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Summary

Discrete Tchebichef polynomials (DTPs) and their moments are effectively utilized
in different fields such as video and image coding due to their remarkable perfor-
mance. However, when the moments order becomes large (high), DTPs prone to
exhibit numerical instabilities. In this paper, a computationally efficient and numeri-
cally stable recurrence algorithm is proposed for high order. The proposed algorithm
is based on combining two recurrence algorithms. In addition, an adaptive threshold
is used to stabilize the generation of the DTP coefficients. The designed algorithm
can generate the DTP coefficients for high order and large signal size. To evaluate
the performance of the proposed algorithm, a comparison study is performed with
state-of-the-art algorithms in terms of computational cost and capability of generat-
ingDTPswith large size and high order. The results show that the proposed algorithm
has a remarkable low computation cost and numerically stable compared to other
algorithms. The improvement shows that the computation of the polynomial for a
limited order is 27x times faster than the efficient algorithm.

KEYWORDS:
Discrete Tchebichef Polynomials, Tchebichef Moments, Propagation Error, Compression, Computation
Cost

1 INTRODUCTION

Moments and their variants have been extensively utilized in signal processing and computer vision applications. Different types
of moments have been introduced, namely geometric moments, rotational moments, continuous moments, and discrete orthogo-
nal moments (DOMs)1. DOMs are scalar quantities, and they are determined by projecting a signal on the orthogonal polynomial
basis without the need for coordinate transformation and continuous integration2. They are utilized to represent signals due to
their representation ability of signals without information redundancy, energy compaction, and spectral resolution1.
DOMs are based on orthogonal polynomial basis; therefore, different sets of discrete orthogonal polynomials (DOPs) are pre-

sented and developed such as discrete Hahn polynomials1,3, discrete Krawtchouk polynomials4, discrete Charlier polynomials5,
and discrete Tchebichef polynomials (DTPs)6.
Literature have shown that DOMs, which are employing DOPs, are utilized in many applications such as: Face recogni-

tion7, image compression8, image dithering9, shot boundary detection10, speech enhancement11,12, cough detection13, and
steganography14.
In addition, video coding (compression) is significantly involved in the application of video transmission. Generally, coding

is divided into two types, lossy and lossless15. In lossy coding, the information integrity is degraded while high compression is



obtained. On the other hand, in lossless coding, the integrity of information is preserved during the coding processes (encoding
and decoding)15. Among other transforms, Discrete Tchebichef Transform (DTT) shows remarkable compression ratio because
Discrete Tchebichef Moments (DTMs) show a remarkable energy compaction and data decorrelation than other DOPs2,16,17.
DTPs are generally a two-dimensional array with three parameters which are: 1) the size of the arrayN ×N , 2) the parameter
which represents the polynomial order (n), and 3) the parameter which represents the signal index (x). Discrete Tchebichef
polynomial coefficients (DTPCs), are defined in terms of hypergeometric series and gamma functions; however, generating
the DTPCs will be computationally expensive and numerically unstable. Therefore, DTPCs are recursively computed using
three-term recurrence relations. Different recurrence relations have been presented in the literature to solve the issue of DTPCs
computation cost.
The first recurrence algorithm was presented by Mukundan et al.6. The DTPCs are computed based on the n-direction recur-

rence algorithm. In this algorithm, the polynomial coefficients at the nth order for each coefficient of the xth index are computed
by employing the coefficients at the orders n − 1 and n − 2. This algorithm can generate DTPCs for signal with small sizes.
This problem occurs when computing the high order DTPCs, the numerical propagation error increases as the algorithm

estimates the coefficients values18.To address this issue, an x-direction recurrence algorithm was proposed to compute the
DTPCs for high polynomial orders. In this algorithm, the DTPCs at the xth index for each coefficient of the nth order are
computed by considering the coefficients values at the indices x−1 and x−2. Although this algorithm increases the polynomial
order, it is unable to estimate the DTPCs for high polynomial orders. This is because the values of the x − 1 and x − 2 become
zeros at high orders; thus, the estimated values of the DTPCs at the xth index become zero.
A new algorithm is presented by Abdulhussain et al.19 to tackle the problem of the two previous algorithms. The algorithm

is designed by integrating both the n- and x-direction recurrence algorithms. This algorithm can estimate the DTPCs for high
polynomial orders; however, the orthogonality of the DTP is inaccurate due to numerical approximation.
Recently, an algorithm is proposed by Camacho-Bello and Rivera-Lopez20 to correct the orthogonality of the DTP using

Gram-Schmidt process on the n-direction recurrence algorithm. Although this algorithm stabilizes the orthogonality condition,
the computation cost is very high as well as the DTPCs values satisfy the orthogonality condition but they are not accurate,
i.e. the values are inaccurately estimated. In addition, the algorithm in20 is considered computationally complex because of
employing Gram-Schmidt process which requires several nested loops.
From previous discussion, the state-of-the-art algorithms presented in19,20 tried to generate DTPs for large signal size with

high polynomial order. However, these algorithms were unable to reduce numerical instability and distortion when the signal
size increases or shows a very high computational cost. In other words, these algorithms were unable to generate DTPs with
high polynomial order and numerically stable.
Our contribution is two fold. First, we design an algorithm to generate DTPs with large signal size for high polynomial order

as well as numerically stable and capable of satisfying the orthogonality condition. Second, the proposed algorithm is based on
combining two recurrence algorithms with an adaptive threshold is used to stabilize the generation of the DTPCs. The adaptive
threshold is used to investigate the occurrence of the first unstable DTPC value at the nth order.
This paper is organized as follow: Section 2 presents the Tchebichef functions and moments. In Section 3, recurrence relations

are discussed. In Section 4, the design of the proposed algorithm is presented. In Section 5, experimental analysis is performed.
Finally, the conclusion is presented in Section 6.

2 PRELIMINARIES

In this section, the DTPs’ definitions are given. Then, the computation of Tchebichef Moments (TMs) is presented.

2.1 The Orthogonal Discrete Tchebichef functions
The nth order of the DTPs (Tn(x,N)) in terms of hypergeometric series is given by6:

Tn(x) =
(1 −N)n

√

(2n)!
(N+n
2n+1

)

3F2(−n,−x, 1 + n; 1, 1 −N ; 1)

n, x = 0, 1, 2,… , N − 1; andN > 0 (1)



where (⋅)k is the Pochhammer symbol21,
(a
b

)

is the binomial coefficients, and 3F2(.) represents the hypergeometric functions
and it is described by a hypergeometric series:

3F2(−n,−x, 1 + n; 1, 1 −N ; 1) =
∞
∑

k=0

(−n)k(−x)k(1 + n)k
(1)k(1 −N)kk!

(2)

The set of DTPs functions meets the orthogonality conditions6:
N−1
∑

n=0
tn(x)tm(x) = �mn =

{

1, n = m
0, n ≠ m

(3)

where �nm is known as Kronecher delta.

2.2 Tchebichef Moments
The TMs set are scalar quantities which are efficient and superior data descriptor22. TMs are effectively employed in signal
processing and computer vision due to their ability to characterize signals without information redundancy23. Generally, The
signal information is observed by the lower-order moments. While the signal details is acquired by high-order moments11. Basis
functions of orthogonal polynomials (OPs) can be used as an approximate solution for differential equations24.
The TMs (n) of a one dimensional signal, f (x), with a length ofN samples and maximum moment order Ord are defined

as19:

n =
Ord
∑

x=0
Tn(x) f (x),

n = 0, 1,… ,M and 0 ⩽ Ord ⩽ N − 1

(4)

The signal f (x) can be reconstructed from the Tchebichef moment domain as follows:

f̂ (x) ≅
Ord−1
∑

n=0
n Tn(x),

x = 0, 1,… , N − 1 and 0 ⩽ Ord ⩽ N − 1

(5)

where f̂ (x) is the reconstructed version of f (x). To represent a two dimensional signal f (x, y) of sizeN×N in the Tchebichef
moment domain, the TMsnm is defined as:

nm =
Ord
∑

x=0

Ord
∑

y=0
Tn(x) Tm(y) f (x, y),

n, m = 0, 1,… , Ord

(6)

To reconstruct the 2D signal from the Tchebichef moment domain, the inverse formula is used as follows:

f̂ (x, y) ≅
Ord−1
∑

n=0

Ord−1
∑

m=0
nm Tn(x) Tm(y),

x, y = 0, 1,… , N − 1

(7)

where f̂ (x, y) is the reconstructed version of f (x, y).

3 RECURRENCE RELATIONS

The DTPCs are defined in terms of hypergeometric series (Equation (1)) and consequently the computation cost is considered
high and numerical instability will occur20. Therefore, the three-term recurrence algorithms (TTRA) are employed to reduce
the computational complexity and the instability in the generation of the DTPCs values2.
In the following subsections, the existing recurrence algorithms are outlined. These algorithms include: the recurrence

algorithm in the n-direction6, the recurrence algorithm in the x-direction18, the recurrence relation proposed by Camacho-Bello
and Rivera-Lopez20, and Abdulhussain et al.19 are investigated.



A

3.1 Recurrence Algorithm in the n-direction (RAND)
The first TTRA was proposed by Mukundan et al.6 in the n-direction, namely RAND, as follows:

Tn(x) = 1 Tn−1(x) + 2 Tn−2(x) (8)

n = 2, 3,… , N − 1; and x = 0, 1,… , N
2

− 1

where

1 =
2x + 1 −N

n

√

4n2 − 1
N2 − n2

(9)

2 =
1 − n
n

√

2n + 1
2n − 3

√

N2 − (n − 1)2

N2 − n2
(10)

The initial values for the RAND are as follows:

T0(x) =
1

√

N
(11)

T1(x) = (2x + 1 −N)
√

3
N(N2 − 1)

(12)

The DTPCs of the nth order for all values of the xth index are estimated using the DTPCs values of the previous orders: n−1
and n − 2, as shown in FIGURE 1. To compute the DTPCs in the range n = 0, 1,… , N − 1 and x = N

2
, N
2
+ 1,… , N − 1, the

symmetry property is utilized to reduce the computation overload as follows:

Tn(N − 1 − x) = (−1)n Tn(x) (13)

FIGURE 1 The TTRA in the direction of parameter n.

This algorithm can generate DTPs forN < 81.



3.2 Recurrence Algorithm in the x-direction (RAXD)
Mukundan et al. in18 enhanced the performance for computing th DTPCs values by presenting the x-direction recurrence
algorithm, namely RAXD, which is given by:

Tn(x) = �1 Tn(x − 1) + �2 Tn(x − 2) (14)

n = 0, 1,… , N − 1; and x = 2, 3,… , N
2

− 1

where

�1 =
−n(n + 1) − (2x − 1)(x −N − 1) − x

x(N − x)

�2 =
(x − 1)(x −N − 1)

x(N − x)

(15)

The initial values for RAXD are given by:

Tn(0) = −
√

N − n
N + n

√

2n + 1
2n − 1

Tn−1(0),

Tn(1) =
(

1 +
n(1 + n)
1 −N

)

Tn(0),
(16)

where T0(0) =
1

√

N
. The DTPCs values of the xth index for all the nth order are computed using the previous polynomial

values: x − 1 and x − 2, as shown in FIGURE 2. In addition, the symmetry relation in (13) are utilized to compute the rest of
the values of the DTPCs. However, the algorithm can generate DTPCs forN < 1096.

FIGURE 2 The TTRA in the direction of parameter x.



3.3 Recurrence Algorithm Using Gram-Schmidt (RAGS)
Camacho-Bello and Rivera-Lopez in20 developed the RAGS and employed the Gram-Schmidt algorithm to enhance the
orthogonality of the DTPs. The proposed RAGS is defined as follows:

!n Tn(x) = ! Tn−1(x) − !n−1 Tn−2(x) (17)
n = 0, 1,… , N − 1; and x = 1, 2,… , N − 1

where

! = 2x −N + 1 (18)

!n = n

√

N2 − n2
(2n − 1)(2n + 1)

(19)

The initial condition used for this algorithm are similar to that in (11). The experimental analysis performed in20 showed that
the performance of the algorithm is slightly better than RAND6. On the other hand, its performance are less than the RAXD18. To
tackle this problem the Gram-Schmidt algorithm was utilized to compensate the error in wavefront expansion25. However, this
algorithm attains the orthogonality condition, its limitation are: 1) the high computation cost resulted from the implementation
of the Gram-Schmit algorithm as well as the computation of the values of the DTPCs for the entire DTPs array (please see (17)),
2) the computed values of the DTPCs using the gram-Schmidt are deviated from the actual values, especially from those of the
high order polynomials which affect the computed moments in turn the acquired signal details are deviated from real values.

3.4 Recurrence Algorithm Using both n- and x-direction algorithms (RANX)
This algorithm, namely RANX, is presented by Abdulhussain et al. in19 which integrated both the n- and x-direction recurrence
algorithms. First, this algorithm computed the values of the DTPCs using the x-direction recurrence relation for n = 0, 1,⋯ , N

2
−

1 and x = 0, 1,⋯ , N
2
− 1. Then, it utilizes the n-direction recurrence algorithm in the range n = N

2
, N
2
+ 1,⋯ , N − 1 and

x = Lx, Lx + 1,⋯ , N
2
− 1, where Lx is computed at the border of an oval shape (see Equation (20))19. Thereafter, the values

of the DTPCs are computed using backward recurrence of the x-direction algorithm in the range n = N
2
, N
2
+ 1,⋯ , N − 1 and

x = Lx, Lx − 1,⋯ , Lx − 12. Although this algorithm is fast, the orthogonality condition is destroyed forN > 4000.

4 THE PROPOSED ALGORITHM

The proposed algorithm is designed such that the DTPs satisfy the orthogonality condition as well as low computational cost.
The proposed algorithm is designed based on integrating both of the recurrence algorithms in the n- and x-directions.
In other words, the proposed algorithm is the expansion of RANX, presented in19. However, to maintain the values of the

DTPCs destroyed as the order of the polynomial increases, an empirical study is performed to investigate the location where the
values of the DTPCs fall to zero, i.e. the proposed algorithm will set the location adaptively. For convenience, we refer to the
proposed algorithm as Adaptive recurrence algorithm using n- and x-directions (ARANX).
Assume a DTP is generated with a size ofN ×N . We utilize the algorithm in19 to generate the values of the DTPCs without

zeroing out the values in the range of x < Lx − 12. FIGURE 3 shows the DTPCs array (left), DTP basis functions for three
different polynomials orders (center) and their corresponding zoom within the region ±(Lx − 12) (right).
From FIGURE 3, it can be observed that the DTP basis functions is stable when the order (≤ N

2
), i.e. n ≤ 1500.

On the other hand, when the polynomial order is greater than N
2
, i.e. n > 1500, the DTP basis functions become unstable.

More specifically, in this case n ≥ 1600, the DTP basis functions become unstable (FIGURE 3 center top and center middle).
It is also observed that the assumption of zeroing out DTPCs for x ≤ Lx − 12 is not accurate because the values of the

polynomial is greater than 20 × 10−5; thus, this will lead to distortion when transforming/reconstructing a signal to/from the
moment domain. However, selecting x << (Lx − 12) will yield to DTPCs to be unstable.
For more elucidation, FIGURE 4 shows the DTPCs for n = 1800 and n = 2100. It can be noted that the DTPCs are stable

beyond the value of Lx − 12. For example, at n = 1800, the polynomial coefficients are stable for x ≥ 263 and the polynomial
coefficients become unstable for x = 262 → 0. Thus the stable values of DTPC can be computed for x > Lx − 37. On the
same basis, the DTPCs values for n = 2100 can be computed for x > Lx − 39. In addition, FIGURE 5 shows the DTPCs for



FIGURE 3 DTPC generated using RANX algorithm19

N = 1500 with two orders n = 1050 and n = 1350. It can be noted that the DTPCs stable beyond the value of Lx − 12. For
example, at n = 1050, the polynomial coefficients are stable for x ≥ 184 and the polynomial coefficients become unstable for
x = 183 → 0. Thus the stable values of DTPC can be computed for x > Lx − 30. On the same basis, the DTPCs values for
n = 1350 can be computed for x > Lx − 44.

FIGURE 4 DTPC generated using RANX algorithm19 forN = 3000.

From the previous investigation, it can be observed that the optimum values of x to start zeroing out the DTPCs values should
be deceptively selected for each polynomial order as well as the polynomial size. To find the optimum value of x, the location
where start to zeroing out the polynomial values at for each polynomial order n, we find the location of x where the new DTPC



FIGURE 5 DTPC generated using RANX algorithm19 forN = 1500.

value is greater than the previous DTPC value. This will indicate that the DTPC values at that location will start to be unstable;
and thus zeroing out all the DTPCs values located in the region 0 < x < Lxoptimum .
The algorithm detailed description is as follows:

i. The initial values (Tn(0) and Tn(1)) are computed using equation (16) for 1 < n < N
2
− 1. where T0(0) = T0(1) =

1
√

N
.

ii. The values of the DTPCs in the range 0 < n < N
2
− 1 and 2 < x < N

2
− 1 are computed using the recurrence relation in

equation (14).

iii. The values of the DTPCs in the range N
2
< n < N − 1 and Lx < x <

N
2
− 1 are computed using the recurrence relation in

equation (17), where Lx is the boundary of oval shape and is computed as follows:

Lx =
N
2

−

√

(N
2

)2
−
(n
2

)2
(20)

iv. The values of the DTPCs in the range N
2
< n < N −1 and Lxoptimum ≤ x < Lx are computed using the recurrence relation in

equation (14) in backward manner. The value ofLxoptimum is found such that each newly computed value of Tn(x) is compared
with its previous value Tn+1(x). When Tn(x) < Tn+1(x) the recurrence relation continues to compute the next values,Tn−1(x);
else the algorithm stops and consider the previous value is optimum and set the rest of the DTPCs value for the current
order (n) to zero (DTPCs values are zeroed in the range 0 < x < Lxoptimum).

v. The DTPCs values in the range n = 0, 1,… , N − 1 and x = N
2
, N
2
+ 1,… , N − 1 (second half of the array) is computed

symmetry relation defined in Equation (13).

The steps of the proposed algorithm are shown in FIGURE 6. For more clarification, Algorithm 1 illustrates the proposed
algorithm (ARANX) with an input of sizeN and maximum order Ord.



Algorithm 1 Generation of Tchebichef Polynomial
Input:N,Ord

N is the polynomial size,
Ord is the maximum polynomial order.

Output: Tn(x)
1: T0(0) ←

1
√

N
2: T0(1) ←

1
√

N

3: for n = 1 ∶ min
{

Ord − 1, N
2
− 1

}

do

4: Tn(0) ← −
√

N−n
N+n

√

2n+1
2n−1

Tn−1(0)

5: Tn(1) ←
(

1 + n(1+n)
1−N

)

Tn(0)
6: end for
7: ⊳ Compute DTPCs for first quarter using x-direction
8: for x = 2 ∶ N

2
− 1 do

9: �2 ←
(x−1)(x−N−1)

x(N−x)

10: for n = 0 ∶ min
{

Ord − 1, N
2
− 1

}

do
11: �1 ←

−n(n+1)−(2x−1)(x−N−1)−x
x(N−x)

12: Tn(x) ← �1Tn(x − 1) + �2Tn(x − 2)
13: end for
14: end for
15: for n = N

2
∶ Ord do ⊳ Compute DTPCs for second quarter using n-direction

16: Lx ←
N
2
−
√

(

N
2

)2
−
(

n
2

)2

17: for x = Lx ∶
N
2
− 1 do

18: 1 ←
2x+1−N

n

√

4n2−1
N2−n2

19: 2 ←
1−n
n

√

2n+1
2n−3

√

N2−(n−1)2

N2−n2
20: Tn(x) ← 1 Tn−1(x) + 2 Tn−2(x)
21: end for
22: end for
23: for n = N

2
∶ Ord do ⊳ Compute DTPCs for second quarter using x-direction backwardly

24: Lx ←
N
2
−
√

(

N
2

)2
−
(

n
2

)2

25: for x = Lx + 1 ∶ −1 ∶ 2 do
26: �2 ←

(x−1)(x−N−1)
x(N−x)

27: �1 ←
−n(n+1)−(2x−1)(x−N−1)−x

x(N−x)
28: Tn(x − 2) ← − �1

�2
Tn(x − 1) + 1

�2
Tn(x)

29: if Tn(x − 2) > Tn(x − 1) then
30: Tn(x − 2) ← 0
31: Lxoptimum = x − 1
32: Break
33: end if
34: end for
35: end for
36: for n = 0 ∶ N − 1 do ⊳ Compute DTPCs for second half using symmetry condition
37: for x = N

2
∶ N − 1 do

38: Tn(N − 1 − x) ← (−1)n Tn(x)
39: end for
40: end for



5 EXPERIMENTAL RESULTS

This section presents the performance evaluation of the proposed recurrence algorithm in terms of the computational cost, signal
reconstruction, and a comparison with state-of-the-art algorithms.

5.1 Preservation of Orthogonality Condition
To preserve that the moments (descriptor) is linearly independent and there are no redundancy in the information, the orthog-
onality condition should be preserved20. The orthogonality condition defined in equation (3) can be written in matrix form as
follows:

Î = T × T′ (21)
where Î represents the identity matrix, and (T ) represents the matrix form the of the DTP (Tn(x)). The universal similarity

index (UQI) presented in26 is used to estimate the structural similarity index between the identity matrix with that of the DTP.
Let I be a matrix of sizeN ×N , then UQI is given as20:

UQI =
4�kp�k�p

(�2
k + �2

p)(�
2
k − �2p )

(22)

where �k and �p are the standard deviation for the matrix Ii,j and the matrix Îi,j , respectively. In addition, �k and �p are the
mean value for the matrix Ii,j and the matrix Îi,j , respectively. The value �kp is computed as follows:

�kp =
1

N2 − 1

N−1
∑

i=0

N−1
∑

j=0

[

Ii,j − �k
] [

Îi,j − �p
]

(23)

Similar implementation of orthogonality test condition of moment kernel presented by20 (Algorithm 2) is utilized in this
paper.

Algorithm 2 Orthogonality Test20

1: Error← 0.99999
2: forN = 0 toH do
3: UQI ← 1
4: n← 1
5: T =

{

Tn(x)
}i,j=N−1
i,j=0

6: while UQI > Error and n < N do
7: n← n + 1
8: Î ← Ti,j × T′

i,j for i = 0, 1,… , N − 1 and j = 0, 1,… , n
9: UQI ←

4�kp�k�p
(�2k+�2p )(�

2
k−�2p )

10: end while
11: qN ← n
12: end for

Algorithm 2 is utilized to test the orthogonality condition of the algorithms: 1) DTP using RAXD18, 2) DTP using RAGS20,
3) DTP using RANX19, and 4) the proposed algorithm. It is noteworthy to mention that when qN is a straight line (qN = N),
the orthogonality test of the DTP is correct. FIGURE 7 illustrated the obtained values of qN for the aforementioned recurrence
algorithms. Moreover, it can be noted that the proposed algorithm (ARANX) and RAGS preserves the orthogonality condition.
In addition, TABLE 1 lists the maximum value qN that satisfy the orthogonality condition for different resolutions. From the
TABLE 1, it is can be observed that the Gram-Schmidt and the proposed algorithms outperforms other algorithms in terms of
maximum size that can be generated as well as preserving the orthogonality condition.



TABLE 1 The maximum value of qN that satisfy the orthogonality condition

Algorithms

Resolution
N ×N

RAXD
x-direction18

RANX
19

RAGS
x-direction

20

ARANX
Proposed

1280 × 1280 1267 642 1280 1280
1600 × 1600 1407 804 1600 1600
2048 × 2048 1630 1028 2048 2048
2560 × 2560 1849 1284 2560 2560
3000 × 3000 2020 1505 3000 3000
3264 × 3264 2114 1638 3264 3264

5.2 Algorithms Reconstruction Ability
The proposed method is evaluated in terms of reconstruction ability using sinusoidal Siemens star (SSS) which is utilized to
test the optical systems resolution. The SSS consists of sinusoidal oscillations in a polar coordinate system such that the spatial
frequency varies for concentric circles of different sizes. The SSS pattern is given by27:

I(�) = a + b sin(!� − �) (24)

where I represents the image intensity, � the polar angle for the sinusoidal function, a is the mean intensity value, b represents
the amplitude of the intensity oscillation, ! depicts the number of cycles, and � is the offset of the potential phase. In the
experiment, two test images are utilized with the following parameters: a = 0, b = 255, � = 0, and ! = 200, and 400. Note
that the size of the images used are 4000 × 4000 with ! = 200 and 4000 × 8000 with ! = 400. The original test images are
shown in FIGURE 8.
The images shown in FIGURE 8 are first transformed into moment domain by specific moment order (please see Equation

(6)) and reconstructed back to obtain (Î). After obtaining the reconstructed image, the normalizedmean square error is computed
as follows:

NMSE =
∑

x∈X
∑

y∈Y
(

I − Î
)2

∑

x∈X
∑

y∈Y (I)
2

(25)

The obtained results are shown in FIGURE 9. It can be observed from the results that the proposed algorithm and Gram-Schmidt
algorithm can reconstruct the image perfectly with a NMSE values of zero and maximum moment order. on the other hand,
RANX19 shows an error when reconstructing the image for image size of 4000 × 4000 because of the approximation used in
their algorithm which lead to slight propagation error in the DTPCs. While for image size of 8000 × 8000, RANX19 unable
to reconstruct the image because of the high propagation error and instability of DTPCs’ values. For RAXD18, the algorithm
unable to reconstruct the image for both image size of 4000 × 4000 and 8000 × 8000 due to the instability of DTPCs’ values
which occurs in the polynomial generation process.

5.3 Computation Cost Analysis
The evaluation of the computation cost is based on time required to generate the DTP with a size of N and order n. Note that
the maximum order of DTP is equal to the size of the polynomial, i.e.N .
The recurrence relations RAND6 and RAXD18 compute only 50% of the coefficients and the rest are computed using the

similarity relation. While RAGS20 computed 100% of the coefficients. RANX19 computes less than 50% of the coefficients. On
the other hand, the number of DTPCs computed by the proposed algorithm is slightly greater than RANX and less than 50%.
Note that RAXD, RANX, and ARANX utilize the similarity relation to compute the rest of the DTP coefficients.
FIGURE 10 shows the computation time of DTPCs. Obviously, the time required for RAGS is very large compared to other

algorithms. For example, the time required to compute a polynomial with order 100 and size of 1000 is 0.06 seconds compared



with∼ 0.004 for the ARANX, RANX, and RAXD algorithms. In other words, the improvement of ARANX is∼ 93%.Moreover,
for polynomial order of 200 and size of 8000, the computation time of the proposed algorithm is ∼ 0.07 seconds, while for
RAGS is ∼ 2.6 seconds, i.e. the improvement of ARANX is ∼ 97 %. The large computation time of RAGS is due to the nested
loop used in the algorithm, Gram-Schmidt algorithm, which leads to a dramatic increase in the computation time required to
generate the DTPCs.
For more illustration, the improvement in terms of computation time (ICT) is compared between ARANX and RAGS as

shown in FIGURE 11. Note that ICT is computed as follows20:

ICT% =
T imeGS−DTP − T imeANX−DTP

T imeGS−DTP
× 100 (26)

It can be observed that the improvement is greater than 90% when the polynomial order larger than 100 for different polynomial
sizes. In addition, the improvement is larger than 60% for polynomial orders less than 100.

6 CONCLUSION

In this paper, a recurrence algorithm is designed to compute the DTPCs. The recurrence algorithm is designed by combining two
well-known recurrence algorithms: the n-direction and x-directions recurrence algorithms. In addition, an adaptive threshold is
used to stabilize the generation of the DTPCs. The proposed algorithm (ARANX) can generate the DTPCs for high order and
large signal size. In addition, the designed algorithm has low computation cost compared to RAGS which is able to generate
DTP with high order for large signal size. A comparison is performed between ARANX and the state-of-the-art algorithms
to show the promising feature and superior capability of the proposed algorithm computational cost. Moreover, the designed
algorithm, ARANX, achieves a better results in terms of signal reconstruction for high polynomial orders.
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FIGURE 6 The steps of the proposed algorithm.



FIGURE 7 Test of the orthogonality condition for different recurrence algorithms

FIGURE 8 Test images used in the experiment (a) 4000 × 4000 with ! = 200, and (b) 8000 × 8000 with ! = 400
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FIGURE 9 The NMSE and the reconstructed images for different values of order (a) and (b)NMSE and reconstructed images
for test image shown in FIGURE 8a, (c) and (d)NMSE and reconstructed images for test image shown in FIGURE 8b



FIGURE 10 The Computation time of the proposed and state-of-the-art algorithms with maximum polynomial order of 200
and signal size of (a) 1000, (b) 2000, (c) 4000, and (d) 8000

FIGURE 11 The improvement of the proposed algorithm in terms of computation time compared with Gram-Schmidt algorithm
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