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Abstract: Automatic Identi�cation System (AIS) equipment can aid in identifying ships, reducing
ship collision risks and ensuring maritime safety. However, the explosion of massive AIS data
has caused increasing data processing challenges affecting their practical applications. Speci�cally,
mistakes, noise, and missing data are presented during AIS data transmission and encoding, resulting
in poor data quality and inaccurate data sources that negatively impact maritime safety research.
To address this issue, a robust AIS data denoising and reconstruction methodology was proposed
to realise the data preprocessing for different applications in maritime transportation. It includes
two parts: Density-Based Spatial Clustering of Applications with Noise based on Deep Kernel
Convolution (DBSCANDKC) and the reconstruction method, which can extract high-quality AIS
data to guarantee the accuracy of the related maritime research. Firstly, the kinematics feature was
employed to remove apparent noise from the AIS data. The square deep kernel convolution was then
incorporated into density clustering to �nd and remove possibly anomalous data. Finally, a piecewise
cubic spline interpolation approach was applied to construct the missing denoised trajectory data.
The experiments were implemented in the Arctic Ocean and Strait of Dover to demonstrate the
effectiveness and performance of the proposed methodology in different shipping environments.
This methodology makes signi�cant contributions to future maritime situational awareness, collision
avoidance, and robust trajectory development for safety at sea.

Keywords: deep kernel convolution; density clustering; AIS data; data preprocessing; maritime safety

1. Introduction
Maritime transportation presents a crucial role in international trade, accounting for

more than 90% of global freight traffic [1,2]. Maritime safety has gained increasing attention
under the surge of ultra-large ships and the occurrence of catastrophic maritime accidents.
To improve navigation safety, the Automatic Identification System (AIS) equipment onboard
ships becomes mandatory under the Safety of Life at Sea (SOLAS) by the International
Maritime Organization (IMO). According to the regulation, all passenger and international
ships with a gross tonnage of more than 300 GT have to be equipped with AIS equipment [3,4].
AIS equipment is an automatic tracking and reporting system for ship-to-ship and ship-
to-shore communication. It involves not only static information (e.g., Maritime Mobile
Service Identity (MMSI), ship type, length, and call sign) but also dynamic information (e.g.,
latitude, longitude, speed, and heading) [5,6]. AIS data are transmitted every 2 s to 10 s
during the voyage. Along with the mandatory use of AIS equipment and Information and
Communications Technology (ICT), AIS data is exploding, generating almost one trillion bits of
data daily [7,8]. Up to now, AIS data has been widely used for ship trajectory compression, ship

J. Mar. Sci. Eng. 2022, 10, 1319. https://doi.org/10.3390/jmse10091319 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10091319
https://doi.org/10.3390/jmse10091319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-6592-7024
https://orcid.org/0000-0003-1007-8349
https://orcid.org/0000-0002-4293-4763
https://doi.org/10.3390/jmse10091319
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10091319?type=check_update&version=4


J. Mar. Sci. Eng. 2022, 10, 1319 2 of 24

trajectory clustering, ship trajectory classification, abnormal ship trajectory identification, ship
trajectory prediction [9,10], ship collision avoidance [11�17], maritime situational awareness,
and other related research [18�22]. Such applications reveal the critical role that AIS data play
in current international shipping context.

However, AIS data frequently encounter noise, incorrect data, missing data, and
packet loss during creation, encoding, transmission, and decoding [23]. These problems
pose enormous challenges to maritime knowledge discovery [24]. Speci�cally, the AIS
data preprocessing are essential for guaranteeing and improving the quality of following
applications. Therefore, there is an urgent need to �nd new solutions for AIS data denoising
and reconstruction.

To address these issues, scholars have proposed various strategies for trajectory re-
construction and denoising [25�28]. Some employ the kinematic properties of AIS data
to eliminate abnormal data, while others use clustering methods to achieve the goal of
denoising. In addition, AIS data denoising and reconstruction methods based on deep
learning have also exposed a rising pro�le, following the techniques of arti�cial intelligence
and extensive data analysis [29]. Although showing some attractiveness, the existing AIS
data denoising and reconstruction methods still reveal practical problems when being used
to deal with the large size of big AIS data in investigated waters. This paper, therefore,
aimed to solve the following research questions.

Question 1: How to accurately handle noise, redundant, and abnormal data in big AIS data,
relating to both large and small water areas?

Question 2: How to reconstruct the trajectory after data denoising based on different ships?

This paper proposed a new holistic methodology for AIS data denoising, trajectory ex-
traction, and reconstruction. The methodology consists of two parts: Density-Based Spatial
Clustering of Applications with Noise based on Deep Kernel Convolution (DBSCANDKC)
and a reconstruction method. Compared with the existing methods, the main contributions
of this paper include:
(1) Development of a systematical framework that enables rational AIS data denoising,

trajectory extraction, and reconstruction.
(2) Incorporation of deep kernel convolution and density clustering into the process of

AIS data denoising.
(3) Application of the piecewise cubic spline interpolation method in trajectory recon-

struction, in which the position and speed of ships are taken into account in an
interpolation process.

(4) Implementation of the experiments to verify the effectiveness of the proposed method-
ology in both big and small waterways.
The paper is organised as follows. A literature review of the current research on denoising

and reconstructing AIS data-based trajectories is presented in Section 2. Section 3 introduces
the new framework construction, followed by a series of case studies and experimental results
in Section 4. Finally, Section 5 summarises the findings and future development.

2. Literature Review
AIS data are one of the essential sources of ship trajectory data. Therefore, removing

the noise from the raw AIS data is among the most important steps for maritime safety
analysis and abnormal behaviour identi�cation. Several approaches have been proposed in
the literature for ship trajectory denoising and reconstruction. Generally, these methods are
divided into the following categories: (1) those based on AIS data features, (2) those based
on clustering, and (3) those based on deep learning models.

2.1. Research on Denoising Based on AIS Data Features
The kinematic information of AIS data is often used to find noises in AIS data. Qu et al. [30]

applied Newton’s equation of motion with kinematic information from AIS data to determine
speed, distance, and other indicators. Zhang et al. [31] exploited linear interpolation to delete
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noise from AIS data. The method is basic and straightforward but does not take into account
curved trajectories. Zhang et al. [32] put forward a multi-regime vessel trajectory reconstruction
model to eliminate anomalous AIS data using information such as speed, acceleration, and Rate
of Turn (ROT). The curved trajectory noises are removed based on this model. However, this
method is only verified by rectangular experiments on certain large ships, leaving its generality
to be further explored. Rong et al. [33] introduced a probabilistic trajectory prediction model
that can aid in decomposing ship motion into horizontal and vertical dimensions and handles
raw AIS data in these dimensions. Furthermore, a Markov model was included in extracting
ship trajectories to perform anomaly detection on AIS data [34]. Tong et al. [35] coupled Markov
Chain with Grey prediction to increase the performance of the Markov model to remove
anomalous data in curved channels. However, the Markov model method is unsuitable for
long-term trajectory prediction, and the denoising effect is hence limited.

It is easy to understand and apply the denoising approach based on features to handle
AIS data. However, denoising methods often fail when dealing with complex external
variables, so they are more competent for the preprocessing of data denoising.

2.2. Research on Denoising Based on Clustering
The clustering methods are also applied to deal with abnormal AIS data. Researchers

exploited specific aspects of AIS data to assess trajectory similarity in prior work on tra-
jectory clustering [36]. Li et al. [37] employed a density-based clustering algorithm, Order-
ing Points to Identify the Clustering Structure (OPTICS), to remove abnormal data. How-
ever, this approach has bad performance while processing large volumes of trajectory data.
Li et al. [38] proposed an Adaptive Douglas�Peucker (ADP) method to speed up similarity
measurements between huge AIS trajectories, increasing classification and clustering accuracy.
Qi et al. [39] utilised the spatial clustering method to analyse historical AIS data from ships
to conduct data denoising and realise trajectory prediction, achieving the self-adaptation of
parameters. Zhen et al. [40] proposed a hierarchical and k-medoids clustering technique to
learn and model ship navigation behaviours in coastal seas, improving maritime situational
awareness. However, it is time-consuming. Dobrkovic et al. [41] applied a genetic algorithm
to accelerate the denoising of ship trajectory clustering. Gao et al. [42] developed a multi-step
sub-trajectory clustering approach to better understand and explain ship behaviour patterns.

The denoising methods based on clustering methods can generally deliver good
results for small AIS data due to their unsupervised features and no training set required.
However, they reveal such weaknesses as dif�cult threshold setting, long data calculation
time, and low adaptability from their previous applications.

2.3. Research on Denoising Based on Deep Learning
AIS data denoising approaches based on deep learning have attracted increasing

attention in recent years due to the growing applications of neural network models. Usage
of deep learning methods to mine AIS data has become a hotspot of maritime safety research.
Chen et al. [43] utilised an arti�cial neural network (ANN) to predict and reconstruct
ship trajectories by the kinematic information from AIS data. This method helps remove
anomalous AIS data. However, over�tting always occurs in ANN modules, causing bad
performance. Due to the drawbacks of the over�tting in an ANN model, Chen et al. [44]
combined Ensemble Empirical Mode Decomposition (EEMD) with an ANN model to
develop a new approach which signi�cantly outperformed the traditional ANN model
in traf�c �ow prediction. In addition, the method also supported the processing of other
traf�c data. It can improve the accuracy of AIS data, but the experiment is only veri�ed by
a scenario involving a short-term traf�c �ow. Tang et al. [45] designed a hybrid prediction
model that classi�ed the original traf�c data using EEMD and Fuzzy C-means Neural
Network (FCMNN). Compared with the standard ANN method, the FCMNN model trains
and optimises the network, which can successfully identify noises in the original dataset.
At the same time, scholars conduct the denoising of the more complex ship trajectories in
the waterways based on deep learning methods [46]. Zhang et al. [47] obtained denoising
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features using a deep auto-encoder and used k-means to handle denoised trajectories.
The accuracy of denoising is substantially improved compared with existing approaches,
but the design of motion behaviour elements still needs to be improved. Liu et al. [15]
introduced a deep temporal clustering method to remove noise data. This approach has a
more obvious clustering effect but is less effective in low-noise situations.

The AIS data denoising methods based on deep learning are prevalent in the research
of ship trajectories. However, the associated high hardware cost, complex model design,
and other factors need to be better addressed to stimulate their widespread use.

3. Methodology
3.1. The Proposed Framework

This paper presented a solution to AIS data denoising, trajectory extraction, and
trajectory reconstruction applications by the incorporation of deep kernel convolution
into density clustering. It takes into account speci�c kinematic aspects in AIS data and
overcomes many shortcomings of current AIS denoising methods. The �owchart of the
proposed methodology is shown in Figure 1. Data collection and decoding can convert
encoded data into ship static and dynamic information. Then, the trajectories are generated
based on different ships. Trajectory preprocessing is carried out in three parts: ship
trajectory division, extraction, and abnormal data cleaning. Furthermore, DBSCANDKC is
conducted based on meshing, deep convolution kernel, and potential data cleaning. Finally,
cubic spline interpolation is applied to construct the ship trajectories.
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causing�1bad�1performance.�1Due�1to�1the�1drawbacks�1of�1the�1overfitting �1in�1an�1ANN �1model,�1Chen�1
et�1al.�1[44]�1combined�1Ensemble�1Empirical �1Mode�1Decomposition�1(EEMD)�1with �1an�1ANN �1
model�1to�1develop�1a�1new�1approach�1which �1significantly �1outperformed �1the�1traditional �1ANN �1
model�1in�1traffic �1flow �1prediction. �1In�1addition, �1the�1method�1also�1supported �1the�1processing�1of�1
other�1traffic �1data.�1It �1can�1improve �1the�1accuracy�1of�1AIS�1data,�1but�1the�1experiment�1is�1only �1ver�,
ified �1by�1a�1scenario�1involving �1a�1short�,term�1traffic �1flow. �1Tang�1et�1al.�1[45]�1designed�1a�1hybrid �1
prediction �1model�1that�1classified�1the�1original �1traffic �1data�1using�1EEMD�1and�1Fuzzy�1C�,means�1
Neural �1Network �1(FCMNN). �1Compared�1with �1the�1standard�1ANN �1method,�1the�1FCMNN �1
model�1trains�1and�1optimises�1the�1network, �1which �1can�1successfully�1identify �1noises�1in�1the�1
original �1dataset.�1At �1the�1same�1time,�1scholars�1conduct�1the�1denoising�1of�1the�1more�1complex�1
ship�1trajectories�1in�1the�1waterways �1based�1on�1deep�1learning �1methods�1[46].�1Zhang�1et�1al.�1[47]�1
obtained�1denoising�1features�1using�1a�1deep�1auto�,encoder�1and�1used�1k�,means�1to�1handle�1de�,
noised�1trajectories.�1The�1accuracy�1of�1denoising�1is�1substantially �1improved �1compared�1with �1
existing�1approaches,�1but�1the�1design�1of�1motion �1behaviour �1elements�1still �1needs�1to�1be�1im�,
proved. �1Liu �1et�1al.�1[15]�1introduced �1a�1deep�1temporal �1clustering�1method�1to�1remove�1noise�1data.�1
This�1approach�1has�1a�1more�1obvious�1clustering �1effect�1but�1is�1less�1effective�1in�1low �,noise�1situa�,
tions.�1

The�1AIS�1data�1denoising�1methods�1based�1on�1deep�1learning �1are�1prevalent �1in�1the�1research�1
of�1ship�1trajectories.�1However, �1the�1associated�1high �1hardware �1cost,�1complex�1model�1design,�1
and�1other�1factors�1need�1to�1be�1better�1addressed�1to�1stimulate �1their �1widespread�1use.�1

3.�1Methodology �1

3.1.�1The�1Proposed�1Framework�1

This�1paper�1presented�1a�1solution �1to�1AIS�1data�1denoising,�1trajectory�1extraction,�1and�1tra�,
jectory�1reconstruction�1applications�1by�1the�1incorporation �1of�1deep�1kernel�1convolution �1into �1
density�1clustering.�1It �1takes�1into �1account�1specific�1kinematic �1aspects�1in�1AIS�1data�1and�1over�,
comes�1many�1shortcomings�1of�1current �1AIS�1denoising�1methods.�1The�1flowchart �1of�1the�1pro�,
posed�1methodology �1is�1shown�1in�1Figure�11.�1Data�1collection�1and�1decoding�1can�1convert�1en�,
coded�1data�1into �1ship�1static�1and�1dynamic �1information. �1Then,�1the�1trajectories�1are�1generated�1
based�1on�1different �1ships.�1Trajectory�1preprocessing�1is�1carried�1out�1in�1three�1parts:�1ship�1trajec�,
tory �1division, �1extraction,�1and�1abnormal�1data�1cleaning.�1Furthermore, �1DBSCANDKC �1is�1con�,
ducted�1based�1on�1meshing,�1deep�1convolution �1kernel,�1and�1potential �1data�1cleaning.�1Finally, �1
cubic�1spline�1interpolation �1is�1applied �1to�1construct�1the�1ship�1trajectories.�1

�1

Figure �11.�1The�1flowchart �1of�1the�1proposed�1methodology. �1Figure 1. The �owchart of the proposed methodology.

3.2. A New DBSCANDKC Method
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a well-

known method for grouping spatial data based on density [48]. Its essence is to separate
the high-density and low-density areas, and then recognise noises. This method has
two parameters to be set in advance: the number of points (MinPts) and a particular
region (circular with radius Eps). The noises are that the density of the points is less than
MinPts. Furthermore, this approach can locate clusters of various forms in noisy geographic
datasets, identify noises, and remove anomalous data [49]. This paper proposes a new
methodology to conduct data denoising, trajectory extraction, and trajectory reconstruction.
DBSCANDKC can increase the denoising ef�ciency by converting the original circular
neighbourhood in the classical DBSCAN into a 3 � 3 deep square convolution kernel with
only one threshold MinPts. Therefore, only one parameter has to be set in it: the number of
points covered by the square (a density threshold MinPts).
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Given Gij, i, j = 1, 2, � � � , N denotes the number of grids in the research areas, and
MinPts is the threshold for each grid, the basic de�nition of DBSCANDKC is described in
detail as follows.

De�nition 1. The density matrix consists of the number of data points in each grid and is shown below.

DM =

2

64

G11 � � � G1N
...

. . .
...

GN1 � � � GNN

3

75 (1)

De�nition 2. A deep convolution kernel is constructed by a dynamic Gaussian kernel function, and
then used to perform the smoothing operation with the density matrix. The mathematical expression
is shown below.

h(x) =
Z

f (x)g(x)dx (2)

where h(x) is the feature map, f (x) indicates the input information of the trajectory density
matrix, and g(x) denotes the Gaussian convolutional kernel. The schematic diagram of the
Gaussian kernel convolution operation is presented in Figure 2.
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Definition �12.�1A�1deep�1convolution�1kernel�1is�1constructed�1by�1a�1dynamic�1Gaussian�1kernel�1function,�1
and�1then�1used�1to�1perform�1the�1smoothing�1operation�1with�1the�1density�1matrix.�1The�1mathematical�1ex�,
pression�1is�1shown�1below.�1

� � � � � � � � � � � �h x f x g x dx� �³ �1 (2)�1

where�1 � � � �h x �1is�1the�1feature�1map,�1 � � � �f x �1indicates�1the�1input �1information �1of�1the�1trajectory�1

density�1matrix, �1and�1 � � � �g x �1denotes�1the�1Gaussian�1convolutional �1kernel.�1The�1schematic�1

diagram�1of�1the�1Gaussian�1kernel�1convolution �1operation�1is�1presented�1in�1Figure�12.�1

�1

Figure �12.�1The�1schematic�1diagram�1of�1Gaussian�1kernel�1convolution �1operation.�1Figure 2. The schematic diagram of Gaussian kernel convolution operation.

De�nition 3. N(Gi) is the number of points in the 3� 3 square convolution neighbourhood, which
is de�ned by

N(Gi) = fGi = h(xi)g, i = 1, 2, � � � , n (3)

p is the core point when and only if N(Gi) � MinPts;
p is the noise point when it is not the core point.

3.3. The Proposed Methodology
The preliminary processing of original AIS data is to eliminate evident noise and

anomalous data points based on kinematic features. Then, density clustering and deep
convolution operation concepts are developed to handle some potentially aberrant data.
After the grid meshing, the density matrix of AIS data points (i.e., DM1N�M) is generated to
indicate the density distribution in the whole dataset. The dynamic and square convolution
operation is conducted to obtain the new density matrix (i.e., DM2N�M) with a Gaussian
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kernel function. Then, the new trajectory dataset is obtained based on the MinPts and
square convolution. Finally, the trajectories are reconstructed to improve the quality of
trajectories based on the piecewise cubic spline interpolation method. The �ow of the
proposed DBSCANDKC algorithm is shown in Algorithm 1.

Algorithm 1: DBSCANDKC

Input: Raw AIS trajectory dataset data and density threshold MinPts
Output: The reconstructed trajectory dataset Trdataset
step 1 Get the ship AIS dataset data1 data(MMSI, Timestamp)
step 2 Delete obvious abnormal data points and obtain the dataset

data2 data1\ kinematic f eatures
for Pi in data1:

if Pi.lon 2 [�180�, 180�] \ Pi.lat 2 [�90�, 90�] \ Pi.speed 2 [1, 40]
\ item.course 2 [0�, 360�] \ d 2 [0.05, 1]

data2.reserve(Pi)
else

data2.noise(Pi)
end if

end for
step 3 Grid meshing and generate density matrix DM2N�M

for Pi in data2:
DM1(i, j) Pi.lon \ Pi.lat

end for
step 4 Calculate the new density matrix DM2N�M  Deepconvolution(DM1N�M)
step 5 data3 fDM2(i, j), MinPtsg

for DM2(i, j) in DM2N�M:
if DM2(i, j) < MinPts

data3.noise(DM2(i, j))
else

data3.reserve(DM2(i, j))
end if

end for
step 6 Ship trajectories data4 fdata3, MMSI, timestampg
step 7 Reconstruct the trajectory data Trdataset data4(cubicspline)

for Pi, Pi+1 in data4:
if jPi+1.time� Pi.timej > 10 s :

Trdataseti  cubicspline(Pi, Pi+1)
end if

end for
step 8 Return the reconstruct trajectories dataset Trdataset

3.3.1. Trajectory Preprocessing
The kinematic information is applied to delete the obvious error and noise data, such

as abnormal latitude, longitude, course, and speed. The preprocessing steps are described
as follows.

� Ship trajectory division;

MMSI is the unique identi�cation number of ships, which can be used for the ship
trajectory division. The ship data are separated based on different days. The timestamp
and MMSI are combined to generate the new trajectory dataset.

� Abnormal Data Cleaning.

The latitude, longitude, course, and speed information are applied to remove the
potential abnormal data.

The pseudocode of trajectory preprocessing is presented in Algorithm 2.
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Algorithm 2: Trajectory preprocessing

Input: Raw AIS data data
Output: Preprocessed ship data data2

for Pi 2 data
data1 data(MMSI, Timestamp) split raw ship AIS data
for Pj 2 data1

if Pj.lon /2 [�180�, 180�] jj Pj.lat /2 [�90�, 90�]
or Pj.speed /2 [1, 40]
or Pj.course /2 [0�, 360�]
or d /2 [0.05, 1]

continue
else

return data2 of the same MMSI on different days
end if

end for
end for

3.4. Data Cleaning Based on Data Features and Deep Convolution
The denoising approach based on the kinematic information of AIS data can only

eliminate evident erroneous data. Aberrant data needs to be further handled to generate
cleaner data. The deep square kernel convolution operation with a dynamic Gaussian
kernel function and density clustering are undertaken to discern the abnormal data. The
steps are listed below.

� Mesh Division;

Build trajectory density matrix DM1N�M based on latitude and longitude range.

� Convolution kernel operation;

When an AIS dataset is relatively large, the typical trajectory denoising approach
(such as DBSCAN) will demand considerable memory support and I/O consumption,
leading to bad performance and memory over�ow. Therefore, this paper incorporated deep
convolution-related notions into the AIS data denoising process in a novel way as follows.

Step 1. Reconstruct the density matrix.
Fill the boundary of the DM1N�M with 0 and obtain a (N + 2)� (M+2) density matrix.
Step 2. Build convolution kernel.
To verify the denoising performance of different convolution kernels, this study de-

signes several convolution kernels, such as dynamic Gaussian kernel, mean convolution
kernel, enhanced mean convolution kernel, and sharpening convolution kernel. The Radial
Basis Function (RBF), commonly known as a Gaussian kernel function, is a radially sym-
metric scalar function. It can transform �nite-dimensional data into high-dimensional space
representation [50]. The most common de�nition is k(kx� x0k), which is the monotonic
function of the Euclidean distance between every point x in the space and a particular
centre point x0. The Gaussian kernel function can be de�ned as:

k
�
x, x0

�
= e�

kx�x0k
2s2 , (4)

where x0 is the centre of the kernel function and kx� x0k indicates the Euclidean distance
between the vectors x and x0. The Gaussian kernel function in the procedure reduces
monotonically as the distance between the two vectors grows. s controls the scope of the
Gaussian kernel function. The larger the value, the more signi�cant the local in�uence of
the Gaussian kernel function.

Step 3. Convolution operation.
The 3 � 3 convolutional based on a dynamic Gaussian kernel function is carried out in the

new (N + 2)� (M+2) density matrix and the N �M density matrix DM2N�M is obtained.
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� Potential data cleaning.

The associated concepts of density clustering are applied in this paper to clean the
potentially aberrant AIS data. Firstly, each element DM2ij of the density matrix DM2N�M
is compared to DM1N�M. Then, the threshold MinPts is employed to remove the potential
noises. The pseudocode of potential data cleaning is presented in Algorithm 3.

Algorithm 3: Potential Data Cleaning

Input: Density matrix DM1N�M, DM2N�M, and density threshold MinPts
Output: Kore points data3

for DM2ij in DM2N�M:
if DM2ij � DM1ij

data3.noise(DM2ij)
else

data3.reserve(DM2ij)
end if

end for
return data3

3.5. Trajectory Reconstruction
Some data will inevitably be deleted during the data cleaning stage in real processing.

It is necessary to reconstruct the trajectories. The trajectory reconstruction processing �ow
is presented in Algorithm 4.

� Ship trajectory division;

To complete the missing trajectory points more quickly and effectively, the new tra-
jectory data data3 is needed to be split based on MMSI and timestamp. Then, the ship
trajectories are separated to generate a new dataset.

� Determine the interpolation interval;

The original data were collected from satellite AIS data. There was much noise and
missing data for a long period. Therefore, the time interval T = 10 s was selected to
determine the interpolation interval. If the time interval between the points Pi and Pi+1 in
the same trajectory is more than T, then the trajectory should be reconstructed. As a result,
the data are interpolated using the points Pi and Pi+1 as the starting and ending points.

� Trajectory interpolation.

Lagrange interpolation, piecewise linear interpolation, and cubic spline interpolation
are the commonly used approaches for trajectory interpolation [51�53]. Cubic spline
interpolation is a special case for the spline interpolation method. Compared with other
interpolating polynomials, this approach generates a smoother interpolating polynomial
with higher accuracy [54]. Therefore, the piecewise cubic spline interpolation approach
is employed in this paper to improve the smoothness of the trajectories and the accuracy
during trajectory reconstruction.

The speed of each trajectory point can be retrieved during the AIS data denoising. A
function with time is applied to decompose the speed into longitude and latitude directions
(i.e., vlon and vlat) to express the information of each point. Furthermore, the integral
operation is conducted on the spline function to obtain the vlon and vlat. Finally, the
information of each point is obtained at any time, including longitude, latitude, speed, and
course. For any ship trajectory, the time Si(t) can be set in each sub-segment Tr[ti, ti+1]:

Si(ti) = vloni, Si
0(ti) = v0 loni = aloni, Si

0(ti+1) = v0 lon(i+1) = alon(i+1), (5)

Set the step size as hi = ti+1 � ti, mi = Si(t), and then:
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Si(t) = ci

�
t� ti

hi

�
vloni + c(i+1)

�
t� ti

hi

�
vlon(i+1) + hidi

�
t� ti

hi

�
mi + hid(i+1)

�
t� ti

hi

�
m(i+1), (6)

with ci(t) = (t� 1)2(2t� 1),

c(i+1)(t) = t2(�2t + 3) ci(t) = t2(t� 1
�

, (7)

Thus, a second-order derivative of Equation (5) gives:
8
>>><

>>>:

Si(ti) = 6�
vlon(i+1) � vloni

h2
i

� 2�
2mi + mi+1

hi

Si(ti+1) = �6�
vlon(i+1) � vloni

h2
i

+ 2�
2mi + mi+1

hi

, (8)

To ensure the continuity of the two derivatives,

2mi + mi+1
hi

+
2mi + mi�1

hi�1
= 3�

vlon(i+1) � vloni

h2
i

+ 3�
vloni � vlon(i�1)

h2
i-1

(9)

with li = hi�1/(hi�1 + hi)i, gi = 3[(1�li)(vloni � vlon(i�1))/hi�1 + li(vlon(i+1) � vloni)/hi],
then Equation (9) can be changed into:

(1� li)mi�1 + 2mi + limi+1 = gi, i = 1, 2, 3, � � � , n� 1, (10)

For 8 i, there exists mi = v0loni, then
8
>>>><

>>>>:

2m1 + l1m2 = gi � (1� l1)v0 lon0
(1� l1)m1 + 2m2 + l2m3 = g2
� � �

(1� ln�2)mn�3 + 2mn�2 + ln�2mn�1 = gn�2
(1� ln�1)mn�2 + 2mn�1 = gn�1 � ln�1v0 lonn

, (11)

The system of equations can be rewritten as:

0

BBBBB@

2 l1
1� l1 2 l1

. . . . . . . . .
1� ln�2 2 ln�2

0 1� ln�1 2

1

CCCCCA

0

BBBBB@

m1
m2
...

mn�2
mn�1

1

CCCCCA
=

0

BBBBB@

gi � (1� l1)v0 lon0
g2
...
gn�2
gn�1 � ln�1v0 lonn

1

CCCCCA
, (12)

Then, the coef�cient matrix is obtained

M =

0

BBBBB@

2 l1
1� l1 2 l1

. . . . . . . . .
1� ln�2 2 ln�2

0 1� ln�1 2

1

CCCCCA
. (13)

Therefore, the segmented spline function solutions for vlon and vlat at the time t can be
solved. The associated latitude and longitude can be derived by integrating the speed in
the longitude direction, realising the �nal goal of trajectory reconstruction.



J. Mar. Sci. Eng. 2022, 10, 1319 10 of 24

Algorithm 4: Trajectory reconstruction

Input: Denoised AIS data data3
Output: Reconstructed trajectory data Trdataset .

Split data3
data4 fdata3, MMSI, timestampg

for Pj in data4:
if Dt > 10

Reconstruct the trajectory data Trdatasetj  data4(cubicspline)
end if

end for
return Trdataset

4. Experimental Results and Analysis
4.1. Data Set and Experimental Design

To verify the effectiveness of the proposed methodology in trajectory denoising and
reconstruction, experiments were implemented in the Arctic Ocean and the Strait of Dover
water. The Arctic Ocean is large, with long transportation distances and many ports. Its
complex navigational data is suitable for testing the performance of the proposed method
when being required to cope with large areas. The Strait of Dover water is selected and
used to demonstrate the robustness of the proposed method in a complex but small area.
The details of original AIS data in the Arctic Ocean and the Strait of Dover water are listed
in Table 1. As shown in Table 1, the original AIS information in the Arctic Ocean was
collected from 1 September 2018 to 31 September 2018 with 108,588 ship trajectories with
53,267,239 points, while there were 3043 ship trajectories from 1 January 2018 to 31 January
2018 with 50,610 points in the Strait of Dover water.

Table 1. The data details for the two research study areas.

Water Areas Time Span Number of Trajectories Number of Points Longitude Latitude

Arctic Ocean 1 September 2018�31 September 2018 108,588 53,267,239 170� W�180� E 66.089� N�90� N
Strait of Dover 1 January 2018�31 January 2018 3043 50,610 1.057� E�3.042� E 50.622� N�51.952� N

The visualisation result of the original dataset in two water areas are shown in
Figures 3 and 4, respectively. It can be seen that there are apparent noises and abnormal
data in the original AIS data. As aforementioned, the data denoising and reconstruction of
large water areas are the research dif�culties. The Arctic Ocean contains a large amount of
AIS data that has to be processed.
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Figure 4. The raw AIS data in the Strait of Dover.

All numerical experiments were performed using 64-bit Windows 10 on a 2.4 GHz Intel
Core i5 9300H CPU, NVIDIA GeForce GTX 1650 GPU with 8 GB memory. The proposed
algorithms were programmed in Python 3.9. The flowchart of experiments is shown in Figure 5.
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Figure 5. The �owchart of experiments.

4.2. Visualisation Results of Different Kernel Functions
Three kinds of kernel functions were selected, and the results were compared to verify

the effectiveness of the chosen Gaussian convolution kernel. They include a Gaussian
convolution kernel function, mean convolution kernel function, and sharpening convo-
lution kernel function. The visualisation results of the different kernel functions in the
Arctic Ocean and the Strait of Dover water are shown in Figures 6 and 7, respectively.
The comparison results in Figures 6 and 7 show that the performance of the Gaussian
convolution kernel has the best performance. Therefore, the Gaussian kernel function is
selected and applied to the trajectory denoising and reconstruction.
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Figure 6. Visualisation of different kernel functions in the Arctic Ocean. (a) The original data; (b) the
results with Gaussian convolution kernel; (c) the results with mean convolution kernel; (d) the results
with sharpening convolution kernel.
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Figure �16.�1Visualisation �1of�1different �1kernel�1functions �1in�1the�1Arctic �1Ocean.�1(a)�1The�1original �1data;�1(b)�1
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Figure �17.�1Visualisation �1of�1different �1kernel�1functions �1in�1the�1Strait�1of�1Dover�1water.�1(a)�1The�1original �1
data;�1(b)�1the�1results�1after�1the�1Gaussian�1convolution �1kernel;�1(c)�1the�1results�1after�1the�1mean�1convolution �1
kernel;�1(d)�1the�1results�1after�1sharpening�1convolution �1kernel.�1

Figure 7. Visualisation of different kernel functions in the Strait of Dover water. (a) The original data;
(b) the results after the Gaussian convolution kernel; (c) the results after the mean convolution kernel;
(d) the results after sharpening convolution kernel.

4.3. Visualisation and Analysis of Trajectory Denoising Results in Two Research Areas
To demonstrate the performance of the proposed DBSCANDKC method, the first experi-

ment is carried out in a typical large area (i.e., the Arctic Ocean). The data preprocessing result
in the Arctic Ocean is shown in Figure 8. Specifically, the results of simple data preprocessing,
the deep convolution operation, and reconstruction trajectories are respectively displayed
in Figure 8a�c. A 300 � 300 density matrix and a dynamic Gaussian convolution kernel
are built to delete the possibly aberrant AIS data with MinPts = 5. The number of data
points and trajectory in the Arctic Ocean data preprocessing process are shown in Table 2
for comparison. It is evident that simple data preprocessing can delete the obvious noise
data based on the results of Figures 3 and 8a. Furthermore, the comparison of Figure 8a,b
shows that the deep convolution operation can remove more abnormal data. As can be
seen from Table 2, compared with the 108,588 trajectories with 53,267,239 points in the raw
dataset, 3026 trajectories with 2,146,651 points are reserved after simple data preprocessing.
Furthermore, there were 2982 trajectories with points after the deep convolution operation.
The original dataset includes much of the data from all the waiting, berthing, and mooring
ships. A lot of trajectories with anchorage points were removed. Eventually, the trajectory
reconstruction was conducted to complete the trajectories, and there are 2982 trajectories with
2,433,576 points. The visualisation results of ship trajectories in the Arctic Ocean verified the
performance of the proposed DBSCANDKC method.
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Table 2. The data and trajectory information on the Arctic Ocean.

Raw Data Set Dataset after
Preprocessing

Dataset after
Convolution

Dataset after
Reconstruction

Trajectories 108,588 3046 2982 2982
Points 53,267,239 2,146,651 1,972,471 2,433,576

The second experiment was carried out in a small and complex area, the Strait of Dover.
The results of simple data preprocessing, the deep convolution operation, and reconstruction
trajectories are displayed in Figure 9a�c, respectively. A 300� 300 density matrix and dy-
namic Gaussian convolution kernel were built to delete the possibly abnormal AIS data with
MinPts = 3. The data and trajectory information for denoising and reconstruction of the Strait
of Dover are listed clearly in Table 3. It is evident that simple data preprocessing can delete the
obvious noise data based on the results of Figures 3 and 9a. Furthermore, the deep convolution
operation can remove more abnormal data from Figure 9a,b. Compared to the 3043 trajectories
with 50,610 points in the raw dataset, 1507 trajectories with 30,689 points are reserved after
simple data preprocessing. Furthermore, there remaine 1504 trajectories with 29,793 points
after the deep convolution operation. After the reconstruction, 1504 trajectories with 99,828
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points are generated for future knowledge discovery. The experimental results show that the
proposed methodology have better performance in trajectory denoising and reconstruction
based on the comparative results of the Arctic Ocean and the Strait of Dover water.
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Figure �18.�1Comparison�1of�1denoising�1and�1reconstruction�1results�1in�1the�1Arctic �1Ocean.�1(a)�1The�1results�1
after�1simple�1data�1preprocessing;�1(b)�1the�1results�1after�1the�1deep�1convolution �1operation;�1(c)�1the�1recon�,
structed�1trajectories�1results.�1

Table �12.�1The�1data�1and�1trajectory�1information �1on�1the�1Arctic �1Ocean.�1

�1 Raw�1Data�1Set�1
Dataset�1after �1�1

Preprocessing�1
Dataset�1after �1�1
Convolution �1

Dataset�1after �1�1
Reconstruction �1

Trajectories�1 108,588�1 3046�1 2982�1 2982�1
Points�1 53,267,239�1 2,146,651�1 1,972,471�1 2,433,576�1

The�1second�1experiment�1was�1carried�1out�1in�1a�1small�1and�1complex�1area,�1the�1Strait�1of�1
Dover.�1The�1results�1of�1simple�1data�1preprocessing,�1the�1deep�1convolution �1operation,�1and�1re�,
construction �1trajectories�1are�1displayed �1in�1Figure�19a–c,�1respectively.�1A�1������ �������u �1density�1
matrix �1and�1dynamic �1Gaussian�1convolution �1kernel�1were�1built �1to�1delete�1the�1possibly�1abnor�,
mal�1AIS�1data�1with �1� � � �MinPts � .�1The�1data�1and�1trajectory�1information �1for �1denoising�1and�1re�,
construction �1of�1the�1Strait�1of�1Dover�1are�1listed�1clearly�1in�1Table�13.�1It �1is�1evident �1that�1simple�1
data�1preprocessing�1can�1delete�1the�1obvious�1noise�1data�1based�1on�1the�1results�1of�1Figures�13�1and�1
9a.�1Furthermore, �1the�1deep�1convolution �1operation�1can�1remove�1more�1abnormal�1data�1from �1
Figure�19a,b.�1Compared�1to�1the�13043�1trajectories�1with �150,610�1points �1in�1the�1raw�1dataset,�11507�1
trajectories�1with �130,689�1points �1are�1reserved�1after�1simple�1data�1preprocessing.�1Furthermore, �1
there�1remaine�11504�1trajectories�1with �129,793�1points �1after�1the�1deep�1convolution �1operation.�1
After �1the�1reconstruction,�11504�1trajectories�1with �199,828�1points�1are�1generated�1for �1future �1
knowledge �1discovery.�1The�1experimental �1results�1show�1that�1the�1proposed�1methodology �1
have�1better�1performance�1in�1trajectory�1denoising�1and�1reconstruction�1based�1on�1the�1compar�,
ative�1results�1of�1the�1Arctic �1Ocean�1and�1the�1Strait�1of�1Dover�1water.�1

(a)�1 (b)�1 (c)�1

Figure �19.�1Comparison�1of�1denoising�1and�1reconstruction�1effects�1in�1Strait�1of�1Dover�1water.�1(a)�1Data�1pre�,
processing;�1(b)�1data�1cleaning;�1(c)�1trajectory�1reconstruction.�1

Table �13.�1Information �1on�1the�1Strait�1of�1Dover�1water�1trajectories.�1

�1 Raw�1Data�1Set�1
Dataset�1After �1�1
Preprocessing�1

Dataset�1after �1�1
Convolution �1

Dataset�1after �1�1
Reconstruction �1

Trajectories�1 3043�1 1057�1 1052�1 1504�1
Points�1 50,610�1 30,689�1 29,793�1 99,828�1

4.4.�1Trajectory�1Reconstruction�1and�1Comparative�1Analysis�1of�1Arctic�1Ocean�1

Figure 9. Comparison of denoising and reconstruction effects in Strait of Dover water. (a) Data
preprocessing; (b) data cleaning; (c) trajectory reconstruction.

Table 3. Information on the Strait of Dover water trajectories.

Raw Data Set Dataset After
Preprocessing

Dataset after
Convolution

Dataset after
Reconstruction

Trajectories 3043 1057 1052 1504
Points 50,610 30,689 29,793 99,828

4.4. Trajectory Reconstruction and Comparative Analysis of Arctic Ocean
To further highlight the trajectory reconstruction performance of the proposed DB-

SCANDKC method in the Arctic Ocean, the ship trajectories with MMSI of 218832000 and
316025029 are selected as the real cases to deeply analyse the effectiveness.

The trajectory with MMSI 218832000 has 69,815 points, with the longitude range
1.553� E to 45.426� E and the latitude range 66.354� N to 82.558� N. Through experimental
comparison and analysis, the denoising effect is the best when the size of the density matrix
was set to 600 � 600 and MinPts = 3 in the Arctic Ocean. The result during data denoising
is shown in Figure 10. The trajectory information of MMSI 218832000 is shown in Table 4.
Compared with 69,815 points in the raw dataset, 3815 points remained after simple data
preprocessing. Furthermore, there are 819 points after the deep convolution operation.
After the trajectory reconstruction, there are 3983 points. It is evident from the visualisation
result that the proposed method had better denoising and reconstruction performance.
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To�1further �1highlight �1the�1trajectory�1reconstruction�1performance�1of�1the�1proposed�1
DBSCANDKC �1method�1in�1the�1Arctic �1Ocean,�1the�1ship�1trajectories�1with �1MMSI �1of�1218832000�1
and�1316025029�1are�1selected�1as�1the�1real�1cases�1to�1deeply�1analyse�1the�1effectiveness.�1

The�1trajectory�1with �1MMSI �1218832000�1has�169,815�1points,�1with �1the�1longitude �1range�1
1.553°�1E�1to�145.426°�1E�1and�1the�1latitude �1range�166.354°�1N�1to�182.558°�1N.�1Through �1experimental �1
comparison�1and�1analysis,�1the�1denoising�1effect�1is�1the�1best�1when�1the�1size�1of�1the�1density �1ma�,
trix �1was�1set�1to�1600�1×�1600�1and�1 ��MinPts � �1in�1the�1Arctic �1Ocean.�1The�1result�1during �1data�1de�,
noising�1is�1shown�1in�1Figure�110.�1The�1trajectory�1information �1of�1MMSI �1218832000�1is�1shown�1in�1
Table�14.�1Compared�1with �169,815�1points�1in�1the�1raw�1dataset,�13815�1points �1remained�1after�1sim�,
ple�1data�1preprocessing.�1Furthermore, �1there�1are�1819�1points �1after�1the�1deep�1convolution �1op�,
eration.�1After �1the�1trajectory�1reconstruction,�1there�1are�13983�1points.�1It �1is�1evident �1from �1the�1
visualisation �1result�1that�1the�1proposed�1method�1had�1better�1denoising�1and�1reconstruction�1
performance.�1

(a)�1 (b)�1 (c)�1

Figure �110.�1Comparison�1of�1denoising�1Effects�1of�1MMSI �1218832000.�1(a)�1Data�1preprocessing;�1(b)�1data�1
cleaning;�1(c)�1trajectory�1reconstruction.�1

Table �14.�1Trajectory�1information �1for �1different �1MMSIs.�1

MMSI �1 Raw�1Data�1Set�1
Dataset�1after �1�1

Preprocessing�1
Dataset�1after �1�1
Convolution �1

Dataset�1after �1�1
Reconstruction �1

218,832,000�1 69,815�1 3815�1 819�1 3983�1
316,025,029�1 5215�1 3579�1 2142�1 4980�1
220,002,000�1 38�1 32�1 29�1 121�1
244,554,000�1 107�1 94�1 87�1 116�1

The�1interpolation �1result�1of�1the�1selected�1trajectory�1(MMSI �1218832000)�1is�1displayed �1in�1
Figure�111,�1where�1the�1orange�1points�1represent�1the�1raw�1ship�1AIS�1trajectory�1points,�1and�1the�1
green�1lines�1represent�1the�1reconstructed�1trajectories.�1The�1trajectory�1of�1MMSI �1218832000�1has�1
5215�1points,�1with �1the�1longitude �1range�1115.2134°�1W�1to�161.015°�1W�1and�1the�1latitude �1range�1

Figure 10. Comparison of denoising Effects of MMSI 218832000. (a) Data preprocessing; (b) data
cleaning; (c) trajectory reconstruction.

Table 4. Trajectory information for different MMSIs.

MMSI Raw Data Set Dataset after
Preprocessing

Dataset after
Convolution

Dataset after
Reconstruction

218832000 69,815 3815 819 3983
316025029 5215 3579 2142 4980
220002000 38 32 29 31
244554000 107 94 87 116

The interpolation result of the selected trajectory (MMSI 218832000) is displayed in
Figure 11, where the orange points represent the raw ship AIS trajectory points, and the
green lines represent the reconstructed trajectories. The trajectory of MMSI 218832000 has
5215 points, with the longitude range 115.2134� W to 61.015� W and the latitude range
66.342� N to 74.354� N. The visualisation result of trajectory reconstruction further veri�ed
the good performance of the proposed method.
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66.342°�1N�1to�174.354°�1N.�1The�1visualisation �1result�1of�1trajectory�1reconstruction�1further �1verified �1
the�1good�1performance�1of�1the�1proposed�1method.�1
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Figure �111.�1Trajectory�1reconstruction�1results�1with �1MMSI �1of�1218832000.�1

To�1further �1show�1the�1effectiveness�1of�1the�1proposed�1method�1in�1a�1large�1area�1and�1the�1long�1
trajectory,�1MMSI �1218832000�1is�1selected�1as�1a�1real�1case.�1It �1is�1a�1classical�1trajectory�1because�1it �1
includes�1data�1in�123�1days�1in�1the�1Arctic �1Ocean.�1The�1visualisation �1result�1of�1the�1data�1denoising�1
process�1is�1shown�1in�1Figure�112.�1Firstly, �1the�1raw�1AIS�1trajectory�1is�1displayed �1in�1Figure�112a,�1
which �1contains�1much�1noise�1data.�1The�1visualisation �1result�1after�1simple�1data�1preprocessing�1
is�1presented�1in�1Figure�112b,�1and�1it �1seems�1that�1the�1performance�1was�1better.�1To�1have�1a�1clear�1
insight �1into �1this�1trajectory�1reconstruction�1operation,�1the�1point �1data�1are�1visualised�1in�1Figure�1
12c.�1Finally, �1the�1reconstruction�1result�1is�1shown�1in�1Figure�112d�1to�1verify �1the�1necessity�1and�1
effectiveness.�1Different �1colours�1represent�1the�1ship�1trajectories�1in�123�1days.�1

The�1trajectory�1reconstruction�1result�1of�1the�1selected�1trajectory�1is�1displayed �1in�1Figure�1
13,�1where�1the�1orange�1points �1represent�1the�1raw�1ship�1AIS�1trajectory�1points,�1and�1the�1green�1
lines�1indicate�1the�1reconstructed�1trajectories.�1Table�14�1shows�1the�1trajectory�1information �1in�1
each�1step�1of�1MMSI �1316025029.�1Compared�1with �1the�1raw�1dataset�1with �15215�1points,�13579�1
points �1remained�1after�1simple�1data�1preprocessing.�1Furthermore, �1there�1are�12142�1points �1after�1
the�1deep�1convolution �1operation.�1After �1the�1trajectory�1reconstruction,�14980�1points �1are�1gen�,
erated�1for �1future �1data�1mining. �1The�1visualisation �1results�1of�1the�1real�1cases�1demonstrated�1that�1
the�1method�1had�1a�1good�1reconstruction�1effect�1under �1large�1water�1data�1sets�1and�1curved�1tra�,
jectories.�1

(a)�1

Figure 11. Trajectory reconstruction results with MMSI of 218832000.

To further show the effectiveness of the proposed method in a large area and the long
trajectory, MMSI 218832000 is selected as a real case. It is a classical trajectory because it
includes data in 23 days in the Arctic Ocean. The visualisation result of the data denoising
process is shown in Figure 12. Firstly, the raw AIS trajectory is displayed in Figure 12a,
which contains much noise data. The visualisation result after simple data preprocessing
is presented in Figure 12b, and it seems that the performance was better. To have a
clear insight into this trajectory reconstruction operation, the point data are visualised in
Figure 12c. Finally, the reconstruction result is shown in Figure 12d to verify the necessity
and effectiveness. Different colours represent the ship trajectories in 23 days.

The trajectory reconstruction result of the selected trajectory is displayed in Figure 13,
where the orange points represent the raw ship AIS trajectory points, and the green lines
indicate the reconstructed trajectories. Table 4 shows the trajectory information in each
step of MMSI 316025029. Compared with the raw dataset with 5215 points, 3579 points
remained after simple data preprocessing. Furthermore, there are 2142 points after the deep
convolution operation. After the trajectory reconstruction, 4980 points are generated for
future data mining. The visualisation results of the real cases demonstrated that the method
had a good reconstruction effect under large water data sets and curved trajectories.
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Figure �111.�1Trajectory�1reconstruction�1results�1with �1MMSI �1of�1218832000.�1

To�1further �1show�1the�1effectiveness�1of�1the�1proposed�1method�1in�1a�1large�1area�1and�1the�1long�1
trajectory,�1MMSI �1218832000�1is�1selected�1as�1a�1real�1case.�1It �1is�1a�1classical�1trajectory�1because�1it �1
includes�1data�1in�123�1days�1in�1the�1Arctic �1Ocean.�1The�1visualisation �1result�1of�1the�1data�1denoising�1
process�1is�1shown�1in�1Figure�112.�1Firstly, �1the�1raw�1AIS�1trajectory�1is�1displayed �1in�1Figure�112a,�1
which �1contains�1much�1noise�1data.�1The�1visualisation �1result�1after�1simple�1data�1preprocessing�1
is�1presented�1in�1Figure�112b,�1and�1it �1seems�1that�1the�1performance�1was�1better.�1To�1have�1a�1clear�1
insight �1into �1this�1trajectory�1reconstruction�1operation,�1the�1point �1data�1are�1visualised�1in�1Figure�1
12c.�1Finally, �1the�1reconstruction�1result�1is�1shown�1in�1Figure�112d�1to�1verify �1the�1necessity�1and�1
effectiveness.�1Different �1colours�1represent�1the�1ship�1trajectories�1in�123�1days.�1

The�1trajectory�1reconstruction�1result�1of�1the�1selected�1trajectory�1is�1displayed �1in�1Figure�1
13,�1where�1the�1orange�1points �1represent�1the�1raw�1ship�1AIS�1trajectory�1points,�1and�1the�1green�1
lines�1indicate�1the�1reconstructed�1trajectories.�1Table�14�1shows�1the�1trajectory�1information �1in�1
each�1step�1of�1MMSI �1316025029.�1Compared�1with �1the�1raw�1dataset�1with �15215�1points,�13579�1
points �1remained�1after�1simple�1data�1preprocessing.�1Furthermore, �1there�1are�12142�1points �1after�1
the�1deep�1convolution �1operation.�1After �1the�1trajectory�1reconstruction,�14980�1points �1are�1gen�,
erated�1for �1future �1data�1mining. �1The�1visualisation �1results�1of�1the�1real�1cases�1demonstrated�1that�1
the�1method�1had�1a�1good�1reconstruction�1effect�1under �1large�1water�1data�1sets�1and�1curved�1tra�,
jectories.�1

(a)�1

Figure 12. Cont.
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(d)�1

Figure �112.�1Comparison�1of�1denoising�1effects�1of�1MMSI �1316025029.�1(a)�1The�1raw�1AIS�1trajectory;�1(b)�1the�1
results�1after�1simple�1data�1preprocessing;�1(c)�1the�1point �1data�1before�1reconstruction;�1(d)�1the�1results�1re�,
constructed�1trajectories�1(different �1colours�1represent�1the�1ship�1trajectories�1on�123�1days).�1

Figure 12. Comparison of denoising effects of MMSI 316025029. (a) The raw AIS trajectory;
(b) the results after simple data preprocessing; (c) the point data before reconstruction; (d) the
results reconstructed trajectories (different colours represent the ship trajectories on 23 days).
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Figure �113.�1Trajectory�1reconstruction�1results�1with �1MMSI �1of�1316025029.�1

4.5.�1Trajectory�1Reconstruction�1and�1Comparative�1Analysis�1of�1Strait�1of�1Dover�1Waters�1

The�1case�1study �1in�1a�1small�1area�1is�1implemented �1in�1the�1two �1ship�1trajectories�1of�1MMSI �1
220002000�1and�1MMSI �1244554000�1to�1demonstrate�1the�1performance�1of�1the�1proposed�1method.�1
There�1are�138�1points�1in�1the�1trajectory�1of�1MMSI �1220002000,�1with �1a�1longitude �1range�1of�11.30°�1E�1
to�11.85°�1E�1and�1a�1latitude �1range�1of�150.00°�1N�1to�151.26°�1N.�1The�1experimental �1comparison�1and�1
analysis�1results�1showed�1that�1the�1denoising�1effect�1is�1the�1best�1when�1the�1size�1of�1the�1density �1
matrix �1is�1set�1to�1100�1×�1100�1and�1 ��MinPts � .�1The�1result�1during �1data�1denoising�1is�1shown�1in�1
Figure�114.�1The�1reconstruction�1result�1of�1the�1selected�1trajectory�1is�1displayed �1in�1Figure�115,�1
where�1the�1orange�1points �1represent�1the�1raw�1ship�1AIS�1trajectory�1points,�1and�1the�1blue�1lines�1
indicate�1the�1reconstructed�1trajectories.�1The�1trajectory�1information �1in�1each�1step�1is�1listed�1in�1
Table�14.�1Compared�1with �138�1points�1in�1the�1raw�1dataset,�132�1points �1are�1reserved�1after�1simple�1
data�1preprocessing.�1Furthermore, �1there�1are�129�1points�1after�1the�1deep�1convolution �1operation.�1
Eventually, �1121�1points �1are�1generated�1for �1future �1data�1mining �1after�1the�1trajectory�1reconstruc�,
tion. �1

(a)�1 (b)�1 (c)�1

Figure 13. Trajectory reconstruction results with MMSI of 316025029.

4.5. Trajectory Reconstruction and Comparative Analysis of Strait of Dover Waters
The case study in a small area is implemented in the two ship trajectories of MMSI

220002000 and MMSI 244554000 to demonstrate the performance of the proposed method.
There are 38 points in the trajectory of MMSI 220002000, with a longitude range of 1.30� E
to 1.85� E and a latitude range of 50.00� N to 51.26� N. The experimental comparison and
analysis results showed that the denoising effect is the best when the size of the density
matrix is set to 100 � 100 and MinPts = 2. The result during data denoising is shown
in Figure 14. The reconstruction result of the selected trajectory is displayed in Figure 15,
where the orange points represent the raw ship AIS trajectory points, and the blue lines
indicate the reconstructed trajectories. The trajectory information in each step is listed in
Table 4. Compared with 38 points in the raw dataset, 32 points are reserved after simple
data preprocessing. Furthermore, there are 29 points after the deep convolution operation.
Eventually, 31 points are generated for future data mining after the trajectory reconstruction.
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Figure �113.�1Trajectory�1reconstruction�1results�1with �1MMSI �1of�1316025029.�1

4.5.�1Trajectory�1Reconstruction�1and�1Comparative�1Analysis�1of�1Strait�1of�1Dover�1Waters�1

The�1case�1study �1in�1a�1small�1area�1is�1implemented �1in�1the�1two �1ship�1trajectories�1of�1MMSI �1
220002000�1and�1MMSI �1244554000�1to�1demonstrate�1the�1performance�1of�1the�1proposed�1method.�1
There�1are�138�1points�1in�1the�1trajectory�1of�1MMSI �1220002000,�1with �1a�1longitude �1range�1of�11.30°�1E�1
to�11.85°�1E�1and�1a�1latitude �1range�1of�150.00°�1N�1to�151.26°�1N.�1The�1experimental �1comparison�1and�1
analysis�1results�1showed�1that�1the�1denoising�1effect�1is�1the�1best�1when�1the�1size�1of�1the�1density �1
matrix �1is�1set�1to�1100�1×�1100�1and�1 ��MinPts � .�1The�1result�1during �1data�1denoising�1is�1shown�1in�1
Figure�114.�1The�1reconstruction�1result�1of�1the�1selected�1trajectory�1is�1displayed �1in�1Figure�115,�1
where�1the�1orange�1points �1represent�1the�1raw�1ship�1AIS�1trajectory�1points,�1and�1the�1blue�1lines�1
indicate�1the�1reconstructed�1trajectories.�1The�1trajectory�1information �1in�1each�1step�1is�1listed�1in�1
Table�14.�1Compared�1with �138�1points�1in�1the�1raw�1dataset,�132�1points �1are�1reserved�1after�1simple�1
data�1preprocessing.�1Furthermore, �1there�1are�129�1points�1after�1the�1deep�1convolution �1operation.�1
Eventually, �1121�1points �1are�1generated�1for �1future �1data�1mining �1after�1the�1trajectory�1reconstruc�,
tion. �1

(a)�1 (b)�1 (c)�1

Figure 14. Comparison of denoising effects of MMSI 220002000. (a) Data preprocessing; (b) data
cleaning; (c) trajectory reconstruction.
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Figure �115.�1Trajectory�1reconstruction�1results�1with �1MMSI �1of�1220002000.�1

The�1trajectory�1with �1an�1MMSI �1of�1244554000�1has�1107�1points,�1with �1the�1longitude �1range�1
115.2134°�1W�1to�161.015°�1W�1and�1the�1latitude �1range�166.342°�1N�1to�174.354°�1N.�1Through �1experi�,
mental�1comparison�1and�1analysis,�1the�1denoising�1effect�1is�1the�1best�1when�1the�1size�1of�1the�1grid �1
is�1set�1to�1200�1×�1200�1and�1 ��MinPts � .�1The�1result�1during �1data�1denoising�1is�1shown�1in�1Figure�116.�1
The�1trajectory�1reconstruction�1result�1of�1the�1selected�1trajectory�1is�1compared�1in�1Figure�117,�1
where�1the�1orange�1points�1represent�1the�1raw�1ship�1AIS�1trajectory�1points,�1and�1the�1blue�1line�1is�1
the�1reconstructed�1trajectories.�1The�1trajectory�1information �1in�1each�1step�1is�1shown�1in�1Table�14.�1
Compared�1with �1107�1points �1in�1the�1raw�1dataset,�194�1points �1are�1reserved�1after�1simple�1data�1
preprocessing.�1Furthermore, �1there�1are�187�1points�1after�1the�1deep�1convolution �1operation.�1Af �,
ter�1the�1trajectory�1reconstruction,�1there�1are�1116�1points.�1As�1demonstrated�1by�1the�1experi�,
mental�1results,�1the�1method�1also�1had�1excellent�1reconstruction�1results�1under �1small�1waters�1
and�1curved�1trajectories.�1

(a)�1 (b)�1 (c)�1

Figure �116.�1Comparison�1of�1denoising�1effects�1of�1MMSI �1244554000.�1(a)�1Data�1preprocessing;�1(b)�1data�1
cleaning;�1(c)�1trajectory�1reconstruction.�1

Figure 15. Trajectory reconstruction results with MMSI of 220002000.

The trajectory with an MMSI of 244554000 has 107 points, with the longitude range
115.2134� W to 61.015� W and the latitude range 66.342� N to 74.354� N. Through experimen-
tal comparison and analysis, the denoising effect is the best when the size of the grid is set to
200� 200 and MinPts = 3. The result during data denoising is shown in Figure 16. The trajec-
tory reconstruction result of the selected trajectory is compared in Figure 17, where the orange
points represent the raw ship AIS trajectory points, and the blue line is the reconstructed
trajectories. The trajectory information in each step is shown in Table 4. Compared with
107 points in the raw dataset, 94 points are reserved after simple data preprocessing. Fur-
thermore, there are 87 points after the deep convolution operation. After the trajectory
reconstruction, there are 116 points. As demonstrated by the experimental results, the method
also had excellent reconstruction results under small waters and curved trajectories.
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Figure �115.�1Trajectory�1reconstruction�1results�1with �1MMSI �1of�1220002000.�1

The�1trajectory�1with �1an�1MMSI �1of�1244554000�1has�1107�1points,�1with �1the�1longitude �1range�1
115.2134°�1W�1to�161.015°�1W�1and�1the�1latitude �1range�166.342°�1N�1to�174.354°�1N.�1Through �1experi�,
mental�1comparison�1and�1analysis,�1the�1denoising�1effect�1is�1the�1best�1when�1the�1size�1of�1the�1grid �1
is�1set�1to�1200�1×�1200�1and�1 ��MinPts � .�1The�1result�1during �1data�1denoising�1is�1shown�1in�1Figure�116.�1
The�1trajectory�1reconstruction�1result�1of�1the�1selected�1trajectory�1is�1compared�1in�1Figure�117,�1
where�1the�1orange�1points�1represent�1the�1raw�1ship�1AIS�1trajectory�1points,�1and�1the�1blue�1line�1is�1
the�1reconstructed�1trajectories.�1The�1trajectory�1information �1in�1each�1step�1is�1shown�1in�1Table�14.�1
Compared�1with �1107�1points �1in�1the�1raw�1dataset,�194�1points �1are�1reserved�1after�1simple�1data�1
preprocessing.�1Furthermore, �1there�1are�187�1points�1after�1the�1deep�1convolution �1operation.�1Af �,
ter�1the�1trajectory�1reconstruction,�1there�1are�1116�1points.�1As�1demonstrated�1by�1the�1experi�,
mental�1results,�1the�1method�1also�1had�1excellent�1reconstruction�1results�1under �1small�1waters�1
and�1curved�1trajectories.�1

(a)�1 (b)�1 (c)�1

Figure �116.�1Comparison�1of�1denoising�1effects�1of�1MMSI �1244554000.�1(a)�1Data�1preprocessing;�1(b)�1data�1
cleaning;�1(c)�1trajectory�1reconstruction.�1

Figure 16. Comparison of denoising effects of MMSI 244554000. (a) Data preprocessing; (b) data
cleaning; (c) trajectory reconstruction.



J. Mar. Sci. Eng. 2022, 10, 1319 21 of 24J.�1Mar.�1Sci.�1Eng.�12022,�110,�11319�1 21�1of�124�1
�1

�1

�1

Figure �117.�1Trajectory�1reconstruction�1results�1with �1MMSI �1of�1244554000.�1

4.6.�1Discussion�1

The�1experimental �1results�1indicated �1that�1the�1methodology �1proposed�1in�1this�1paper�1had�1
better�1AIS�1dada�1denoising�1and�1reconstruction�1effects�1in�1different �1waters.�1The�1proposed�1
DBSCANDKC �1method�1had�1strong�1robustness�1both�1in�1large�1waters�1with �1massive�1data�1
(such�1as�1the�1Arctic �1Ocean)�1and�1in�1small�1waters�1but�1with �1high �1traffic �1complications �1(such�1
as�1the�1Strait�1of�1Dover�1water).�1Compared�1with �1the�1existing�1denoising�1methods�1based�1on�1
clustering�1and�1deep�1learning �1models,�1it �1requires�1less�1memory �1while �1ensuring�1the�1de�,
noising�1effect.�1The�1research�1results�1are�1committed �1to�1generating�1more�1accurate�1and�1high �,
quality �1AIS�1data�1for �1maritime �1safety�1management,�1thereby�1providing �1a�1reliable�1and�1robust�1
foundation �1for �1subsequent�1research�1on�1maritime �1situational �1awareness,�1collision �1avoid �,
ance,�1route�1planning, �1etc.�1In�1terms�1of�1future �1studies,�1the�1proposed�1method�1takes�1into �1ac�,
count�1the�1influence�1of�1latitude, �1longitude, �1and�1speed�1in�1the�1data�1preprocessing�1stage�1at�1
present.�1To�1further �1improve �1the�1accuracy�1of�1the�1results,�1the�1impact �1of�1other�1factors�1(such�1
as�1weather�1conditions, �1navigation �1of�1other�1ships,�1etc.)�1on�1AIS�1data�1could�1be�1further �1ex�,
plored. �1

5.�1Conclusions �1

With �1the�1growing �1use�1of�1AIS�1data�1in�1maritime �1research,�1an�1emerging�1concern�1is�1rising �1
as�1the�1explosion�1of�1AIS�1data�1has�1resulted�1in�1errors,�1redundancy, �1and�1noise�1in�1its�1generation�1
and�1transmission.�1To�1address�1this�1problem, �1a�1new�1holistic �1methodology, �1DBSCANDKC �1
trajectory�1denoising�1and�1reconstruction,�1was�1proposed�1based�1on�1the�1incorporation �1of�1deep�1
kernel�1convolution �1into �1density �1clustering.�1Firstly, �1the�1kinematics�1feature�1was�1employed�1
to�1remove�1obvious�1noise�1from �1the�1AIS�1data.�1Then,�1the�1square�1deep�1kernel�1convolution �1was�1
dynamically �1generated�1to�1identify �1and�1eliminate �1abnormal�1data.�1Finally, �1the�1piecewise�1cu�,
bic�1spline�1interpolation �1method�1was�1applied �1to�1reconstruct�1trajectory�1data.�1This�1holistic �1
method�1helps�1achieve�1better�1AIS�1data�1denoising�1and�1trajectory�1reconstruction�1effects�1in�1
both�1large�1and�1small�1water�1areas�1with �1success.�1High �,quality �1AIS�1data�1is�1the�1basis�1for �1rele�,
vant�1maritime �1research.�1The�1research�1results�1make�1significant �1contributions �1in�1terms�1of�1
the�1reduction �1of�1errors�1and�1noise�1from �1raw�1AIS�1data,�1and�1the�1generation�1of�1more�1accurate�1
and�1efficient �1data�1for �1maritime �1data�1mining �1and�1applications.�1The�1proposed�1new�1method�1
itself �1can�1contribute �1to�1future �1motion �1pattern�1mining, �1maritime �1situational �1awareness,�1col�,
lision �1avoidance,�1route�1planning, �1and�1robust�1maritime �1safety�1trajectory�1development �1by�1
providing �1a�1high �,quality �1data�1foundation. �1

Figure 17. Trajectory reconstruction results with MMSI of 244554000.

4.6. Discussion
The experimental results indicated that the methodology proposed in this paper had

better AIS dada denoising and reconstruction effects in different waters. The proposed
DBSCANDKC method had strong robustness both in large waters with massive data (such
as the Arctic Ocean) and in small waters but with high traf�c complications (such as the
Strait of Dover water). Compared with the existing denoising methods based on clustering
and deep learning models, it requires less memory while ensuring the denoising effect.
The research results are committed to generating more accurate and high-quality AIS
data for maritime safety management, thereby providing a reliable and robust foundation
for subsequent research on maritime situational awareness, collision avoidance, route
planning, etc. In terms of future studies, the proposed method takes into account the
in�uence of latitude, longitude, and speed in the data preprocessing stage at present. To
further improve the accuracy of the results, the impact of other factors (such as weather
conditions, navigation of other ships, etc.) on AIS data could be further explored.

5. Conclusions
With the growing use of AIS data in maritime research, an emerging concern is rising

as the explosion of AIS data has resulted in errors, redundancy, and noise in its generation
and transmission. To address this problem, a new holistic methodology, DBSCANDKC
trajectory denoising and reconstruction, was proposed based on the incorporation of deep
kernel convolution into density clustering. Firstly, the kinematics feature was employed to
remove obvious noise from the AIS data. Then, the square deep kernel convolution was
dynamically generated to identify and eliminate abnormal data. Finally, the piecewise cubic
spline interpolation method was applied to reconstruct trajectory data. This holistic method
helps achieve better AIS data denoising and trajectory reconstruction effects in both large
and small water areas with success. High-quality AIS data is the basis for relevant maritime
research. The research results make signi�cant contributions in terms of the reduction of
errors and noise from raw AIS data, and the generation of more accurate and ef�cient data
for maritime data mining and applications. The proposed new method itself can contribute
to future motion pattern mining, maritime situational awareness, collision avoidance, route
planning, and robust maritime safety trajectory development by providing a high-quality
data foundation.

Future research will focus on the trajectory reconstruction method based on the deep
prediction method.
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