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a b s t r a c t 

Rapid development and adaptation of the Internet of Things (IoT) has created new problems for secur- 

ing these interconnected devices and networks. There are hundreds of thousands of IoT devices with 

underlying security vulnerabilities, such as insufficient device authentication/authorisation making them 

vulnerable to malware infection. IoT botnets are designed to grow and compete with one another over 

unsecure devices and networks. Once infected, the device will monitor a Command-and-Control (C&C) 

server indicating the target of an attack via Distributed Denial of Service (DDoS) attack. These security 

issues, coupled with the continued growth of IoT, presents a much larger attack surface for attackers to 

exploit in their attempts to disrupt or gain unauthorized access to networks, systems, and data. Large 

datasets available online provide good benchmarks for the development of accurate solutions for botnet 

detection, however model training is often a time-consuming process. Interestingly, significant advance- 

ment of GPU technology allows shortening the time required to train such large and complex models. This 

paper presents a methodology for the pre-processing of the IoT-Bot dataset and classification of various 

attack types included. We include descriptions of pre-processing actions conducted to prepare data for 

training and a comparison of results achieved with GPU accelerated versions of Random Forest, k-Nearest 

Neighbour, Support Vector Machine (SVM) and Logistic Regression classifiers from the cuML library. Using 

our methodology, the best-trained models achieved at least 0.99 scores for accuracy, precision, recall and 

f1-score. Moreover, the application of feature selection and training models on GPU significantly reduced 

the training and estimation times. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The Internet of Things (IoT) represents the seamless merging 

f the real and digital world, with new devices being created that 

tore and pass around data. New frameworks, many interconnected 

evices, and a plethora of applications (allowing communication 

ith said devices) make it difficult to develop and maintain ro- 

ust security solutions. The growing numbers of IoT devices make 

hem a very attractive target for threat actors who aim to use them 

o access other devices and a form a larger network. According 

o Kaspersky’s Threat Report, “the IoT will become one of the main 

argets of cyber-attacks in the near future ” ( Kaspersky, 2022 ). Mali- 

ious software, or malware, arguably constitutes one of the most 

ignificant categories of threats to computer systems. With nearly 
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2,0 0 0 new instances of malware being created everyday detec- 

ion of such threats is one of the most essential problems that re- 

uire a solution ( G Data, 2022 ). With the number of malware fam- 

lies targeting these IoT devices and systems is ever increasing, IoT 

otnets are designed to grow and compete with one another over 

nsecure devices. An IoT Botnet is also a collection of various IoT 

evices such as routers, wearables and embedded technologies in- 

ected with malware. Much of a botnet’s power comes from the 

umber of devices that make it up. As such, this malware allows 

n attacker to control all the connected devices. There are three 

istinct architectures that characterize most botnets. In the central- 

zed network all bots connect to the Command-and-Control server 

C&C). The main characteristic of this type is that automated com- 

ands are sent from C&C to the bots via IRC or HTTP channels. 

irect communication means low latency of such architecture but 

lso dependency on the C&C which if discovered will provide in- 

ormation about all botnets in the network. The second type of ar- 

hitecture is a decentralized model which does not have a central 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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oint of failure. In this setup each bot is both client and server 

nd use peer to peer (P2P) communication protocols as a means of 

onnecting with other machines. In the hybrid approach the com- 

romise between centralized and decentralized approach allows to 

eep relatively low latency and keep botnets secure from detec- 

ion by using P2P protocols for communication ( Miller et al., 2016 ). 

arly IoT malware families like Gafgyt and the original Mirai fam- 

ly leveraged default or weak passwords to attack devices. Whereas 

urrent versions of botnet have new functionalities, and propaga- 

ion methods utilise Tor proxy functions to provide the IP servers’ 

ddress. Botnets are mainly propagated through weak Telnet pass- 

ords – a common issue on IoT devices – and through exploit- 

ng three vulnerabilities. The Gafgyt botnet actively targets vulner- 

ble D-Link and IoT devices including remote code execution flaws 

CVE-2019–16,920) in D-Link devices; a remote code execution vul- 

erability in Liferay enterprise portal software (for which no CVE is 

vailable); and a flaw (CVE-2019-19,781) in Citrix Application De- 

ivery Controllers ( Threatpost, 2021 ). 

The best strategy against IoT botnets is to secure against their 

hreat, detect their presence in a timely manner, and ultimately 

imit their resources (by reducing the number of unsecure devices 

rom which they could derive their power). Intrusion Detection 

ystems (IDS) are used to monitor network traffic and detection 

ign of intrusion. The detection may be according to the signatures 

f executable malwares or according to the signatures of malicious 

etwork traffic generated by malware. Signature-based approaches 

etect malicious packets by looking at specific patterns and sig- 

atures of the given threat. A major problem with this approach 

s that it requires frequent updates of the intruder’s database and 

s unable to detect unknown attacks. Anomaly-based detection 

ocuses on learning trustworthy signatures (and behaviours) and 

ses this knowledge to pass only legitimate traffic. If an IDS detects 

n unusual pattern in analysed traffic, then the particular packets 

ill be flagged. However, the main problem with this approach is 

hat new legitimate traffic can also be flagged because the algo- 

ithm had not learned it yet, with an increasing amount of false 

ositive alerts. Any action, like sweeping or probing, creates a sig- 

al in the network anomaly-based IDS which can detect such ac- 

ions. 

Machine learning has become a vital technology for cybersecu- 

ity and threat detection ( Xin et al., 2018 ; Azwar et al., 2018 ). Ma-

hine learning for intrusion detection can solve many challenges 

uch as speed and computational time and develop accurate IDS. 

hile the application of machine learning for classification or de- 

ection of attacks has been covered in many academic works, we 

ave not yet seen an attempt to implement acceleration technolo- 

ies to boost the performance of the models and essentially create 

 more viable solution for environments where frequent retraining 

f the algorithm is necessary. There are various frameworks avail- 

ble for an acceleration of the machine learning models. In this pa- 

er we will focus on the implementation of RAPIDS libraries such 

s cuDF and cuML. The aforementioned libraries allow the use of 

PU for machine learning tasks which may provide increased per- 

ormance due to significantly greater bandwidth and better com- 

utation capabilities of GPU over CPU ( Medium, 2021 ). Due to the 

ifference in architecture between CPU (typically 4–8 cores) and 

PU (hundreds of smaller cores) parallelization of tasks can be ap- 

lied when working on the latter. Using the CUDA platform for 

arallel programming, the general computing tasks can be drasti- 

ally sped up by breaking down one big task into hundreds of little 

hunks. 

Our research is focused on increasing the speed of the detection 

hile sustaining an acceptable level of detection. Our methodology 

nvolves pre-processing, feature selection and application of GPU- 

ccelerated machine learning models which results in an improve- 

ent over currently used methods. These methods are explained 
2

ithin our methodology section and comparison to related works 

s conducted within the Results section. Our approach differs from 

ther works in the field as we decided to create new features from 

he existing dataset. Moreover, in contrast to other works, we de- 

ided to test fast computing algorithms and their impact on accu- 

acy, training, and prediction time of the models. 

The novel contributions of our work are as follows: 

- Application of GPU-based accelerated machine learning models, 

- Generation of new features and application of permutation im- 

portance method for feature selection and interpretability of 

models, 

- Improvement of both training and prediction times in compar- 

ison to other works in the field, 

- Retaining high accuracy and robustness of the models similar 

to previous academic works. 

The paper is organised as follows: In Section 2 we provide back- 

round on attacks against IoT devices and related works utilising 

achine learning. In Section 3 we detail our methodology, and 

resent results and discussion of our findings Section 4 . Future 

ork and concluding remarks are presented in Section 5 . 

. Related work 

Machine learning algorithms use historical data as an input to 

redict new output values. Machine learning can monitor systems 

nd respond to changes in the behaviour, protecting against threats 

hrough pattern detection, real-time threat monitoring, vulnerabil- 

ty mapping and penetration testing. Machine learning methods 

ave seen increased use in the last decades due to the rapid devel- 

pment of various technologies and the growing computing capa- 

ilities of computers. The introduction of GPU for machine learning 

as introduced new possibilities allowing researchers to solve is- 

ues that previous hardware could not handle due to expensive op- 

rations or significant time-consuming processes of model training. 

achine learning models are known for great prediction capabili- 

ies and are used for a variety of classification, pattern recognition 

nd detection tasks. 

The difference between cyber security and other fields is that 

he attackers and threat actors do not behave in a predictable or 

tatistically consistent way. The goal of an attacker is to remain 

idden and so all their activities are evasive. As such, an attack per- 

ormed by one attacker may look completely different to the same 

ttack performed by a different attacker. This means that many 

achine learning models cannot be widely used and that the mod- 

ls and algorithms must be adapted to different conditions and be- 

avioural parameters. IDS play a crucial role in defending networks 

y monitoring traffic for malicious activities. 

The majority of the solutions tackling traffic detection prob- 

ems focus solely on the accuracy, however, training and predic- 

ion time is also important. Within this section we explore the so- 

utions proposed for the classification of attacks using the IoT-Bot 

ataset UNSW Canberra (2022) and their parameters for detection. 

.1. Current solutions 

Koroniotis et al. (2019) used the machine learning classifier 

upport Vector Machine (SVM) and two deep learning predictors 

ecurring Neural Network (RNN) and Long Short-Term Memory 

LSTM). Their experiments were conducted on a 5% sample of data 

hich contained around 3 million records. The authors derived 

ew features from the existing data. Using a correlation coefficient, 

he researchers extracted the 10 best features that were used to 

rain a model and compared against training on a full set of fea- 

ures. The SVM trained on all features achieved the best results 

ith accuracy of 99 and 100% recall, however all predictors had a 
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Fig. 1. IDS machine learning model development pipeline. 
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ery similar performance. The training time of SVM was 110 min. 

he results of this research show that while SVM and neural net- 

orks have extremely high accuracy they are also very slow to 

rain and require a significant amount of data. 

Oreški et al. (2020) used a different approach to the selec- 

ion of best features called ‘Search and Testing for Understandable 

onsistent Contrast’ (STUCCO). With this approach, the authors 

ere able to select different features compared to the work of 

oroniotis et al. (2019) . The authors implemented the SVM model 

o train on the input data. The model has achieved > 0.99 scores 

or accuracy, precision, recall and f1 score. 

In Shafiq et al. (2020a) , the authors proposed a novel method 

or feature selection called ‘CorrAUC’ and applied it to the Bot-IoT 

ataset. The new technique selected a set of five features that de- 

cribed the dataset well enough to be used for training. The ap- 

roach trained Decision Tree, SVM, Naive Bayes and Random For- 

st classifiers and compared their performance on a created test 

et. With the exception of Naive Bayes, all classifiers achieved high 

ccuracy, specificity, sensitivity, and precision scores in most cases. 

he results indicate that Random Forest performance was slightly 

etter, and the accuracy was above 99% which is similar to the pre- 

ious research, however, recall scores for data theft and keylogging 

heft were 0.50 and 0.89 accordingly. 

In their work, Javed et al. (2020) proposed the use of an Ad- 

Boost classifier for the detection of botnet attacks. The authors 

sed a publicly available "takata" dataset for their research. The 

pplied method for feature extraction allowed for deriving a set of 

0 highly correlated features out of the initial list of 55 features. 

or comparison, the authors applied a decision tree, probabilistic 

eural network, and sequential minimal optimization algorithms. 

he evaluation results indicate that AdaBoost has the highest ac- 

uracy and robustness out of all four architectures tested. The pro- 

osed approach involves feature selection using the information 

ain method and then the implementation of the AdaBoost clas- 

ifier. 

Churcher et al. (2021) performed a comprehensive analysis 

f attack classification using many common algorithms from the 

cikit-learn library like KNN, SVM, Random Forest or Naïve Bayes. 

he researchers conducted 2 types of experiments a binary classifi- 

ation of malicious traffic and a multiclass classification of various 

ttacks. Various weights were applied to the classifiers to change 

he bias towards classes. Random forest was the best performing 

lgorithm for binary classification tasks while KNN and ANN mod- 

ls had better performance classifying various attack types. Ran- 

om Forest had perfect metric scores in a binary task and 0.95 

cores in a multiclass task. 

Shafiq et al. (2020b) tested various machine learning models in 

earch of the most effective solution for IoT botnet detection. The 

oT Botnet dataset from Koroniotis et al. (2019) has been used to 

onduct this research. The authors selected Naïve Bayes, BayesNet, 

ecision Tree, Random Forest and Random Tree and applied the 

ijective Soft Set technique to choose the best classifier. The results 

f this research show that all algorithms have a high accuracy and 

ecall rate of > 0.98. Taking into consideration the time required 

o train the algorithms in this research Native Bayes had the best 

erformance. 

In Alsamiri and Alsubhi (2019) , the authors used IoT-Botnet 

cap files to generate a new set of features by using the CI- 

FlowMeter tool to extract flow-based features. The authors se- 

ected 13 generated features for the training of various models in- 

luding Random Forest, k-Nearest Neighbour and Naive Bayes. The 

esults presented in the work indicate that Random Forest has the 

est performance for most of the attack types (95% −100%) with 

NN having slightly lower accuracy. In their work ( Garre et al., 

021 ) proposed a novel approach for the detection of SSH bot- 

et infections. The authors generated their own dataset captur- 
3 
ng information from various honeypots deployed across the world. 

or traffic classification, four algorithms were used namely: Deci- 

ion Tree, Random Forest, SVM and Native Bayes. Experimental re- 

ults showed that Random Forest had better performance achiev- 

ng 95.7% accuracy and 93.9% recall scores. 

.2. Summary of related work 

Our analysis of related works indicates that SVM is one of the 

ost commonly used classifiers for its great accuracy in compar- 

son to many other methods. Ensemble learning algorithms, how- 

ver, tend to perform better than SVM, especially Random Forest 

RF) which became a state of the art in many domains in recent 

ears ( Vakili et al., 2020 ; Sujatha and Mahalakshmi, 2020 ). The 

ests conducted on various datasets conclude that RF is not only 

ore accurate than SVM in most cases but also requires signifi- 

antly less training time and provides faster prediction. The speed 

f the algorithm training and prediction is important for their in- 

ustry use because the less time and resources it is necessary to 

evelop a good model the sooner it can be deployed. It is ex- 

remely important as machine learning models for IoT detection 

ust be regularly updated to keep up with new threats which 

eans frequent model retraining. 

. Proposed methodology 

In this section, we provide our methodology used to develop a 

odel capable of discriminating different types of attacks on IoT 

evices. The model development pipeline (presented in Fig. 1 ) be- 

ins from the data processing stage which involved acquisition of 

he dataset from a public repository and sampling a smaller set 

ontaining enough information to train the machine learning mod- 

ls. As part of pre-processing, the data is split into appropriate sets 

or model training and evaluation. Next, an oversampling ratio is 

pplied to parts of the data. One of the most important aspects of 

ur approach is the creation of a new set of features that are de- 

ived in a feature engineering process. Then all of the features un- 

ergo a selection process which results in much smaller set of best 

eatures that are used to train the models. Following this stage is 

he hyperparameter configuration of the model. This involves the 
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Table 1 

Dataset attack class distribution. 

Attack category Subcategory Number of entries 

DDoS HTTP 19,738 

TCP 19,547,104 

UDP 18,964,396 

DoS HTTP 29,680 

TCP 12,315,619 

UDP 20,658,630 

Reconnaissance OS Fingerprint 1,433,189 

Service Scan 356,285 

Theft Data Exfiltration 114 

Keylogging 1464 
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etraining and evaluation process which occurs until satisfying re- 

ults are achieved. Our approach involves implementation of GPU 

ccelerated algorithms that allow significantly faster model train- 

ng and prediction. 

The remainder of this section will include methodology details 

nd experiment design via description of the dataset used for our 

xperiments, justification of feature selection, our approach to un- 

ven class distribution, choice of classifiers and selection of metrics 

sed for evaluation of the models. 

.1. Dataset 

We have chosen the most recent iteration of IDS datasets from 

he University of New South Wales Canberra (UNSW) at the Aus- 

ralian Defence Force Academy – ‘ Bot-IoT’- UNSW Canberra (2022) . 

he data was created in a Cyber Range Lab in a realistic environ- 

ent ( Koroniotis et al., 2017, 2019; Koroniotis and Moustafa, 2020 ). 

rom PCAP files, a set of features were extracted and saved in var- 

ous formats. We are using CSV files, with the overall size at 16.7 

B (there are 72 million records in the dataset). 9063 of the entries 

epresent normal traffic. This data is used for a binary classifica- 

ion of malicious and non-malicious traffic. Each entry is described 

s belonging to one of the main attack categories and further split 

nto a subcategory. Table 1 presents the distribution of attacks ac- 

ording to category and subcategory. 

ataset sample 

While the dataset authors ( UNSW Canberra, 2022 ) 

 Koroniotis et al., 2017 ) provided a pre-processed subset of 

ata with nearly three million entries, the distribution of attack 

ypes is very unbalanced. We decided to create our own subset 

hich consists of a more equal representation of all attack types. 

e concluded that 10 0,0 0 0 occurrences per attack would be 

ufficient to train an accurate solution. A fixed-size sample of ran- 

om values was taken for every class if a number of occurrences 

xceeded the limit. 

xperiment environment 

In this experiment no physical setup is made to create a mali- 

ious traffic. Instead, a “Bot-IoT’ dataset - well known benchmark - 

s used to train and test the algorithms . The training of all mod- 

ls was performed on AMD Ryzen 7 2700X Eight-Core Processor 

4.15 GHz). It is important to note that every CPU based training 

sed all processors for training which significantly improved the 

raining time of the models. A single NVIDIA GeForce RTX 2080 

raphics card with 8GB of VRAM was used for the training of ac- 

elerated variants of machine learning algorithms. 

eature selection 

To reduce training and prediction times, we removed features 

hat had little or no impact on the prediction capabilities of the 
4 
lgorithms. This is achieved by implementing the permutation im- 

ortance technique. The permutation feature importance provides 

eedback about which feature in a dataset had the least impor- 

ance. This is done by randomly shuffling feature value which 

auses a decrease in model score. The procedure breaks relation- 

hip between the feature and the target which shows how depen- 

ant the model is on the particular feature. The conducted tests 

howed that the best features obtained with this method work 

ell with all estimators used in this study. Moreover, using the 

riginal set of features we have calculated new features to increase 

he robustness of the model. The results of this process are shown 

n the following subsections where we remark on class distribu- 

ion, estimators, and evaluation metrics. 

lass distribution 

Uneven distribution of classes is a very common issue in ma- 

hine learning. In fact, it is very difficult to find perfectly even 

atasets especially with thousands or millions of records. Depend- 

ng on the scale of irregularity this can be a serious problem, 

nd in some cases lead to very poor results of prediction. While 

ome classifiers like decision trees, logistic regression and SVM 

an work with imbalanced data, they will most likely fail when 

here is a high disproportion of classes. In order to tackle the prob- 

em of imbalanced attributes two methods can be employed: over- 

ampling and under-sampling. Application of the former technique 

equires instances of the under-represented data to be copied. 

nder-sampling on the other hand can be applied by deleting in- 

tances of the major class. 

It is generally advised to use oversampling on small datasets 

nd under-sampling when there is a lot of data so removal of val- 

es will not have a negative impact on the model. As the pro- 

uced dataset sample was still imbalanced, we have decided to ap- 

ly oversampling to the minor class to eliminate the bias. We have 

hosen one of the most widely used methods called the Synthetic 

inority Oversampling Technique (SMOTE). 

lgorithms used 

Based on previous academic research in the field and our own 

xperience we have decided to use Random Forest (RF), SVM, 

ogistic Regression (LR) and k-Nearest Neighbour estimators. For 

ur experiments, we have chosen GPU accelerated versions of the 

lassifiers from the cuML library. While Scikit-learn implementa- 

ions are considered state-of-the-art and are used in most research 

orks on IoT-bot detection they can only utilize CPU which train- 

ng, and prediction times are a major drawback. The GPU acceler- 

ted algorithms are still in development, thus many of the features 

ncluded in the documentation are not yet supported. RAPIDS algo- 

ithms tend to perform worse than their scikit-learn counterparts 

n default settings, thus hyperparameter optimization was neces- 

ary to obtain satisfactory results ( cuML, 2022 ). 

RF is an ensemble learner that implements multiple weak 

earners (decision trees) using specific rules and then integrates 

esults from all of them generating the final prediction. Each tree 

s trained on a random subset of features which breaks the cor- 

elation between them improving the prediction capability of the 

odel. RF is considered as a state-of-the-art algorithm for its pre- 

iction accuracy tested on many different datasets as well as the 

ery short time necessary to train the model ( Breiman, 2001 ; 

hang et al., 2017 ; Nanni et al., 2015 ). k-Nearest Neighbour (KNN) 

s a supervised machine learning algorithm that assumes that sim- 

lar elements exist in close proximity. KNN can be used for both 

lassification and regression problems. Classification is performed 

y looking at the closest neighbour to the chosen K value of the 

ame class. As the name suggests the most important hyperpa- 

ameter in KNN is the number of neighbours (n_neighbors). Other 

arameters such as distance metrics and weights of neighbours 
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Table 2 

Hyperparameter values for each algorithm. 

Algorithm Parameter Default Tuned 

Random Forrest (RF) max_depth 16 18 

n_bins 8 17 

k-Nearest Neighbour (KNN) N_neighbours 1 3 

Support Vector Machines (SVM) C 1 60 

Logistic Regression (LR) penalty l2 l1 

tol (tolerance) 1e-4 1e-5 
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a

an also change the prediction significantly depending on the task 

nd data composition. The KNN is a fast algorithm to train, how- 

ver, its major drawback is significantly slower estimation time 

 Altman, 1991 ). 

The SVM is also a very popular model which is often used to 

olve many classification problems. The most important parame- 

er in SVM is the kernel which controls how the input variables 

re projected. SVM divides n_dimensional space into two distinct 

egions for output classes. The algorithm is trying to find a hy- 

erplane during training that best separates the output classes. In 

he case of binary problem hyperplane is a single line. SVM algo- 

ithm is commonly used for its high prediction rate, however, a 

ajor drawback of this method is training time which is signifi- 

antly higher than RF or KNN ( Abdiansah and Wardoyo, 2015 ). 

Logistic regression (LR) is one of the most common models 

sed for binary classification. LR is rarely used for intrusion de- 

ection tasks, however, its performance for binary problems is usu- 

lly on par with other state-of-the-art algorithms. LR hyperparam- 

ters can provide some improvement to the performance of the 

odel. The regularisation (penalty) and C parameter usually have 

he greatest impact on the model performance ( Pohar et al., 2004 ). 

Initial training iterations were conducted using default param- 

ters; however, the results were poor, thus hyperparameter tun- 

ng was applied to all four models. For the RF model 2 parameters 

ere tuned: max depth and number of bins. The former represents 

he depth of every tree which determines the number of splits. 

enerally, more splits allow the model to capture more informa- 

ion, however the convergence time increases. The cuML RF imple- 

ents a histogram-based method for split determination. The size 

f histograms can be tuned using number of bins parameter. This 

s especially useful for larger problems with highly skewed input 

ata. The only hyperparameter tuned for KNN algorithm was the 

umber of neighbours or K number which indicates the count of 

he nearest neighbours. In the case of SVM classifier tuning of C 

arameter provided the best results. The C parameter is a penalty 

hat determines the influence of the misclassification on the deci- 

ion function. The higher the penalty enforces a smaller error mar- 

in for decision function choosing hyperplane while lower value 

ncourages a larger error margin for the cost of model’s accuracy. 

wo parameters were tuned for the LR namely penalty and tol- 

rance. The penalty type refers to the regularisation method that 

educes parameters and simplifies the model to avoid overfitting. 

he tolerance value determines when to stop the training. Depend- 

ng on the task and input data larger values may cause algorithm 

o not converge. Table 2 presents the exact values of parameters 

hosen for each algorithm. 

.2. Evaluation metrics 

To quantify the performance of the trained models the pre- 

icted values are assessed using evaluation metrics. Various met- 

ics make different assumptions about the problem; thus, it is im- 

ortant to validate the outcome using multiple metrics. In this case 

e have decided to apply standard set of evaluation metrics to 

ach estimator: accuracy, precision, recall and F1-score. Values for 
5 
ach metric are calculated from the confusion matrix of predic- 

ions. The accuracy is the ratio of the number of correct predic- 

ions to the total number of samples. The formula for accuracy is 

resented in (1) . A True Positive (TP) is an outcome where the 

odel correctly predicts the positive class. Similarly, a True Neg- 

tive (TN) is an outcome where the model correctly predicts the 

egative class. A False Positive (FP) is an outcome where the model 

ncorrectly predicts the positive class. A False Negative (FN) is an 

utcome where the model incorrectly predicts the negative class. 

ccuracy works best when the number of samples belonging to 

ach class is equal, thus under-sampling should positively impact 

he score. These metrics will be used when analysing the perfor- 

ance of our improved approach and comparing to related works. 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(1) 

Precision (2) is the number of ground TP results divided by 

umber of predicted positive results. 

 recision = 

T P 

T P + F P 
(2) 

Recall (3) is the number of correct positive results divided by 

he number of all positive samples from the class. 

ecall = 

T P 

T P + F N 

(3) 

F1-score (4) is a mean between precision and recall that ranges 

etween 0 and 1. F1-score indicates how robust the model is. 

 1 = 2 ∗ P recision ∗ Recall 

P recision + Recall 
(4) 

Moreover, to test the speed of algorithms running on GPU the 

esults are compared to the CPU counterparts from the scikit-learn 

ibrary. The speed was measured in seconds and compiled results 

nclude mean speeds calculated from 10 training/test iterations per 

odel. 

. Results and discussion 

In this section, we present and discuss the results obtained in 

he conducted experiments. First, we cover the outcomes of a data 

rocessing pipeline developed for this project. Second, we discuss 

he results of binary detection of malicious traffic. Next, accuracy 

cross all of the classes is presented. Finally, we discuss the im- 

act of our project in comparison to other works covering the IoT 

otnet detection process. 

.1. Data pre-processing 

During the pre-processing stage, we have created a small sub- 

et of data that provides enough information to the algorithms and 

hortens the training and prediction time. Because our research 

s focused on the binary classification of the traffic, we have de- 

ided that data will be derived according to the number of occur- 

ences per attack type. Unlike the method used by the authors of a 

ataset, we have saved all occurrences of minority classes (below 

0 0,0 0 0) to ensure a good representation of all attacks. As shown 

n Fig. 2 , the Keylogging, Data Exfiltration, DoS HTTP and DDoS 

TTP classes are underrepresented in the dataset. The significant 

ifference in the number of samples may introduce bias towards 

ajority classes reducing accuracy of the algorithms. To tackle this 

ssue, we have decided to adjust the class distribution by oversam- 

ling the minority classes. 

During our research we have applied various data splits to test 

heir impact on the trained models. We have observed that an 

0:20 split of the data provided the best results. After the split, 

n oversampling was performed on the training set. As a result, 
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Fig. 2. Subset of attacks derived from the original dataset. 

Table 3 

Training sets utilised during research. 

Attack Normal Oversampled 

DDoS HTTP 15,790 80,000 

DDoS TCP 80,000 80,000 

DDoS UDP 80,000 80,000 

DoS HTTP 23,744 80,000 

DoS TCP 80,000 80,000 

DoS UDP 80,000 80,000 

Reconnaissance OS 80,000 80,000 

Reconnaissance Service Scan 80,000 80,000 

Theft Data Exfiltration 91 80,000 

Theft Keylogging 1171 80,000 

Normal traffic 7250 80,000 
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Table 4 

Training input features. 

Feature Description 

Pkts Total count of packets in transaction 

Bytes Total number of bytes in transaction 

State Transaction state 

Dur Record total duration 

Spkts Source-to-destination packet count 

Sbytes Source-to-destination byte count 

Sum Total duration of aggregated records 

Mean Average duration of aggregated records 

Pkts/Bytes Packets to bytes ratio 

Table 5 

Binary detection of malicious traffic. 

Algorithm Accuracy Precision Recall F1-score 

RF 0.9995 0.99668 0.98479 0.99066 

RF + SMOTE 0.99988 0.99857 0.99722 0.9979 

KNN 0.99978 0.99715 0.99472 0.99593 

KNN + SMOTE 0.98976 0.78658 0.99372 0.86145 

SVM 0.99742 0.98688 0.91629 0.94875 

SVM + SMOTE 0.99809 0.94285 0.99359 0.96681 

LR 0.98874 0.82808 0.68046 0.73217 

LR + SMOTE 0.95136 0.60798 0.96038 0.66429 
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dditional records were added to the minority classes DDoS HTTP, 

oS HTTP, and both ‘Theft attack’ types. This method evens out the 

lass balance to 80,0 0 0 records per class. Table 3 presents the dis-

ribution of samples across different classes used for training the 

odel. 

Initial testing showed that the majority of the features do not 

mpact the prediction capability of the models. As was mentioned 

n the methodology section, we have applied a feature importance 

lgorithm to select a group of best features. Feature importance is 

efined as a decrease in model score when a feature is shuffled. 

he process of shuffling breaks the relationship between the target 

alue and a feature, thus the drop in model score indicates how 

ependant the model is on the particular feature. 

Fig. 3 presents the eight best original features selected for the 

raining of all models. The features that had little to no impact on 

he model were removed from the input set and the remaining fea- 

ures were used to derive the new data. 

To further increase the robustness of the models we have de- 

ived several features from the original values. Analysis showed 

hat only the rate of packets to bytes had a meaningful impact 

n the algorithms, thus it was selected as one of the input val- 

es. SVM has benefited the most from the addition of a newly de- 

ived feature having its recall and f1-score increased by 0.1 scores. 

able 4 presents the full set of features used for the training of 

ll algorithms. Each feature and a description of the associated at- 

ribute is conveyed. 

.2. Binary malicious traffic detection 

The first stage of our experiments involved the detection of ma- 

icious traffic. For this purpose, all attack entries were combined 

nder the malicious traffic label, while normal traffic remained 

s a second class. The results of this classification are shown in 
6 
able 5 . The performance metrics show that all models achieve a 

igh level of accuracy. Moreover, implementation of oversampling 

isibly improves the results. This is especially visible in the case 

f the SVM classifier. Analysis of the evaluation metrics shows that 

F and KNN performed significantly better achieving near 100% ac- 

uracy and sensitivity. This means that the results of these two 

odels are significantly more robust. While the SVM also had high 

ccuracy, it is lacking precision and recall (which indicates false 

lassification and reduces the overall robustness of the model). The 

orst-performing algorithm was LR which evaluation shows a sig- 

ificant number of false positive predictions even after parameter 

uning. 

It is also important to note that while both RF and KNN have 

ery similar metric scores there are significant differences in the 

umber of misclassified samples for both classes. Fig. 4 shows the 

onfusion matrix of RF and KNN classifiers trained on an uneven 

ata sample. The KNN performance is better, and the difference 

an be observed in a number of normal traffic misclassified sam- 

les. The KNN is clearly more sensitive and as a result smaller por- 

ion of the traffic is being misclassified. 

Interestingly, training on the oversampled set generated very 

ifferent results (shown in Fig. 5 ). Random Forest performance has 

ncreased, especially the classification capability of the benign traf- 
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Fig. 3. Importance of features used for model training. 

Fig. 4. Classification results for unbalanced set training. 

Fig. 5. Classification results for oversampled set training. 
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c which is now nearly 100% accurate. Fig. 5 shows that oversam- 

ling the training data possibly introduced some bias impacting 

he prediction capability of KNN. The performance of KNN has de- 

reased by a significant margin when we consider that the number 

f malicious traffic classified as benign has increased from 10 (as 

hown in Fig. 4 ) to 1347 ( Fig. 5 ). 

SVM tends to classify most of the traffic as malicious. This prob- 

em can be solved by adding additional features to the training set. 

ote however, the purpose of this research was to test the predic- 

ion capability on the smallest possible number of features, thus 

llowing fast training and estimation. The LR model has the high- 

st number of misclassified traffic samples rendering it not a viable 
olution for an IDS. v

7 
The training time of KNN is significantly shorter than any other 

lgorithm, however, the prediction time is much slower. This is be- 

ause KNN does not generalize data in advance. While LR requires 

he least amount of time to make a prediction its accuracy and ro- 

ustness is way too low to consider it a good option. SVM training 

ime is significantly longer than any other algorithm which does 

ot make it a viable solution for IDS which must be frequently re- 

rained to include new threats. RF, while not the best in time met- 

ics, is clearly the best algorithm as it grants the best prediction 

apability within reasonable training and prediction times. 

We have compared both the training and prediction time of the 

lgorithms running on GPU and CPU. As evident, the training times 

ary between different algorithms. The training of SVM is slow due 
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Fig. 6. Training time comparison on GPU and CPU. 

Fig. 7. The comparison of prediction time on GPU and CPU. 
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Table 6 

Binary detection of individual attacks (F1-score only). 

Attack type RF KNN SVM LR 

DDoS HTTP 0.99939 0.99818 0.97920 0.91840 

DDoS TCP 1 0.99954 0.99985 0.99593 

DDoS UDP 0.99652 0.99894 0.99697 0.98567 

DoS HTTP 0.99982 0.99803 0.95575 0.87587 

DoS TCP 1 0.99939 1 0.99954 

DoS UDP 0.99894 0.99864 0.99864 0.98582 

OS Fingerprint 0.99939 0.99804 0.99474 0.85461 

Service Scan 0.99729 0.99758 0.99562 0.97313 

Data Exfiltration 1 0.96112 0.93174 0.63416 

Keylogging 0.99901 0.99604 0.99506 0.97142 
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o the significant number of samples chosen and a non-linear ker- 

el used. Future tests may involve smaller input sets to test the 

erformance changes. The remaining algorithms converge below 

wo minutes on CPU and in less than five seconds with GPU accel- 

ration. Fig. 6 presents the results of a training time comparison 

hich clearly show how much quicker the process of retraining 

an be when utilizing GPU. 

In Fig. 7 , we can see the estimation times for each algorithm 

rained. As we can observe, the KNN required a significantly longer 

stimation time because for every prediction it needs to scan all 

earest neighbours in the completed training set. Again, a smaller 

raining set would improve the prediction time however this might 

egatively impact the accuracy of the model. Another aspect worth 

oting is a significant improvement in estimation time when pre- 

icting with SVM classifier utilizing GPU. Overall, the GPU acceler- 

ted models are significantly faster in both training and prediction 

hich in some cases may be a crucial factor. 

.3. Attack type detection 

The second task of our study was to perform binary classifi- 

ation of every attack separately. Table 6 presents the results of 

inary detection of the attacks. RF is clearly the most accurate al- 

orithm, however, KNN and SVM achieve similar results in most 

ases. LR was again the worst performing algorithm even with dif- 

erent parameter settings. The most important findings show that 

t was possible to achieve very high accuracy and robustness of 

he Random Forest classifier for all attack types. Implementation of 

versampling reduced bias towards majority classes and as a result 

mproved estimation of the models on the previously underrepre- 

ented attack types. 
8 
The application of algorithms on different benchmarks may 

rovide interesting results and allow further improvements. Gen- 

ration of new features can also be the answer for better perfor- 

ance and reduction of bins used in GPU accelerated RF which 

ignificantly increased training and prediction time. In future work 

e plan to apply other models from the cuML library to test their 

erformance and compare them to the CPU-based versions. 

.4. Comparison with other works 

In comparison to other academic works in the field, our method 

ot only reduced training but it also significantly reduced predic- 

ion time by utilizing GPU. Specifically, dimensionality reduction 

rovided a further improvement to the speed of the training and 

he evaluation process. The choice of a custom set retained more 

amples of the minority classes reducing bias and in turn provided 

ore data for the models. As a result, it was possible to retain high 

erformance as was shown in the results section. 
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Table 7 

Comparison of algorithms performance. 

Metric Accuracy Recall Time (s) 

Best RF - GPU 0.99988 0.99722 0.45 

Best RF - CPU 0.99985 0.99666 16.24 

Best SVM - GPU 0.99742 0.91629 5.74 

Best SVM - CPU 0.99516 0.82839 710.06 

Koroniotis et al. (2019) SVM 0.88373 0.88371 1270 

Koroniotis et al. (2019) SVM all features 0.99988 1 6636.98 

Koroniotis et al. (2019) RNN 0.99740 0.99749 8035 

Koroniotis et al. (2019) RNN all features 0.97906 0.97908 6888.08 

Koroniotis et al. (2019) LSTM 0.99741 0.97908 10,482.19 

Koroniotis et al. (2019) LSTM all features 0.98057 0.98058 14,073.63 

Shafiq et al. (2020b) RF 0.9999 1.00. n/a 

Alsamiri and Alsubhi (2019) RF 0.98 0.98 27.0328 
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We compared our improved GPU-based machine learning ap- 

roach for detection of botnet attacks with related works of 

oroniotis et al. (2019) , ( Shafiq et al., 2020b ), and Alsamiri and

lsubhi (2019) . Specifically, we analysed and compared our algo- 

ithms in terms of accuracy, recall and time. The accuracy compar- 

son looks at the portion of correctly classified samples, whereas 

ecall is to do with the correctly identified positive classes from 

he actual malicious traffic. In Table 7 the comparison of malicious 

raffic detection with the results obtained by models of authors 

oroniotis et al. (2019) , ( Shafiq et al., 2020b ), and Alsamiri and

lsubhi (2019) is presented. The former trained SVM classifier, 

NN and LSTM networks use 5% of the original data and ten se- 

ected features. The authors of the second work implemented algo- 

ithms for selection of best features and tested the results by train- 

ng various models. The best performance was achieved using RF; 

hus, the results are included in the comparison. Alsamiri and Al- 

ubhi (2019) generated eighty new features from the original pcap 

les and selected seven for model training. The RF algorithm ac- 

omplished the best results having high accuracy and recall. 

The most significant improvement of our solution can be seen 

n the training time which application of accelerated machine 

earning algorithms decreased considerably. The accuracy and ro- 

ustness of our best algorithm are comparable to other authors 

esults. In terms of accuracy developed models are outperformed 

lightly by Koroniotis et al. (2019) and their RNN architecture and 

 Shafiq et al., 2020b ) with their RF model. As can be observed, the

raining time of the GPU-based models is significantly shorter out- 

erforming all other architectures by a large margin. 

The tested model’s performance is on par with other works 

esults with significant time improvement. Faster training allows 

or more frequent retraining of the model and updates of the sys- 

em. This is especially important in production where quick model 

eployment allows to save resources and well optimised training 

ipelines are essential. The accelerated versions of machine learn- 

ng algorithms also provide faster prediction which can be crucial 

n the fast identification of a threat. 

. Conclusions and future work 

This paper presents our research into the application of GPU- 

ased accelerated machine learning models. Four types of machine 

earning algorithms were compared in terms of accuracy, precision, 

ecall, F1-score as well as computation time required to train the 

odel and perform prediction. The experimental results show that 

he proposed data pre-processing and feature selection methods 

mprove the training and prediction durations while maintaining 

he high performance of the estimators. The obtained results show 

ccuracy and recall of the best trained model are 0.999 and 0.997, 

espectively. While ( Shafiq et al., 2020b ) obtained higher metrics 

core our models come close and have better performance or equal 
9 
o other comparable works. The training time of the algorithms has 

een reduced at least 60 times (if comparing the RF implementa- 

ion to Alsamiri and Alsubhi, 2019 ) or more. The drastic decrease 

n training and prediction time makes the model more feasible 

or deployment in the industry allowing frequent retraining ses- 

ions and quick prediction service. Application of permutation im- 

ortance together with oversampling proved vital for the final im- 

rovement of both time and accuracy of the models. The final re- 

ults show the significance of the data processing methods applied. 

ppropriate selection of dataset, its discovery and implementation 

f feature engineering shows that our approach is promising and in 

uture can be tested on other IoT botnet benchmarks. We offered 

mprovements of both training and prediction times in compari- 

on to other works in the field, while retaining high accuracy and 

obustness of the models. 

It is important to emphasise the role of hardware for this 

roject. The introduction of GPU for machine learning gives new 

ossibilities allowing to solve issues that CPU cannot handle in a 

easonable time. Knowing the performance of algorithms utilizing 

PU the future work may involve training on larger set of data. 

arger input may allow model to learn more information about 

he problem and as a result perform better. The future work can 

lso involve the generation of a dataset with a larger number of 

inority class samples (DDoS HTTP, DDoS, TCP, DDoS UDP, DoS 

TTP, DoS UDP, DoS TCP) to avoid the introduction of synthetic 

ata which while helpful can never represent a real-life data. Other 

ublicly available datasets could also be considered, however var- 

ous datasets consist different attacks which means abundance of 

ome classes that were used in this research. In many cases PCAP 

les are often available, thus future research may involve extrac- 

ion of features that Koroniotis et al. (2019) used in the IoT-Botnet 

et. 
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