
Li, H, Lam, JSL, Yang, Z, Liu, J, Liu, RW, Liang, M and Li, Y

 Unsupervised hierarchical methodology of maritime traffic pattern extraction 
for knowledge discovery

http://researchonline.ljmu.ac.uk/id/eprint/17670/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Li, H, Lam, JSL, Yang, Z, Liu, J, Liu, RW, Liang, M and Li, Y (2022) 
Unsupervised hierarchical methodology of maritime traffic pattern 
extraction for knowledge discovery. Transportation Research Part C: 
Emerging Technologies, 143. p. 103856. ISSN 0968-090X 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Unsupervised Hierarchical Methodology of Maritime Traffic
Pattern Extraction for Knowledge Discovery
Huanhuan Lia,b,c, Jasmine Siu Lee Lama,∗, Zaili Yangb, Jingxian Liuc, Ryan Wen Liuc,∗∗,
Maohan Liangc and Yan Lic

aSchool of Civil and Environmental Engineering, Nanyang Technological University, Singapore
bSchool of Engineering, Technology and Maritime Operations, Liverpool John Moores University, Liverpool L3 3AF, UK
cHubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan 430063, China

ART ICLE INFO

Keywords:
Pattern Extraction
Knowledge discovery
Trajectory compression
Trajectory clustering
Maritime traffic safety management

ABSTRACT

Owing to the space-air-ground integrated networks (SAGIN), seaborne shipping has attracted
increasing interest in the research on the motion behavior knowledge extraction and navigation
pattern mining problems in the era of maritime big data for improving maritime traffic safety
management. This study aims to develop a novel unsupervised methodology for feature extrac-
tion and knowledge discovery based on automatic identification system (AIS) data, allowing for
seamless knowledge transfer to support trajectory data mining. The unsupervised hierarchical
methodology is constructed from three parts: trajectory compression, trajectory similarity mea-
sure, and trajectory clustering. In the first part, an adaptive Douglas-Peucker with speed (ADPS)
algorithm is created to preserve critical features, obtain useful information, and simplify trajec-
tory information. Then, dynamic time warping (DTW) is utilized to measure the similarity
between trajectories as the critical indicator in trajectory clustering. Finally, the improved spec-
tral clustering with mapping (ISCM) is presented to extract vessel traffic behavior characteristics
and mine movement patterns for enhancing marine safety and situational awareness. Compre-
hensive experiments are conducted and implemented in the Chengshan Jiao Promontory in China
to verify the feasibility and effectiveness of the novel methodology. Experimental results show
that the proposed methodology can effectively compress the trajectory, determine the number of
clusters in advance, guarantee the clustering accuracy, and extract useful navigation knowledge
while significantly reducing the computational cost. The clustering results are further explored
and follow the Gaussian mixture distribution, which can further help provide new discriminant
criteria for trajectory clustering.

1. Introduction
The development of space-air-ground integrated networks (SAGIN) (Yang et al., 2020), such as wireless commu-

nication technology, monitoring system, radar system, sensor network, and satellite constellation, makes it possible
to store, analyze and apply explosive data with wide applications to all walks of life (Yang et al., 2019), including
maritime transport (Huo et al., 2020). SAGIN is promising to provide and improve seamless communication and traf-
fic services (Wei et al., 2021), as demonstrated in Fig. 1, where the comprehensive transportation system based on
SAGIN is presented. Maritime vessels based on SAGIN are key parts of intelligent traffic and also play important roles
in the global shipping network (Liu et al., 2020). Shipping has undertaken more than 80% global trading freight and
logistics as the most efficient and low-cost transport means, placing maritime safety and security as a high priority for
each country (Li and Lam, 2017; Magirou et al., 2015; Millefiori et al., 2016).

Following the extensive use of automatic identification system (AIS) equipment due to the mandatory installation
requirements of the InternationalMaritimeOrganization (IMO), the vast amount of near-real AIS-based spatiotemporal
vessel trajectories information from different types of maritime communications has significantly grown in recent
years (Tu et al., 2020), including maritime mobile service identity (MMSI), time, longitude, latitude, and speed over
ground (SOG), and course over ground (COG) (Xiao et al., 2019). AIS-based vessel trajectories are increasingly
used to extract the moving knowledge and marine traffic patterns, which are critical in trajectory data mining and
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Fig. 1: The comprehensive transportation system based on SAGIN for maritime vehicles.

knowledge discovery. The potential and hidden knowledge of the trajectory helps to solve the problems in intelligent
traffic management and assist in maritime traffic surveillance (Yan et al., 2020). Therefore, trajectory data mining
has become a research hotspot and has broad applications in vessel behavior modeling (Zhou et al., 2019), maritime
situational awareness (Coscia et al., 2018; Graziano et al., 2019; Pitsikalis et al., 2020; Murray and Perera, 2020), and
intelligent transportation management (Rong et al., 2020). Furthermore, the development of trajectory data mining
technologies, such as storing, processing, analysis, and application, arise as an emerging research topic lately (Yap and
Lam, 2020; Aslam et al., 2020; Wang et al., 2020b, 2019).

Vessel trajectory data mining can discover navigational knowledge and perceive maritime situations from AIS-
based spatiotemporal vessel trajectories (Vespe et al., 2012; Pan et al., 2014; Li et al., 2017). The flowchart of trajectory
data mining is presented in Fig. 2, involving AIS data collection, data preprocessing, trajectory retrieval and indexing,
trajectory pattern mining, and application. In particular, it follows three steps of trajectory compression, trajectory
similarity measurement, and trajectory clustering analysis in a hierarchical order. A strong relationship among the
steps to stimulate knowledge discovery has been well documented in the literature (Andrienko et al., 2018; Atev et al.,
2010; Wang et al., 2020a; Pallotta et al., 2013a; Li et al., 2016; Zhang et al., 2018; De Mulder, 2014; Ding et al., 2018;
Elhamifar and Vidal, 2013; Hong et al., 2017).

Trajectory compression is among the most important contents in AIS-based vessel trajectory preprocessing. Tra-
jectory compression technologies are widely used in maritime trajectory simplification, route extraction, trajectory
clustering, and data mining (Huang et al., 2020; Zhang et al., 2016). Trajectory compression is the key foundation
of data mining and knowledge discovery, and it also determines the accuracy of subsequent trajectory similarity mea-
surement and trajectory clustering. However, it is difficult to determine the trajectory compression threshold.

There is a large volume of published studies on trajectory similarity measurement methods (Li et al., 2020; Zhao
and Shi, 2019b; Zheng and Zhou, 2011). Trajectory similaritymeasurement is regarded as a crucial factor in calculating
the distance between trajectories, and hence it is one of the critical indicators in trajectory clustering (Tu et al., 2017;
Talat et al., 2020; Lei, 2020).

Clustering analysis is a classical method in data mining techniques (Han et al., 2018; Shi et al., 2019). It can group
the data sets into different clusters while ensuring that the data points in the same cluster are more similar to each other
than to those in other clusters (Lee et al., 2007). Trajectory clustering is applied for mining vessel customary routes
and hidden movement patterns. Therefore, it aids in realizing knowledge discovery and situational awareness (Pallotta
et al., 2013b; Chen et al., 2014). However, it is still challenging to optimally cluster vessel trajectories because of
the volume and spatio-temporal characteristics. Furthermore, the choice of a rational trajectory clustering method is
complex. Moreover, it is difficult to choose the parameters used in different clustering methods, such as the appropriate
number of clusters, density threshold, and radius threshold. Furthermore, the issues about trajectory data with time,
position, and speed remain to be solved in trajectory data mining.

In light of the above, the key research problems to be addressed in our paper are summarized as follows:
Question 1: How to conduct unsupervised trajectory data mining for maritime knowledge discovery sys-

tematically?
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Question 2: How to effectively simplify the trajectories without human intervention while retaining critical
features?

Question 3: How to mine moving patterns and extract hidden knowledge accurately without presetting
parameter values?

To address the research questions, this work aims to develop a novel unsupervised hierarchical methodology to
improve the effectiveness and applicability of vessel trajectory data mining. The main contributions of this work
include automatic trajectory compression, improved trajectory clustering, and the finding of within-cluster similarity
distribution fitting analysis. Specifically, automatic trajectory compression, an adaptive Douglas-Peucker with speed
(ADPS) algorithm, can automatically compress and simplify the trajectories. Then, the similarity between trajectories
is measured by dynamic time warping (DTW). Furthermore, it conducts trajectory clustering analysis based on the
improved spectral clustering with mapping (ISCM) and clustering internal evaluation indexes. Finally, the similarity
distribution of each cluster is further fitted to validate the clustering performance.

Fig. 2: The flowchart of trajectory data mining.

The previous related work in the literature is reviewed in Section 2, followed by the revealed state of the art and
the description of the novelties of this work. Section 3 describes the details of the proposed unsupervised hierarchical
methodology for AIS-based vessel trajectories. Comprehensive experiments and evaluation analysis on realistic tra-
jectories in the Chengshan Jiao Promontory (CJP) are carried out in Section 4. Section 5 concludes this paper with the
implications of the findings and limitations for future work.

2. Related Work
Trajectory data mining is an important research focus for knowledge discovery in maritime traffic management.

Most of the studies on trajectory data mining based on AIS data only focus on trajectory compression, trajectory
similarity, or trajectory clustering methods, and few integrate the three with novel algorithms in a holistic framework.
Moreover, the trajectory clustering results need to be further explored and studied to verify the accuracy and the
validity of trajectory clustering methods based on the within-cluster similarity fitting. To our knowledge, no previous
studies have been performed on the systematic framework from unsupervised and hierarchical perspectives without
presetting parameters values, including trajectory compression, trajectory similarity, and trajectory clusteringmethods.
The critical analysis of the trajectory data mining research in maritime knowledge discovery is conducted from three
perspectives, including traditional methods, newly-developed machine learning-based methods, and deep learning-
based methods.
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2.1. Traditional Methods in Maritime Knowledge Discovery
A large and growing body of research has investigated trajectoryminingmethods for maritime knowledge discovery

to extract vessel behaviors and motion patterns. Ristic et al. (2008) proposed a simple framework of adaptive kernel
density estimation to extract the motion patterns, detect anomalies, and predict the vessel motion. Mazzarella et al.
(2014) introduced a knowledge extraction method based on the SOG, COG, and density-based spatial clustering of
applications with noise (DBSCAN) algorithm to mine vessel moving patterns and behavior characteristics on AIS
data, thus aiding the detection of fishing areas. The parameters in DBSCAN are determined by a heuristic approach.
Vespe et al. (2016) firstly introduced a map for EU fishing based on the analysis and investigation of fishing vessel
patterns from AIS data to identify fishing activities, then to track and manage vessels’ fishing footprint.

To further mine hidden and useful navigational characteristics and patterns, many scholars proposed new frame-
works for trajectory clustering from different angles. Bomberger et al. (2006) and Rhodes et al. (2007) proposed a new
system to learn normal behavior patterns and predict vessel motion based on an artificial neural network method on real
AIS data. The traditional methods in maritime knowledge discovery do not consider new algorithms and techniques.
Up to now, different trajectory data mining algorithms and frameworks have been created to improve trajectory cluster-
ing. Lee et al. (2007) proposed a trajectory clustering (TRACLUS) framework based on the DBSCAN and a partition
framework to conduct trajectory clustering and mine vessel patterns. Lee et al. (2007) further developed the partition
framework and trajectory partition clustering based on the sub-trajectories to detect trajectory outliers. Based on the
previous research, Lee et al. (2008) proposed a feature generation framework "TraClass" to cluster the sub-trajectories
and class the different patterns. Mascaro et al. (2014) developed a Bayesian network model to learn vessel behaviors
and motion patterns from typical AIS data, then to detect ship anomaly behaviors.

Classical methods of trajectory compression and trajectory clustering are widely used in trajectory extraction and
analysis. However, it is difficult to determine the parameter values, such as trajectory compression thresholds, the
appropriate number of clusters, density threshold, and radius threshold. Previous works have not taken into account
the innovative solution that a multi-layer algorithm can bring. Instead, most of them focus on clustering methods. In
the meantime, the answer to how to set parameter values in different frameworks remains unclear.

2.2. Newly-Developed Machine Learning Methods in Maritime Knowledge Discovery
It is crucial to take advantage of trajectory data mining and knowledge discovery based on AIS data are crucial

to exploit the full ship behavior characteristics and moving patterns and facilitate their applications in traffic man-
agement. Gaffney and Smyth (1999) proposed a new trajectory clustering method based on the maximum likelihood
principle, an expectation-maximization algorithm, and a mixed regression model to extract the hidden information in
trajectories. Nanni and Pedreschi (2006) proposed a spatio-temporal trajectory clustering method based on density,
time semantics, and the average distance to discover time features and intricate clustering patterns. The clustering
method based on the regression mixture model was introduced in Gaffney et al. (2007) to find and analyze the moving
characteristics of the extratropical cyclones. Pallotta et al. (2013b) developed a useful learning framework based on
traffic route extraction and anomaly detection (TREAD) and the popular Ornstein-Uhlenbeck stochastic process to
extract traffic routes and model vessel behavior. Yu et al. (2013) proposed an online clustering method "CtraStream"
based on density to group the trajectory with spatial-temporal information for trajectory data frommoving objects. Liu
et al. (2014) proposed a new clustering method, density-based spatial clustering of applications with noise consider-
ing Speed and direction (DBSCANSD), to extract the traffic patterns and discern abnormalities. However, it has five
parameters in DBSCANSD. Li et al. (2017) proposed a multi-step clustering method based on dynamic time warping
(DTW), principal component analysis (PCA), and improved center clustering algorithm to ensure robust AIS trajec-
tory clustering, find the customary vessel routes, and detect abnormal trajectories. Zhao et al. (2017) combined the
decision graph and data field to conduct the trajectory clustering method and discover dynamic patterns and hotspots to
support transportation planning and management. Zhen et al. (2017) designed a new trajectory similarity measurement
method and applied it into hierarchical clustering to learn the typical patterns, and then detect anomalies based on the
Naïve Bayes classifier. Li et al. (2018a) introduced merge distance (MD) and multidimensional scaling (MDS) into
a spatio-temporal trajectory clustering method to analyze the vessel behavior characteristics and navigation patterns.
Lehmann et al. (2019) developed the trajectory similarity measurement method "SMSM" to detect stops and moves,
and extract semantic information in urban transportation, then verified the performance of SMSM in three different
trajectory datasets. Zhao and Shi (2019a) put forward a new trajectory similarity method to measure the distance be-
tween the vessel trajectories to mine different routes and patterns in data from the Zhoushan Islands waters. Zhao and
Shi (2019b) proposed a new trajectory clustering method based on the Douglas and Peucker (DP) algorithm with an

Huanhuan Li et al.: Page 4 of 24



appropriate threshold and the improved DBSCAN algorithm with better parameters " and MinLns to analyze vessel
behavior and extract traffic patterns. Liu et al. (2019) developed the traditional DP algorithm to realize the adaptive
compression and conduct AIS-based vessel trajectory clustering. However, the improved method failed to address the
speed factor. Li et al. (2020) considered the corresponding relationship between trajectories and proposed an adap-
tive constrained dynamic time warping (ACDTW) method to measure the similarity between trajectories. Then the
trajectory clustering and classification are conducted in time series and AIS-based trajectories. Kontopoulos et al.
(2021) proposed a distributed framework, including waypoint extraction, route segment, and DBSCAN clustering, to
construct the trajectory network, identify the trajectory lanes, and mine the traffic patterns.

The aforementioned works reveal that the existing trajectory compression and clustering methods have not yet
provided an effective solution on how to automatically compress trajectory and select appropriate thresholds. It also
reveals other critical research problems in trajectory clustering, including eliminating the influence of different param-
eters, determining the number of clustering centers, and choosing an appropriate clustering method.

2.3. Deep Learning Methods in Maritime Knowledge Discovery
In recent years, deep learning methods, such as Recurrent Neural Network (RNN) and Convolutional Neural Net-

work (CNN), have also attracted significant attention in maritime data mining. They are applied to encode trajectories
and decode them into feature vectors. Then, different point clustering methods can be conducted to cluster the trajec-
tories and mine useful information. A RNN-based Seq2Seq autoencoder model is developed to extract the features
and improve the accuracy of similarity measurement (Yao et al., 2017). Li et al. (2018b) proposed a Seq2Seq learning
method (t2vec) to compute the similarity and enhance its robustness based on a new spatial proximity loss function.
Taghizadeh et al. (2019) further verified the effectiveness of t2vec in achieving good similarity measurement results.
To reduce the unexpected influence of noise points in the process of similarity measurement, a novel auto-encoder
model is proposed by introducing an attention mechanismto realize the feature representations of noisy vessel trajec-
tories in a low dimensional space (Zhang et al., 2019a). The three kinds of semantic information of active trajectories
are taken into account in the Seq2Seq auto-encoder model to generate a new At2vec model to acquire the robust fea-
ture representation and discover implicit features (Zhang et al., 2019b). Liang et al. (2021) proposed an unsupervised
learningmethod to efficiently calculate the similarities between vessel trajectories based on convolutional auto-encoder
(CAE).

Although deep learning methods have strong feature learning ability, they fail to provide an effective solution to
adjust and find optimal parameter values such as learning rate, batch size, gride size, epoch size, iteration number, and
loss function. Moreover, deep learningmodels often keep the inference content in black boxes, leading to unexplainable
and invisible processes. Therefore, it is highly demanded but challenging to develop a systematical and unsupervised
framework based on deep learning to learn and mine traffic patterns.

Following the above critical analysis of the previous studies in the field, we summarize the state of the art against
the four novelties (i.e. N1-N4) of this study in the ensuing section.

N1. The Unsupervised Hierarchical Methodology.
State of the art: In maritime transportation trajectory studies, analyzing navigation direction is the main innova-

tion in trajectory compression, while optimizing the clustering parameters is the primary improvement in trajectory
clustering methods (Lee et al., 2007; Pallotta et al., 2013b). The use of different parameters will lead to the existence of
biases in the results. While the current frameworks focus on the improvement of trajectory compression and clustering
methods (Arguedas et al., 2017; Zhao and Shi, 2019b), they seldomly tackle the speed factor and the influence of dif-
ferent parameters simultaneously. Therefore, a new systematic and unsupervised methodology is developed from the
perspective of the hierarchical model (Allen, 2018) in this manuscript, and it has made significant value for trajectory
data mining.

Our solution: The proposed unsupervised hierarchical methodology is constructed to mine the typical behavioral
characteristics and moving patterns of ships. It relies on three new developments described below. The methodology
can help realize the extraction of navigational behavior patterns and hidden knowledge more quickly, precisely, and
robustly.

N2. The New Adaptive Compression Method.
State of the art: The original Douglas and Peucker (DP) algorithm has translation and rotation invariance to

simplify the time series. However, the threshold must be defined by the users in advance. On the other hand, the same
threshold for all trajectories is also arguably not optimal. The improvement trajectory compression methods take into
account the navigation course and segmentation, but still set the same threshold for the whole data (Tang et al., 2021; Ji
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et al., 2021). Meanwhile, speed is presented as an important factor in trajectory compression. Therefore, the questions
on automating the threshold setting and selecting appropriate threshold values for different trajectories have not yet
been well addressed.

Our solution: To effectively simplify ship trajectories and extract features, we propose the Adaptive Douglas and
Peucker with Speed (ADPS) algorithm to compress the trajectories and retain effective features. It can automatically
calculate and set an appropriate threshold for each of the investigated trajectories without subjective intervention.

N3. The Novel Trajectory Clustering Method.
State of the art: Due to the volume and spatio-temporal characteristics, traditional point clustering methods cannot

be directly applied to trajectory clustering. Moreover, it is difficult to select the parameters in different clustering
methods, such as the appropriate number of clusters, density threshold, and radius threshold. Density-based clustering
methods are the common improved methods dealing with maritime data processing and mining. However, the big data
volume and parameter optimization often lead to memory overflow and the presentation of the local optimal solutions
(Li et al., 2018a; Xu et al., 2021). Therefore, the question of how to eliminate the influence of the parameters in
trajectory clustering remains a research challenge, wanting an effective solution to be found.

Our solution: The Improved Spectral Clustering with Mapping (ISCM) is put forward to map the trajectories into
points and mine trajectory patterns based on the graph theory and the normalized cut. It can determine the number
of clustering centers and extract the hidden knowledge, hence presenting an effective solution to the aforementioned
question.

N4. The Within-cluster Similarity Distribution Fitting.
State of the art: The Gaussian mixture model is commonly used for trajectory clustering based on an iterative

algorithm. The probability is taken as the clustering criterion (Wang et al., 2021; Fu et al., 2021). From the perspective
of good clustering results, its distribution of within-cluster similarity should also obey the Gaussian mixture function.
Researchers use the Gaussian mixture function to model the density distribution and fit the result to show the centrality
of clustering results with the fitting graph (Lee, 2005; Hu et al., 2017). However, they fail to use the different evaluation
indexes to measure the degree of the fitting. Therefore, the finding of the fitting function of clustering results requires
further verification based on the multiple evaluation indexes.

Our solution: We further explore the within-cluster similarity distribution based on the DTW and the Gaussian
mixture function to conclude and verify the finding. The experimental results and fitting analysis indicate that this
finding provides a reliable standard and index for the performance evaluation of future clustering methods.

3. The Proposed Unsupervised Hierarchical Methodology
In Fig. 3, it is seen that the unsupervised hierarchical methodology consists of three main steps, including trajec-

tory compression, trajectory similarity measure, and trajectory clustering analysis. Trajectory compression and tra-
jectory clustering analysis are two essential parts of tackling large-scale data volume and data mining. The trajectory
compression method (i.e. the proposed ADPS algorithm) can preserve the key features, remove some redundant infor-
mation, and simplify information for further trajectory similarity measurement. The trajectory similarity measurement
method (i.e. the DTW algorithm) can be used to calculate the distance between trajectories based on dynamic warp-
ing, which provides a distance criterion for trajectory clustering. The trajectory clustering method (i.e. the proposed
ISCM method) is able to extract hidden patterns and discover navigational knowledge, thus correspondingly making
route planning, mining vessel movement patterns, and improving maritime safety. The hierarchical methodology is
illustrated in Fig. 3, while the three important methods are described in detail in Sections 3.1, 3.2, and 3.3.

As shown in Fig. 3, the original AIS data should be decoded and processed to remove noise and delete obvious
errors. In layer I, the trajectories are compressed by the ADPS algorithm to retain their critical features and simplify
data. The distance between trajectoriesN − i andN + i are measured based on the DTW method in layer II. Finally,
the proposed ISCM method can help mine the traffic patterns and discover the knowledge according to the distance,
mapping transformation, and the new spectral clustering method in layer III.

3.1. Adaptive Douglas-Peucker with Speed Algorithm
Douglas and Peucker (1973) initially proposed the classical DP algorithm to simplify the time series with the line

segments. The compressed trajectories are topologically consistent with the original ones, especially for the neigh-
borhood characteristics. Many scholars have shown that the DP algorithm could compress the trajectories effectively
while preserving the main geometrical structures (Saalfeld, 1999; Tienaah et al., 2015).
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Fig. 3: The flowchart of our hierarchical methodology.

The traditional DP algorithm has two disadvantages: one is that it needs to pre-define the thresholds artificially;
the other is that different trajectories have the same threshold. There are few studies on the automatic selection of the
optimal thresholds in the literature. The issue of automatically selecting an appropriate compression threshold for each
trajectory is the focus of current research. To address this issue, we propose a novel trajectory compression algorithm,
an adaptive Douglas-Peucker with speed (ADPS) algorithm, to set a different threshold for each trajectory based on
their geometric features, speed variation rate, and the distance of feature points. This improvement will lay a solid
foundation for the subsequent trajectory similarity measurement and clustering analysis.

For time series trajectory with speed, the thresholds of different trajectories are calculated based on the slope of
the baseline of the trajectory starting and ending points, and the distance between all trajectory points and the baseline.
The threshold model is shown below.
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(1)

where � denotes the threshold, k indicates the slope of baseline, di expresses the distance from the different points
in the trajectory to the baseline, aji is the rate of SOG at the itℎ coordinate point of the jtℎ trajectory, aj indicates the
average rate of SOG in the jtℎ trajectory. The pseudo-code of the ADPS algorithm is described in Algorithm 1.

The trajectory compression schematic diagram based on the original DP and the proposed ADPS algorithm is
displayed in Fig. 4. The compressed results of the DP algorithm can be seen in Figs. 4 (a) and (b), while the results of
the ADPS algorithm are presented in Figs. 4 (c), (d), and (e). The trajectory feature points in Figs. 4 (a) and (b) are
selected by the same threshold based on the DP algorithm. However, the moving characteristics of the two trajectories
are extremely different. Finally, a straight line will approximately replace the trajectory with unobvious features in Fig.
4 (b). Therefore, it is not reasonable and effective to compress all the trajectories with the same threshold. The useful
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Algorithm 1 ADPS algorithm
Input: T ji = (x
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Output: �j , dji , TTi
j .

⊳ /* �j is the threshold, dji is Euclidean distance from the point (xji , y
j
i ) to the base line, TTi

j is the compressed trajectories . */
1: //A segmentation framework for annular and semi-annular trajectories based on waterway characteristics and trajectory features.//
2: Set research waterway and analyze the characteristics;
3: if there is annular and semi-annular trajectories, then
4: split them;
5: else
6: next step;
7: end if
8: //Calculate �j //
9: for j = 1:m do
10: for i = 1:n do
11: aji =
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14: if aji > aj and |k| > 1 then
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16: �jd =
1
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d ;

18: else
19: �jv = |k| aji ;

20: �jd = |k|
n−1
∑

i=2
dji ∕(n − 2);

21: �j = �jv + �
j
d ;

22: end if
23: end for
24: end for
25: // Generate TTij .//
26: for j = 1:m do
27: for i = 1:n do
28: if dji > �

j then
29: TTij ← i;
30: else
31: delete i;
32: end if
33: end for
34: end for

and critical feature points can be retained in Figs. 4 (c), (d), and (e). It can be observed that the ADPS algorithm can
set appropriate thresholds for different trajectories based on their features. Comparing Fig. 4 (a) and Fig. 4 (d), the
same trajectory is not approximately replaced by a straight line. It also presents the reliability of the proposed ADPS
method. The comparison in Fig. 4 further verifies the effectiveness and superiority of the proposed ADPS method.
The original DP has the same threshold for all trajectories, and it is difficult to determine the optimal value directly.
The proposed ADPS algorithm can automatically calculate and set rational thresholds for different trajectories.

The proposed ADPS method can significantly compress vessel trajectories by automatic calculation of different
thresholds for each trajectory while maintaining the main geometric structure and features. It is important to ensure
the structural characteristics and improve the compression quality in trajectory clustering and classification. Therefore,
in practical applications, trajectory compression based on ADPS can significantly improve the accuracy of similarity
measurement and clustering.
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Fig. 4: Schematic diagram of trajectory compression based on different algorithms, (a)-(b) the trajectory compression results
based on the DP algorithm with the same threshold value, (c)-(e) the trajectory compression results based on the ADPS algorithm

with the adaptive threshold values.

3.2. Dynamic Time Warping Method
The trajectory is a kind of time series with consecutive locations and time-stamps. Trajectory similarity measure-

ment has been thought of as a crucial factor in calculating the distance between trajectories, and hence it is one of the
critical indicators in trajectory clustering. Trajectory similarity is calculated based on the correspondence and distance
between points. DTW is chosen as the similarity measurement method in this work because it is easy to find similarity
patterns and the optimal path based on dynamic programming (Morel et al., 2018). It can measure the similarity and
receive similar patterns based on the path warping from feature to feature, also does not limit the length of the trajectory
(Loh et al., 2011). DTW can minimize the cumulative distance between two trajectories with local optimization. The
theory is described within the context of ship trajectory similarity measurement as follows.

Let Q = {q1,⋯ , qi,⋯ , qm} and C = {c1,⋯ , cj ,⋯ , cn} are the two ship trajectories. Sorting all points according

to the time, then we can construct a matrixAm×n to store distance, and aij = d(qi, cj) =
√

(qi − cj)
2 ∈ Am×n. d

(

qi, cj
)

denotes the Euclidean distance between the itℎ point in series Q and the jtℎ point in series C.
The essence of DTW is to calculate the distance matrix between two trajectories, then find the optimal warping

path. The warping pathW =
{

w1, w2,⋯ , wt,⋯ , wM
}

, wt =
(

aij
)

t consists of a set of adjacent matrix elements in
Am×n, max {m, n} < M ≤ m + n − 1. The warping path must meet the following conditions:

(1) Boundary condition: w1 = a11, wt = amn;
(2) Continuity: if wt−1 = ai′j′ , wt = aij , then i − i

′ ≤ 1, j − j′ ≤ 1;
(3) Monotonicity: if wt−1 = ai′j′ , wt = aij , then i− i

′ ≥ 0, j − j′ ≥ 0 , the time at each point is also monotonic in
W.

The path with the lowest warping cost can be calculated as follows:

DTW (Q,C) = min

{

1
M

M
∑

t=1
wt

}

. (2)

The DTW distance is described as follows:

D(1, 1) = d11,

D(i, j) = dij + min

⎧

⎪

⎨

⎪

⎩

D(i, j − 1)
D(i − 1, j − 1)
D(i − 1, j)

⎫

⎪

⎬

⎪

⎭

. (3)

3.3. The Improved Spectral Clustering with Mapping Method
The spectral clustering algorithm is a classical method, which can find the optimal clustering results according

to the graph theory and classify the feature vectors from the feature decomposition (Li et al., 2017). Its essence is
the optimal graph partition problem based on the spectral graph partition theory. Spectral clustering can transform
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the clustering problem into graph space, identify the sample space with arbitrary shape, and converge to an optimal
global solution (Li et al., 2018a). However, it is also sensitive to the input parameter: the number of clustering centers
k. Therefore, we propose the ISCM method to conduct the trajectory clustering, integrating mapping transformation,
graph structure, the normalized cut, the number of clustering centers, and the selection of clustering centers

From the viewpoint of the whole trajectory research, the transformation of trajectories into points can not only
reduce the computation time but also can select more available clustering algorithms in the future. The proposed ISCM
method includes trajectory mapping, internal evaluation indexes, and improved spectral clustering methods. Firstly,
MDS is used to map the trajectories to points in the two-dimensional (2D) plane. Then the number of clustering centers
k is determined by the clustering internal evaluation index functions. Finally, the improved spectral clustering method
is applied to mine the trajectory patterns and hidden features.

MDS is a classical nonlinear data mapping method, and it can visualize the relationships between the trajectories in
a 2D and three-dimensional (3D) space. The similarity matrix between trajectories can be represented as the distance
of points in the lower dimension space. The essence of MDS is to find the space representation of the point based on
the similarity between trajectories.

SupposeX is a set of points that has the same distance asD based on the Euclidean constraints, xi, xj ∈ X, dij ∈ D.
The matrix T is introduced to decompose X and T = XXT , tij ∈ T .

The distance between any two points after dimension reduction is still the same as the original distance between
trajectories, then

d2ij = (xi − xj)
2 = x2i + x

2
j − 2xixj , (4)

with

tij = xixj ⇒ tij = −
1
2
(d2ij − x

2
i − x

2
j ), (5)

Suppose the samples after dimension reduction are centered, namely
∑

j
xj = 0 and

∑

i
xi = 0, then

∑

j
d2ij = nx

2
i +

∑

j
x2j − 2xi

∑

j
xj = nx2i +

∑

j
x2j ,

∑

i
d2ij = nx

2
j +

∑

i
x2i − 2xi

∑

i
xi = nx2j +

∑

i
x2i ,

∑

ij
d2ij = n

∑

i
x2i + n

∑

j
x2j ,

(6)

Based on Eqs. (5) and (6), the matrix T is presented, as shown in Eq. (7).

tij = −
1
2 (d

2
ij −

1
n
∑

k
d2ik −

1
n
∑

k
d2kj +

1
n2
∑

k,l
d2kl),

T = UΛUT = UΛ1∕2Λ1∕2UT = XXT .
(7)

The running time of trajectory clustering and the volume of data are significantly reduced after the trajectories are
mapped into points. For example, the 3904 trajectories being investigated in this study that consist 207267 points are
mapped into 3904 points with MDS. The similarity matrix is calculated by DTW in this paper and then is transformed
into the relative distance representation of spatial points based on MDS.

The trajectories are mapped into points by the MDS method. Meanwhile, the normalized cut is introduced to avoid
the small cluster problem in the proposed ISCM method. Meanwhile, the normalized cut is introduced to avoid the
small cluster problem in the proposed ISCMmethod. Furthermore, the new k-means clustering with the cluster centers
k is proposed and applied to cluster the mapping points based on the similarity between the trajectories from the DTW
method. The similarity distribution is divided into k parts, and the original centers are selected to reduce the iterations.
However, since the number of clusters k is unknown, it is necessary to determine the optimal number of cluster centers
in advance.

In this paper, we select three internal evaluation indexes to determine the optimal number of cluster centers in the
ISCM algorithm. Clustering evaluation can measure the performance of clustering analysis based on internal evalua-
tion indexes. The comprehensive evaluation is carried out mainly from two aspects: the density of points within the
same cluster and the separation degree between the clusters. Internal evaluation indexes include Silhouette Coefficient
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(SC) index, Calinski-Harabasz Score (CHS) index, and Davies-Bouldin Index (DBI) index. SC can compare the
similarity of the sample in the same cluster with that in other clusters. It can also measure the degree of compactness
and separation for different clusters. The SC index is the average SC value of all samples. It can show how similar the
point is within a group compared to other groups. The value range is [−1, 1] , and the larger the value is, the better the
clustering performance. The essence of the CHS index is to compare the between-cluster and within-cluster scatters.
The larger the value is, the closer the same cluster, and the more dispersed the different group. It means that a better
clustering performance could be obtained. The DBI index can compare the difference between the sum of the mean
distance of all samples in different clusters and the center point of different groups. The smaller the value is, the better
the clustering result.

After the number of clusters k is determined by the optimal value of the SC index, CHS index, and DBI index.
The global solution and proof of the proposed ISCM method based on the normalized cut is presented as follows.

Problem modeling. Given a data set X = {x1,⋯ , xm} that is divided into k clusters C1, C2,⋯ , Ck by the undi-
rected graph G(V ,E), where C1 ∪ C2 ∪⋯ ∪ Ck = V , Ci ∩ Cj = ∅.

The edge weight is wij and

Cut(Cl, Cl)=
1
2

∑

i∈Cl ,j∉Cl

wij . (8)

The goal of clustering is

Ncut(C1, C2,⋯ , Ck) =
∑k

l=1

Cut(Cl, Cl)
vol(Cl)

=
∑k

l=1

ylTLyl
ylTDyl

. (9)

with

vol(Ci) =
∑

vi∈Ci

dii.

Proof and problem solving. Introduce the indicator matrix Y and indicator vector yil.

yil =

{

0, vi ∉ Cl
√

1
vol(Cl)

, vl ∈ Cl
, Y TDY = I. (10)

then

yl
TLyl =

1
2
∑

i,j
wij(yil − yjl)

2,

= 1
2
[

∑

i∈Cl ,j∉Cl

wij(

√

1
vol(Cl)

)2 +
∑

i∉Cl ,j∈Cl

wij(

√

1
vol(Cl)

)2],

= 1
2
[

∑

i∈Cl ,j∉Cl

wij
1

vol(Cl)
+

∑

i∉Cl ,j∈Cl

wij
1

vol(Cl)
],

= 1
2
[Cut(Cl, Cl)

1
vol(Cl)

+ Cut(Cl, Cl)
1

vol(Cl)
],

=
Cut(Cl, Cl)
vol(Cl)

,

= Ncut(Cl, Cl). (11)

with

Y Tl LYl = (Y
TLY )ll,

Ncut(C1, C2,⋯ , Ck) =
c
∑

i=1
Y Tl LYl =

c
∑

i=1
(Y TLY )ll,
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Fig. 5: The flowchart of the proposed ISCM method.

= T r(Y TLY ).

The objective function can be converted to

min
Y TDY=I

T r(Y TLY ). (12)

Let us normalize the Laplacian matrix. The property of the Laplacian matrix is as follows

Lnorm = D−1∕2LD−1∕2, (13)

with

H = D1∕2Y , Y = D−1∕2H,

The problem can be rewritten based on the graph Laplacian.

min
H∈ℝm×k

T r(HTLnormH),

s.t. HTH = Ik.
(14)

then

D−1∕2LD−1∕2Hl = �Hl,
D−1∕2LD−1∕2D1∕2Yl = D1∕2Yl,
D−1L = Yl.

(15)

Y has the k eigenvectors ofD−1L corresponding to its k smallest eigenvalues. Finally, the new k-means clustering
is applied to mine the hidden patterns. The k centers are determined by the similarity distribution from the DTW. The
proposed ISCM method can better mine the behavior characteristics and pattern information of moving vessels. The
flowchart of the proposed ISCM method is illustrated in Fig. 5. The algorithm flow is shown in Algorithm 2.

4. Experimental Results and Discussion
4.1. Experimental Setting

To verify the accuracy and effectiveness of the proposed method, this paper selects the Chengshan Jiao Promontory
(CJP) as the experimental research area. The CJP is one of the busiest coastal waters in China, involving complicated
traffic flow and diverse natural environments (wind, wave, current, fog, etc.). The high vessel density and numerous
intersection areas have caused the increased risks of ship collision and grounding accidents. The waters of the CJP have
many vessel routing systems and navigation rules. The navigation routes and directions are complex and complicated
in this area because there are different types of vessels from different graphical regions, such as South Korea, Japan,
and some parts of Taiwan, Bohai Bay, Dalian, Dandong Port, and the Shandong Peninsula. Therefore, the number of
clustering centers is set within the range of [15, 35] based on the routing scheme.
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Algorithm 2 Pseudocode of the proposed ISCM algorithm
1: Input: the trajectory dataset TD, the trajetories Q,C ∈ TDC .
2: Output: cluster C1, C2,⋯ , Ck
3: Initialize: the compressed trajectory dataset TDC = ∅, similarity matrixWT ,WD,W = ∅, degree matrix D = ∅.
4: TDC ← ADPS(TD)
5: WT ← DTW (Q,C)
6: X ←MDS(TDC )
7: for eacℎ point in X do
8: WD ← d(xi, xj)
9: end for

10: D,W ← G(X,WD,WT )
11: L = D −W
12: Lnorm ← D−1∕2LD−1∕2
13: Eigenvalue decomposition of Lnorm
14: Λ← k smallest eigenvalues
15: U ← the corresponding eigenvectors
16: Y ← row vector of U
17: k← max(SC,CHS)&min(DBI)
18: for i = 1:m do
19: �r select the cluster center based on the similarity distribution
20: repeat
21: d(yi) = argmin ‖‖yi − �r‖‖

2
2 , r = 1,⋯ , k

22: r← {i, max d(yi)}
23: update �r
24: Until �1,⋯ , �k are received
25: end for
26: for i = 1:m do
27: for r = 1:k do
28: dir = min ‖‖yi − �r‖‖

2
2

29: C�r=C�r ∪ {yi}, r = 1,⋯ , k
30: end for
31: end for

The experiment flowchart is illustrated in Fig. 6. The visualization and discussion of trajectory compression is
presented in Section 4.2. Section 4.3 describes the number of clustering centers in the following clustering method.
The clustering results using the four different clustering methods (i.e. the proposed ISCM method, original spectral
clustering (OSC) method (Von Luxburg, 2007), affinity propagation (AP) method (Wang et al., 2018), and fast affinity
propagation (FAP)method (Shang et al., 2012)) are compared and discussed in Section 4.4. Furthermore, the clustering
analysis using the four methods is carried out on the data sets before and after compression. The finding based on the
clustering results of the proposed ISCM method is shown in Section 4.5. Section 4.6 presents the time complexity
analysis of the whole experiment.

The experiments are conducted based on the AIS data set from the CJP in January 2018, and the scope of the
research area is 122◦18′ − 123◦17′E, 37◦16′ − 38◦16′N . All numerical experiments are performed using 64-bit
Windows 10 on a 3.60 GHz Intel Core i7-7700U CPU, 1080 Ti GPU with 16 GB memory. The proposed algorithms
are programmed in the MATLAB R2016a and Python. The original data set has 4257 trajectories with 3153535
timestamped points. Data cleaning is a necessary step for trajectory mining. The 3904 trajectories with 2908685
timestamped points are preserved after data cleaning.

4.2. Visualization and Analysis of Trajectory Compression
The data set after data cleaning is compressed based on the proposed ADPS algorithm. The trajectories before

and after compression are presented in Fig. 7. The research area is shown in Fig. 7 (a), clearly illustrating the vessel
routing system and different routes. The original and compressed trajectories are displayed in Fig. 7 (b) and Fig. 7 (d),
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Fig. 6: The experiment flowchart.

Fig. 7: The original vessel trajectories and compressed trajectories in the CJP, (a) the research area, (b) the original trajectory
data, (c) the original point data, (d) the compressed trajectories, (e) the compressed point data.

respectively. The comparison of Fig. 7 (c) and Fig. 7 (e) shows that the data volume is significantly reduced, while the
critical features are effectively retained after trajectory compression. The original number of points on all trajectories
is 2908685, and it is 207267 after the trajectory compression. It can be seen that the data volume of trajectories after
the ADPS method has reduced significantly from Fig. 7.

To further verify the performance of the proposed ADPS algorithm, the trajectories are randomly selected to vi-
sually compare and analyze the trajectory information before and after the compression. The 2D and 3D image visu-
alization of vessel trajectories before and after trajectory compression are shown in Fig. 8. Fig. 8 (top and bottom)
represents the comparison of 2D and 3D visualization of vessel trajectories before and after trajectory compression, re-
spectively. Red points represent the original trajectory information, while blue ones indicate the compressed trajectory
information. The comparative results can clearly show that the compressed trajectory retains the essential structure
information and the speed information of the feature points in the original trajectory. Therefore, the performance of
the ADPS algorithm is further verified.

Visualization of the number of points in the trajectory data set and the threshold is shown in Fig. 9. The red
line represents the number of points before compression, while the blue line expresses the number of points after
compression. Fig. 9 (c) displays the compression threshold of each trajectory, and the range is [0, 0.18].

The findings reaveal that the proposed ADPS algorithm significantly compresses the AIS trajectories while main-
taining their main geometrical structures and key information, and also automatically calculates appropriate thresholds
for different trajectories.

4.3. The Number of Clustering Centers
The comparison of theSC index,CHS index, andDBI index based on the number of different clusters is shown in

Fig. 10. The larger SC and CHS indexes are better, and the smallerDBI index is better. Therefore, the higher values
of the SC index and CHS index in Fig. 10 (top) are better, and the number of common cluster centers corresponding
to the larger values in the two lines is the best cluster center number. Similarly, after the analysis of the CHS and
DBI indexes of all the figures in Fig. 10, the different indexes of 23 and 25 are good, especially when the number of
cluster centers is 23. The SC index is relatively the largest, and the CHS index is relatively the smallest, while the
DBI index is also relatively small. Therefore, 23 is selected as the number of clustering centers. In the clustering
performance evaluation, the clustering results of 23 and 25will be further compared to prove the validity of the chosen
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Fig. 8: 2D (Top) and 3D (Bottom) trajectory comparisons before and after compression. Red and blue labels denote the original
point data and the compressed point, respectively.

Fig. 9: Comparison of trajectory information before and after compression, (a) the number of points before and after compression,
(b) the number of points based on the ADPS method

, (c) the threshold of each trajectory.

number of cluster centers.

4.4. Clustering Results and Comparative Analysis of Four Different Methods
Clustering analysis is carried out on the data sets before and after trajectory compression. The clustering perfor-

mance of different clusters is further compared based on the proposed ISCMmethod, the OSCmethod, the APmethod,
and the FAP method. The clustering results corresponding to the different methods and the different number of clus-
tering centers (k=23 and k=25) are shown in Fig. 11. As displayed in Fig. 11, we can see that the clustering results of
four methods after compression (columns 3 and 4) are better than those before compression (columns 1 and 2). These
results show that trajectory compression is critical in maritime traffic pattern extraction. Moreover, the visualization
results of the proposed ISCM method (the first row in Fig. 11) are superior to those of the OSC method (the second
row in Fig. 11) from Figs. 11 (a)-(h). It reveals that the clustering result based on the proposed ISCMmethod is better
than those based on the OSC method. Similarly, comparing the results of Figs. 11(a)-(d), (i)-(m), and (n)-(q), the
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Fig. 10: The determination of the number of clustering centers based on the results of clustering evaluation indexes, the
comparison of SC and CHS index (top), the comparison of SC and DBI index (middle), and the comparison of DBI and

CHS index (bottom).

results of the proposed ISCM method are better than the FAP and AP methods.
Finally, we analyze the clustering results of different clustering numbers based on the proposed ISCM method.

Fig. 11 (a) and Fig. 11 (c) are the clustering result of clustering centers k=23 before and after trajectory compression,
respectively, while Fig. 11 (b) and Fig. 11 (d) are the results with k=25. It visually shows that the clustering results
after trajectory compression based on the proposed ISCM method are better than those before trajectory compression.

From the comparative analysis in Fig. 11, the clustering performance after compression is better than before, and
the clustering results of clustering centers k=23 are better than that of k=25 based on the proposed ISCM method.
The superiority of the proposed ISCM method is also verified and shown in Fig. 12 (k=23) and Fig. 13 (k=25),
respectively. To further highlight the effectiveness of the proposed method, we present the results of k=23 and k=25
based on the AP (Fig. 14 and Fig. 15) and FAP (Fig. 16, and Fig. 17) clustering methods in the Appendix.

As shown in Fig. 12, different clusters clearly show the routes and moving patterns of vessels. In contrast, clusters
1, 2, 3, 4, 5, 7, 9, 12, 14, 17, 21, and 23 are the primary movement patterns of different vessel types corresponding to
various navigation directions in Fig. 12. Some of the trajectories are misclassified in clusters 5, 6, 9, 10, 13, 16, 18,
21, and 22 in Fig. 12. The clustering result with k=25 is shown in Fig. 13, and some trajectories are misclassified in
clusters 2, 3, 4, 5, 6, 7, 11, 12, 17, 21, 22, 23, and 25. The comparative analysis of different clusters can further verify
the clustering performance of k=23 is better than that of k=25. The vessel movement patterns are extracted based on
the clustering results. They are conducive to planning navigation routes and detecting abnormal trajectories.

4.5. Statistical Analysis based on Gaussian Mixture Model
Statistics-based methods are extensively applied to provide quantitative analysis in maritime traffic research. The

DTW algorithmmeasures the similarity in the same cluster, and then the distance matrix will be obtained. The similar-
ity distribution is fitted based on the distance matrix by the normal fitted curve in each cluster. The statistical analysis
results of different clusters in Section 4.4 are listed in Table 1. The number of trajectories in 23 groups is clearly shown
in Table 1.
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Fig. 11: Clustering results based on different methods and different number of clustering centers in trajectory data set before and
after trajectory compression.

To directly and effectively compare the results of the fitting results, the simplified formula is used to express the
Gaussian mixture model. The coefficients ai, bi, and ci, i = 1, 2,⋯ , 23 are visualized in Table 1.

f (x) =
n
∑

i=1
ai exp

(

− 1
2ci2

(

x − bi
)2
)

. (16)

The evaluation indexes of the fitting performance mainly include R2, Adjusted R2, and Root Mean Square Error
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Fig. 12: The clustering results with 23 clusters (k=23) based on the proposed ISCM clustering method

.

(RMSE). From Table 1, the distribution of clusters 10, 11, 13, and 18 follow Gaussian single model. The trajectory
similarity of cluster 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 19, 20, 22 and 23 obey two-dimensional Gaussian distribution. The
distribution of clusters 9, 16, 17, and 21 follow a Gaussian mixture distribution.

The number of trajectories, the different evaluation indexes, and the fitting results in different clusters are presented
in Table 1. It can be seen that the range of the R2 and Adjusted R2 is [0.9281, 0.9989] and [0.9132, 0.9988], respec-
tively. Both R2 and Adjusted R2 are close to 1; meanwhile, RMSE is also small. The statical analysis results from
Table 1 reveal that the proposed ISCM method is valid and appropriate. The fitting results of similarity distribution in
different clusters further verify the validity and effectiveness of our proposed methodology.

4.6. The Time Complexity Analysis
The time complexity of the proposed ADPS method, the DTW method, the proposed ISCM method, the OSC

method, the AP method, and the FAP method is O(n2), where n indicates the number of ship trajectories. The com-
parison results are shown in Table 2.

The data set in the CJP includes 3904 trajectories with 2908685 points after the trajectory preprocessing. After
the trajectory compression, 3904 trajectories are represented by 207267 points. The time spent on the trajectory com-
pression is 2318.863s. By comparison, data storage has been decreased by 14 times. The running time of the DTW
algorithm in the data set before and after compression was 151053.265s and 14296.23s, respectively, which represents
a 10.5-fold reduction in distance computing time.

The running time of four different clusteringmethods before and after compression is listed in Table 2, with increas-
ing order of the FAP method, the AP method, the ISCM method, and the OSC method. Furthermore, the clustering
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Fig. 13: The clustering results with 25 clusters (k=25) based on the proposed ISCM clustering method

.

performance is evaluated based on three clustering internal evaluation indicators: SC, CHS, and DBI. As can be seen
from Table 2, the proposed ISCMmethod is better than the other methods. The clustering performance further verifies
the effectiveness of the proposed unsupervised hierarchical methodology.

The running time of different steps after trajectory compression is lower than that before trajectory compression,
and the performance of distance calculation and clustering analysis in the data set after trajectory compression is im-
proved. Through the comparative analysis of experiments, the proposed ISCM method can extract similar and useful
behaviors and patterns better. The comparison results before and after trajectory compression further proved the fea-
sibility and effectiveness of the proposed methodology. The unsupervised hierarchical methodology can extract and
retain key trajectory characteristics, realize automatic compression, reduce the distance calculation time, improve the
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Table 1
The fitting results of different clusters based on Gaussian mixture distribution.

Cluster
ID Number R2 Adjusted

R2 RMSE a1 b1 c1 a2 b2 c2 a3 b3 c3

1 161 0.9596 0.9583 24.00 285.6 -0.730 1.084 113.2 -1.345 0.289 ⧵ ⧵ ⧵
2 627 0.9962 0.9962 126.4 7496 -1.442 0.113 3436 -1.294 0.191 ⧵ ⧵ ⧵
3 535 0.9886 0.9885 162.9 5981 -1.539 0.087 3113 -1.405 0.167 ⧵ ⧵ ⧵
4 739 0.9931 0.993 142.4 4153 0.604 0.192 2897 0.895 0.359 ⧵ ⧵ ⧵
5 144 0.9984 0.9983 24.49 2847 1.349 1.523 1298 1.792 3.816 ⧵ ⧵ ⧵
6 100 0.9763 0.975 14.77 168.1 2.451 2.272 157.8 5.95 5.841 ⧵ ⧵ ⧵
7 118 0.9794 0.9787 16.41 163.6 2.274 1.640 271.5 7.916 8.151 ⧵ ⧵ ⧵
8 029 0.9281 0.9132 6.402 34.95 3.925 1.645 48.36 11.35 19.92 ⧵ ⧵ ⧵
9 242 0.9886 0.9882 82.16 3700 -1.663 0.043 2138 -1.591 0.091 208.1 -1.34 0.630
10 038 0.9462 0.9451 6.728 4313 -4.055 1.265 ⧵ ⧵ ⧵ ⧵ ⧵ ⧵
11 033 0.9887 0.9879 4.497 115.7 -1.714 1.209 ⧵ ⧵ ⧵ ⧵ ⧵ ⧵
12 196 0.9989 0.9988 73.46 4853 -1.613 0.090 9250 -2.008 0.512 ⧵ ⧵ ⧵
13 011 0.9501 0.9418 2.716 47.16 -2.101 0.795 ⧵ ⧵ ⧵ ⧵ ⧵ ⧵
14 086 0.9604 0.9568 16.09 106.9 -1.345 0.272 187 -0.656 1.258 ⧵ ⧵ ⧵
15 040 0.9507 0.9435 7.620 77.96 -0.947 1.085 37.01 -1.471 0.087 ⧵ ⧵ ⧵
16 133 0.9833 0.9823 32.44 552.1 -1.635 0.049 719.5 -1.525 0.126 282.5 -1.287 0.428
17 149 0.9937 0.9932 42.93 1335 -1.608 0.055 1456 -1.519 0.117 607.2 -1.342 0.278
18 020 0.9966 0.9953 4.038 5865 -6.838 2.873 ⧵ ⧵ ⧵ ⧵ ⧵ ⧵
19 047 0.9403 0.9348 9.445 35.26 -1.229 0.274 73.72 -1.359 1.207 ⧵ ⧵ ⧵
20 010 0.9965 0.9922 1.249 161.2 -1.347 0.1234 7.654 -0.518 0.691 ⧵ ⧵ ⧵
21 220 0.9846 0.9839 50.18 1453 -1.552 0.075 810.6 -1.424 0.156 282.2 -0.861 0.918
22 157 0.9877 0.9871 99.57 4527 -1.668 0.120 9.338e+15 -38.49 6.551 ⧵ ⧵ ⧵
23 069 0.9757 0.9721 39.46 803.3 -1.514 0.134 339.6 -1.295 0.304 ⧵ ⧵ ⧵

Table 2
The time complexity comparison results of different algorithms.

Symbol Time complexity Raw dataset Trajectory dataset
after preprocessing

Trajectory dataset
after compression SC CHS DBI

NT ra ⧵ 4257 3904 3904 ⧵ ⧵ ⧵
NPoint ⧵ 3153535 2908685 207267 ⧵ ⧵ ⧵
TADPS (s) O(n2) ⧵ ⧵ 2318.863 ⧵ ⧵ ⧵
TDTW (s) O(n2) ⧵ 151053.265 14296.23 ⧵ ⧵ ⧵
TISCM (s) O(n2) ⧵ 287.917 260.681 0.2457 521.8965 1.5630
TOSC (s) O(n2) ⧵ 285.510 259.317 0.1531 217.0527 3.5760
TAP (s) O(n2) ⧵ 290.230 265.350 0.1873 359.7881 2.9231
TFAP (s) O(n2) ⧵ 282.326 256.827 0.2265 490.7683 1.8235
* NT ra and NPoint represent the number of trajectories and points in the dataset, respectively. TADPS (s), TDTW (s), TISCM (s),
TOSC (s), TAP (s), and TFAP (s) indicate the running time based on the ADPS, DTW, ISCM, original spectral clustering method,
affinity propagation clustering method, and fast affinity propagation clustering method, respectively. SC , CHS, and DBI
respectively represent three internal evaluation indexes.

accuracy of clustering, and mine the hidden knowledge. It is of great significance for maritime traffic pattern extrac-
tion for knowledge discovery, as demonstrated by maritime AIS data. The similarity fitting analysis after trajectory
clustering further verifies the validity and rationality of the proposed methodology. It is feasible to extract and mine
the hidden patterns and critical knowledge based on the novel unsupervised hierarchical methodology.

5. Conclusions and Future Research
This paper proposed an unsupervised hierarchical methodology to extract knowledge and navigation characteristics

from hidden pattern information and better understand maritime situational awareness. It consists of three inherent
elements (i.e. trajectory compression, trajectory similarity measurement, and trajectory clustering) in a sequence.
The findings make contributions to the maritime pattern extraction from three parts: the ADPS algorithm, the ISCM
method, and the new clustering evaluation criterion. The experimental results also show that the ADPS algorithm can
automatically set appropriate thresholds for different trajectories and reduce the cost of data storage. Furthermore, the
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proposed ISCM method can convert the trajectories into graph space with points, determine the number of clustering
centers based on the inner evaluation indexes in advance, and avoid local solution. Finally, the deep statistical analysis
of within-cluster trajectory similarity shows that all the similarity distribution between trajectories in each cluster
follows a Gaussian mixture model. The finding hence provides a reliable standard for the clustering performance
evaluation.

To generalize the proposed methodology beyond the scope of ship trajectory analysis, the adaptive selection of the
number of clustering centers and the new similarity measurement methods can be further studied. Lastly, the appli-
cation of trajectory mining to realize the operational practicality, reliability, and robustness in maritime transportation
industries can be further enhanced.
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Appendix
The clustering results based on the affinity propagation (AP) clustering method and fast affinity propagation (FAP)

clustering method are displayed in Fig. 14 and Fig. 15, Fig. 16, and Fig. 17, respectively. The comparison results
further verify that the FAP method has better clustering performance than the AP method. From Fig. 12, Fig. 14, and
Fig. 16, it can be clearly seen that the performance of the proposed methodology is superior to that of other methods.
Furthermore, the results in Fig. 13, Fig. 15, and Fig. 17 also show that the performance of the proposed methodology
is better than that of other methods. All the comparison experiments verify that the performance of the proposed
methodology is the best in the maritime pattern extraction.

Fig. 14: The clustering results with 23 clusters (k=23) based on the AP clustering method.
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Fig. 15: The clustering results with 25 clusters (k=25) based on the AP clustering method.
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Fig. 16: The clustering results with 23 clusters (k=23) based on the FAP clustering method.
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Fig. 17: The clustering results with 25 clusters (k=25) based on the FAP clustering method.
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