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Abstract:  10 

An effective damage diagnosis and prognostic management method can considerably reduce 11 

operation and maintenance costs of floating wind turbines. In this research, an intelligent damage 12 

diagnosis framework, named “MS-ACNN”, has been developed using a multi-scale deep convolution 13 

neural network model fused with an attention mechanism. The framework is used to detect, localize, 14 

and quantify existing and potential damages on multibody floating wind turbine tendons. The MS-15 

ACNN framework is fitted with two multi-scale extractors, designed to capture multi-scale information 16 

from raw wind turbine response signals measured using multi-sensor. The attention mechanism uses 17 

weight ratios of extracted damage feature to enhance the MS-ACNN’s capability in offering a better 18 

generalization in damage diagnosis. The framework’s performance is examined under normal and 19 

noisy environments and with a diagnosis accuracy of 80%, which is higher than those obtained using 20 

most generic industrial grade diagnostic tools (MS-CNN-I, MSCNN-II, CNN, CNN-LSTM and CNN-21 

BiLSTM) by at least 10%. The framework is also fitted with a Majority Weighted Voting rule to reduce 22 

false alarms and ensure optimum performance of the multi-sensor during collaborative diagnosis. 23 
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Further examination shows that the inclusion of a voting rule increases the diagnostic performance’s 24 

F1 index from 90% and 84% for single- and multi-sensor results to 94%.  25 

Keyword: FOWT, deep learning, structural health monitoring, damage diagnosis, multisensory, 26 

maintenance  27 

1. Introduction 28 

Large-scale Floating Offshore Wind Turbines (FOWTs) are increasingly becoming the platforms 29 

of choice in offshore clean power generation in order to meet the global target for net zero emission. 30 

Future concepts of FOWTs are expected to be of multi-body types, consisting of upper (platform base) 31 

and lower (stabilization) tanks for better station-keeping and improved performance. These upper and 32 

lower platforms need multiple tendons to connect them together for stability, safety, and reliability 33 

purposes [1]. Structural health of the tendons is a prerequisite for safe and stable FOWTs operation. 34 

Consequently, intelligent damage diagnosis of tendons including damage localization and 35 

quantification is crucial to reducing the maintenance costs [2], [3], [4]. For example, lack of early 36 

damage diagnosis of tendons in the first-generation tension leg (TLP) platform has been responsible 37 

for tendons’ failure and total collapse of the platform [5 ], [6 ], [7 ]. Although modern tension leg 38 

platforms are fitted with different kinds of diagnostic tools, recent experience and practice show that 39 

these tools cannot be effectively used to diagnose the tendons of FOWTs due to fundamental 40 

differences in their operating principles. For example, a 10MW FOWT has a concentrated mass of the 41 

nacelle on a slender tower and a wind turbine rotor that is highly sensitive to wind loads, leading to 42 

completely different dynamic responses from wind-wave coupling loads to TLP [8]. For such types of 43 

structures, the failure probability of FOWT tendons is significantly increased, making it more 44 

challenging to achieve optimal safety and reliability for large-scale FOWTs. An effective solution to 45 

overcoming these potential challenges requires the development and application of intelligent 46 
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diagnosis tools, as part of a prognostic and health management (PHM) framework for predictive 47 

maintenance. An intelligent diagnosis is a precursor to developing a real-time structural health and 48 

operation monitoring and offers the most viable solution to unlocking the huge market potentials of 49 

deep-water offshore wind turbines. PHM makes it possible to adopt an appropriate maintenance mode 50 

for fundamental components of FOWT structures based on its operating condition (condition-based 51 

maintenance) [9]. Consequently, developing a robust PHM framework can lead to a reduced downtime 52 

for maintenance, thereby significantly improving operational reliability and reducing maintenance 53 

costs [10].  54 

Damage detection, being the first step in PHM, has a main goal of achieving early identification 55 

of potential structural changes or damage as part of the real-time monitoring of FOWT tendons’ state 56 

of health. The significance of early damage detection is that degradation of FOWT tendons’ structural 57 

strength can be timely detected in order to avoid serious faults [11], [12]. This can considerably reduce 58 

the costs of maintenance, increase safety and reliability thresholds, and offers immediate benefits in 59 

industrial engineering application.  60 

Current damage diagnosis practice involves the conduct of repeated simulations in order to detect 61 

damages on a wind turbine. Majority of existing methodologies for damage detection are based on 62 

data-driven methods rather than model-based methods. This is because model-based methods depend 63 

on the use of precise mathematical models, which largely limits the accuracy of detection due to high 64 

requirement for modeling accuracy. Data-driven methods have advantages in extracting knowledge 65 

from historical data, which can be used for fault diagnosis without needing a precise mathematical 66 

model. These are some of the reasons data-driven methods are becoming more widely used in detecting 67 

faults and conducting diagnosis for FOWT components and systems, such as blades, tower, and 68 

tendons or the entire FOWT platform. Generally, data-driven techniques have been made possible by 69 

advancements in big data technology like the machine learning techniques. Currently, most of machine 70 
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learning techniques, including Deep Learning (DL), are being investigated for application in detecting 71 

damages and conducting a credible fault diagnosis.  72 

Liu et al [13] established a neural network (NN) based damage detection model that is trained by 73 

FEM-simulated structural damage datasets. Nguyen et al [14] adopted a similar approach in their study 74 

by using a numerical simulation to calculate a damage dataset of wind turbine support structures. They 75 

used a neural-network-based Structural Health Monitoring (SHM) method for training the model using 76 

both time domain and frequency domain data. The results indicated that frequency-domain signals 77 

when used as training data for training a NN model have better diagnostic performance. Devilis et al. 78 

[15] used a PHM method developed based on a shallow neural network to study wind turbines’ key 79 

structural components. The results confirmed that the NN-based PHM model can detect potential 80 

damages before their onset, or they developed into a larger visible crack.  81 

The above damage detection methods are classed as machine learning methods developed based 82 

on conventional neural network algorithms but not deep neural networks. However, these methods 83 

have some inherent limitations in their application to PHM method when it comes to how artificial 84 

feature-extractions and the lack of generalization capability in the models are handled. The pre-85 

processing of features and pattern recognition are supreme requirements in feature extraction 86 

engineering because they determine the upper limit of pattern recognition performance [16]. DL can 87 

achieve feature extraction and state classification at a faster rate than most of the conventional machine 88 

learning methods in existence. This makes its application unique in the development of an effective 89 

PHM strategy for floating offshore wind turbines operating in locations where access for inspection 90 

and maintenance is often very limited and costly. In addition, this offers a break-through in overcoming 91 

the limitations of traditional machine learning algorithms in PHM [17].  92 

Therefore, using the DL technology to develop an intelligent FOWT tendons damage detection 93 

for PHM is extremely competitive. Choe et al [18] combined Long Short-Term Memory (LSTM) and 94 
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Gated Recurrent Unit (GRU) networks to establish a FOWT damage monitoring model. The results 95 

show that using the DL technique to develop a PHM model offers a better generalization performance 96 

than using a shallow learning method. Xiang et al. [19] developed an end-to-end wind turbine damage 97 

recognition model for SHM by combining the convolutional networks and recurrent neural networks 98 

together. The results indicate that using Convolution Neural Network (CNN) to extract features is more 99 

effective than artificially extracting the features. Yang et al. [20 ] used a convolutional network to 100 

segment the image information of wind turbine structural damage and went on to establish a diagnosis 101 

model based on pixelated features rather than raw vibration signals.  102 

DL models are particularly efficient in developing an intelligent diagnosis framework because of 103 

their ability to use both limited and raw vibration signals from a sensor. For large structures such as 104 

FOWTs, a single sensor cannot optimally meet the demand for monitoring all the key structural 105 

components. Consequently, a new method to effectively monitor multibody platform must use multi-106 

sensor. It must equally consider the impact of maintaining the sensory architecture on FOWTs. Thus 107 

far, only limited studies on the application of the DL technique to develop diagnosis models based on 108 

multisensory approach to design a PHM framework for FOWT monitoring and maintenance have been 109 

reported. These studies largely focused on using multi-sensor SHM methods for wind turbine gearbox 110 

diagnosis and maintenance [21], [22], [23], [24]. In the studies, DL algorithms were designed for high-111 

frequency vibration signals, which is unsuitable for application in FOWTs due to their dynamic 112 

response signals having long response periods. In addition, the influence of feature-fusion on the 113 

performance of a PHM method in multi-sensor method has not been considered in their research. This 114 

is very critical to having rational decision-making and information fusion methods in order to develop 115 

an intelligent diagnosis framework [25].  116 

From the above literatures, it is evident that intelligent diagnosis algorithms require robust feature 117 

extraction and pattern recognition capability for successful application in predictive maintenance. This 118 



 

6 

 

can be achieved by using a combination of the DL algorithm and attention mechanism to develop an 119 

intelligent diagnosis for PHM and maintenance of FOWTs. The combination of a DL with an attention 120 

mechanism offers better potential for application in FOWT damage detection than other shallow 121 

machine learning algorithms. This is because the combined capability, following the incorporation of 122 

an attention mechanism, provides solutions to the use of limited data and the possibilities for intelligent 123 

feature extraction. Research on multi-sensor collaborative work to achieve a comprehensive FOWT 124 

diagnosis and predictive maintenance shows that both the good generalization of the learning model 125 

and the rationality of the collaborative strategy jointly determine the reliability and superiority of an 126 

intelligent PHM method. Therefore, considering the key influencing factors of the above-mentioned 127 

intelligent PHM method for FOWTs, this study has made the following main contributions:  128 

(1) Development of multi-scale modules fused with a CNN model and an attention mechanism, 129 

consisting of multiple multi-scale parallel convolution modules of different depths. The module is 130 

designed to capture multi-scale information from responses with different degrees of freedom (DOF) 131 

in order to automatically realize the multi-scale feature extraction and improve the neural-network-132 

based model’s performance. 133 

(2) Establishing the effectiveness of using FOWT’s different DOF responses in training the MS-134 

ACNN model and the resulting impact on the accuracy of the collaborative multisensory module. This 135 

was achieved by using a dataset of FOWT tendons with potential damages by accounting the impacts 136 

of fully coupled wind-wave loads on a FOWT. 137 

(3) Incorporation of a majority weighted hard-voting rule, using a Particle Swarm Optimization 138 

(PSO) algorithm, to fuse outputs from the MS-ACNN model in the decision-making level to ensure 139 

that the performance of multisensory feature fusion can improve the robustness of the intelligent 140 

diagnosis method of FOWTs.  141 
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2. Modelling Structural Damage on Floating Offshore Wind Turbine Tendons  142 

Details of the FOWT model used in this study and methodology for modelling tendon damages 143 

are provided in this section. 144 

2.1. The structural model of the 10MW multi-body Floating Offshore Wind Turbine 145 

In this study, a 10MW multibody TELWIND floating wind turbine structure is used to support 146 

the 10MW DTU baseline wind turbine. A model of the 10MW TELWIND platform is presented in 147 

Figure 1.  148 

 

Figure 1: A model of the 10 MW TELWIND wind turbine 

The 10 MW TELWIND FOWT is designed for application in 110 m water depth or deeper 149 

offshore locations. For station-keeping purposes, the mooring lines configuration has been modified 150 

for application in the selected location. The platform consists of an upper tank (UT) and a lower tank 151 

(LT). The UT is located at 10 m below mean water level (MWL) and has a 16.75 m draught. The LT’s 152 

draught is 22.5 m. The platform has a combined total draught of 92.25 m. Both UT (diameter of 44.5 153 

m) and LT (diameter of 23 m) have a cylindrical geometry. The length of each tendon is 48.81 m with 154 

a diameter of 0.271 m. 155 
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2.2 Modelling of damage scenarios 156 

The dynamic response of the 10 MW FOWT structure which consists of a cylindrical platform’s 157 

base (Upper Tank), a ballast tank (Lower Tank) connected by tendons (6) and the mooring lines for 158 

station-keeping are simulated as a coupled system. This is done to obtain the requisite datasets for 159 

different tendon damage scenarios needed for the damage diagnosis and PHM. 160 

In order to ensure that the predicted response data accurately represents the dynamics of the 161 

prototype TELWIND FOWT, a coupled (FAST and AQWA, F2A) numerical tool is used to conduct 162 

the FOWT aero-hydro-servo-elastic analysis. The framework of the coupling tool is presented in 163 

Figure 2.  164 

 
Figure 2: Flowchart of F2A Module 

AeroDyn, ElastDyn and ServoDyn modules of FAST are integrated in AQWA using a dynamic 165 

link library (DLL) in order to calculate the wind turbine platform’s response based on solutions of 166 

dynamic equation of motion. The coupled numerical tool is designed to capture the platform's 167 

responses in all DOFs. The tool can conduct arbitrary simulation of the damage scenarios in a coupled 168 

mode with F2A as described in ref [26]. The significance of the coupled analysis is to ensure that 169 

platform responses are included in the real-time prediction of tendons’ responses based on cable 170 
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dynamics using finite element method. Each tendon is discretized into finite lengths with their 171 

individual masses applied at the centroid of the unit element as concentrated mass. Figure 3 shows a 172 

diagram of the forces acting on a unit tendon length.  173 

 

Figure 3: Forces and moment on a discretized tendon element 

Dynamic responses of the tendon modelled as a cable element are calculated using Equation 1.  174 
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where T and V are the tensile force and shear force vectors acting on the node of a unit tendon length, 175 

respectively; R is the unit tendon length’s position vector. S denotes the un-stretched length of a unit 176 

tendon in an unloaded condition; w and F are the respective unit weight and hydrodynamic load acting 177 

on the tendon element; M is the nodal bending moment vector acting on the unit tendon’s node; q is 178 

the unit tendon’s distributed moment per length.  179 

The nodal bending moment and tensile force acting on each unit element are calculated using 180 

Equation 2.  181 

2

2
EI

S S

EA 

  
= 

 
 =

R R
M

T

 (2) 

where  is the stretched length; EA and EI are the corresponding nodal axial and bending stiffnesses 182 
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acting on a unit tendon element. The tendon stiffness is equal to zero in the event of a failure occurring 183 

at any specific instant or during the examination of the tendon breakage scenario. 184 

All six tendons have been modelled to have damage magnitudes ranging from 5% to 50% and 185 

they are accordingly simulated to develop a potential damage dataset of the tendon structure. The 186 

potential damage is defined by changes in the tendon stiffness. The dataset includes six DOF responses 187 

of the tendon systems, recorded as displacement, velocity, and acceleration on the upper tanks of the 188 

coupled FOWT system. However, only the acceleration dataset was used for the damage diagnosis 189 

study. Detailed wind-wave conditions used in the simulations of tendon damages are presented in Table 190 

1. The observed wind-wave conditions data were measured from 2011 to 2016 [27].   191 

Table 1：Details of wind-wave conditions for the FOWT dataset prediction. 

Value  Values /(Probabilities) 

Wind direction / (°) 120.6 / (23.6%) 233.1/ (76.4%)   

Wind speed /(m/s) 7.8 / (27.8%) 10.0 / (33.3%) 12.0 / (25.0%) 14.2 / (13.9%) 

Significant wave height /(m) 1.8 / (25.0%) 2.4 / (33.3%) 3.6 / (41.7%)  

Spectral peak period /(s) 4.4 / (44.4%) 5.7 / (23.6%) 7.0 / (32.0%)  

Current direction / (°) 96.8 / (51.4%) 275.6 / (48.6%)   

Current speed /(m/s) 0.22 / (100%)    

Simulations of the coupled 10MW platform to predict the tendon damages are conducted based 192 

on two wind directions, 120.6° and 233.1° with corresponding probabilities of occurrence of 23.6% 193 

and 76.4%. Four wind speeds are selected to generate the unsteady based on Kaimal wind spectrum 194 

wind by using NREL TurbSim. For the wave conditions, three main significant wave heights with their 195 

corresponding peak periods have been used in the simulations. In addition, the simulation considered 196 

a constant current speed by including the effects of current acting in two directions, 96.8° and 275.6° 197 

with corresponding probabilities of occurrence of 51.4% and 48.6% respectively. The parameters 198 

setting is further described in ref. [1]. 199 

3. Principles of the Potential Tendon Damage Detection Methodology  200 

In this study, parallels of 1-D convolutional neural network modules with different network depth, 201 
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including polling and activation layers, batch normalization and fully connected layer, are used as a 202 

multi-scale unit in the module for features extraction. The multi-scale feature extractor module is 203 

composed of parallel convolution groups designed to directly extract features from the FOWT response 204 

signals without a need for an intervening algorithm. This process eliminates a requirement for manual 205 

operation, making the whole algorithm self-adaptive. 206 

3.1 The multi-scale feature-extractor  207 

The newly designed feature extractor unit is composed of convolution, pooling, activation and 208 

batch normalization algorithms fused together to provide optimum performance. The mathematical 209 

formulas governing the design of the algorithms and their corresponding functions are given as follows.  210 

In the convolution unit, the convolutional process is given by Equation 3, in which l

iK is the thi  211 

filter in the pooling and activation layers l .
(R )jl

X  is the thj  local area in the convolutional layer l .  212 

( , ) (R ) ( ')

' 0

( ')
j

W
l i j l l l l j j

i i

j

y j +

=

=  =K X K X  (3) 

where 
( , )l i jy  is the dot product of convolution kernel and the local area. W denotes the width of the 213 

convolution kernel and ( ')l

i jK  represents the thj weight of the convolutional layer’s kernel l.  214 

In order to enhance the capability of the algorithm to capture and express non-linearity in the 215 

input signal and make its learned features more easily identifiable, an activation function, Rectified 216 

Linear Unit (ReLU), is integrated into the algorithm and placed immediately after the convolutional 217 

layer. A mathematical representation of the ReLU activation function is given by Equation 4: 218 

( , ) ( , ) ( , )( ) max{0, }l i j l i j l i ja f z z= =   (4) 

where ( , )l i jz  denotes the Batch Normalization (BN) output array and ( , )l i ja  represents the activation 219 

function of ( , )l i jz . 220 

The BN technique is introduced before the pooling operation to ensure that the network training 221 
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is efficiently accelerated and potential problems of gradient disappearance, which are typically caused 222 

by an activation function, are eliminated. The BN technique includes an n-dimensional array 223 

(
(1) (2) ( )( , , , )l l l l ny y y=y   up to the thl   BN layer), represented as 

( ) ( 1) ( 2) ( , )( , , , )l i l i l i l i ny y y=y
， ，

  and 224 

( ) ( ) ( 1)l i l i l iy y= =y
，

 when the BN layer is changed from its initial position before the pooling operation 225 

unit to a new position just after convolutional and fully connected layers. A general equation for 226 

calculating the BN operation is given as follows by Equation 5 and it is a sub-component in Equations 227 

6 - 7: 228 

𝑦̂𝑙(𝑖,𝑗) =
𝑦𝑙(𝑖,𝑗)−𝜇

√𝜎2+𝜀𝑠
,

( , ) ( ) ( , ) ( )ˆl i j l i l i j l iz y = +  (5) 

( , )

1

1
=

n
l i j

i

y
n


=

  (6) 

2 ( , ) 2

1

1
= ( )

n
l i j

i

y
n

 
=

−  (7) 

where ( , )l i jz  is the output of a neuron.   and 2  are respectively the mean and variance of 
( , )l i jy . 𝜀𝑠 229 

is a negligible constant added to stabilize the calculation and prevents it from becoming invalid when 230 

the variance is zero.
( )l i  and

( )l i are the respective scale and shift parameters to be learned from the 231 

extracted features. 232 

Another important component of the algorithm is the pooling layer, also referred to as the down-233 

sampling layer. The pooling layer is significant because it provides the algorithm with capability of 234 

reducing the dimensional lengths and the number of parameters to be learned in the extracted features 235 

within the neural network. The algorithm used in this research adopted the maximum pooling 236 

technique instead of the average pooling technique (both of which are commonly available). The 237 

mathematical representation of the selected pooling technique is presented in Equation 8. 238 

( , )( , ) { }

( 1) 1max
l i tl i j a

j W t jWp − +  =  (8) 

where ( , )l i ta  denotes the tht  neuron value in the thi  framework of layer l ; the width of the pooling size 239 

is represented by W ; 
( , )l i jp  is the corresponding value of the neuron in layer l  of the pooling unit, 240 
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and [( 1) 1, ]t j W jW − + . 241 

Features extracted by the convolution layer have probability distributions from each intrinsic 242 

mode function (IMF) that are directly transmitted into the fully connected layer for the purpose of 243 

feature classification. The resulting output from the classification is accordingly grouped into a 244 

probability entity by the softmax function  , defined by Equation 9 as:  245 

1

( ) , 1,2, ,
c

c

u

T uc

c

eu c T
e


=

= =


 (9) 

where ( )
c

u  is a T-dimensional probability vector, which represents the probability distribution under 246 

𝑇𝑡ℎ test scenario, c
u  denotes the extracted output from each one dimension (1-D) CNN.  247 

Following a motivation by Zhao and Jiang’s studies [28 ], [29 ], this research uses a large 248 

convolution kernel because of its good receptive field that can be controlled by the size of the kernel. 249 

However, Zhao and Jiang’s studies merged the advanced features on the first and last layers, which 250 

made it unsuitable for application in FOWTs because of its inherently slow response cycles. Therefore, 251 

in the proposed multi-scale feature extractor developed in this research, the depth of the network has 252 

also become a factor for the model to control the advancement of multi-scale features. In addition, the 253 

model is fitted with an attention mechanism to equip it with capability to evaluate the contributions of 254 

the advanced fault or damage features that correspond to each extracted features from the multi-scale 255 

feature extractor [ 30 ]. The advanced channel features are adaptively weighted by the attention 256 

mechanism. The weighted features are fused and fed into the classification layer for the purpose of 257 

calculating their respective probabilities. 258 

A schematic representation of the MS-ACNN model with the designed multi-scale feature 259 

extractor is presented in Figure 4. The FOWT acceleration responses used for the damage diagnosis 260 

are the response signals on the tendons measured based on relative responses of UT and LT.  261 
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Figure 4: The architecture of MS-ACNN model for tendon damage detection 

As shown in Figure 4, raw response signals of the FOWT are used as the input in the MS-ACNN 262 

model. The model is fitted with two parallel multi-scale extractors, which act on the raw signals to 263 

capture multi-scale features. The operating principle of the filters is that it is fitted with different kernel 264 

size, which has a better capability in extracting multi-scale information from a signal. Consequently, a 265 

multi-scale extractor with different depths of a network would have capability in obtaining different 266 
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advanced features. The attention mechanism is used to give weights to every channel feature so that 267 

its contribution in probability calculation can be adequately evaluated. The values of the two parallel 268 

extractors are first added and then calculated by the Softmax function to obtain the pattern probabilities 269 

of FOWT tendon damage. The MS-ACNN model is optimized by the Adam gradient descent [31], in 270 

which the loss is defined as cross entropy for the purpose of realizing the tendon damage localization 271 

[32]. It should be noted that another purpose of using the Adam gradient descent is to optimize the 272 

MS-ACNN parameters, where the loss is treated as the root mean square to realize damage magnitude 273 

recognition [33].  274 

3.2 MS-ACNN network with Majority Weighted Voting for multisensory collaborative diagnosis  275 

The MS-ACNN algorithm is an “end-to-end’’ model adopted to systematically extract multi-scale 276 

features from raw signals of FOWT and achieve a high-accuracy diagnosis performance without any 277 

manual intervention. The MS-ACNN models are trained using different sensors’ signals. A Majority 278 

Weighted Voting (MWV) method based on PSO is used to fuse the diagnosis from each MS-ACNN 279 

model in order to improve the robustness of the overall performance of FOWT’s PHM method. The 280 

robustness of the MS-ACNN acts as a foundation for the multisensory collaborative diagnosis needed 281 

for predictive maintenance of FOWT. The framework of the MS-ACNN network fitted with MWV is 282 

presented in Figure 5.  283 
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(a) The flowchart of the proposed MS-ACNN-MWV 

 
(b) The input and output of the MS-ACNN model 

Figure 5: The flowchart of the proposed MS-ACNN-MWV for FOWT fault detection 
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The operating principle of the MS-ACNN network framework is as follows. First, data from 284 

different sensors with different DOFs is used to train the MS-ACNN networks. This is followed by 285 

incorporation of the PSO algorithm to solve the voting weight of each MS-ACNN's recognition of the 286 

FOWT state, leading to the design of the framework as MS-ACNN-MWV model. The state of FOWT 287 

tendons’ health is established by using the collected data to be tested in the trained MS-ACNN-MWV 288 

model.  289 

The MWV module treats each damage prediction as the final class label in which the choice of 290 

feature weights directly affects the final result of the diagnosis. Details of mathematical representation 291 

of the MWV within the framework are shown in Equation 10.  292 

ax
1

H( ) ( )
j

N
j

arm n n
n

x C w h x
=

=   (10) 

where ( )j

nh x   is the predicted nth sub-model for each probability (x). n
w   is the weighted majority 293 

voting for each of the predicted nth sub-model ( ( )j

nh x ). The final predicted damage label, H( )x , is 294 

calculated by using the 
ax

( )
jarm

C   function to determine the prediction that has the most votes.  295 

Based on the conventional knowledge that the weighted majority voting rule depends on weights, 296 

this study uses a PSO [34], [35] to predict the optimized weights for application in the majority voting. 297 

The motivation for adopting this approach (using the PSO method) is to evaluate weights and facilitate 298 

the improvement of the F1 score of the MS-ACNN framework for multisensory collaboration [36]. 299 

The F1 score is a critical component used in determining the fitness functions of the PSO. The weights 300 

in the MWV are 1 2 T=[ , , , ]c c

n n n n
w w w w and they are based on the assumption that the MS-ACNN model 301 

is capable of solving the c-classification problem within the framework.  302 
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4. Detection Framework and MS-ACNN-MWV Flowchart  303 

4.1 Data collection  304 

The acceleration signal from 6 DOF of the floating body is collected at a sampling frequency of 305 

10 Hz for use in this study. The collected data includes samples from different damage locations and 306 

damage magnitudes. Note that the damage induced in the tendon is based on reduction in magnitude 307 

of stiffness from of 5% to 50%.  308 

 

Figure 6: Schematic of tendon configurations in a multibody FOWT platform 

4.2 Data normalization & samples segmentation 309 

In order to obtain unbiased data for training the MS-ACNN network, data normalization, as part 310 

of preprocessing of the data, is conducted. The FOWT data is predicted from tendons (Figure 6) using 311 

different sensors, hence the collected data consists of response data for different degrees of freedom, 312 

including features such as speed, acceleration, and displacement. The data contains different features, 313 

and this requires normalization in order to provide a reliable diagnosis. In this study, the datasets are 314 
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normalized using z-score normalization in which both mean standard deviation are zero. The method 315 

is commonly used as a data normalization technique [37].  316 

In the training phase only, the datasets are further pre-processed based on an augmented sampling 317 

technique in which data-points are overlapped to augment the training data. However, the technique 318 

was not applied to the test samples because the tests data in the testing phase is independent. 319 

Detailed information about the training/validation/testing dataset is shown in Table 2.  320 

Table 2: Datasets of tendon damage of FOWT for multiple tasks  

Datasets  Samples  Number of samples Used Parameters  

Damage Location 

Detection   

Training 

Validation  

Test 

200 

50 

100 (50 for multisensory) 

Pitch acceleration  

Yaw acceleration  

Damage Degree 

Recognition  

Training 

Validation  

Test 

200 

50 

100 (50 for multisensory) 

Pitch acceleration  

Yaw acceleration 

4.3 The MS-ACNN network’s hyper-parameters setting and F1 estimators  321 

The hyper-parameter settings of the neural network have a certain impact on the network 322 

performance. In order to overcome this impact, a dropout technique is used before the fully connected 323 

layer in the neural network with a dropout rate of 0.5 [38]. The neural network has an initial learning 324 

rate of 0.001 and fitted with the Adam optimization method [30]. An assessment of the impact of this 325 

addition has been investigated by comparing the performance of the MS-ACNN model integrated with 326 

hyper-parameters with other NN models such as MSCNN-I [28], MSCNN-II [29], CNN, CNN-LSTM 327 

and CNN-Bi-LSTM whose parameters are similar to the hyper-parameters.  328 

In order to guarantee and sustain the model’s accuracy during feature learning and classification 329 

phases, F1 score is used in comparison and evaluation of the diagnosis model’s performance in this 330 

study. F1’s mathematical definition is presented in Equation 11.  331 

2TP
F1=

2TP+FP+FN
 (11) 

where TP, FP, TN and FN respectively represent faults correctly classified as positive samples, wrongly 332 
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classified faults as positive samples, faults correctly classified as negative and wrongly classified faults 333 

as negative respectively. 334 

5. Discussion and Results  335 

In this section, the reliability of the developed MS-ACNN-based SHM method is examined using 336 

a dataset that includes 5% potential structural damage (minor faults) occurring at a location on different 337 

tendons of the FOWT. The first step in the examination is the use of responses from different DOFs 338 

collected as acceleration to train the MS-ACNN model to search the most useful characteristics for 339 

fault locations.  340 

 
(a) The training accuracy using acceleration 

dataset to train the model 

 
(b) The training loss using acceleration dataset to 

train the model 

Figure 7: Training information under different DOFs to train MS-ACNN model 

From the results presented in Figure 7, it is observed that training the MS-ACNN model with 341 

pitch and yaw responses as the feature dataset is much easier than using the responses from sway, roll, 342 

surge and heave. A corollary to this observation is that when the sea conditions change, the heave and 343 

pitch are the most sensitive because the wind-wave loads act perpendicularly on the wind rotor in the 344 

same direction. Therefore, in the subsequent validation of the MS-ACNN-based SHM method, 345 

acceleration responses acting along the pitch and yaw axes are used as dataset for training and testing. 346 
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5.1 Comparison of anti-noise examination of diagnosis methods  347 

The procedure of FOWT response signal acquisition is often characterized by noise interference. 348 

Therefore, the robustness of a PHM method in noisy scenarios is particularly important. Dataset for 349 

the 50% structural damage condition was used as the training samples for all the training models, 350 

including CNN, MSCNN-I, MSCNN-II, CNN-LSTM, CNN-Bi-LSTM, and the proposed MS-ACNN.  351 

 352 

 

 

(a) Anti-noise assessment by Pitch 

 

(b) Anti-noise assessment by Yaw 

Figure 8: Comparison of anti-noise assessments for diagnosis methods. 

As shown in Figure 8, the MS-ACNN model has a superior diagnostic accuracy of nearly 80% in 353 

a large-noise testing background compared to other algorithms. Although the application of MSCNN 354 

models including MSCNN-I and MSCNN-II has demonstrated good performance in wind turbine 355 

gearbox faults diagnosis, the models do not perform as good as the deep convolutional networks in the 356 

diagnosis of FOWT tendons damage. This is because the response cycle of the FOWT is much slower 357 

than the gearbox, causing the deeper features in a neural network to have a negative effect in the 358 

classification task. This proves the superiority of using the proposed MS-ACNN model in the damage 359 

detection of FOWT tendons than most of the current industrial grade CNN models in use. In 360 

consideration of the long-term dependencies of the responses of FOWT, the results show the capability 361 

of fault recognition of the proposed MS-ACNN model in comparison to respectively using LSTM and 362 

Bi-LSTM combined with CNN. The proposed model fitted with multi-scale resolution with an 363 

attention mechanism offers better performance than other models that consider long-term 364 
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dependencies. Furthermore, to explain the performance of convolution network features using the 365 

analogy of a black box, the key features in the multi-scale filters and advanced features are shown and 366 

visualized via t-distributed stochastic neighbor embedding (T-SNE) in the next section.  367 

5.2 Features visualization  368 

In order to explain what features the proposed MS-ACNN model has learned from the responses 369 

when the datasets with a damage magnitude of 15% is used, the acceleration responses of pitch and 370 

yaw in the different depth of the MS-ACNN model are presented as time series in Figure 9. 371 

Furthermore, Figure 9 also presents the features extracted by the MS-ACNN model and the network’s 372 

structure of different scales (every channel’s features). 373 

 
(a) Pitch features in Conv_1 

 
(b) Yaw features in Conv_1 

 

(c) Pitch features in Conv_2 

 

(d) Yaw features in Conv_2 

Figure 9: The time series of the features in multi-scale Convolution modules with 15%  FOWT 

tendon damage.  
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As shown in Figure 9, Conv_1 and Conv_2 are filters with different convolution kernel sizes. The 374 

features in Conv_1 and Conv_2 have different scales of information. It is observed that in the features 375 

filtered by Conv_2, the responses of tendon 6 are more significant than those of the other two filters. 376 

This indicates that the relatively small size of the convolution kernel can capture the response 377 

characteristics of a FOWT when tendon 6 has little damage. In order to further explain what features 378 

are filtered by the multi-scale convolution modules in the MS-ACNN, an attempt to visualize the 379 

advanced features of FOWT responses by T-SNE was made.  380 

 
(a) Clustering of pitch from multi-scale 1 

 
(b) Clustering of yaw from multi-scale 1 

 
(c) Clustering of pitch from multi-scale 2 

 
(d) Clustering of yaw from multi-scale 2 



 

24 

 

 

(e) Clustering of pitch from fusion features 

 

(f) Clustering of yaw from fusion features 

Figure 10: The clustering results of the features in multi-scale Convolution  modules for 15% 

FOWT tendon damage 

Figure 10 (a-f) shows that the data points of 7 tendons states (including healthy state) are 381 

visualized from a two-dimensional plane through T-SNE. The clustering states of pitch and yaw have 382 

different effects in different scale feature-learning modules. Compared to Figures 10(b) and (d), and 383 

using a cluster of yaw as an example, the health state of FOWT tendons can be well distinguished from 384 

the tendons damage through the multi-scale module 2, but not through the multi-scale module 1. In 385 

Figure 10 (f), the fusion of outputs corresponding to the features in the multi-scale modules (to obtain 386 

the fused feature), demonstrates that the developed MS-ACNN can complement the advantages of the 387 

two scales learned from the FOWT responses for pattern recognition and offer a better classification 388 

performance.  389 

To demonstrate the influence of wind-wave actions on the damage conditions during 390 

classification performance, the clustering results of the features in the fusion layer are presented in 391 

Figure 11.  392 
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(a) Clustering of pitch from fusion features  

 

(b) Clustering of yaw from fusion features  

Figure 11: The clustering results of features in multi-scale Convolution modules for 30% FOWT 

tendon damage under different wind-wave conditions 

As shown in Figure 11, the clustering results of the features in MS-ACNN model for 30% tendon 393 

damage are all distinguished by t-SNE compared with the clustering results in Figure 10. This is 394 

significant in interpretation of the clustering results since a much larger damage magnitude will bring 395 

more significant responses. In comparison with the diagnosis results of pitch and yaw, the classification 396 

performance based on pitch response is still clearer than those from yaw. The clustering results of the 397 

multi-scale fused features in the MS-ACNN model show different clustering forms due to changes in 398 

the wind-wave condition. In Figure 11(b), the distance between the clustering points of different tendon 399 

damages changes with the wind-wave condition.  400 

5.3 Detection of damage location  401 

To further prove the robustness and superiority of the newly developed diagnostic module (MS-402 

ACNN) for the PHM method, the performance of MS-ACNN in locating damage on tendons was 403 
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examined. Damage tests with magnitudes ranging from 5% to 45% are used to examine the MS-ACNN 404 

model. The test result is presented in a confusion matrix. 405 
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Figure 12: Performance of MS-ACNN model in detecting damage locations  

As shown in Figure 12, the MS-ACNN model trained using the pitch and yaw responses has 406 

different degrees of sensitivities in identifying the damaged tendon. The pitch response is more 407 

sensitive to weak (lower stiffness [5% - 25%]) structural damage. Therefore, the MS-ACNN model 408 

trained by the pitch responses has a lower false alarm rate than the model trained by the yaw responses. 409 

However, when the structural damage increases to 30%, the model trained based on the yaw responses 410 

has a better diagnostic performance than the model trained by the pitch responses. In addition, when 411 

the structural damage increases to 45%, the models trained by both pitch and yaw responses have 412 

different false alarms for different damage locations. The pitch-response trained model usually has a 413 

false alarm in tendons 3, 4 and 5. On the other hand, the yaw-response trained model has a false alarm 414 

in the normal state and tendons 1 and 2 damages. Again, this is a clear demonstration of the significance 415 

of using multi-sensor collaboration to achieve accurate FOWT tendons damage diagnosis for PHM.  416 

5.4 Damage magnitude detection 417 

In order to examine the MS-ACNN model’s extrapolation capability of damage magnitude 418 

detection as part of the model’s intelligence, training datasets with damage magnitudes of 5%, 10%, 419 

15%, 20% and 25% are used. Equally, the corresponding testing datasets used are for damage rates of 420 

10%, 15%, 20%, 25% and 30%. As an example, the MS-ACNN model trained by 5% damage dataset 421 
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was compared with a random test result (e.g.10% damage dataset test result) to assess the accuracy of 422 

its predictive performance. The results are presented in Figure 13. 423 

 
(a) The magnitute detection tested by pitch response for tendon#6 

 

(b) The magnitute detection tested by yaw response for tendon#6 

Figure 13: Damage magnitude detection for tendon 4 and tendon 6 by the MS-ACNN model  

It is shown in Figure 13 that the MS-ACNN model recognizes the magnitude of small damage of 424 

tendon 6 better than the detection for a larger damage magnitude. For identification of a small damage 425 

magnitude in tendon 6, which has an inconsistent data distribution for both training and testing datasets, 426 

it is still observed that the MS-ACNN model offers a good regression performance in detecting the 427 

damage. This further reassures that the MS-ACNN model has good robustness in the identification of 428 

damage magnitude.  429 
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5.5 Multisensory collaborative diagnosis  430 

Previous studies have shown that using response-based features with different DOFs to train MS-431 

ACNN models can be complicated, especially if each MS-ACNN model has a different level of 432 

accuracy for tendon damage diagnosis. Therefore, in this section, a MWV method that uses a PSO 433 

algorithm [38] to fuse diagnosis results from the MS-ACNN models in the decision-making level is 434 

introduced. 435 

The potential damage datasets of tendons damage with 50% are used to verify the reliability of 436 

the proposed decision fusion. The results of this examination prove the feasibility of adding MWV into 437 

the PHM method to form a new MS-ACNN-MWV approach for intelligent FOWT tendons diagnosis. 438 

It should be noted that in order to reflect the robustness of MS-ACNN-MWV in the developed 439 

framework, the MS-ACNN model is trained with 45% damage dataset, while the test data from 50% 440 

damage dataset is used. 441 

 

Figure 14: Confusion matrix of the MS-ACNN-MWV method  

From Figure 14, it can be seen that MWV gives different weights to the decisions in the MS-442 

ACNN models from pitch and yaw responses, which yields an average F1 score of 93.94%. Although 443 
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the training and test datasets are derived from different damage magnitude data, the MS-ACNN model 444 

shows a good generalization capability, for pitch and yaw with nearly 90% and 83% F1 averages, 445 

respectively. The decision from the MS-ACNN model of yaw responses offers a better performance 446 

than the one of pitch responses when diagnosing tendon 5 and tendon 6 damages. Thus, the MWV 447 

gives more votes to the yaw MS-ACNN model decision than for pitch. The decision from the MS-448 

ACNN model for pitch offers better performance than the decision for yaw when diagnosing healthy 449 

conditions, tendon 1 and tendon 2 damages. Thus, the MWV model gives more votes to the pitch MS-450 

ACNN model decision than yaw for health states. In summary, it has been demonstrated that the MWV 451 

model can significantly reduce the false positive rate in the diagnosis. This also proves the industrial 452 

(engineering) applicability of MS-ACNN-MWV in the PHM method based on its good performance. 453 

6. Conclusions 454 

This research developed an end-to-end multi-sensor collaborative damage recognition method 455 

based on deep learning technique to support structural health monitoring of a 10MW FOWT’s tendons 456 

as part of PHM. A novel multi-scale convolution neural network framework has been developed in this 457 

study. The framework contains multiple multi-scale feature extractors that can directly capture damage 458 

or faults features at different levels using the FOWT response signals. An attention mechanism is added 459 

to the framework to assign advanced feature weights in order to ensure that each channel feature has 460 

the best contribution in calculating the probability of damage occurrence for predictive diagnosis.  461 

This investigation uses the structural damages of the 10MW FOWT tendons as a basic scenario 462 

to establish a dataset from multisensory sources for different damage locations and magnitudes from 463 

different DOFs on the tendon. The study found that using pitch and yaw acceleration signals offer an 464 

easier means to train the MS-ACNN model than the other four degrees of freedom signals. Two MS-465 

ACNN models are trained with yaw and pitch acceleration signals respectively, and they have an 80% 466 
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diagnostic accuracy in a large noise background. In comparison to the existing multi-scale models used 467 

in the industry, MS-ACNN offers better performance that is at least 15% higher than most of the 468 

existing models do. Although performance tests reveal that the MS-ACNN model can offer different 469 

levels of superiorities when using either pitch and yaw acceleration signals, the accuracy of damage 470 

detection for smaller magnitudes of damages, usually the most difficult in practical applications, has 471 

been excellent as demonstrated by the study on tendon damages between 5% and 30%. In addition, the 472 

MS-ACNN model can also identify tendons with different damage magnitudes, when the tendons of a 473 

FOWT have weak stiffness changes. The addition of a proposed MWV method into the MS-ACNN 474 

module for diagnosis provided results, based on fusion of different sensors, that can improve the 475 

diagnosis performance by at least 4%.  476 
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