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ABSTRACT: 

A greater number of toxicity data are becoming publicly available allowing for in silico 

modelling. However, questions often arise as how to incorporate data quality and how to deal 

with contradicting data if more than a single datum point is available for the same compound. In 

this study, two well-known and studied QSAR/QSPR models for skin permeability and aquatic 

toxicology have been investigated in the context of statistical data quality. In particular, the 

potential benefits of the incorporation of the statistical Confidence Scoring (CS) approach within 

modelling and validation. As a result, robust QSAR/QSPR models for the skin permeability 

coefficient and the toxicity of non-polar narcotics to Aliivibrio fischeri assay were created. CS-

weighted linear regression for training and CS-weighted root mean square error (RMSE) for 

validation were statistically superior compared to standard linear regression and standard RMSE. 

Strategies are proposed as to how to interpret data with high and low CS, as well as how to deal 

with large datasets containing multiple entries. 

KEYWORDS: Data Quality, Confidence Scoring, Weighted Modelling, QSAR/QSPR 
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 3

1. INTRODUCTION 

The assessment of biological, and more specifically toxicological, data quality is crucial for 

many disciplines. Although the quality of data has no absolute definition, it is strongly associated 

with attributes such as validity, adequacy (i.e. fitness for purpose), reproducibility and 

reliability.1 Confidence in the toxicological data, which may be derived in part at least from an 

assessment of data quality, is of great importance for regulatory bodies which have to make 

decisions on acceptable limits of chemicals relating to human and environmental exposure. Low, 

or poor, data quality may also affect the quality of computational models, such as Quantitative 

Structure-Activity Relationships (QSARs), grouping and read-across, which are relevant both for 

risk assessment and regulatory decisions.2-4  

In principle there are two general approaches to assess the quality of biological and 

toxicological data. The first is based on the assessment of the reported testing information alone. 

That means data quality is assessed by considering external factors, e.g. data and experimental 

reliability, completeness of documentation and adoption of protocols such as Good Laboratory 

Practice (GLP). Schemes such as that developed by Klimisch1 and its formalisation into the 

ToxRTool (Toxicological data Reliability Assessment Tool) are well known, established and 

relatively accepted within the scientific community.1,3 A second approach, where there are 

multiple and comparable data for the same compound in the same test, is to apply a statistical 

method. In this case, confidence scores (CS) can be calculated to emphasise data with a high 

weight of evidence, i.e. concordance between two or more independently conducted tests. The 

CS is the ratio of number of test values (n) and relative standard deviation (RSD) of test results, 

as defined in Equation 1. Thus, if the same compound was tested independently with the same 
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assay and the results were comparable, there will be a high CS for this compound and the 

associated experimental values.5      

CS	 = 	 �
���      (Eq. 1) 

Examples of calculations of CS are provided in Table 1 representing illustrative scenarios of 

increasing CS. Compound A is the default (and most common occurrence for a compound with a 

single experimental value), the CS is 1. Compound B has two relatively divergent data values, 

differing by an order of magnitude. Clearly there will be greater confidence for the toxicity value 

than for compound B, but the significant difference in the values introduces some uncertainty, 

raising CS marginally to 1.73 – in this way there is slightly greater confidence associated with 

two relatively different values than a single value. More data points are considered for 

compounds C and D, with increasing precision of the data values. Whilst compound C (n = 4) 

has more data than compound D (n = 3), the values are more divergent for C (represented by a 

higher RSD), thus the highest CS is calculated for compound D for which there are three data 

points, all relatively consistent in the light of the experimental error that might be associated with 

an experimental test. As such, compound D has the highest CS value.  
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Table 1: Four examples of compounds with multiple data in the same toxicity test (EC50), along 

with statistical criteria and CS (cf. supplementary content for data) 

Compound EC50 (mol/L) x̅ ± SDa RSDb nc CSd 

A 10 10 ± n/a n/a 1 1e 

B 
1 

5.50 ± 6.36 1.16 2 1.73 
10 

C 

1 

57.75 ± 43.05 0.75 4 5.37 
80 

50 

100 

D 

1 

1.47 ± 0.50 0.34 3 8.74 2 

1.4 
amean and standard deviation  

brelative standard deviation  

cnumber of data 

dconfidence Score  

eCS of a compound with n = 1 is defined as 1 is the minimum value 

 

As there is growing interest in techniques such as read-across to fill data gaps for regulatory 

purposes, and there is increasing accessibility to toxicity data through resources such as the 

OECD QSAR Toolbox to perform read-across, there are more possibilities to apply approaches 

such as the confidence scoring to improve the robustness of modelling. In this study the 

relevance of the statistical CS approach has been assessed with regard to established QSARs for 

two endpoints, namely skin permeability coefficients and cytotoxicity for which large 

compilations of historical data are available. 
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Skin Permeability 

There have been many efforts to develop Quantitative Structure-Permeability Relationship 

(QSPR) models to predict various measures of dermal absorption.6-11 The most recognised and 

applied QSPR to predict the skin permeability coefficient (kp) is that developed by Potts and Guy 

in 1992 (Eq. 2).9 They identified the molecular weight (MW), to account for the size of a 

permeant, and the logarithm of the octanol-water partition coefficient (log KOW), as a descriptor 

for lipophilicity, as parameters to model kp following an analysis based on the Flynn data 

compilation.12 The mechanistic explanation is that small, lipophilic compounds pass through the 

stratum corneum, the most outer layer of the skin, more easily than larger, more hydrophilic 

compounds.9,13  

log kp (cm/h) = -2.7 + 0.71 log KOW - 0.0061 MW  (Eq. 2) 

 

Despite the significance of this model, the quality of data compiled by Flynn from the 

literature, and hence the robustness of the Potts and Guy QSPR, has been the subject of 

considerable debate.14,15 More human in vitro kp data have inevitably become available in the 

two and half decades since Flynn’s seminal publication14,16-18, thus the QSPR can be reassessed 

and rebuilt with a greater consideration and understanding of data quality.  

 
Aquatic Toxicology 

There are thousands of publically available acute and chronic eco-toxicological data, and a 

significant proportion are compiled within the US Environmental Protection Agency’s (US 

EPA’s) ECOTOX database.19 Of the ecotoxicological data, those for aquatic species are the most 

prevalent. Of these, the Microtox assay represents a commonly used and standardised acute 

aquatic toxicity test, based on the marine bacterium Aliivibrio fischeri, with a multitude of 
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 7

published data. When the photo-luminescent bacteria are exposed to toxicants, the concentration 

is proportional to the inhibition of light intensity. The negative logarithm of the effective 

concentration causing 50% light reduction (EC50) is expressed as the pT.20 Extending the original 

compilation of Kaiser and Palabrica20, Steinmetz et al.
5 collected a large meta-dataset with 1813 

different values for Microtox toxicity. In order to create meaningful QSAR models in aquatic 

toxicology, there is an application of the well-established relationship between acute toxicity and 

hydrophobicity for compounds acting by the non-polar narcosis mechanism of action.21-24 

Narcosis mechanisms of action, and non-polar narcosis in particular, are considered to be as a 

result of membrane perturbation and that specific mechanisms towards endogenous proteins, 

receptor mediated effects, are not relevant.25,26 This implies that the toxicity of compounds that 

are identified as being non-polar narcotic can be well modelled by descriptors for 

hydrophobicity, e.g. log KOW. Steinmetz et al.
5 identified a significant proportion of the Microtox 

toxicity compilation as being capable of acting by the non-polar narcosis mechanism. In addition 

Steinmetz et al.
5 confirmed the findings of Cronin and Schultz27 that for these compounds the 

standard exposure times (5, 15 and 30 minutes) had no significant effect on pT, thus enabling 

global log KOW-derived models (including these three exposure times) to be developed for non-

polar narcotics. Consideration of data quality relating to the confidence associated with multiple 

data for the same chemical, showed that that toxicity data with certain CS thresholds led to more 

robust QSAR models.5   

 

These two examples of historical data compilations are illustrative of the possibilities of 

applying confidence scoring metrics to historical compilations of toxicity information. There are 

many open-access resources such as such as ChEMBL28, PDSP29, ACToR30, eChemPortal31, 
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TOXNET32, so the life sciences, and in particular toxicology, has to deal increasingly with large 

and complex datasets.33 However, the task of assessing the toxicity data for quality, particularly 

when contradicting data are present, has not yet been accomplished. Any indication of the quality 

of data would be very helpful for purposes such as risk assessment, but more crucially for 

modelling including QSARs and read-across prediction.3,5  

 

Therefore, the aim of this study was to investigate how using approaches for statistical data 

quality, i.e. CS, improve the development of QSAR/QSPR models. Specifically, the effect of 

directly incorporating the CS into the training and testing of the models was considered. To 

achieve this, the two endpoints described above were chosen for analysis, namely human in vitro 

skin permeability coefficients and the acute toxicity of compounds acting by a non-polar narcotic 

mechanism of action to A. fischeri. The reasons for choosing these endpoints included the fact 

that there were many historical data of variable and unknown quality, many compounds had been 

tested multiple times (a pre-requisite of applying the CS) and that there were simple, robust and 

mechanistically interpretable QSAR models for them. Thus, for both data sets, QSARs were 

constructed with and without reference to the CS.  
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 9

2. METHODS 

2.1 Data harvest 

In vitro skin permeability coefficients (kp) were collected from the literature by compiling and 

subsequently merging four of the most comprehensive datasets of human skin kp values.14,16-18 

All kp values were converted to a standard unit (cm/h). Duplicate log kp values (and those within 

± 0.01 cm/h) were removed as they are most likely to be derived from the same source. SMILES 

and InChIKey strings were obtained for each compound from the ChemSpider34 database. The 

Flynn dataset contained kp values for 94 compounds, however, 11 compounds (all substituted 

steroids) could not be identified with ChemSpider34 or ChemIDplus35 and hence no SMILES 

were available to calculate descriptors. Since the structure of these compounds could not be 

completely verified they were excluded from subsequent analysis. 

 

The Microtox data compilation from Steinmetz et al.
5 was used as resource for the aquatic 

toxicology dataset. This comprised 1227 compounds for which there were 1813 data points for 5, 

15 and 30 minute exposure. Where there were data for different time endpoints, the longest was 

taken. For modelling all exposure times were combined, since it has been demonstrated that this 

has no significant effect on the toxicity of non-polar narcotics.5,27 The EC50 values were 

considered in mmol/L and converted to pT. The SMILES and InChIKeys were obtained from 

ChemSpider34. The structures of all compounds were run through IDEAconsult’s Toxtree 

v2.6.636 (mod. Verhaar) and non-polar narcotics were identified as being Class 1 according to the 

Verhaar scheme.21 
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 10

2.2 Descriptor Generation  

Log KOW and molecular weight (MW) were calculated for compounds in both data sets. The 

SMILES strings were used as the input format for all calculations. Log KOW was calculated with 

KOWWIN v1.68 within EPI Suite 4.11 (estimated values exclusively).37 MW was calculated 

with the CDK node “molecular properties” within KNIME 2.9.38  

 

2.3 Calculation of Confidence Scores (CS) 

Confidence scores were calculated for the compounds in both data sets with regard to their kp 

and EC50 values respectively. For compounds with more than a single experimental value, the 

arithmetic mean (x̅), number (n), standard deviation (SD) and relative standard deviation (RSD) 

were calculated with reference to data in the units stated in Section 2.1 and before logarithmic 

transformation. A confidence score (CS) was assigned to the arithmetic mean of the experimental 

values for each compound. Compounds with a single entry (n = 1) were assigned a confidence 

score of one (CS = 1). For n > 1 the CS was calculated as in Eq. 1. 

 

2.4 Development of QSARs  

Uni- and multivariate linear regression was performed on the datasets using R Studio 

0.98.501.19.39 Linear equations were generated and the following statistical, and other, criteria 

recorded: n (number of data points), S (standard error), R2
adj (coefficient of determination, 

adjusted for the number of degrees of freedom), t statistics for the descriptors and F statistics for 

the equation. The regression analysis was performed to develop the QSARs for both datasets 

with and without weighting. Non-weighted regression analysis and weighted regression analysis 

was performed by applying CS values as weights in R using lm {stats}. Weighting in linear 
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regression means that each datum point is associated with a weight. A high weight strengthens, 

and a low value weakens, the impact of the data point towards the linear regression. In this 

manner, data for compounds associated with a high confidence score would be more heavily 

weighted in the regression analysis than compounds with a lower confidence score. Comparison 

of the statistics of the weighted and unweighted regression analysis provides an indication of 

whether CS is able to improve the robustness of models.    

 

2.5 Evaluation of the Predictivity of the QSARs/QSPRs 

Statistical evaluation of the predictive capability of the CS-weighted QSAR and the CS-

weighted QSPR was performed using 10-fold cross-validation, i.e. the compounds were ordered 

by kp and pT respectively and every 10th compound was removed in turn leading to 10 training 

and validation sets. After applying the CS-weighted linear regression, the 10 datasets were 

investigated by the root mean square error (RMSE); predicted (fi) versus experimental (yi) 

values. Additionally the root mean square error adjusted for CS (RMSECS) was calculated (Eq. 

3). It is expected that during the validation process, the RMSECS, which incorporates CS-

weighting, will be lower than the standard RMSE. As the residuals (fi - yi) of the compounds 

with low CS values are weakened and the residuals of high CS compounds are strengthened, the 

sum of (squared) errors of the RMSECS should be reduced in comparison to the conventional 

RMSE. The R script for RMSECS cross-validation and the equations are available in the 

supplementary content. 

RMSE�� =	∑ ������������
∑ ����

     (Eq. 3) 
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3. RESULTS 

Names of compounds, their InChIKeys, their SMILES strings and all kp and pT values 

including references are available for the two datasets in the supplementary content. In addition 

the R script for RMSECS cross-validation and a glossary of relevant statistical equations are also 

available in the supplementary content. 

 

3.1 Data harvest  

The compilation of human in vitro kp data resulted in 342 values for 226 different compounds. 

55 of these compounds have more than a single kp value. The log kp values covered a broad 

range from -6.10 to 0.16. The structures included in the data set were diverse in terms of 

physico-chemical properties and structure, e.g. solvents, alkaloids, steroids, sugars, nonsteroidal 

anti-inflammatory drugs etc. The solvents, sugars and steroids in particular had many multiple 

data points. Water, with 13 different data points, had the most kp values. The range of CS values 

is from 1 (for single entries) to 76.8 for chlorphenamine (based on two data points). Illustrating 

the capability of the CS approach, two compounds have moderately high CS values: the 

synthetic opioid sufentanyl with a CS value of 9.97 (based on two data points) and the cytostatic 

drug 5-fluorouracil with a CS value of 5.00 (based on four data points). 

From the complete dataset of acute toxicity values to A. fischeri, comprising 1227 compounds, 

203 were identified as potentially acting as non-polar narcotics according to the Verhaar scheme 

as implemented in Toxtree v2.6.636.  A total of 418 different pT values were available for these 

compounds, with 71 of the 203 compounds having more than a single experimental value. pT 

values covered a broad range from -4.00 to 4.12. The structures included in the data set were 

conservative in their structural diversity as they had been selected to represent the non-polar 
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narcosis domain, including mainly solvents and medium- and long-chained alkanes, partly 

branched and halogenated, with only a few functional groups, such as hydroxyl- and amino-

groups. The compounds investigated have a moderate spread of MW and log KOW and can 

generally be regarded as lipophilic (cf. Table 2). The CS spread shows the diversity between 

high confidence compounds, such as methyl isobutyl ketone (CS of 205 with 3 data points) and 

acetone (CS of 43.7 with 14 entries) and the single entry low confidence compounds (defined as 

CS = 1). 

 

Table 2: Ranges of properties and CS for the two datasets considered in the analysis 

 
Human in vitro skin 
permeability coefficients 

pT of non-polar narcotics 
to A. fischeri 

MW (Da) 18.01 to 764.4 32.04 to 342.4 

Log KOW -6.76 to 8.39 -1.34 to 6.43 

CS 1 to 76.8 1 to 205 

 

 

3.2 Development of QSARs/QSPRs 

QSAR/QSPR models were developed using linear regression with the experimental log kp and 

pT as the dependent variables and log KOW and MW (for kp only) as descriptors. Linear 

regression analysis was performed on both datasets, the resultant QSPRs for skin permeability 

coefficients based on the Potts and Guy approach (Eq. 4 (unweighted), Eq. 5 (weighted), Fig. 1) 

and the log KOW-based QSARs for the acute toxicity of non-polar narcotics to A. fischeri (Eq. 6 

(unweighted), Eq. 7 (weighted), Fig. 2) are reported below. 
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3.2.1 QSPR: Modelling of skin permeability coefficients 

The unweighted QSPR for the dataset of skin permeability coefficients, using the Potts and 

Guy approach, was: 

log kp = -2.45 + 0.40 log KOW - 0.0045 MW     (Eq. 4) 

n = 226, S = 0.82, R2
adj = 0.48, tlogKow = 13.3, tMW = -8.97, F = 105 

 

The reanalysis using CS-weighted kp provided the following, similar, equation with improved 

statistical fit: 

log kp = -2.51 + 0.50 log KOW - 0.0051 MW     (Eq. 5) 

n = 226, S = 1.39, R2
adj = 0.61, tlogKow = 18.7, tMW = -9.25, F = 177 

 

Experimental kp values are plotted against predicted values from Eq. 5 in Figure 1, 

demonstrating good overall predictivity. In particular, there is a good fit about the line of unity, 

with a significant trend for compounds with the highest CS (represented by larger circles) to be 

well predicted, and the significant outliers tending to be compounds with low CS, i.e. single data 

points.  
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Figure 1: Experimental log kp versus predicted log kp from Eq. 5. The area of circles correspond 

to the CS value; the larger the CS, the greater the area of the circle. The solid line indicates a 

slope of unity and an intercept of zero. 

The QSPR model represented by Eq. 5 was tested using 10-fold cross-validation. The 

statistical summary is presented in Table 3. Notably the RMSECS is lower than the RMSE. 

 

Table 3: Statistical summary of 10-fold cross-validation based on Eq. 5 (Skin Permeability) 

Training  Test 

Intercept Log KOW MW R2
adj  RMSE RMSECS 

-2.51 ± 0.09 0.497 ± 0.026 -0.0051 ± 0.0004 0.61 ± 0.02  0.83 ± 0.21 0.79 ± 0.21 
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3.2.2 QSAR: A. fischeri non-polar narcosis 

The unweighted QSAR for the non-polar narcotics in the Microtox dataset, using a log KOW-

based linear regression was: 

pT = -1.14 + 0.68 log KOW     (Eq. 6) 

n = 203, S = 0.95, R2
adj = 0.50, tlogKow = 14.3, F = 204 

 

The reanalysis using CS-weighted pT provided the following equation with improved 

statistical fit: 

pT = -1.67 + 0.92 log KOW     (Eq. 7) 

n = 203, S = 1.77, R2
adj = 0.68, tlogKow = 20.9, F = 478 

 

Figure 2 demonstrates the relative predictivity of Equation 7. There is a good fit about the line 

of unity, with a significant trend for compounds with the highest CS (represented by larger 

circles) to be well predicted, and the significant outliers tending to be compounds with low CS, 

i.e. single values.  
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Figure 2: Measured pT versus pT predicted from Eq. 7. The area of circles corresponds to CS 

value; the larger the CS, the greater the area of the circle. The solid line indicates a slope of unity 

and an intercept of zero. 

The QSAR model Eq. 7 was assessed with 10-fold cross-validation. The summary of the 

statistics for Eq. 7 is presented in Table 4. The RMSECS is lower than the RMSE. 

 

Table 4: Statistical summary of 10-fold cross-validation based on Eq. 7 (Aquatic Toxicology) 

Training    Test  

Intercept Log KOW Radj
2  RMSE RMSECS 

-1.67 ± 0.14 0.92 ± 0.04 0.68 ± 0.03  0.99 ± 0.12 0.87 ± 0.13 
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4. DISCUSSION 

There are many future challenges in human and environmental health sciences which require 

the use of adequate and reliable data, these include toxicological risk assessment for occupational 

health and consumer goods. As the quality of toxicological data is variable and often not stated, 

practical and feasible methods to overcome this issue are crucial to many scientific and 

regulatory fields. Beside approaches such as Klimisch scoring1, we suggest a purely statistics-

based method to support modelling approaches. It is difficult to determine the extent to which 

such a statistically-driven approach could be used for regulatory purposes, but neglecting the 

information multiple data hold for the same substance is not recommended if such data are 

available.  

 

The aim of this work was not to build new QSAR/QSPR models, but to make two existing 

models more robust using independent, heterogeneous datasets. The two QSARs and associated 

datasets chosen are well established. In this study the datasets have been extended by further data 

harvesting and collection. As part of the data collection activity, multiple data were compiled for 

the same chemical, thus allowing for the application of the CS approach to determine the 

reliability of the data. This approach has not been applied formally in the development of QSARs 

and there are no clear guidelines on how to develop QSARs when multiple data are available for 

the same chemicals (i.e. use of the mean, most conservative value etc.). In addition, there appear 

to be few, if any, attempts to include information such as data quality as a metric or criterion for 

QSAR development, this being despite it being logical and acknowledged that data quality will 

affect the robustness of a QSAR.40 It should also be noted that current means of documenting 

QSARs provide little opportunity for assessing the quality of data. Therefore approaches that 
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allow us to identify data quality quantitatively and without subjective bias are of value to 

develop in silico models.   

 

Skin permeability is often assessed by in vitro experimental, but also some in vivo work is 

undertaken. In silico models are increasingly desirable in areas such as risk assessment where 

there is a dermal exposure (e.g. for cosmetics) and for assessing adverse effects to the skin, e.g. 

skin sensitisation. Since the publication of the Flynn data12, there have been a number of QSAR 

analyses of skin permeability coefficients including refinements and extensions to the database.13 

The Potts and Guy approach9, based on fundamental and mechanistically comprehensible 

descriptors is one of the more commonly utilised QSAR modelling methodologies. This study 

has derived a Potts and Guy equation for a larger dataset not only increasing the coverage of the 

model (i.e. greater chemical space) but also incorporating multiple data points for the same 

chemical and allowing for an assessment of quality through CS. It is noted that published skin 

permeability coefficients are highly variable, due in no small part to high experimental error 

arising from the variable nature of the (human) skin utilised and test protocols, e.g. use of 

solvents, enhancers, finite doses etc. vehicles, solvents etc.
14,15  As such, it is to be expected that 

models will not have a very significant statistical fit (i.e. a high R2) and this is borne out by many 

of the published models9,14, indeed models with significant fit should be treated with some 

caution as they may be overfitted.  

Whilst high statistical fit was not achieved for the skin permeability QSARs, the results show a 

significant relationship with log kp and log KOW and MW with both variables demonstrating high 

t-values. The new QSARs have moderately improved statistical fit as compared to that of Potts 

and Guy. It should be noted that some values within the Flynn dataset were proven to be 

Page 19 of 33

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 20

incorrect and would have increased the error in the Potts and Guy QSAR.15 The novel QSPR 

model (cf. Eq. 5 and Fig. 1) derived from the skin permeability data has some advantages over 

the original Potts and Guy9 model. First of all robustness, due to model development 

incorporating statistical data quality (cf. Tab. 3); secondly a greater applicability domain due to 

implementing a dataset with greater chemical diversity (in terms of properties and structure) than 

Flynn12; and thirdly due to the usage of calculated log KOW (whereas the original model used 

measured values which are more difficult to obtain consistently). Nevertheless the differences 

between Potts and Guy’s Eq. 2 and Eq. 5 are only marginal. It is recognised that there are many 

limitations to this use of this model. For example it does not predict the effects of mixtures and 

formulations on the penetration of single compounds, which could be of great importance for 

risk assessment of products and dermal drug delivery.41 However, the QSAR approach allows for 

a “relative” estimation of skin permeability which may be useful to rank compounds, or identify 

compounds with a high probability of dermal absorption and hence prioritise such compounds in 

the risk assessment process (e.g. for skin sensitisation).  

 

The assessment of effects of chemicals to the bacterium A. fischeri (or the Microtox test) is one 

of the more rapid, cheaper and fundamental measurements of cytotoxicity. Data from the 

Microtox test show good correlation with higher species, especially for compounds acting by 

non-specific mechanisms of action such as non-polar narcosis.42 Thus, if a compound can be 

identified as being a non-polar narcotic, Microtox data may, if used appropriately and with 

caution, add further to the weight of evidence associated with a prediction. It is very well 

established that there is a strong relationship between hydrophobicity, as described by log KOW, 

and non-polar narcosis for many species.43,44 This study has expanded the number of chemicals 
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with data within non-polar narcosis domain for A. fischeri, hence expanding the chemical space 

and extended a previous study.5 It is of no surprise that the non-polar narcosis data for A. fischeri 

(Microtox) are significantly correlated with log KOW, even if some historical data are obviously 

of quite poor quality.5 The QSAR (Eq. 7) is similar to earlier published aquatic toxicology 

QSAR models, i.e. toxicity is increasing linearly with lipophilicity.5,22-24,43 

 

Consideration of the QSARs developed in this study shows an improvement in the models 

when utilising CS-weighted regression. The improvement is both the statistical fit but also the 

slope for log KOW which approaches one when employing CS-weighting, i.e. from 0.68 to 0.90 

(cf. Eq. 6 to 7). A slope of one is the theoretical optimum which is commonly associated with 

models for simple unicellular organisms, i.e. the absorption of the compound alone directly into 

the cellular membrane is responsible for narcosis, whereas in higher organisms other factors such 

as distribution and clearance become important. The improvements following the application of 

CS are consistent with the notion that some historical data are of poor quality45 and demonstrates 

the utility of an approach such as this when generalistic QSARs are being developed for data sets 

from various sources and of unknown quality. The importance of the compounds with high CS 

values can be seen in Fig. 2, when considering that all large CS-circles are close to the line of 

best prediction. The quantity of data and the incorporation of statistical data quality make a 

robust equation with an extensive applicability domain – for non-polar narcotics. Clearly this 

approach could be extended to other data compilations for aquatic acute toxicity.46   

 

The identification of compounds acting by the non-polar narcotic mechanism of action is 

essential to the development of the models. Various approaches have been applied to identify 
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mechanisms of action including analysis of molecular descriptor space47, multivariate analysis of 

mode and mechanism of action space48, definition of molecular fragments26 as well as the 

Verhaar classification scheme that was applied in this study due to its ease of use following 

coding in the ToxTree software. Due to this definition of the non-polar narcosis domain in the 

ToxTree software, there appear to be a number of anomalies. For example, aflatoxins are 

identified by the ToxTree software as being Verhaar Class 1 compounds (non-polar narcotic) 

but, in reality, they are potent, specifically acting, toxins5 and therefore do not act as non-polar 

narcotics, e.g. aflatoxin B2 has pTexperimental = 1.17 (CS = 15.4) whereas Equation 7 calculates 

pTpredicted = 0.54. This emphasises that continual development is required of decision criteria 

presented in approaches such as the Verhaar scheme as new knowledge and understanding 

becomes apparent.  

 

Overall for both data sets, applying CS as a weighting tool improves the training and 

validation of the QSAR/QSPR models. The improvements are demonstrated as increases in R2 

(Eq. 4 to 5 and Eq. 6 to 7) as a direct result of CS-weighting. Whereas increasing t and F values 

show improvements in the models as a result of weighting by CS, the S value does not 

incorporate weights and so only indicates absolute, unweighted error thus it actually increases 

when the non-weighted regression is compared to the weighted regression. Generally the higher 

the CS for the data associated with a compound, the greater the evidence is, in terms of similar 

results for that compound (cf. Fig. 1 and 2). In the validation process, the RMSECS, which 

incorporates CS-weighting, is lower than the standard RMSE. As residues (fi - yi) of low CS 

compounds are weakened and residues of high CS compounds are strengthened, the sum of 

(squared) errors of the RMSECS becomes lower than in the conventional RMSE. Therefore this 
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approach could be used even for the validation of models where any metric could be applied to 

imply confidence, i.e. without calculating CS. For example a reversed Klimisch score (4 as the 

most reliable; 1 the least) could be used as a weight similar to the fuzzy logic approach of Yang 

et al.
49 In the context of validation these weights then determine to what extent residues should 

have impact on the RMSE.  

 

The CS-weighting approach, whether in model development or validation, is limited by the 

presence of multiple entries for one compound. Thus, if multiple values are available for the data 

set, more robust models may potentially be built.5 This robustness and the associated confidence 

are helpful in reducing uncertainty and hence increasing acceptance for regulatory decisions. For 

example in the context of REACH, there is a demand for robust QSAR models to support the 

toxicological assessment of chemicals. The approach described herein could thus be used to 

support read-across- and QSAR-based predictions.50,51 
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5. CONCLUSIONS 

The assessment of data quality is not trivial. This study has shown that CS provides a means of 

assessing confidence in data when there are more than a single datum point. The CS scores can 

be applied to develop QSAR models through the use weighted regression, as demonstrated in 

this study for historical data compilations with known variability in the quality of the data. 

Additionally cross-validation with RMSECS provides a measure of the robustness of an equation 

utilising metrics (here CS) for weighting.  

 

Note: The authors declare no competing financial interest. 

 

6. ACKNOWLEDGMENT 

The research leading to these results has received funding from the European Union Seventh 

Framework Programme (FP7/2007−2013) COSMOS Project under grant agreement n° 266835 

and Cosmetics Europe.  

 

7. ABBREVIATION 

CS:  Confidence score 

EC50: Concentration (in mmol/L) causing 50% of the stated effect 

f:   Predicted value  

F:  F-value (cf. linear regression) 

KOW:  Octanol-water partition coefficient 

kp:  Skin permeability coefficient 

n:  Number of data points / test values 
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InChIKey: International chemical identifier key 

MW:  Molecular weight (in Da) 

pT:  Negative decadic logarithm of EC50 for toxicity 

QSAR: Quantitative structure-activity relationship 

QSPR: Quantitative structure-permeability relationship 

R2
adj:  Coefficient of determination adjusted for degrees of freedom 

RMSE: Root mean square error 

RMSECS: CS-adjusted RMSE 

RSD: Relative standard deviation (also known as coefficient of variation) 

S:  Standard error (cf. linear regression) 

SD:  Standard deviation 

SMILES: Simplified molecular-input line-entry system 

t:  t-value (cf. linear regression) 

x̅:  Arithmetic mean 

y:  Experimental value 

 

 

8. SUPPLEMENTARY CONTENT 

� Microtox and Skin Permeability Data, including statistics glossary 

� R-Script for RMSECS cross-validation 

This material is available free of charge via the Internet at http://pubs.acs.org.  
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