-
age features ( Table 3 ). Across all the papers reviewed, each
framework used some variant of the CDR parameter, high-
lighting the significance of the parameter in glaucoma clas-
sification. Thirteen of the papers used clinically interpretable
imaging features (i.e., vCDR ratio, NRR area etc.), 11 pa-
pers proposed the use of novel spatial/spectral/texture/color
features. 

The use of spatial features by Akram and coworkerss( 8 )
was motivated by the fact that the area of the optic cup
changes from the normal to the glaucomatous eye. In keeping
with MacCormick and coworkers( 61 ) and Adithya and cowork-
ers ( 54 ), they state the use of the vCDR parameter alone was
limited due to glaucoma manifesting at any direction in the
ONH. Whereas Akram and coworkers combined the RDR pa-
rameter with spatial and spectral features ( 8 ), MacCormick
and coworkers and Adithya et al proposed using a profile
CDR (pCDR) which quantifies the optic nerve rim consistency
around the whole disc at 15-degree intervals ( 54 ,61 ). More-
over, due to the use of linear mixed-effects modeling by Mac-
Cormick and coworkersand Adithya and coworkers, random
effects were incorporated to indirectly take account of the size
of the optic disc. The difference between the original work by
MacCormick and coworkers and Adithya and coworkersis the
use of the ACDR feature by Adithya and coworkers, and the
inclusion of variance parameters to better capture the differ-
ence between the healthy and glaucoma group ( 54 ). 

A similar approach was adopted by Afolabi and coworkers
( 3 ). Their framework used the CDR measured at 10 locations
around the ONH citing their framework eliminates the chal-
lenge of selecting the CDR threshold as required in logical rule
frameworks ( section 5.3 ). Yet, in contrast to previous works,
they state that 10 CDR values are optimal as 5 did not give a
full view of the changing geometry of the optic cup and disc
and extracting more than ten 10 features only resulted in du-
plication of data ( 3 ). However, their approach is yet to be tested
on external data. 

The framework by Kausu and coworkers ( 51 ) exploited clin-
ically interpretable imaging features and abstract features in
combination. Wavelet features were considered as the au-
thors argued that texture features alone are not enough, as
they do not consider frequency information. Yet, by exploit-
ing the wavelet transform, frequency and spatial information
would be considered. Kausu and coworkers ( 51 ) used the mini-
mum redundance maximum relevance (mRMR) feature selec-
tion technique to determine the optimal features from the col-
lection of clinically interpretable and wavelet features. How-
ever, in the end, the best performance was obtained when only
using two features: vCDR and the second-order texture feature
– energy. While the vCDR parameter is clinically interpretable,
the second-order feature of energy is an abstract feature. 

Similar features were exploited by Singh and coworkers( 82 )
and Zulfira and coworkers( 100 ), both used a combination of
clinical features (i.e., CDR) and abstract features. Both made
use of Gray-Level Co-occurrence matrix (GLCM) features (i.e.,
contrast, energy, etc.) ( Table 3 ). Regarding clinical features,
Zulfira and coworkers used ACDR and accounted for PPA via
GLCLM features ( 100 ). While Singh and coworkers highlighted
the importance of the ISNT rule and incorporated features to
account for this (e.g., inferior/superior area) ( 82 ). 

Correlation-based feature selection was applied by Pathan
and coworkers 73 ). They began with 54 color features, 12 tex-
ture features, and 2 clinically interpretable features. Following
feature selection, 10 features (2 clinical, 4 color & 4 texture)
were deemed relevant and applied in the final framework. 

Mukherjee and coworkers( 65 ) proposed a framework using
eight features ( Table 3 ). They compared this framework with
the same methodology but using only the CDR feature yet,
they found this resulted in significantly lower performance
metrics. Thus, indicating the relevance of the other param-
eters used; however, this is to be further examined to test the
generalizability of the other features for glaucoma classifica-
tion with external datasets ( 65 ). Similarly, Khalil and cowork-
ers( 52 ) found an improved performance by combining struc-
tural and textural features for classification ( Table 3 ). 

5.5. Approaches to segmentation 

Intuitively, the success of a multi-step framework depends
on the type and success of the automated ONH segmenta-
tion used in the first step of the framework. Although the fo-
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cus of this review is not to assess the automated segmenta-
tion methods, in this section we give a brief overview of the
approaches to segmentation used. Briefly, some automated
segmentation methods focus on color intensity and texture-
based thresholding. Some advanced methods employ fully
convolutional neural networks. The point is that there are
many different approaches to segmentation with differing de-
grees of success. In the segmentation of the ONH, it is well-
known that the optic cup is much more challenging to seg-
ment than the optic disc due to the low contrast between the
optic cup and the neighboring disc region ( 31 ). As such, there
are very few papers focused on developing optic cup segmen-
tation methods. 

5.6. Glaucoma disease groups 

From the 34 papers identified in this review, 28 (82%) per-
formed binary classification (healthy or glaucoma), and 6 per-
formed multi-class classification. Across the papers perform-
ing multi-class classification, 4 classified images by healthy,
suspected glaucoma, or glaucoma, and their method for in-
corporating the suspected class differed. Moreover, 2 pro-
posed multi-class classification; however, they differentiated
between the classes via severity (e.g., healthy, mild glaucoma,
and severe glaucoma). 

The framework of Khalil and coworkers ( 52 ) used a com-
bination of clinically interpretable and abstract features in
two support vector machine classifiers (one support vector
machine using structural features and one support vector
machine using textural features) for glaucoma classification.
They proposed that, if the outputs of the 2 support vector ma-
chine classifiers did not agree (i.e., one support vector machine
provides the outcome healthy and the other glaucomatous),
they would classify this image as ‘suspect glaucoma’. 

Perdomo and coworkers( 74 ) proposed a multi-layered per-
ceptron with 3 output units using 19 morphometric features.
They used the publicly available RIM-ONE V3 dataset which
comprises 35 suspected glaucoma fundus images for train-
ing/testing their framework to handle the suspected class. Al-
though they showed high performance metrics on binary clas-
sification, the performance on multi-class classification was
inferior; the metrics of precision and recall were 0.76 and 0.72
respectively ( 59 ). Thus, their framework was not optimal when
considering the suspected glaucoma class. 

More recently, frameworks by Soorya and coworkers ( 60 )
and Issac and Dutta ( 46 ) applied logical rule-based AI frame-
works with thresholds for glaucomatous and healthy; if the
features obtained from the segmented fundus image did not
meet the criteria for the glaucoma or healthy group, this was
classified as suspected glaucoma ( Table 2 ). 

Zulfira and coworkers proposed a framework to provide
glaucoma severity: healthy, mild glaucoma or severe glau-
coma ( 100 ). To achieve this, they used a dynamic ensemble
classifier and features to represent PPA and CDR ( Table 3 ).
They found the highest accuracy in images with severe glau-
coma but noted a lower accuracy in the mild glaucoma im-
ages as they were frequently misclassified as healthy. Thus,
highlighting the difficulty in distinguishing between the sub-
tle differences that mark an eye as healthy or mild glau-
coma. Moreover, they do not provide information regarding
the ground truth criterion, or the number of experts used. It
would be of interest to know how the ‘mild’ glaucoma group
is defined. Although their proposed method outperformed the
deep learning-based U-net when evaluated using the same
datasets, it has a drawback in requiring manual ONH detec-
tion for all images by an expert ( 100 ). 

A similar approach was adopted by Yunitasari and cowork-
ers; however, they categorized images as early, moderate, and
advanced glaucoma ( 97 ). Using an SVM and a combination of
clinical features ( Table 3 ) they tested their approach on 40 im-
ages and found encouraging results highlighting that auto-
matic glaucoma severity marking could be a possibility. Yet,
no information is provided regarding the ground truth defi-
nitions (i.e., the difference between the early and moderate
glaucoma groups). Furthermore, the clinical application is to
be considered, for example, how would glaucoma severity aid
clinicians in practice and/or how is the framework going to
work with healthy images as these have not been considered
to date. 

5.7. Approaches to validation of methods and the 
reporting of performance metrics 

The approach to validation in logical rule-based AI frameworks. In
the papers that used a logical rule-based AI framework, the
approach to validation differed as they have no training com-
ponent within their frameworks. The only means of valida-
tion per se (using a logical rule-based framework) is to ac-
quire datasets from a range of sources to evaluate if their
proposed rules are generalizable/appropriate. Of the 12 logi-
cal rule-based frameworks ( Table 2 ), 9 (81%) used one dataset,
1 paper used 2 datasets, 1 paper used 3 datasets, and 1 paper
used 5 datasets. As such, the majority of papers using logi-
cal rule-based frameworks did not consider validation of their
proposed frameworks. 

Considering the performance metrics presented, 6 papers
(50%) presented the performance metrics of accuracy, sensi-
tivity & specificity while the remaining 6 papers did not. Four
of the papers only provided their accuracy result, and 2 papers
did not provide accuracy, only sensitivity & specificity. 

The approach to validation in machine learning/statistical mod-
eling AI frameworks. The machine learning/statistical papers
differed in their approach to framework validation. The ap-
proach of 10-fold cross-validation was used by 5 papers, 5-fold
cross-validation was used 3 times, and leave-one-out cross-
validation was also used once. The remaining papers used a
data split for validation. A 70:30 split was used 4 times whilst a
50:50 split was used 5 times. External validation was only used
by three papers. Seven papers used more than one database
within their frameworks. For this, they either trained or tested
their model individually on the different databases or they
combined the databases and then trained and tested on the
data ( Table 3 ). 

In addition to conducting internal/external validation,
some of the reviewed papers compare their AI method with
previously published methods. Fourteen of the 24 machine
learning papers compared their proposed methodology with
previously published methods while 17 papers compared their
methods with at least one other method proposed by them-
selves. 
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Table 4 – Databases used for development (training and testing) of the reviewed two-step AI-enabled glaucoma detection 

frameworks. 

Database Number of Times 
Used 

Total Number of 
Images 

Healthy Glaucoma Suspected Annotators 

HRF 7 45 15 1 NA - 
RIM-ONE V1 1 169 118 51 NA 5 
DRISHTI 12 101 70 31 NA 4 
Messidor 4 100 72 28 NA - 
Drions 3 110 95 15 NA - 
DiaretDB 2 89 81 8 NA 4 
RIM-ONE V2 1 455 255 200 NA 1 
RIM-ONE V3 5 159 85 39 35 2 
GlaucomaDB 2 120 85 35 NA - 
DRIVE 1 40 34 6 NA 2 
HEI MED 1 50 31 19 NA 2 
ORIGA 2 650 482 168 NA - 
Private 17 NA NA NA NA NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the performance metrics reported, 17 papers
disclosed metrics of accuracy, sensitivity and specificity. Only
4 papers presented metrics for AUC, and 1 paper presented
no metrics other than the F1 score. Additionally, 2 papers only
presented the accuracy metric results. 

5.8. Databases used for development and testing of the 
AI frameworks reviewed 

Within the frameworks highlighted in this review, a range
of publicly available and private databases were used, an
overview is provided in Table 4 . 

5.8.1. Publicly available datasets 
DRISHTI dataset. From the papers identified, the DRISHTI
database ( 84 ) was the most popular database being used 12
times. The database comprises 101 fundus images (31 healthy
and 70 glaucoma) acquired at Aravind Eye Hospital, Madu-
rai, India. This dataset is of a single population as collected
images are from subjects who are Indians. The images were
taken with the eyes dilated using the following data collec-
tion protocol: centered on the optic disc with a field-of-view
of 30-degrees and dimension 2896 × 1944 pixels. Low-quality
images (poor contrast, positioning of optic disc region, etc.)
were not used. The ground truth for the region boundaries,
segmentation soft maps and CDRs by 4 different ophthalmolo-
gist experts (with varying clinical experience) is provided. The
database is split into 50:51 training: testing. Note that, to ac-
cess the ground truth for the test data, a researcher must reg-
ister with the data owners ( 83 ). 

High-Resolution Fundus (HRF) dataset. The HRF dataset ( 15 )
was used by seven of the reviewed papers. In comparison to
the other databases available, this database is small, compris-
ing 45 fundus images in total. The images were collected at
the same clinic in the Czech Republic ( 71 ). Of the 45 images,
15 are glaucomatous, 15 healthy and 15 are labeled as diabetic
retinopathy. The database is publicly available and in an easily
downloadable format online. All fundus images were acquired
with a mydriatic fundus camera CANON CF–60 Uvi equipped
with a CANON EOS–20D digital camera with a 60-degree field
of view (FOV). The image size is 3504 × 2336 pixels ( 56 ). The
database curators do not state how many ophthalmologists
were used for the ground truth. As well as the fundus images,
researchers can access the Field Of View (FOV) masks, vessel
segmentation, and optic disc gold standards provided by 3 ex-
perts ( 71 ). Whether the images were obtained in a dilated state
is not disclosed. 

Messidor dataset. The Messidor database ( 28 ) was used in
four reviewed papers. It contains a total of 1200 images of dif-
ferent diseases, but only 100 images are annotated for glau-
coma. Of the 100 fundus images, 28 are glaucomatous and
72 are healthy. The images were acquired by 3 ophthalmo-
logic departments in France using a color video 3CCD camera
mounted on a Topcon TRC NW6 nonmydriatic retinography
with a 45-degree field of view. To access the dataset, the re-
searcher is required to submit a form that is evaluated by the
data owners, and they decide upon the validity of the request
and provide permission ( 28 ). 

ORIGA dataset. The ORIGA database ( 99 ) was used in 2 re-
viewed papers. The ORIGA database consists of 650 fundus im-
ages in total, 168 glaucomatous images and 482 randomly se-
lected non-glaucoma images. The authors state that there are
336 images from the left eye and 314 from the right. The ORIGA
database was formed using retinal image data collected from
the Singapore Malay Eye Study (SiMES) ( 34 ) conducted by the
Singapore Eye Research Institute. Each image is tagged with
grading information (CDR, ISNT rule compliance, RNFL de-
fects, notches, and PPA) and the manually segmented result
of the optic cup and disc ( 99 ). Although it is stated that it is
publicly available, it is not easily accessible from searching on-
line. Moreover, no details are provided regarding the imaging
device used ( 53 ). 

RIM-ONE dataset. Four reviewed papers utilized the RIM-
ONE databases ( 12 ,34 ,36 ). There are three different versions of
the RIM-ONE databases: V1 and V2 which were used once and
V3 – which was used five times. RIM-ONE V1 ( 34 ) was pub-
lished in 2011; the dataset comprises 169 fundus images from
different subjects. There are 5 groups: Normal, Early Glau-
coma, Moderate Glaucoma, Deep Glaucoma, and OHT (Ocu-
lar Hypertension) which have 118, 12, 14, 14, and 11 images
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respectively. The RIM-ONE V1 database consists of 5 man-
ual reference segmentations per image. This enables the cre-
ation of reliable gold standards, thus decreasing the vari-
ability among expert segmentations and the development
of highly accurate segmentation algorithms ( 34 ). The fun-
dus images were acquired from three different hospitals lo-
cated in different Spanish regions (Hospital Universitario de
Canarias, Hospital Cli ́nico San Carlos and Hospital Universi-
tario Miguel Servet). The authors of RIM-ONE state that com-
piling images from different medical sources guarantees the
acquisition of a representative and heterogeneous image set
( 34 ). The images were captured using a Nidek AFC-210 non-
mydriatic fundus camera with a 21.1-megapixel Canon EOS
5D Mark II body, with a vertical and horizontal field of view
of 45 °. 

The RIM-ONE V2 dataset ( 35 ) comprises 455 fundus im-
ages (200 glaucomatous and 255 healthy), the ground truth for
the images were provided by one expert ophthalmologist. The
most recent version of the database is the RIM-ONE V3 which
includes 159 fundus images with 85 healthy, 39 glaucoma and
35 suspected glaucoma. The images were taken by a nonmy-
driatic Kowa WX 3D stereo fundus camera (2144 × 1424 pixels)
and 34-degree POV. The images were acquired at the Hospital
Universitario de Canarias, and the ground truths provided by
two experts ( 12 ). 

GlaucomaDB dataset. The GlaucomaDB ( 52 ) database was
used twice by frameworks in this review. The database is a
subset of 120 fundus images from a larger database of 462
images gathered in a local hospital. The region/country of
the local hospital was not disclosed. The images were cap-
tured using a TopCon TRC 50EX camera with a resolution of
1504 × 1000. The 120 images consist of 85 healthy and 35 glau-
comatous, with the ground truths provided by 2 ophthalmol-
ogists ( 52 ). To access the database for research purposes, per-
mission from the authors must be requested. 

HEI MED dataset. The HEI Med Dataset (Hamilton Eye Insti-
tute Macular Edema Dataset) ( 39 ) is a collection of 169 fundus
images, however, only 50 images are annotated for glaucoma
detection. The HEI MED database was used by one framework.
Of the 50 images, 30 are healthy and 19 are glaucomatous. The
fundus images were collected at the Hamilton Eye Institute,
United States of America, via a Visucam PRO fundus Camera
(Zeiss) ( 53 ) and annotated by one ophthalmologist. The data is
available on GitHub for public use. 

DRIONS dataset. The DRIONS database was used three times
by papers in this review. The database comprises 110 fundus
images (95 healthy and 15 glaucomatous). The images were
collected at the Ophthalmology Service at Miguel Servet Hos-
pital, Saragossa, Spain. Images were removed if any form of
cataracts were present. All images were obtained from sub-
jects of Caucasian ethnicity. The images were acquired with
a color analogical fundus camera, approximately centered
on the ONH and they were stored in slide format. To have
the images in digital format, they were digitized using a HP-
PhotoSmart-S20 high-resolution scanner, RGB format, resolu-
tion 600 ×400 and 8 bits/pixel (18) . The dataset is easily acces-
sible and is available to download online. 

DIARETDB dataset. The DIARETDB 

M database consists of 89
color fundus images and was primarily developed for aiding
diabetic retinopathy research; however, the database has been
made publicly available and it has been assessed for glau-
coma. The 89 fundus images are split into 81 healthy and 8
glaucomatous ( 8 ), and 4 medical experts were collected for
the ground truth annotations. All images were captured us-
ing the same 50-degree field-of-view digital fundus camera
with varying imaging settings at Kuopio University Hospi-
tal, Finland. The database is easily accessible for download
online. 

DRIVE dataset. The DRIVE database was used by one paper
in this review. The database comprises 40 fundus images (34
healthy and 6 glaucomatous) annotated by 2 ophthalmologists
( 52 ). The images were acquired using a Canon CR5 nonmydri-
atic 3CCD camera with a 45-degree field of view (FOV). Each
image was captured using 8 bits per color plane at 768 by 584
pixels. Although stated that the database is publicly available,
it is not easily accessible online. 

5.8.2. Private datasets 
Private databases were popular in the development (training
and testing) of the frameworks reviewed, a total of 17 pri-
vate databases were used; however, as these are not publicly
available, it was difficult to access detailed information on the
databases if not provided directly by the authors. Many pa-
pers did not provide basic information other than the dataset
size. Without all information regarding the datasets (i.e., pa-
tient cohort, imaging device, etc), it is difficult to draw con-
clusions regarding the robustness and generalizability of the
proposed frameworks (as this is dependent upon the dataset
used). 

6. Discussion and conclusions 

We present the first review, to our knowledge, of AI frame-
works for glaucoma detection that utilize fundus images and
produce ONH segmentation as the first step. By segmentation,
we refer to a process of an image being automatically parti-
tioned into 3 areas: optic cup, optic disc and neuroretinal rim.
We identified 36 papers published between January, 2011 and
December, 2021. 

We focused on fundus imaging as it is the simplest modal-
ity of ONH assessment. The quality of fundus images may
be sufficient for evaluating ocular health for the presence of
glaucomatous neuropathy and due to its relatively low cost,
fundus cameras are readily available in a range of settings.
As such, there is the potential to exploit fundus images via
AI to develop automatic glaucoma screening provisions, even
for economically weak areas of the world. AI-supported color
fundus images can help in two scenarios. Firstly, in a non-
portable office-based environment–e.g., high-street optome-
try – it can assist in diagnosis and highlight patients for re-
ferral. This could reduce unnecessary referrals and thus re-
duce the burden on the health care sector. Secondly, it can
be a part of portable devices in less well-resourced environ-
ments for use by an ophthalmic technician or nurse to screen.
In both scenarios, the AI certainty element will be an impor-
tant factor to consider for patient safety. Such screening provi-
sions can have a clinical oversight to monitor the quality of the
screening. 
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6.1. Three key findings of this review 

6.1.1. Glaucoma detection via two-step AI frameworks using
fundus images present encouraging results 
We found that the two-step AI frameworks have presented
promising results in their first step when identifying the con-
tours of the optic cup and disc (i.e., segmentation of the ONH).
We then identified two approaches to using features derived
from the segmented fundus images: logical rule-based frame-
works and machine learning/statistical modeling frameworks.

This review highlights that the glaucoma detection perfor-
mance of the logical rule-based AI frameworks is limited due
to the nature of using a set of rules (even more so when the
rules have been derived from small homogenous datasets). We
found that ten papers split one dataset for training and test-
ing and reported accuracy ranged from 83% to 97%. Since this
accuracy was determined via internal validation and on small
datasets it must be interpreted with caution. One paper (Vi-
japur and Kunte ( 95 )) did perform external testing (i.e., they
used more than one data source). They reported two combi-
nations of sensitivity vs specificity: 93 vs 92%, and 87 vs 87%.
Across all papers, we found that there was no consensus on
thresholds applied within the rules for glaucoma classifica-
tion. That is, although many papers highlighted that their rule
was based upon clinical relevance (as they were using a clini-
cal parameter within their rule i.e., vCDR), the threshold used
for the clinical parameter changed from one paper to another.
Consequently, this highlights that a given threshold may only
be appropriate for the dataset at hand. Moreover, as the major-
ity of the logical rule-based AI frameworks did not implement
any external testing, we are limited in understanding how the
framework would work in screening strategies with data col-
lected from different sources. 

Regarding the machine learning/statistical modeling-
based AI frameworks reviewed, we found that the reported ac-
curacy was between 85.1% and 100%, predominantly reported
via internal validation. The reported performance of some of
the frameworks was comparable to that of the one-step ap-
proaches using DL. One of the current DL approaches is by Li
et al ( 57 ) who reported an accuracy of 0.986. However more di-
rect accuracy comparisons are required on the same testing
datasets to give a fair comparison of the approaches. 

6.1.2. There is active research into developing two-step AI
frameworks for glaucoma, where the first step is automatic de-
tection of optic cup and disc contours 
We conducted this review by focusing on two-step AI frame-
works that produce ONH segmentation as a first step. One key
reason for this is the interpretability and explainability bene-
fits that can be found when using segmented images within
AI frameworks. It is known that the segmented contours of
optic cup and disc can explain to the clinician why the AI has
classified a given fundus image as glaucomatous or not. The
two-step solution helps visually explain intermediate steps
between the raw image and diagnosis ( 27 ). This can signifi-
cantly aid in the development of trust within the AI and con-
sequently the adoption of such methods within the practice of
glaucoma detection. Moreover, such explainable AI methods
can act as a support decision system such that the AI, clini-
cian and patient can work together to decide upon treatment
options and next steps. 

6.1.3. Color fundus images are actively studied for their po-
tential use within AI-enabled glaucoma detection 

This review solely focuses on glaucoma detection frameworks
using fundus imaging technology. This choice was guided by
the fact that the detection of glaucoma in clinical practice is
highly influenced by optic nerve head assessment via fun-
dus imaging and the use of color fundus images is part of
the guidelines for glaucoma diagnosis. Moreover, color fundus
images are advantageous due to their lower cost in compari-
son with other imaging modalities and the technology is con-
tinuously developing such that they can consistently provide
high-quality images capable of distinguishing glaucomatous
neuropathy. 

It should be highlighted that there is a distinction between
large fundus cameras, costing many thousands of pounds
or dollars, and the recently developed smaller mobile phone
cameras that enable fundus imaging of the ONH at a consider-
ably lower cost. While other imaging modalities such as OCT
can provide additional information and are becoming more
widely available, it is currently hard to see if lower-cost mo-
bile OCT is possible and hence whether it will be available to
less developed countries and remote areas. Yet portable fun-
dus cameras are becoming increasingly accessible and viable,
even within economically less fortunate countries. 

6.2. Three key unresolved issues of current knowledge 
and potential areas for future studies 

6.2.1. There is a need to work on AI frameworks that utilize
color fundus images and that provide contours of the optic cup
and disc in their first step 
A direct comparison of all approaches for AI-enabled glau-
coma detection methods is required. One-step AI approaches
(end-to-end approaches, based on DL) need to be compared
to two-step approaches reviewed here, on the same datasets.
This will ensure a direct comparison can be made and one
can consequently identify the benefits and drawbacks of both
approaches. For now, we can identify that the advantage of
the one-step AI is that it does not require such a large effort
in terms of segmenting the fundus images and deriving clini-
cal features from the segmentations; this is due to the nature
and complexity of DL; however, a major disadvantage is in the
lost interpretability (due to the black-box nature of DL) and
in needing many annotated images to be trained. Such algo-
rithms need to be studied together with two-step algorithms,
to understand better which are more suited for glaucoma de-
tection. 

Furthermore, more research needs to be done on compar-
ing imaging modalities. Specifically, investigations need to be
made between OCT and fundus imaging to comprehensively
compare both modalities such that we can determine which is
most suitable for AI-enabled glaucoma detection frameworks.

Moreover, further research should be conducted regard-
ing the development of AI-enabled glaucoma detection frame-
works. For example, an area to be studied is the quantification
of uncertainty of the outputs provided by the AI framework J .
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Also, the inclusion of other data sources needs to be investi-
gated, e.g., patients’ de-identified personal data, genetics data,
visual fields data. This will simulate the clinical workflow as
well as potentially improve the performance of the AI frame-
works and help to explain AI outputs. 

6.2.2. There is a need to keep building and sharing suitable
datasets 
There exist several large landmark clinical study datasets
which were not used in the publications reviewed - despite
being a very rich resource of clinical images for glaucoma di-
agnosis. This includes the United Kingdom Glaucoma Treat-
ment Study (UKGTS) ( 37 ), the Ocular Hypertension Treatment
Study (OHTS) ( 40 ), and the Northern Ireland Cohort Longitudi-
nal Study of Ageing (NICOLA) ( 63 ). There are several possible
reasons for the exclusion of such datasets. These datasets lack
pixel-level image annotation of the optic cup and disc, which
is required to train and validate segmentation models. Acquir-
ing such annotations is a time-consuming task requiring col-
laboration between domain expertise and technical expertise.
Furthermore, access to these datasets requires an application,
payment and submission of a suitable protocol, which can act
as barriers. 

Moving on, our review has highlighted the increasing need
for datasets to include the whole spectrum of glaucoma sever-
ities (not just glaucoma and normal, but also for glaucoma
suspects). This is crucial to the development of AI frameworks
that are useful in clinical practice as ‘suspect glaucoma’ is a
case regularly observed by clinicians. Additionally, it is very
important to collect and develop resource-rich longitudinal
datasets such that disease onset and progression can be ex-
amined and incorporated into AI frameworks. 

We also highlight that it is essential that sufficient details
are provided alongside datasets. This includes the number of
patients, the number of images acquired from each patient,
whether both eyes are used (i.e., an image per eye) etc. All
this information is important and relevant for researchers de-
veloping AI frameworks as such methods can be based upon
hard assumptions. If these assumptions are not upheld due
to the lack of information provided with the datasets, this can
cause significant issues. Additionally, other information that
should be recorded including the type of camera used, num-
ber of ophthalmologists for annotation of images/providing
of ground truth, source of data, inclusion/exclusion criteria
for data collection, etc., was also limited. In particular, when
data has been acquired from a private source, there has been a
scarce amount of information provided. A detailed description
of the dataset used is critical for the assessment of the quality,
reliability, suitability to produce the desired output, potential
generalizability of any findings, and especially reproducibility
of the methods ( 88 ). 

Another important point to highlight is that further effort
is required to ensure datasets are provided with suitable gold
standards (aka ground truth). High-quality gold standards are
crucial for AI development. A means of achieving this is ac-
quiring annotations from multiple human graders. The rea-
soning for this is that ONH annotation (via fundus images)
can suffer from large amounts of inter-observer variability–it
is a subjective task ( 48 ,21 ). Using only one grader introduces
bias into the ground truths upon which the AI is developed.
A useful measure of the reliability of ground truth labels is
an interobserver agreement between the labelers. By detailing
the interobserver agreement, readers can make a judgment
on the likelihood that the ground truth label is correct. This
review has highlighted that only 3 of the 12 publicly available
databases have more than two annotators. Whilst it should be
standard to have more than 2 annotators, it should be recog-
nized that obtaining manual annotation of images is not an
easy task as it is time-consuming, expensive, and requires ex-
pertise. 

Moreover, further work is required to improve the diversity
of datasets. The use of the term diversity here refers to having
fundus images captured from various devices, involving dif-
ferent patient ethnicities, and images taken in different light-
ing, contrast, and noise ( 12 ). The frameworks reviewed here
are developed on datasets predominately acquired from one
source and as such lack this diversity. A potential limitation of
this is whether the quoted sensitivities and specificities will
be generalizable to real-world patient cohorts where a range
of factors can negatively impact the quality of the fundus im-
ages ( 66 ). Moreover, selection bias can be present if the dataset
has been collected from homogeneous sources (i.e., using one
ethnicity and/or specific hardware/imaging settings). Methods
developed on such datasets are prone to generalization prob-
lems as one population data might have different character-
istics that introduce bias in the proposed framework ( 80 ). 

6.2.3. There is a need to keep developing guidance for high-
quality reporting of AI frameworks and promote following the
guidance 
This review highlights that several publications lacked high-
quality reporting–both in terms of datasets used and their
glaucoma classification methodology. Some of the reviewed
papers lacked the technical details regarding their classifier
whilst others only provided a brief explanation of the methods
selected. Often lacking sufficient detail was the model struc-
ture (i.e., hyperparameters used and their tuning mechanism).
The limitation of not providing sufficient details of methods
(i.e., technical AI details) is that this renders the paper unre-
producible, a key criticism in the AI field. 

There is a need to support the work of the initiative EQUA-
TOR 

K which is a collaboration between experts in statistics,
machine learning and computing – but it also involves spe-
cialized clinicians and policymakers. This initiative develops
and provides detailed guidance for reporting, with a specific
focus on guidance for medical studies involving AI. 

7. Method of literature search 

We used four databases to search for relevant literature:
PubMed, Scopus, Web of Science and Medline (OVID). The
search covered January 2011 until the end of 2021. The search
strategies are detailed in supplementary file 1. 

7.1. Search terms 

7.1.1. Database: Scopus 
( TITLE-ABS-KEY (glaucoma) AND TITLE-ABS-KEY (fundus
OR retinal) AND TITLE-ABS-KEY (classif ∗ OR discrim 

∗ OR
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1–190 .
diagnos ∗) AND TITLE-ABS-KEY (photograph 

∗ OR imag ∗) AND
TITLE-ABS-KEY (“auto ∗ detect ∗” OR “detect” OR “predict ∗”)
AND TITLE-ABS-KEY (segment ∗)) 

7.1.2. Database: PubMed 
(((((glaucoma[Text Word]) AND (fundus[Text Word] OR reti-
nal[Text Word])) AND (classif ∗[Text Word] OR discrim 

∗[Text
Word] OR diagnos ∗[Text Word])) AND (photograph 

∗[Text
Word] OR imag ∗[Text Word])) AND (“auto ∗ detect ∗”[Text
Word] OR detect ∗[Text Word] OR predict ∗[Text Word])) AND
(segment ∗[Text Word]) 

7.1.3. Database: Web of Science 
TS = (glaucoma AND (fundus OR retinal) AND (classif ∗ OR
discrim 

∗ OR diagnos ∗) AND (photograph 

∗ OR imag ∗) AND
(“auto ∗ detect ∗” OR detect ∗ OR predict ∗) AND (segment ∗)) 

7.1.4. Database: MEDLINE 

(glaucoma and (fundus or retinal) and (classif ∗ or discrim 

∗ or
diagnos ∗) and (photograph 

∗ or imag ∗) and (auto ∗ detect ∗ or
detect ∗ or predict ∗) and segment ∗).tw. 

7.2. Eligibility criteria 

We included papers if: 

1. The paper uses segmented fundus images of the Optic
Nerve Head (ONH). 

2. The paper proposes a methodology/framework for the
classification of glaucoma. 

3. Full text is available online. 
4. Full text is available in English. 

We excluded papers if: 

1. Interested purely in segmentation of fundus images (pro-
vide no classification of glaucoma following segmenta-
tion). 

2. Focused purely on classification via methods that require
no segmentation of the fundus image (i.e., one step AI
frameworks). 
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