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A B S T R A C T   

Cargo theft has been among the most concerning risks influencing global freight supply chains, which causes 
serious supply chain disruptions, injuries/deaths, economic loss, and environmental damage. However, there are 
very few studies on the risk analysis of cargo theft, particularly in a quantitative manner, and fewer on the 
relevant risk factors affecting theft-related accidents in the current literature. This paper aims to analyse the risk 
influential factors (RIFs) of cargo theft and predict the occurrence likelihood of different types of cargo theft 
accidents. The historical data of 9316 cargo theft accidents that happened in the UK from 2009 to 2021 were first 
collected from the TAPA IIS database, and then purified and trained to construct a Bayesian network (BN) based 
cargo theft risk analysis model. The data-driven BN interprets the interdependency of RIFs and their combined 
effects on the occurrence of different types of cargo theft accidents. Compared with the previous studies, this 
paper makes new contributions, including that (1) The cargo theft RIFs are identified from the literature and 
accident records. (2) A data-driven BN is proposed to construct the model with uncertainty to realise cargo theft 
risk prediction and diagnosis. (3) The critical RIFs contributing to cargo theft are evaluated and prioritised to 
predict the occurrence of possible cargo theft accidents. (4) The real accidents are investigated to verify the 
model and draw useful insights for cargo theft prevention. The findings show that the most influential RIFs for 
the occurrence of cargo theft accidents are product category, year, location type, modus operandi (MO), and 
region. The findings also reveal the combined risk contributions of the RIFs, hence providing useful insights for 
cost-effective theft risk control in practice.   

1. Introduction 

Among all emerging supply chain risks, the statistic shows that cargo 
theft has caused increasing concerns. In the last two years alone, TAPA 
EMEA has recorded over 15,000 cargo losses from supply chains, with a 
total loss value of over €310m ($373m), which is the equivalent of 
€424,000 of goods being stolen every single day of 2019 and 2020 
(TAPA EMEA, 2021). In 2020, cargo theft throughout the United States 
hit the highest recorded volume in the last five years, according to an 
annual report by Sensitech (2021). Cargo theft is becoming a global 
problem that must be well addressed to avoid financial loss and dis-
ruptions in supply chain operations [40]. When a single cargo theft 
accident occurs, the involved supply chain costs six times the cargo 

value because the accident affects the costs of product replacement, 
accident handling, increased insurance premium, loss of sales, and 
negative impact on the business reputation [8]. Along with the financial 
cost, cargo theft may also lead to injuries/death and environmental 
damage when it involves dangerous cargo and violence in operations. 
Given such a high-risk stake, the relevant research in cargo theft risk 
analysis has not been undertaken sufficiently and in a good proportion 
to the risk level. 

Within the context of cargo theft, the risks are diversified, involving 
classical and nonclassical events. For instance, the spread of COVID-19 
in 2020 brought increased and more specific theft targets on cargo 
such as personal protection equipment (PPE) and medicines [44]. For 
other types of cargo, cargo theft trends stay stable in 2020 compared to 

Abbreviations: RIF, risk influential factor; TAPA, Transported Asset Protection Association; BN, Bayesian network; MO, modus operandi; PPE, personal protection 
equipment; CLSC, Container Line Supply Chains; TAN, Tree Augmented Naive Bayes; CPT, Conditional Probability Table; TRI, True Risk Influence; HRI, High-Risk 
Inference; LRI, Low-Risk Inference. 
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the volatile records in previous years, despite the implementation of 
many preventive measures in practice. Although real-time monitoring 
devices attached to the cargo are used in practice, it is revealed not 
effective enough to reduce the interests and attempts of thieves targeting 
the cargo. Drone monitoring has been seen as a new solution to cargo 
security, but its applicability is arguable for certain types of shipments 
due to the high cost [33]. The literature related to the risk analysis of 
cargo theft is little in general and less in supply chains. Most studies 
focused on the countermeasure against cargo theft, while others inves-
tigated the characteristics of cargo theft such as the main causes, hot 
spots, and seasonal patterns. However, without understanding the 
influential factors of cargo theft, preventative measures against theft and 
the related resources to support the preventative measures will not be 
allocated systematically and efficiently [45]. 

Typically, cargo thieves seek the opportunity of stealing depending 
on time, location, and objective (cargo type). Besides, they may choose 
different methods to commit a crime in different scenarios such as 
breaking and entering a vehicle/truck/warehouse, forcing a vehicle to 
stop. In addition, the occurrence of cargo theft from supply chains is 
complicated to understand because it involves various uncertainties 
such as transportation modes, product types, locations, and facility 
types. Hence, the occurrence of cargo theft accidents is dynamic 
depending on the situations in which the relevant risk factors are pre-
sented in an interactive way. 

To fill the research gap, this study aims to develop a data-driven risk 
analysis model for the diagnosis of the effect of relevant RIFs on cargo 
theft and prediction of the occurrence likelihood of different types of 
theft accidents. To achieve this aim, this paper firstly describes the 
identification of the RIFs influencing cargo theft from both the relevant 
literature and historical database. Secondly, it uses a data-driven BN 
approach to evaluate the effects of the identified RIFs on the occurrence 
of different categories of cargo theft accidents. Furthermore, the model 
is verified using multiple methods including a test using real cases, 
sensitivity analysis, and scenario analysis. In this sense, the accident 
data is collected from the UK as it presents the riskiest area in terms of 
cargo theft, evident by the fact that more than half of the accidents (i.e., 
50.9%) reported to Transported Asset Protection Association (TAPA) in 
the first half of 2020 occurred in the UK [48]. 

The rest of the paper is structured as follows. In Section 2, the 
literature on cargo theft-related risk studies and influential factors is 
reviewed to define the state-of-the-art in the field. Section 3 describes 
the development and application of a new methodology including RIF 
identification, BN structure learning, and sensitivity analysis to address 
the research aim. Section 4 presents the model validation methods. The 
analysis and results are presented and discussed for insightful implica-
tions in Section 5, while the conclusion is drawn in Section 6. 

2. Literature review 

2.1. Risk studies on cargo theft 

Among the limited studies on cargo theft in the current literature, the 
majority focused on the countermeasures against different types of cargo 
theft accidents and the others were related to the exploration of the 
nature of cargo theft including the probabilities of the accidents and the 
relevant influential factors. More specifically, the issues such as a pre-
vention approach [46], a communication system [20,23,26,37,60], and 
vehicular technology [10] were addressed. In 2009, Ekwall analysed 
and explained the reason why cargo theft continued to occur despite all 
the implemented countermeasures. Since then, the awareness of the 
significance of investigating the nature of cargo theft has been growing. 
Even though most subsequent studies still focused on the development 
of technologies, tools, and systems against cargo theft, there are still a 
few studies undertaken to capture the risk characteristics of cargo theft 
accidents. They are often treated as a part of the broad discussion of 
supply chain security, including the impact of low-wage labor on supply 

chain security [3], seasonality of cargo theft [14], the effects of modus 
operandi (MO) and location type on cargo theft, risk assessment of cargo 
theft [15], key factors behind cargo loss severity in logistics systems 
[51], geographical concentration of cargo theft [24], prediction of the 
cargo theft probability in rail transport [33,34]. 

Despite the evolution of themes in cargo theft research, the state-of- 
the-art methodologies in the field are mainly based on qualitative and/ 
or basic statistical methods to investigate cargo theft factors. In other 
words, very few studies involve quantitative methods, and from the 
applied research perspective, the cases in such studies often represent a 
single component of a whole supply chain. As a result, the current cargo 
theft risk studies have revealed significant limitations from empirical 
and methodological perspectives. To be specific, Tang et al. [45] used a 
hierarchical structure of criteria to evaluate the security levels against 
theft in a port storage area in Container Line Supply Chains (CLSC). 
Based on the structure, a belief Rule-base Inference Methodology using 
the Evidential Reasoning (RIMER) algorithm was applied to handle the 
various kinds of uncertainties involved during the evaluation process 
and generate the evaluation result. Using a hierarchical structure to 
model the risk factors/variables of cargo theft can easily overlook the 
interdependency among the factors/variables and hence affect the 
model validity. Wu et al. [51] utilized data-driven business analytics 
involving descriptive, predictive, and prescriptive analysis to investigate 
cargo loss severity in logistics systems based on the data from an elec-
tronics company. Again, it overlooked the interdependency among the 
factors/variables, and thus the reflection of the result to the reality 
became questionable. Song et al. [43] used a data-driven approach to 
predict the theft risk of bulk cargo in ports based on the data from 
Guangzhou Port Group and Guangzhou Port Security Bureau in China. 
Various binary classifiers including OneR, Decision Tree (DT), Random 
Forest (RF), Naïve Bayesian (BN), and BN were compared, and the result 
showed that BN was a suitable predictive model. However, the BN 
structures derived from two different structure-learning algorithms were 
different, requiring subjective knowledge to configure the final struc-
ture. In addition, the results could not reflect the effects of multiple 
states of the identified risk factors. Lorenc and Kuznar [33] used Arti-
ficial Neural Networks (ANN) and Machine Learning (ML) methods to 
predict the probability of cargo theft in railway transport, respectively. 
Although showing some attractiveness, the methods failed to disclose 
the joint significance of multiple risk factors and their interdependency, 
leading to limited insights on prevention measures development. 

Clearly, previous studies have revealed some theoretical implications 
on quantitative cargo theft risk analysis that have not been well 
addressed in the current literature and they could not be achieved 
without the analysis of the interdependency of the RIFs from a whole 
supply chain perspective. To fulfill this gap, this study aims to develop 
an advanced quantitative method to analyse the interdependence 
among the RIFs of cargo theft and pioneer a risk analysis model to realise 
the cargo theft risk prediction and diagnosis. 

2.2. Risk factors influencing cargo theft 

A cargo theft accident could occur in any part of a freight supply 
chain along with the cargo flows. However, the occurrence of cargo theft 
accidents in terms of time, place, MO, and some other factors follows 
certain rules to be explored. It is therefore crucial to identify and analyse 
the relevant RIFs. To do so, 92 relevant papers published from 1970 to 
2021 were first found by searching the keyword “cargo theft” on the 
Web of Science. Secondly, book chapters were excluded. By the screen of 
titles, abstracts, and conclusions, we also excluded the papers (1) that 
addressed the development of security means and systems against cargo 
theft and (2) that focused on the evaluation of logistics performance 
without discussing the causes of cargo theft. As a result, 28 papers are 
finally selected, among which 22 risk factors appear frequently and are 
chosen for further analysis. The identified factors and their appearance 
frequencies are shown in Fig. 1. Moreover, such factors are analysed at 
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different levels in the selected literature. We use class I to represent the 
factors if their impacts are evidentially evaluated using mathematical 
methods and class II to represent the factors that appear in the selected 
literature just to support the research background or used in a special-
ized segment (i.e., bulk cargo). With reference to this classification, 
Table 1 shows how the 22 risk factors are analysed from the 28 refer-
ences, and numbers 1 to 22 are used to represent the 22 risk factors in 
the front row. Obviously, some factors appear in both class I and class II 
because they receive different levels of analysis in different literature. 
There are 8 factors out of the 22 factors that are analysed at the level of 
class I and these 8 factors and their appearance frequencies as class I 
factors are shown in Fig. 2. The rest of this section summarizes how these 
important RIFs are described in the selected literature. 

Cargo type. Cargo type is one of the most frequently observed influ-
ential factors influencing cargo theft in terms of the occurrence likeli-
hood of accidents and consequences (e.g. stolen value). Ekwall [17] 
found that the thieves target on the type of goods more than anything 
else such as those relating to the theft opportunities exposed in a 
transport network. In other words, perpetrators tend to change different 
MOs to target the same product that they are interested in. According to 
2021 data from CargoNet, the prime targets of thieves are electronics 
amid the chip shortage in the world and refrigerated food. BSI-recorded 
cargo thefts of medical devices and supplies, including PPE, jumped by 
over 5000% in 2020 compared to 2019 due to the Covid-19 pandemic. 

Location type. Location type is one of the two most frequently used 
risk factors in cargo theft studies. Cargo can be stolen when it takes a 
stop in some places such as warehouses, terminals, equipment, and truck 
stops. Besides, trailers and containers have become virtual warehouses 
on wheels and easy targets for thieves with the Just-In-Time delivery 
replacing the on-hand inventory of most businesses [46]. 97% of all 
attacks during a stop occur at non-secure parking locations [12]. Cargo 
thefts at these locations are more of a volume crime than high-value 
thefts according to the TAPA EMEA data. The risk levels of different 
combinations of location types and accident categories in terms of both 
impact and probability were examined [15]. According to the BSI and 
NMU cargo theft report of Q1 2021, a wide variety of tactics were 

involved in cargo thefts throughout Europe. The United Kingdom, Ger-
many, Russia, Italy and France generally record some of the greatest 
numbers of thefts in the region. As noted at the beginning of the 
outbreak of the COVID-19 pandemic, a higher-than-usual number of 
thefts continue to occur from warehouses and facilities. As a result of 
disruptions to movement caused by the pandemic, stockpiled goods and 
trucks parked outside of warehouses and facilities became more acces-
sible targets for thieves. 

Seasonality. The seasonal variation in theft accidents was observed 
during particular months of the year and days of the week for many 
location types along transport chains [14] and MOs [13]. The seasonal 
effect was also observed in cargo theft accidents that occurred in the São 
Paulo State of Brazil (Justus et al., 2018). Nevertheless, the patterns 
depend on different categories, e.g., the variation over a year is 
approximately the same for all location types, while the variation over a 
week is different [14]; the seasonal effect on violent cargo thefts is 
evident to be small [16]. 

Geographical region. There is ample evidence that the nature of cargo 
theft differs among geographical regions. Cargo theft involving violence 
is rare in the United States, however, violence (such as intrusion, 
pilferage, and hijackings) is more common in Europe. In Mexico, cargo 
theft is an extremely violent crime occurred by gangs (Burges, 2013). In 
Brazil, it mainly occurs in the most economically dynamic regions, such 
as the states of São Paulo, Minas Gerais, and Rio de Janeiro. Although 
São Paulo’s capital shows the highest levels of cargo theft, it is in non- 
metropolitan areas that records of this offense are on the rise (Justus 
et al., 2018). Based on the data from a case company, the research by Wu 
et al. (2016) found that when products were shipped using sea transport 
to Australia or the Middle East, cargo loss of medium severity was likely 
to occur. 

Transportation mode. Cargo theft occurs while it is in the logistical 
cycle of being transported by a mode of transportation [46]. Among the 
critical logistics factors (transit types, product categories, and shipping 
destinations) influencing the severity of cargo loss, transit type was 
determined to be the most influential factor in the severity model (Wu 
et al., 2016). The case company investigated by Wu et al. (2016) suffered 

Fig. 1. Risk factors from the literature.  
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cargo loss (claim payments) during air, sea, and land transportation. The 
primary cargo loss in terms of loss value was correlated with sea 
transport, followed by air transport and truck transport. However, the 
occurrence of cargo loss accidents by air transport was much higher than 
that by sea transport. 

Security level. Transport security means the measures to prevent both 
terrorist attacks and ordinary crime, especially theft (EUR, 2005). Tang 
et al. [45] studied on security evaluation of a port storage area against 
theft in CLSC, stating that security analysis is critical in CLSC operation 
as CLSC is a dominant way to transport cargo worldwide and at the same 
time it is also subject to many threats. 

Other factors. Previous studies have also identified other factors 
influencing the occurrence of cargo theft accidents. Based on the theory 
of crime displacement, Ekwall [17] identified the three elements of 
cargo theft including the motivated perpetrators, transported goods 

(object), and preventive measures. Furthermore, MOs for cargo theft 
exhibit seasonal patterns by time of the year and day of the week [13]. 
Song et al. [43] identified the influential factors of bulk cargo theft such 
as truck drive, truck type, weather, cargo packaging, storage yard type, 
consignor, and operational setting. 

3. Methodology 

To identify the RIFs influencing cargo theft occurrences and assess 
the importance rankings of RIFs, this study uses a data-driven BN 
method to train and learn the big cargo theft data from TAPA. The 
flowchart of the methodology is presented in Fig. 3. Firstly, the data on 
cargo theft accidents that happened in the UK is collected from TAPA 
and a necessary process of data management and purification is con-
ducted. Secondly, the identified RIFs of cargo theft from the cleaned data 

Table 1 
References of the identified risk factors.  

Refs. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

[3]           II            
[4]        II               
[8]  II                     
[7]                    II   
[14]  I   I  I                
[12]  I   I                  
[13]     I  I                
[15]  I                     
[16] I I  I   I                
[11]   I   I                 
[17] I     I                I 
[22]                  II     
[24] I  I  I                  
[25]    II                   
[27]    II                   
[28]  II                     
[34] II        II II         II    
[35]    II                   
[63] II II II II II II   II              
[33] II II II II II II   II              
[38]   II                    
[39]   II     II               
[42]          II             
[43]           II II II II II II II    II  
[45]      I                 
[46] II                      
[29]        II               
[51] I  I I                   

Note: I is class I, II is class II, * for factors once appear in class I, ** for factors only appear in class II. 
1. 
cargo type* 2. 
location type* 3. 
geographical region* 4. 
transportation mode* 5. 
Seasonality* 6. 
security level* 7. 
MO* 
8. 
supply chain component** 9. 
number of stops (road and rail)** 10. 
cargo value** 11. 
truck driver** 12. 
cargo packaging** 13. 
Weather** 14. 
Truck** 15. 
operational delivery (bulk cargo)** 16. 
Consignor** 17. 
busy degree (bulk cargo)** 18. 
warehouse per capita** 19. 
transport distance** 20. 
security cost** 21. 
storage yard (bulk cargo)** 22. 
motivated perpetrator 
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according to the TAPA accident reports form of TAPA are verified by the 
knowledge gained from the literature. Thirdly, the identified RIFs and 
the datasheet are used as inputs to construct the model using the data- 
driven BN approach. Next, the model is validated in terms of its pre-
dicting ability and consistency. In this process, the real case test and 
sensitivity analysis are undertaken, and further, from the sensitivity 
analysis, the results of the importance rankings of RIFs, their in-
terrelationships, and the effects of their multiple states are obtained for 
research implications. Finally, the results are presented and discussed 
thoroughly. 

3.1. Data collection and cleaning 

Compared to the one-year accident data used to support most of the 
previous studies in the field, however, 20,270 reported cargo theft ac-
cidents in the UK ranging from 2009 to 2021 have been collected from 
TAPA EMEA IIS to support the analysis in this paper. For each reported 
accident, entries can be made for the date of the accident, geographical 
location (including region, town, and district), location type (e.g., 
destination facility), type of accident (e.g., truck theft), type of MO, 
product category, loss value, major accident (by yes or no), attempt (by 
yes or no), last-mile delivery (by yes or no), and accident description. 
Given the fact that many accidents contain incomplete information such 
as unspecified products and unknown accident categories, a data 
cleaning process is conducted to ensure the data completeness and the 
accuracy of the developed model. Finally, 9316 accidents containing all 
complete data are used in this study. 8386 accidents (90%) are randomly 
chosen and used to build the model, while the other 930 accidents are 
reserved to test the model for its validation. 

3.2. RIF identification 

In the process of data purification, one variable ‘last mile delivery’ is 
removed because the character has been recognized and the relevant 
data has only been available since 2019. As a result, 9 RIFs influencing 
‘accident category’ are identified, including major accident, attempt, 
MO, location type, product category, weekday, region, month, year, 
among which weekday, month, year are derived from the date column in 

the accident report. 
Compared to the in-depth investigated RIFs in the previous literature 

(as presented in Fig. 2), there is a high harmony between the identified 
RIFs. To be specific, seasonality is related to month and weekday; the 
transportation mode is associated with the accident categories; security 
level is not incorporated in this study because of the lack of well- 
established definition and globally acceptable standards. Attempts and 
major accidents are additional RIFs identified from the accident reports. 
According to TAPA’s explanation, an attempt means the act of trying to 
steal cargo/load/shipment unsuccessfully, while a major accident is 
defined as the one causing a loss value of over €100k. 

Moreover, each RIF has various states. Table 2 shows the states of the 
‘accident category’ and the 9 RIFs. This study uses the same definitions 
of states adopted by TAPA found online (https://tapaemea.org/iis-key- 
glossary). The states having very low percentages of the 9316 accidents 
are combined and categorized as new state ‘other’ because they are not 
of any critical mass statistically. 

3.3. Model construction 

Among various risk assessment methods, BN has attracted increasing 
interest owing to its advances in learning and inferencing. It combines 
visualization with mathematical knowledge and can help to analyse the 
importance of variables and the relationships among them, given the 
uncertainty in a system [53,62]. It has been widely used in the trans-
portation area for risk factors analysis [18,31,47,52,55], and is 
increasingly popularised in recent years due to its aforementioned ad-
vantages (e.g. [9,32,36,49,50,57,59,61]). The BN structure can be 
constructed based on subjective and/or objective methods. This study 
relies on a data-driven method to build the BN structure using Tree 
Augmented Naive Bayes (TAN). Let A1, …An be the risk variables, where 
n stands for the number of variables, TAN structure learning is the 
procedure of finding a tree defining function π over A1, …An to maxi-
mize the log-likelihood. This procedure follows the general outline 
proposed by Chow and Liu [5]. Among various forms of Bayes network 
classifiers, Naive Bayes is the simplest and is competitive with other 
classifiers such as C4.5 [21]. However, its conditional independence 
assumption among features cannot well reflect the reality, which makes 

Fig. 2. Risk factors investigated in-depth from the literature.  
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a severe limitation on its application in empirical studies. TAN relaxes 
the independence assumption of naive Bayes, yet at the same time 
maintains the computational simplicity and robustness of naive Bayes 
[21]. One characteristic that differentiates the TAN model from the 
traditional BN lies in the class variables. Each class variable in the BN 
model must have at least one parent node. However, the links can go in 
either direction using Bayesian inference on the results to reflect reality 
[53]. Because of this superiority, TAN has been increasingly used to 
train big data to formulate BN risk models in transport (e.g., [18,53,54, 
58]). 

Once the data is obtained and cleaned, the structure of BN can be 
generated through the process of TAN learning with the assistance of the 
Netica software. As a result, a new cargo theft risk BN model containing 
10 nodes is formulated. The originally obtained structure is shown in 
Fig. 4, the links can go in either direction to fit the result in the reality. 

Based on the TAN model, the Conditional Probability Tables (CPTs) 
of the involved nodes are then learned. Fig. 5 presents the results of TAN. 
It indicates that ‘theft from vehicle’ is the most frequent accident type, 
accounting for 64.2% of all accident categories, followed by truck theft 
and theft of vehicles accounting for 20.3% and 6.26%, respectively. 

4. Model validation 

The developed model is validated by three means, including (1) the 

comparative analysis of the historical statistics and the predicted results 
learned through 8,386 cargo theft accidents; (2) the real case tests using 
the reserved 930 cargo theft accidents; and (3) the logic inference 
validation by sensitivity analysis to see if the risk prediction results 
reflect the reality within the context of cargo theft. 

4.1. Comparative analysis 

The results of TAN have shown a very high reliability when 
compared to the historical statistics as shown in Table 3. To be specific, 
the predicted probability of ‘truck theft’ is the same with historical data 
(20.27%); the differences are 0.04% in ‘theft from vehicle’, and 0.01% in 
each other accident category. The very small variations are possibly 
caused by the introduction of the new state ‘other’. It proves the pre-
diction accuracy of the built model. 

4.2. Real case tests 

This study uses real cases to test the proposed model. A confusion 
matrix (see Appendix A) is generated to compare the prediction results 
with the true values of accident categories of real cases. Moreover, the 
kappa statistic is used to test the model consistency.  

1) Prediction ability 

Fig. 3. Flow chart of data analysis.  
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930 accidents (10%) were reserved by random selection from the 
original database and used to test the prediction ability of the model, 
resulting in an overall accuracy rate of 89.14%. According to the 

confusion matrix in Appendix A, the prediction accuracy rates are 
96.33% in ‘theft from vehicles’, and 97.91% in ‘truck theft’ by counting 
the number of correctly predicted accidents out of the actual accidents. 
Compared to the previous studies using BN in risk prediction [43,53], 
our result indicates that the model is robust for predicting the accident 
category of a cargo theft accident.  

2) Kappa statistic for model consistency test 

Kappa coefficient (k) was introduced by Cohen [6] as a statistic to 
measure the agreement between two raters. It has been applied in many 
fields and has been used in this study to measure the agreement between 
the predicted results and the real results. The definition of k is: 

k =
p0 − pe

1 − pe
(1)  

where po is the relative observed agreement between raters, and pe is the 
hypothetical probability of chance agreement, using the observed data 
to calculate the probabilities of each observer randomly seeing each 
category. To calculate the k value for our confusion matrix, po is the sum 
of the correctly classified accidents divided by the total number of ac-
cidents. There are four steps to calculate pe, including (1) multiplication 
of the marginal frequency for a certain accident type by the classifier 
(the sum of the predicted ‘Other’ accidents) and the marginal frequency 
for the same accident type by the true value (the sum of the actual 
‘Other’ accidents), (2) division of the multiplied result from Step 1 by the 
total number of accidents, (3) repetition of the calculations in Steps 1 
and 2 for each other accident type, and (4) division of the sum of values 
from the first three steps by the total number of accidents. 

Therefore, the k value for the confusion matrix in Appendix A is 
calculated as follows: 

pe = (19 × 25+ 16 × 37+… + 190 × 191)/930 × 930 = 0.4839, p0

= 0.8914  

k = (0.8914 − 0.4839)/(1 − 0.4839) = 0.7896 

Although there is not a standardized interpretation of the kappa 

Table 2 
States of variables.  

Variable States State - ‘Other’ 

Accident 
category 

Theft from Container/Trailer, 
Theft from Facility, Theft from 
Vehicle, Theft of Container/ 
Trailer, Theft of Vehicle, Truck 
Theft, Other 

Clandestine, Fraud, Hijacking, 
Robbery, Theft, Theft from Train 

Year 13 years from 2009 to 2021  
Month 12 months  
Weekday 7 days  
Region East Midlands, East of England, 

London, North East, North 
West, Northern Ireland, 
Scotland, South East, South 
West, Wales, West Midlands, 
Yorkshire and the Humber  

Product 
category 

Clothing & Footwear, Food & 
Drink, Miscellaneous, No Load, 
Tobacco, Other 

Agricultural Materials, Bicycles, 
Car parts, Cash, Computers/ 
Laptops, Cosmetics & Hygiene, 
Furniture/Household 
Appliances, Jewellery/Precious 
Metals, Metal, Pharmaceuticals, 
Phones, Sports Equipment, 
Tools/Building Materials, Toys/ 
Games, Tyres 

Location 
type 

Destination Facility, En Route, 
Origin Facility, Unclassified 
Parking, Other 

Authorized 3rd Party Facility, 
Aviation Transportation Facility, 
Maritime Transportation Facility, 
Railway Operation Facility, Road 
Transportation Facility, Secured 
Parking, Services 3rd Party 
Facility, 

Modus 
operandi 
(MO) 

Intrusion, Theft from Moving 
Vehicles, Violent & Threat with 
Violence, Other 

Internal, Forced Stop, Deceptive 
Stop, Deceptive Pick-up, 
Deception Other 

Attempt No, Yes  
Major 

accident 
No, Yes   

Fig. 4. TAN structure for theft accident category.  
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statistic, a kappa (k) of 0.7896 indicates a strong strength of agreement 
according to Altman [1]. Landis and Koch [30] consider 0-0.20 as slight, 
0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 
0.81-1 as almost perfect. Further, according to Fleiss [19], 0.7896 
(>0.75) is excellent. 

4.3. Sensitivity analysis 

To measure the dependence between accident category and RIFs and 
validate the model, the sensitivity analysis in this study is conducted 
based on mutual information, True Risk Influence (TRI) [2], and a joint 
probability. Besides, a sensitivity analysis can also help validate the 
model [56,62]. 

Mutual information. The concept of mutual information is intimately 
linked to that of entropy. The entropy of a random variable represents 
the average level of "information", "surprise", or "uncertainty" of its 
possible outcomes. The concept of information entropy was introduced 
by Claude [41]. Mutual information is the reduction of uncertainty 
about a variable, quantifying the amount of information obtained about 
one random variable based on the other ones. Therefore, mutual infor-
mation is used in this study to measure the mutual dependence between 
the ‘accident category’ and RIFs, it can be defined as: 

I(S, β) = −
∑

s,i
P(s, βi)logb

P(s, βi)

P(s)P(βi)
(2)  

where S represents ‘accident category’ of cargo theft, β represents a 
random RIF (e.g. location type), βi represents the ith state of β, I(S, β)
represents the mutual information between accident category and RIFs. 
The RIFs having higher values of mutual information with the accident 
category are considered as more essential RIFs influencing the accident 
category of cargo theft. Thus, the overall importance ranking of RIFs can 
be obtained (see Table 4). When ‘accident category’ is the target node, 
the ‘percentage’ column in the table indicates the extent to which each 
RIF influences the ‘accident type’. For instance, the influence level of the 
‘accident category’ on itself is 100%. It can be seen from the ‘mutual 
info’ column, that the most essential factor among all RIFs influencing 
the ‘accident category’ is the ‘product category’, with a mutual infor-
mation value of 0.55028. 

True Risk Influence (TRI). TRI as a new method of sensitivity analysis 
was proposed by Alyami et al. [2]. In nature, the index is generated by 
the average of the highest and lowest possible influence of a variable on 
the target node in the investigated risk-oriented BN. It is used in this 
study because of its ability to evaluate the risk impacts of RIFs in mul-
tiple states. Specifically speaking, there are four steps to calculate the 
value of TRI of a random RIF (e.g., product category) with respect to an 
accident category (e.g., truck theft). Firstly, it is to increase the proba-
bility of each state of a selected RIF (e.g. each product category) to 
100%, respectively. Secondly, it is to identify the two states (product 
types) generating the highest and the lowest probabilities of truck theft, 

Fig. 5. Results of TAN.  

Table 3 
Comparative results of the historical data and TAN.  

Accident category Historical data (%) Results of TAN (%) 

Other 2.49 2.50 
Theft from Container/Trailer 3.04 3.05 
Theft from Facility 2.21 2.22 
Theft from Vehicle 64.21 64.17 
Theft of Container/Trailer 1.53 1.54 
Theft of Vehicle 6.25 6.26 
Truck Theft 20.27 20.27 
Grand Total 100 100  

Table 4 
Mutual information of ‘accident category’.  

Node Mutual Info Percentage (%) Variance of Belief 

Accident category 1.6286 100 0.3547 
Product category 0.5504 33.80 0.1096 
Year 0.3810 23.40 0.0632 
Location type 0.1844 11.30 0.0090 
MO 0.1289 7.91 0.0069 
Region 0.0933 5.73 0.0148 
Month 0.0429 2.63 0.0043 
Major accident 0.0303 1.86 0.0014 
Weekday 0.0260 1.60 0.0043 
Attempt 0.0072 0.44 0.0001  
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respectively. Thirdly, it is to calculate the absolute difference value 
between the highest probability (86.60) generated from the second step 
and the original probability (20.3) of truck theft to obtain the High-Risk 
Inference (HRI) value; and calculate the absolute difference value be-
tween the lowest probability (0.92) generated from the second step and 
the original probability (20.3) of truck theft to obtain the Low-Risk 
Inference (LRI) value. Lastly, it calculates the TRI (42.84) of the prod-
uct category for truck theft by taking the average value of HRI (66.30) 
and LRI (19.38). The RIFs with higher TRI values have stronger impact 
on the investigated accident category. Therefore, the importance rank-
ings of RIFs for different accident categories can be generated. Accord-
ing to the above procedure, the TRI values of ‘product category’ for 7 
different accident categories are calculated by adjusting the probability 
of each product type to 100%, respectively, as displayed in Table 5. 
Scenarios 1-6 represent the results of adjusting the probabilities of the 
six product types to 100%, respectively. A similar procedure is then 
applied to other RIFs. Eventually, TRI values of all RIFs for the 7 accident 
categories are obtained and displayed in Table 6. Accordingly, Table 7 
shows the importance rankings of RIFs in each investigated accident 
category, it is obvious that the influence of a RIF on cargo theft varies 
with the accident type. For instance, ‘product category’ is the most 
important RIF for theft from vehicles and truck theft, it is less important 
for other accident types though. 

Furthermore, the network joint probability is generated (as pre-
sented in Table 8) to reflect the states’ effects of RIFs and enable the 
analysis of the joint effect of multiple RIFs on accident categories. Let X, 
Y represent a random RIF and accident category, respectively, Xi rep-
resents the ith state of X, Yj represents the jth state of Y. The joint 
probability that events Xi and Yj both occur is calculated by: 

P
(
X =Xi, Y = Yj

)
= P(X =Xi)P

(
Y =Yj

⃒
⃒X =Xi

)
(3)  

where P(X=Xi) is the prior probability of the ith state of a random RIF X, 
and P(Y=Yj|X=Xi) is the conditional probability that the jth state of 
accident category Y occurs given that the ith state of X has already 
occurred. The highest joint probability value in each column indicates 
the most influential state for a particular accident category. For instance, 
for theft from vehicles, ‘tobacco’ is the most targeted product (88.2%) 
and ‘en route’ is the most influential location type. In each column, both 
the highest and the lowest values are highlighted as bold and italic 
values. Thus, it helps understand the influence level of each state on 
various accident types compared to other states. More analytical results 
are to be found in the next section. 

5. Result discussion and implications 

5.1. Analytical results 

The overall ranking of risk impacts of RIFs on cargo theft accident 

category shows that ‘product category’ is the most important RIF out of 
the 9 RIFs, followed by ‘year’, ‘location type’, ‘MO’, ‘region’, and the 
other four RIFs (‘month’, ‘major accident’, ‘weekday’, ‘attempt’). 
Furthermore, the essential RIFs and their significant states with respect 
to each accident type are evidentially evaluated. The product category is 
the most important RIF for the overall accident category mainly because 
of its significant effects on theft from vehicles and truck theft. Further-
more, ‘tobacco’ is the most targeted product in theft from vehicles with a 
joint probability of 88.2% being the highest among all product cate-
gories. Besides, a ‘no-load’ truck is more attractive (86.6%) than a ‘no- 
load’ vehicle/container/trailer/facility. 

Location type has significant impacts on many accident types 
including theft from facility, theft of container/trailer and vehicle, theft 
from container/trailer and vehicle. Regarding the significant states of 
location type, the most contributed location type of theft from facilities 
for example is ‘origin facility’. The most influential location type of theft 
of vehicles and theft from vehicles are ‘destination facility’ and ‘en 
route’, respectively, which indicates that it is most likely for vehicles to 
be stolen at destination facilities, and for cargoes to be stolen in motion. 
However, direct statistics show that ‘unclassified parking’ is the riskiest 
location type accounting for around 75% of all the investigated cargo 
theft accidents. A possible explanation is that the correlations between 
location type and other RIFs (i.e., product category, MO) have more 
contributions compared to its direct contribution to each accident 
category. A similarity applies to the states’ effects of MO, although 90% 
of the accidents use ‘intrusion’ according to direct statistics, ‘intrusion’ 
is not the most effective MO for the investigated accident types except 
truck theft. 

The region is the fifth most important RIF influencing the occurrence 
likelihood of cargo theft accidents, it still reveals some useful informa-
tion. For example, in ‘East Midlands’, the probabilities of theft from 
facility (1.29%), theft of vehicle (2.47%), and truck theft (8.8%) are the 
lowest among all regions in the UK, while the risk of theft from vehicle 
(82.3%) is the highest. On the contrary, in ‘Northern Ireland’, the risk of 
theft from vehicle is the lowest in the UK, while the risks of other ac-
cident types are higher than that in most of the other regions. Previous 
studies have also discussed the dynamic character of cargo theft oc-
currences in geographical regions [8,24]. While this study further in-
vestigates this character by differentiating the accident categories of 
cargo theft. 

Month, major accident, weekday, and attempt are less significant 
RIFs than the other five RIFs. Overall, the seasonal pattern in terms of 
the month of a year and the day of a week is insignificant. Fig. 6 displays 
the trends of probabilities of different cargo theft accident categories in 
months and weekdays. Looking at the most frequent accident category i. 
e., theft from vehicle, the riskiest months are ‘October’ and ‘November’, 
and the peak days during the week are ‘Tuesday to Friday’. For other 
accident categories e.g., theft from/of container/trailer, theft from 

Table 5 
TRI of product category for all accident categories.   

Scenario    

Product category Original 1 2 3 4 5 6    
Clothing & Footwear 8.95 100.00 0.00 0.00 0.00 0.00 0.00    
Food & Drink 15.00 0.00 100.00 0.00 0.00 0.00 0.00    
Miscellaneous 15.00 0.00 0.00 100.00 0.00 0.00 0.00    
No Load 22.00 0.00 0.00 0.00 100.00 0.00 0.00    
Other 26.70 0.00 0.00 0.00 0.00 100.00 0.00    
Tobacco 12.20 0.00 0.00 0.00 0.00 0.00 100.00    
Accident category        HRI LRI TRI 
Other 2.50 2.86 3.15 3.15 0.89 2.72 3.08 0.65 1.61 1.13 
Theft from Container/Trailer 3.05 3.74 2.79 6.07 1.04 3.28 2.27 3.02 2.01 2.52 
Theft from Facility 2.22 3.19 2.40 2.48 0.52 3.53 1.14 1.31 1.70 1.51 
Theft from Vehicle 64.20 82.60 82.60 67.40 7.20 81.80 88.20 24.00 57.00 40.50 
Theft of Container/Trailer 1.54 2.09 2.30 1.37 1.26 1.47 1.04 0.76 0.50 0.63 
Theft of Vehicle 6.26 2.86 5.21 18.00 2.54 6.26 2.35 11.74 3.91 7.83 
Truck Theft 20.30 2.64 1.57 1.58 86.60 0.92 1.94 66.30 19.38 42.84  
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facility, and truck theft, ‘Sunday’ tends to be the peak day during the 
week. Another finding is that even though direct statistics show that the 
overall probability of truck theft accidents (20.3%) is much lower than 
that of theft from vehicles (64.2%), truck theft is the most likely accident 
type to cause a major accident with a loss value over €100k. 

In addition to the correlations between accident category and each 
RIF, BN can reflect the combined effects of multiple RIFs in each acci-
dent category to simulate reality. For instance, the riskiest scenario in 
‘theft from vehicles’ is demonstrated when each RIF is assigned with the 
state generating the highest joint probability with ‘theft from vehicle’, as 
seen in Fig. 7. In that scenario, the probability of ‘theft from vehicles’ 
significantly increases from the initial 64.2% to 99.9%. If knowing the 
probability of a cargo theft accident is 99.9% in advance, freight owners 
would not deliver their cargoes in that scenario without taking special 
protection measures. Such high-level risks could be avoided in the future 
with the availability of our proposed risk prediction and diagnosis model 
in this paper. 

Whereas the states of some RIFs are unknown in practice such as 
‘MO’, ‘attempt’, and ‘major accident’; besides, ‘year’ presents a histor-
ical character in this study. In this circumstance, the abovementioned 
scenario analysis in BN can be adopted to predict the accident category 
based on the known information to better simulate the reality. As pre-
sented in Figs. 8 and 9, given the above four RIFs unknown and the 
month and weekday both assigned with the states generating the highest 
impacts in Fig. 8 and the lowest impacts in Fig. 9, it is observed that the 
predicted probability that tobacco to be stolen from vehicles while in 
transportation in East Midlands is between 89.9% and 98.6%, with 
‘intrusion’ and ‘theft from moving vehicles’ being the most likely used 
MOs. In other accident categories, the combined effects of the ‘hot spots’ 
and ‘popular products’ can be examined as well. 

5.2. Implications 

From the above analytical results, the most important factors and 
their significant states influencing the occurrence likelihood of cargo 
theft accidents from freight supply chains have been identified. 
Accordingly, decision-makers in supply chains can gain useful insights 
on how to prioritize the resource allocations for various products, 
location types, and regions where the cargo security level is relatively 
low. For instance, the highest security setting should be allocated to 

moving cargoes (e.g., tobacco, clothing & footwear, food & drink) from 
vehicles to use high-tech real-time monitoring equipment such as 
drones, considering the significantly high probability of tobacco theft 
accidents from vehicles. Besides, the highest types of cargo theft acci-
dents in different regions vary, indicating cargo protection associations 
should enhance cooperation with local transport authorities to develop 
different safety policies for cargo transportation with respect to the 
major accident types in different regions. 

Based on the known information on cargo type, conveyance mode, 
location type, and destination region, multiple supply chain stake-
holders can use the developed model of this study to make optimized 
decisions against cargo theft. Logistics companies, for the first time, can 
evaluate their logistics solutions made for the shippers and/or con-
signees from a safety perspective beyond the traditional cost and transit 
time aspects. Insurance companies can make diversified pricing strate-
gies considering not only the cargo value factor but also the risk level of 
theft crimes derived from the model, simultaneously, freight owners and 
carriers can select the best-fitted insurance product for their shipped 
cargo. 

This is a pioneering study advising supply chain stakeholders to not 
only pay attention to the high-valued product, location type, MO, and 
region contributing to the occurrence of cargo theft accidents but also 
give special consideration to the direct causal relationships between the 
states of the essential RIFs and each accident type. 

6. Conclusion 

This paper describes a new cargo theft risk analysis from both 
empirical and methodological perspectives. It develops an advanced 
quantitative risk analysis method to analyse the interdependency of the 
RIFs influencing cargo theft from a whole supply chain perspective. 
First, the cargo theft RIFs are identified from the literature and accident 
records. Second, a data-driven BN is proposed to construct the model 
with uncertainty to realise cargo theft risk prediction and diagnosis. 
Despite BN’s popularity in such sectors as transportation and energy for 
accident investigation, its application in freight supply chains is new. 
Third, the critical RIFs contributing to cargo theft are evaluated to 
predict the occurrence of possible cargo theft accidents. Lastly, the real 
accidents are investigated to test and verify the model with an accuracy 
rate of 89.14%. Furthermore, the model is validated using sensitivity 

Table 6 
TRI of all RIFs for all accident categories.   

Product category Year Location type MO Region Month Major accident Weekday Attempt 

Other 1.13 5.13 3.13 15.06 3.48 1.00 7.42 0.46 0.14 
Theft from Container/Trailer 2.52 10.09 4.19 0.69 3.12 2.18 4.20 0.66 3.46 
Theft from Facility 1.51 7.02 10.05 1.93 3.96 0.98 4.53 1.48 0.25 
Theft from Vehicle 40.50 31.90 32.40 33.80 31.16 12.45 23.90 12.65 0.00 
Theft of Container/Trailer 0.63 3.44 4.91 1.39 2.71 0.97 3.74 1.47 0.11 
Theft of Vehicle 7.83 10.77 12.86 13.53 6.47 7.02 3.99 3.50 1.00 
Truck Theft 42.84 32.41 15.62 9.27 16.40 10.22 0.05 7.70 3.00  

Table 7 
The importance rankings of RIFs for the accident categories.   

Product category Year Location type MO Region Month Major accident Weekday Attempt 

Other 6 3 5 1 4 7 2 8 9 
Theft from Container/Trailer 6 1 3 8 5 7 2 9 4 
Theft from Facility 6 2 1 5 4 8 3 7 9 
Theft from Vehicle 1 4 3 2 5 8 6 7 9 
Theft of Container/Trailer 8 3 1 6 4 7 2 5 9 
Theft of Vehicle 4 3 2 1 6 5 7 8 9 
Truck Theft 1 2 4 6 3 5 9 7 8  
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Table 8 
The joint probability.  

Product category         
Other Theft from Container/ 

Trailer 
Theft from 
Facility 

Theft from 
Vehicle 

Theft of Container/ 
Trailer 

Theft of 
Vehicle 

Truck 
Theft 

Clothing & Footwear 2.86 3.74 3.19 82.60 2.09 2.86 2.64 
Food & Drink 3.149 2.79 2.40 82.60 2.30 5.21 1.57 
Miscellaneous 3.15 6.07 2.48 67.40 1.37 18 1.58 
No Load 0.89 1.04 0.52 7.2 1.26 2.54 86.6 
Other 2.72 3.28 3.53 81.80 1.47 6.26 0.92 
Tobacco 3.08 2.27 1.14 88.2 1.04 2.35 1.94 
Year        
2009 2.05 0.52 1.4 39.7 0.38 6.13 49.8 
2010 1.67 0.56 0.77 27.8 0.41 3.12 65.7 
2011 11.5 8.44 12 31.6 6.21 12.3 18 
2012 9.17 9.85 11.5 31.6 7.25 15.8 14.8 
2013 8.35 7.56 14.8 40.5 5.56 11.9 11.3 
2014 9.51 9.08 12.7 39 4.88 14.9 9.94 
2015 5.94 20.7 8.89 44 4.38 9.46 6.67 
2016 3.35 12.3 4.95 69.8 2.28 4.62 2.63 
2017 2.27 2.63 1.14 87 2.03 3.26 1.69 
2018 1.24 1.29 0.94 91.6 1.66 2.37 0.88 
2019 1.63 3.54 1.59 81.4 1.21 8.93 1.71 
2020 2.58 1.5 1.82 82 1.8 7.7 2.56 
2021 9.15 10.2 5.89 41.5 3.8 23.9 5.59 
Location type        
Destination Facility 7.53 1.01 2.52 56.1 0.83 27.9 4.07 
En Route 3.61 2.72 1.22 80.3 1.02 7.49 3.67 
Origin Facility 5.19 2.24 20.4 15.5 3.34 18.4 34.9 
Other 6.79 9.39 12.4 35.7 10.5 15.7 9.5 
Unclassified Parking 1.28 2.71 0.3 69 0.68 2.19 23.8 
MO        
Intrusion 0.28 3.13 2.05 66.5 1.41 4.64 22 
Other 30.4 3.3 5.91 18.1 4.18 28.9 9.15 
Theft from Moving Vehicles 2.1 2.19 2.07 85.7 2.05 1.84 4.02 
Violent & Threat with 

Violence 
29.2 1.92 3.17 33.1 1.96 27.1 3.47 

Region        
East Midlands 1.46 2.54 1.29 82.3 1.1 2.47 8.8 
East of England 2.02 4.54 1.34 73.9 1.04 3.65 13.6 
London 3.75 1.71 1.73 63.1 0.93 9.09 19.6 
North East 5.2 4.89 4.62 45.7 3.85 11.4 24.4 
North West 3.83 2.38 3.57 39.8 2.27 9.95 38.2 
Northern Ireland 8.42 7.83 9.04 19.98 6.16 15.4 33.1 
Scotland 5.39 6.16 9.21 34 5.09 15 25.1 
South East 1.56 4.09 1.65 72.3 0.74 3.54 16.1 
South West 3.78 3.8 5.98 41.5 4.18 11.8 29 
Wales 5.57 4.9 5.23 26.5 3.59 12.6 41.6 
West Midlands 2.6 1.6 1.96 54.6 1.73 10.4 27.2 
Yorkshire and the Humber 1.64 1.77 1.55 64.2 1.2 4.79 24.8 
Month        
1 2.67 3.39 2.19 68.60 1.57 10.75 10.76 
2 2.70 3.48 2.25 61.90 0.84 8.31 20.50 
3 2.36 2.72 2.12 61.10 1.41 9.48 20.80 
4 2.97 2.73 2.44 61.40 1.00 4.52 25.00 
5 3.65 5.99 1.51 51.6 1.18 6.28 29.80 
6 3.09 3.74 2.61 63.80 1.95 2.07 22.80 
7 1.73 2.45 2.76 61.90 1.51 4.11 25.60 
8 2.06 2.37 2.05 56.40 2.28 3.64 31.2 
9 1.66 2.66 1.38 68.00 1.21 2.86 22.20 
10 1.71 3.19 1.70 76.40 1.28 2.72 13.00 
11 2.83 1.63 2.55 76.5 1.96 3.06 11.40 
12 2.52 2.21 3.34 59.20 2.77 16.1 13.90 
Major accident        
No 2.07 2.8 1.95 65.6 1.32 6.02 20.3 
Yes 16.9 11.2 11 17.8 8.8 14 20.4 
Weekday        
1 2.41 2.63 3.08 48.1 3.56 11.4 28.9 
2 2.21 2.35 2.41 66.1 1.18 6.05 19.7 
3 2.49 3.17 1.51 67.6 1.13 5.25 18.8 
4 2.02 2.83 1.58 70.4 0.86 4.87 17.5 
5 2.9375 3.63 1.6 71.3 1.23 4.41 14.9 
6 2.9434 3.16 2.81 59.6 1.31 7.39 22.8 
7 2.66 3.66 4.46 46 3.8 9.16 30.3 
Attempt        
No 2.48 2.49 2.18 64.17 1.52 6.42 20.8 
Yes 2.76 9.4 2.67 64.2 1.74 4.42 14.8  

X. Liang et al.                                                                                                                                                                                                                                    



Reliability Engineering and System Safety 226 (2022) 108702

12

Fig. 6. Seasonality in accident categories.  

Fig. 7. Scenario A.  
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Fig. 8. Scenario B (1).  

Fig. 9. Scenario B (2).  
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analysis and scenario analysis. 
The findings of this study provide the most significant implications 

for the prevention of cargo theft in freight supply chains. 

1) This study pioneers the development of an advanced model to pre-
dict the risk level of cargo theft accidents. The most influential RIFs 
of cargo theft accidents are identified as product category, year, 
location type, MO, and region from a UK case study. 

2) This study reveals the combined effects of multiple RIFs and differ-
entiates the states’ effects of each RIF, which enables the scenario 
simulation of reality.  

3) It is evident that the attention should not be only paid to the high- 
valued product, location type, MO, and region of occurrence of 
cargo theft accidents, but also to the root causes of the respective 
accident types derived from the analysis of causal relationships.  

4) The developed model can benefit multiple supply chain stakeholders 
in prioritizing resource allocation and optimizing the decisions for 
cost-effective theft risk control in practice. 

This study exposes some limitations to be addressed in future 
research, for instance, some states with very low probabilities in TAPA’s 
database are combined as one state ‘other’. However, some of these 
states (e.g., electronics in the product category and hijacking in the 
accident category) have achieved industrial attention, thus their effects 
combined with other RIFs need to be further investigated in the future. 
Furthermore, the designed flow of data analysis in this study focuses on 
the UK area and the model can be applied in other areas for cargo theft 
analysis to develop the best practice of protection through the bench-
marking of the performance of different areas in future. 
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Appendix A. Confusion matrix  

Predicted Other Theft from 
Container/Trailer 

Theft from 
Facility 

Theft from 
Vehicles 

Theft of Container/ 
Trailer 

Theft of 
Vehicles 

Truck 
Theft 

Actual 
total 

Accuracy rate 
(%) 

Actual          
Other 14 1 1 5 0 4 0 25 56.00 
Theft from 

Container/Trailer 
0 13 1 21 0 2 0 37 35.14 

Theft from Facility 0 0 4 6 1 4 1 16 25.00 
Theft from Vehicles 4 2 4 577 1 11 0 599 96.33 
Theft of Container/ 

Trailer 
0 0 0 6 2 0 1 9 22.22 

Theft of Vehicles 1 0 2 15 2 32 1 53 60.38 
Truck Theft 0 0 0 1 0 3 187 191 97.91 
Predicted total 19 16 12 631 6 56 190 930 89.14  

References 

[1] Altman DG. Practical statistics for medical research. CRC Press; 1990. 
[2] Alyami H, Yang Z, Riahi R, Bonsall S, Wang J. Advanced uncertainty modelling for 

container port risk analysis. Acc Anal Prevent 2019;123:411–21. https://doi.org/ 
10.1016/j.aap.2016.08.007. 

[3] Belzer MH, Swan PF. Supply chain security: agency theory and port drayage 
drivers. Econ Labour Relat Rev 2011;22:41–63. https://doi.org/10.1177/ 
103530461102200103. 

[4] Boone CA, Skipper JB, Murfield A, Murfield ML. Cargo theft in the motor carrier 
industry: an exploratory study. J Transp Secur 2016;9:57–70. https://doi.org/ 
10.1007/s12198-016-0166-1. 

[5] Chow CK, Liu CN. Approximating discrete probability distributions with 
dependence trees. IEEE Trans Inf Theory 1968;14:462–7. https://doi.org/10.1109/ 
TIT.1968.1054142. 

[6] Cohen J. A Coefficient of agreement for nominal scales. Educ Psychol Measur 1960; 
20:37–46. https://doi.org/10.1177/001316446002000104. 

[7] da Silva ARA, da Cruz CFS, Fernandes JEL, da Costa JB, Chen X, Fabricio R, et al. 
RFID-based scheme for TV receiver control in case of theft. 2018 IEEE International 
Conference on Consumer Electronics (ICCE), 2018, p. 1–6. 10.1109/ 
ICCE.2018.8326100. 

[8] Dan Burges. Cargo Theft, Loss Prevention, and Supply Chain Security | 
ScienceDirect (2022). Available at: https://www.sciencedirect.com/book/97801 
24160071/cargo-theft-loss-prevention-and-supply-chain-security. 

X. Liang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.ress.2022.108702
http://refhub.elsevier.com/S0951-8320(22)00327-1/sbref0001
https://doi.org/10.1016/j.aap.2016.08.007
https://doi.org/10.1016/j.aap.2016.08.007
https://doi.org/10.1177/103530461102200103
https://doi.org/10.1177/103530461102200103
https://doi.org/10.1007/s12198-016-0166-1
https://doi.org/10.1007/s12198-016-0166-1
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1177/001316446002000104
https://www.sciencedirect.com/book/9780124160071/cargo-theft-loss-prevention-and-supply-chain-security
https://www.sciencedirect.com/book/9780124160071/cargo-theft-loss-prevention-and-supply-chain-security


Reliability Engineering and System Safety 226 (2022) 108702

15

[9] Dindar S, Kaewunruen S, An M. A hierarchical Bayesian-based model for hazard 
analysis of climate effect on failures of railway turnout components. Reliab Eng 
Syst Saf 2022;218:108130. https://doi.org/10.1016/j.ress.2021.108130. 

[10] Dong-li H, Zheng-wu Y, You BS, Cho SK, Bae HY. A novel architecture for cargos 
location and safety in networked RFID. In: Proceedings of the 5th Asian symposium 
on geographic information systems. Chongqing: Chongqing University Posts & 
Telecommunications; 2007. p. 386–91. 

[11] Ekwall D, Brüls H, Wyer D. Theft of pharmaceuticals during transport in Europe. 
J Transp Secur 2016;9:1–16. https://doi.org/10.1007/s12198-015-0162-x. 

[12] Ekwall D, Lantz B. Cargo theft at non-secure parking locations. Int J Retail Distribut 
Manag 2015;43:204–20. https://doi.org/10.1108/IJRDM-06-2013-0131. 

[13] Ekwall D, Lantz B. Modi operandi for cargo theft in EMEA–a seasonality analysis. 
J Transp Secur 2015;8:99–113. https://doi.org/10.1007/s12198-015-0160-z. 

[14] Ekwall D, Lantz B. Seasonality of cargo theft at transport chain locations. Int J Phys 
Distribut Logist Manag 2013;43:728–46. https://doi.org/10.1108/IJPDLM-06- 
2012-0175. 

[15] Ekwall D, Lantz B. Supply chain risk analysis and assessment: cargo theft. Transp J 
2016;55:400–19. https://doi.org/10.5325/transportationj.55.4.0400. 

[16] Ekwall D, Lantz B. The use of violence in cargo theft – a supply chain disruption 
case. J Transp Secur 2018;11:3–21. https://doi.org/10.1007/s12198-018-0186-0. 

[17] Ekwall D. The displacement effect in cargo theft. Int J Phys Distribut Logist Manag 
2009;39:47–62. https://doi.org/10.1108/09600030910929183. 

[18] Fan S, Blanco-Davis E, Yang Z, Zhang J, Yan X. Incorporation of human factors into 
maritime accident analysis using a data-driven Bayesian network. Reliab Eng Syst 
Saf 2020;203:107070. https://doi.org/10.1016/j.ress.2020.107070. 

[19] Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull 
1971;76(5):378–82. https://doi.org/10.1037/h0031619. 

[20] Fokum DT, Frost VS, DePardo D, Kuehnhausen M, Oguna AN, Searl LS, et al. 
Experiences from a transportation security sensor network field trial. IEEE 
Globecom Workshops. New York: IEEE; 2009. p. 302–7. 

[21] Friedman N, Geiger D. Classifiers Goldszmidt M. Bayesian network. Mach Learn 
1997;29:131–63. https://doi.org/10.1023/A:1007465528199. 

[22] Guerin L, Vieira JGV, de Oliveira RLM, de Oliveira LK, de Miranda Vieira HE, 
Dablanc L. The geography of warehouses in the São Paulo Metropolitan Region and 
contributing factors to this spatial distribution. J Transp Geogr 2021;91:102976. 
https://doi.org/10.1016/j.jtrangeo.2021.102976. 

[23] Harvey JM. The secure networked truck: protecting America’s transportation 
infrastructure. In: Proceedings of the IEEE 60th vehicular technology conference. 
7. IEEE; 2004. p. 5281–4. VTC2004-Fall20047. 

[24] Justus M, Ceccato V, Kahn T, Moreira G. Crime against trading: the case of cargo 
theft in São. Paulo 2017. https://doi.org/10.13140/RG.2.2.21943.21923. 

[25] Kit I, Fomenko A, Vyshnia V, Novosad I. Computer tools for cargo thefts fighting on 
railway transport. In: Proceedings of the 10th IEEE international conference on 
intelligent data acquisition and advanced computing systems: technology and 
applications (IDAACS). 1. IEEE; 2019. p. 172–5. 

[26] Klodzinski J, Kerr P. Electronic freight theft management system for florida. Transp 
Res Rec 2007;2008:1–9. https://doi.org/10.3141/2008-01. 
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