
Guo, Y, Jin, Y, Hu, S, Yang, Z, Xi, Y and Han, B

 Risk evolution analysis of ship pilotage operation by an integrated model of 
FRAM and DBN

http://researchonline.ljmu.ac.uk/id/eprint/17672/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Guo, Y, Jin, Y, Hu, S, Yang, Z, Xi, Y and Han, B (2022) Risk evolution analysis
of ship pilotage operation by an integrated model of FRAM and DBN. 
Reliability Engineering &amp; System Safety, 229. p. 108850. ISSN 0951-
8320 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Reliability Engineering and System Safety 229 (2023) 108850

Available online 19 September 2022
0951-8320/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Risk evolution analysis of ship pilotage operation by an integrated model of 
FRAM and DBN 

Yunlong Guo a,b, Yongxing Jin a, Shenping Hu a,*, Zaili Yang c,*, Yongtao Xi a, Bing Han d 

a Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China 
b School of Nautical Technology, Jiangsu Shipping College, Nantong 226010, China 
c Liverpool Logistics Offshore and Marine (LOOM) Research Institute, Liverpool John Moores University, Liverpool L3 3AF, UK 
d Shanghai Ship and Shipping Research Institute, Shanghai 200135, China   

A R T I C L E  I N F O   

Keywords: 
Risk evolution 
FRAM 
DBN 
Markov model 
Ship pilotage 
Maritime risk 

A B S T R A C T   

The risks involved in ship pilotage operations are characterized by random, uncertain and complex features. To 
reveal the spatiotemporal evolution of ship collision risks in the pilotage operations process, a risk evolution 
analysis model is developed in this paper by the combination of a Functional Resonance Analysis Method (FRAM) 
and Dynamic Bayesian Network (DBN). First, based on the analysis results of the functional resonance mecha
nism of a ship pilotage system, the relevant collision risk influencing factors (RIFs) and their coupling re
lationships are identified. Second, the DBN is quantified by the employment of various uncertainty treatment 
methods including the Dempster-Shafer evidence theory for the configuration of the prior probabilities and a 
Markov model for the dynamic factors’ transition probability calculation. Finally, using the temporal observation 
data, the temporal risk inference is conducted to reveal the risk evolution law in a ship pilotage operations 
process. The findings show that the evolution of collision risk in ship pilotage is significantly sensitive to regional 
locations, resulting in a “U” curve shaped by the action of functional resonance. “Inadequate human look-out” is 
among the most influential factors, and hence targeted risk control strategies should be formulated to ensure the 
safety of ship pilotage operations.   

1. Introduction 

The shipping industry is deemed as the lifeline of ensuring global 
economic development. With an incomparable cost advantage in the 
transport of long-distance bulk cargo, it represents 90% of the freight 
volume in international trade [1]. Although showing attractiveness, it 
renders a high risk that leads to catastrophic consequence such as loss of 
life, damage to property and environment, particularly in constraint 
waters (e.g. ports and canals/channels). Ship pilotage is implemented 
compulsorily (in many countries) to undertake the tasks such as ship 
navigation and berthing/unberthing and to ensure ship safety in port 
[2]. However, due to the complexity of navigation environment in port 
waters and intensive traffic, the safety of ship pilotage still faces great 
uncertainty, resulting in the occurrence of accidents [3]. According to 
the pilot-related ship accident reports published by International Group 
of P&I Clubs, ship collisions account for more than 50% of nautical 
accidents [4]. Despite the relevant high collision risk it exposes, pilotage 
operations attract less safety-related research compared to other 

maritime operations, requiring new studies to address this problem with 
urgency. 

Due to the complex and changeable hydrological environment and 
the frequent convergence of ships in port waters, the complex interac
tion between the human-ship system and the environment is unavai
lable, leading to a great collision risk during ship navigation [5]. On the 
basis of International Regulations for Preventing Collisions at Sea 
(COLREGS), all the International Maritime Organization (IMO) member 
states have formulated the regulations for ship collision avoidance in 
inland waters and pilotage management regulations among the others 
[6]. The maritime administration adopts a Vessel Traffic Service (VTS) 
mode with the help of radar, and Automatic Identification System (AIS) 
to strengthen the navigation safety of ships in port waters. Along with 
the above-mentioned regulations, ship collision risk studies have been 
conducted from multiple perspectives in the existing literature. How
ever, the studies on ship collisions in pilotage operations are scanty, and 
significantly less than those relating to the ship operations at open wa
ters. It is even more worrisome when an increase of ship collisions and 
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contacts accidents occur in seaports. 
Aiming at analysing the complex coupling and dynamic evolution 

characteristics in ship pilotage operations risk, this paper pioneers the 
combination of a Functional Resonance Analysis Method (FRAM) and 
Dynamic Bayesian Network (DBN) to analyze the functional resonance 
and identify the collision risk in a ship pilotage process based on specific 
operations scenario analysis. The DBN model is used to combine expert 
knowledge, historical data and observational data to infer the spatio
temporal evolution law of ship collision risk in a specific pilotage 
scenario. 

The remainder of this paper is organized as follows. The state-of-the- 
art of the maritime risk research literature is reviewed with a focus on 
ship collisions in Section 2, and it aids to reveal the weaknesses of the 
existing studies and formulate the research problems. In Section 3, a risk 
evolution analysis framework is proposed for ship pilotage operations by 
integrating FRAM and DBN. In Section 4, a case study of collision risk 
evolution analysis during container ship pilotage operations is con
ducted to verify the feasibility of the proposed method. Section 5 dis
cusses the research method and results, and Section 6 is the conclusion 
of this paper. 

2. Literature review 

This section is outlined in five sections, including the literature 
relating to maritime risk analysis, the developments of BN, FRAM and 
DBN in maritime risk studies, respectively before the introduction of the 
new contributions in the last section. 

2.1. Maritime risk analysis and risk evolution analysis 

Maritime risk analysis is one of the effective and important ways to 
enhance maritime safety. The IMO accepts and advocates the Formal 
Safety Assessment (FSA) method proposed by the UK Maritime & 
Coastguard Agency (MCA), with a fundamental aim to evaluate the 
regulatory changes and/or make a comparison between the existing and 
possibly improved regulations, with a view to achieving a balance be
tween the various technical and operational issues [7,8]. Traditional 
maritime risk analysis methods have been developed and applied with 
regards to the framework of FSA, using qualitative, semi-quantitative or 
quantitative methods [9] to integrate the probability and consequence 
of accident for capturing the magnitude of risk. Although the FSA has 
been widely used in maritime risk analysis, it still has some deficiencies, 
and its application is also under continuous development [10]. The 
identification of risk influencing factors (RIFs) for ship accidents is the 
basis for maritime risk analysis, which is generally obtained through 
historical data analysis or expert judgment [11]. With the development 
of maritime technology and safety management, the composition and 
mechanism of RIFs are also variational. Ship accident surveys and 
studies show that more than 80% of ship accidents are related to human 
and organizational factors [12], therefore, they have received extensive 
attention and research by relevant scholars [13]. Human Factor Analysis 
and Classification System (HFACS) is a comprehensive human error 
analysis method based on the Reason model, and is currently among the 
most popular human factor identification and modeling methods [14]. 
As the second generation of human reliability analysis method, Cogni
tive Reliability Error Analysis Method (CREAM) is mostly used in com
bination with other quantitative analysis methods for human error 
probability quantification [15]. Wu et al. [16] reviewed the methods 
and technologies of human and organizational factors in maritime risk 
analysis, and pointed out that the development of autonomous ships 
brought new changes and challenges to maritime risk analysis. As the 
future direction and research hotspot of intelligent shipping, an 
important contribution of maritime autonomous surface ship (MASS) is 
to reduce the impact of human factors on ship safety through the use of 
intelligent technology [17], although it might brought new types of risks 
such as cyberattacks [18]. However, in different stages of the 

development of ship autonomy, human factors still have an important 
impact. MASS is also affected by human factors, natural environment 
and traffic conditions during the encounter with conventional ships, 
various RIFs need to be comprehensively considered in the maritime risk 
analysis [17]. 

Accident causation theories are accident mechanisms and models 
extracted from a large number of accidents, and are widely used in 
maritime risk analysis. Early risk analysis methods are mainly developed 
based on the domino model [11], which is a typical linear causal sec
ondary theory. With the deepening of safety research, researchers began 
to consider multiple sequences and potential conditions of failure 
events, followed by the emergence of risk analysis methods based on 
epidemiological models [19]. However, the risk analysis methods based 
on an epidemiological model still imply the linear thinking of sequence 
and causality. In order to overcome this deficiency, various 
systems-based risk analysis methods such as accident map (AcciMap), 
System-Theoretic Accident Model and Process (STAMP) and FRAM have 
successively appeared [20]. de Linhares et al. [21] used STAMP, FRAM 
and Resilience Assessment Grid (RAG) for the same accident analysis 
and comparison, and proposed these three approaches may be used 
together in a phased manner in risk analysis of complex sociotechnical 
systems. Wróbel et al. [22] built a collision avoidance process model 
based on STAMP, and then combined accident analysis and expert 
knowledge to evaluate the effect of specific collision avoidance actions. 

The maritime risk research under the FSA framework is mainly 
aimed at the quantitative analysis of macro static risk, in order to realize 
the precise control of the ship operation process risks. It means that the 
research on the operation risks of individual ship in different scenarios 
has become a major issue [23]. The RIFs and their states of individual 
ships in different operation scenarios are often different. Therefore, the 
identification and analysis of RIFs need to consider not only specific 
scenarios such as their operation environment, ship characteristics and 
operator factors, but also the temporal and spatial characteristics of 
RIFs. In order to conduct a comprehensive analysis of the navigation risk 
of MASS, Fan et al. [13] referred to relevant literature and used expert 
knowledge to identify the RIFs of MASS in four operational stages from 
four aspects: human, ship, technology, and environment. Based on the 
identification of the main operational hazards of MASS by Failure Mode 
and Effects Analysis (FMEA), Chang et al. [17] combined with Evidential 
Reasoning (ER) and Rule-based Bayesian Network (RBN) to quantita
tively evaluate the risk level caused by the identified hazards. Based on 
10 years AIS data learning, Gil et al. [24] obtained the influencing fac
tors of the Bow Crossing Range (BCR) and the empirical safety value of 
BCR where various ships encountered in different scenarios. In addition, 
with the development of the Arctic waterway, the safety of individual 
ship navigation in the Arctic waters has received major attention. 
Considering the influence of special scenario factors such as ice, severe 
operating conditions, and unpredictable climatic changes, relevant 
scholars have studied the individual ship accident risks of ship besetting 
[25], ship-ice collision [26], ship-ship collision [14] and grounding [27] 
in Arctic waters. In order to quantitatively analyze the overall risk 
probability of individual ship navigation process, Yu et al. [23] 
considered not only the influence of static factors such as ship charac
teristics, but also dynamic geometric risk factors related to local traffic 
factors. Yu et al. [28] identified the RIFs of navigation and natural 
environment from the perspective of geometric risk, and used Bayesian 
Network (BN) modeling to evaluate the spatial and temporal distribu
tion of ship and offshore installation collision risk in real scenarios. 

As the research on the risk of individual ship operation process 
gradually attracts the attention of scholars, the coupling correlation and 
dynamic characteristics of RIFs and the analysis of operation scenarios 
have become emerging. Hu et al. [29] used STAMP to model the risk 
evolution structure of LNG-fueled vessel system, combined with genetic 
algorithm (GA) and a cloud model to simulate the risk evolution process 
of LNG-fueled vessel during specific navigation. Xuan et al. [30] pro
posed a complete node model based on the risk analysis of LNG 
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bunkering operations, established a system dynamics model based on 
the catastrophe theory, and simulated the risk evolution of a ship 
bunkering process. Li et al. [31] built a DBN model together with the 
Dempster-Shafer (D-S) evidence theory and cloud models to integrate 
expert judgment, marine meteorological data, and monitoring data to 
infer the risk evolution of an LNG vessel running in arctic waters. With 
the complex coupling of the environment, ship equipment and operators 
in a ship pilotage operations process [3], the system risk performance 
presents a spatiotemporal change, that is, the risk evolution of the 
operation process. New studies to capture such risk evolution of ship 
pilotage operations are needed in order to obtain the insights for the 
rational safety management more effectively. 

2.2. Maritime risk analysis using BN and DBN 

As a probabilistic graphical model, BN can quantitatively represent 
the coupling relationship between RIFs [23], and effectively synthesize 
subjective and objective data with uncertainty for risk inference. In this 
process, the RIFs and inference results can also be updated with new 
observations [32]. Maritime risk analysis by establishing a BN model 
includes two critical issues, the determination of BN structure and 
parameter quantification. The common method to determine the BN 
structure is to build it based on historical accident data learning or 
expert judgement [33]. Liu et al. [34] used a large amount of Port State 
Control (PSC) inspection data to build a BN model through a data-driven 
structure learning algorithm and used it for the analysis of ship deten
tion risk. Jiang et al. [35] used the K2 algorithm and 
expectation-maximization to learn the network structure and condi
tional probability table (CPT) of BN from accident data, respectively. 
Özaydın et al. [36] built a BN structure according to expert advice, and 
learnt the CPT of BN nodes from accident data, then used a predictive 
Apriori algorithm to determine the minimum requirements required for 
the occurrence of occupational accidents. In order to reduce the un
certainty caused by expert judgment when the accident data is insuffi
cient, Li et al. [37] used a binary logistic regression method to obtain the 
prior probability (PP) input of BN nodes using various data resources. 
However, historical data is often scarce, and it has become a common 
practice to map other risk analysis models to BN, among which Fault 
Tree Analysis (FTA), Event Tree Analysis (ETA), and Bow-Tie (BT) [38] 
play a dominant role. However, for the BN model of individual ship 
navigation risk assessment, the risk analysis based on historical data 
cannot often capture the real scenario risk, and it is necessary to use 
systematic risk analysis methods to characterize the risks of specific 
operating scenarios. Chaal et al. [39] adopted System Theoretic Process 
Analysis (STPA) for hazard analysis and the identification of Risk Con
trol Options (RCOs) for autonomous ships, while BN was employed in 
the framework for estimating the system risk. Qiao et al. [40] used 
FRAM to construct a BN structure based on the qualitative description of 
an emergency response process, and employed an improved K-shell 
decomposition algorithm to obtain the PP of BN. Fu et al. [41] con
structed an AcciMap model to describe the relationship between RIFs 
and mapped it to BN for quantitative analysis of ship grounding risk. 

As the main parameters of a BN model, PP and CPT are mainly ob
tained through historical data learning or expert judgment. Ung [42] 
obtained the PP and CPT of a BN model based on 5 years of accident data 
combined with a mapping process contemplating the states from parent 
nodes. When historical data is incomplete, expert knowledge is often 
used to obtain BN parameters [27]. In order to prevent the knowledge 
limitation of experts, Yang et al. [15] adopted an ER method to fuse 
different expert judgments and to obtain the CPTs of the BN model for 
Human Error Probability (HEP) inference. In order to solve the problem 
of insufficient and incomplete data, Pan et al. [43] combined fuzzy 
function and an improved D-S evidence theory to fuse multiple experts 
to get the fuzzy PP of each risk factor, and then use it into the BN model 
to achieve risk inference. In addition, according to the mutation char
acteristics of environmental RIFs during a ship navigation process, the 

monitoring data of AIS, radar and other equipment are used to provide 
an important data source for the parameterization of BN [23]. Although 
showing some attractiveness, previous relevant studies fail to model 
RIFs in BN in terms of their temporal changes during individual ship 
pilotage operation process. The conventional BN has the limitations in 
dealing with the dynamic characteristics of RIFs and inference of tem
poral risk. Therefore, it is necessary to introduce DBN for temporal dy
namic risk research. 

DBN [44] as an extension of BN in time series, combines the ad
vantages of BN and Markov chain (MC) to effectively deal with dynamic 
risk inference problems under multi-factors associations. Dabrowski and 
Villiers [45] constructed a DBN model of maritime piracy situation 
based on a switching linear dynamic system analysis, then simulated the 
spatiotemporal evolution of various vessels behavior of maritime piracy. 
Li et al. [46] constructed the MC based on observation data to obtain the 
state transition probabilities of the dynamic factors in a DBN, to realize 
the reasoning of the temporal risk evolution of a ship navigation process 
in the Arctic waters. Khan et al. [26] constructed a DBN model of 
ship-ice collision risk by considering the influence of objective factors 
such as visibility, ice condition and ship speed on an Arctic route. Based 
on the observation hypothesis of multi-step transfer of dynamic RIFs 
states, temporal risk evolution inference of ship-ice collision in a navi
gation process was carried out. Qian et al. [44] evaluated the dynamic 
natural environment risk of the key nodes in the Arctic Northwest Pas
sage by constructing a DBN through index selection and data processing 
under a ship navigation scenario. DBN can synthesize observational 
data, expert knowledge and simulation data, and combine the transition 
probabilities of dynamic factors to realize the temporal inference of 
system risk [31]. It is revealed that DBN is suitable to the inference of 
risk evolution in ship operations. The accuracy of the risk evolution 
inference result using DBN depends not only on the rationality of the 
network structure, but also on the validity of the dynamic nodes tran
sition probability. It is common to use observation data, simulation data, 
expert knowledge and MC model in a holistic way to obtain the effective 
transition probabilities of DBN dynamic nodes [47]. However, such 
applications and studies have yet been witnessed in a ship pilot 
operation. 

2.3. Applications and development of FRAM in risk analysis 

As a system analysis method, FRAM emphasizes that accidents and 
risk factors of dynamic systems should be analyzed from the perspective 
of the functional characteristics of system operations [48]. It has been 
continuously developed from its creation in 2004 and is widely used in 
accident analysis and/or risk assessment of complex socio-technical 
systems across different sectors, such as aviation [49] and maritime 
operations (Patriarca, 2017). Patriarca et al. [50] systematically 
reviewed the state-of-the-art of FRAM from a methodological aspect, 
application domains, and potential future research directions. As a 
typical socio-technical system, the FRAM method can aid to identify 
scenario-based risk factors and their complex coupling relationships in a 
ship operations process. Salihoglu and Beşikçi [51] used FRAM to 
qualitatively analyze the Prestige oil spill accident, and effectively 
identify the key functions and internal influencing factors affecting the 
accident, revealing the outstanding advantages of FRAM in the analysis 
of maritime accidents. Through the identification and description of the 
main functions of fishing expeditions, the analysis of functional vari
ability and coupling between functions was carried out, and the safe 
operation path under functional aggregation was explored, to improve 
safety in artisanal fishing [52]. Although the FRAM method can reveal 
the functional coupling and risk emergence mechanism of complex 
socio-technical systems, the process of identifying and describing func
tions often relies on the subjective judgment of experts and lacks 
effective consistency and normative. In addition, as a qualitative anal
ysis method, there are shortcomings in terms of the provision of a 
quantitative risk analysis result, and it needs to be combined with other 
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methods to expand the application. 
Accident Causation Analysis and Taxonomy (ACAT) is an accident 

analysis method based on STAMP. It based on both system safety and 
control theories assumes that any complex system is regarded as a 
control system composed of actuator, sensor, controller, and commu
nication which are coordinated together to make the system work 
smoothly and continuously [53]. As a risk analysis method, ACAT de
fines the system from two aspects: structural decomposition and func
tional abstraction. An ACAT model may be used to enrich FRAM by 
establishing a hybrid FRAM-ACAT framework, in which operations 
process can be divided into subtasks, so the inter-level functions can be 
defined based on subtasks. For each inter-level function, three 
intra-level functions are further identified to ensure the completion of 
the subtasks. Thereby more functional constraints and deep contributing 
factors to operational risk can be identified with the hybrid approach 
[54]. 

In view of the insufficiency of the quantitative analysis of FRAM, 
scholars have combined it with other methods to improve the FRAM to 
realize its quantitative or semi-quantitative research. Patriarca et al. 
[55] proposed a semi-quantitative analysis framework of FRAM based 
on Monte Carlo simulation, considering the response of the system to 
different operation conditions and different risk states, and applied it for 
semi-quantitative security assessment of an Air Traffic Management 
(ATM) system. Kaya et al. [56] combined FRAM with Monte Carlo 
simulation and critical matrix methods to model tram operating systems 
and identify critical couplings and risks threatening system safety 
through semi-quantitative evaluation. Yu et al. [57] developed a 
data-driven method to quantify functional coupling relationships using 
the elevated confidence intervals of association rules, and to identify the 
paths of potential dangerous scenarios through the merging of associa
tion rules. Qiao et al. [40] combined FRAM, a directed complex network 
and BN in a novel model to evaluate the resilience involved in maritime 
liquid cargo emergency response. It takes advantages of the probabilistic 
reasoning ability of BN, to effectively address the deficiency of FRAM 
quantitative analysis. Zinetullina et al. [58] proposed an integrated 
method of FRAM and DBN for quantitative resilience assessment of 
chemical process systems. Therefore, FRAM can realize quantitative 
research on dynamic risk evolution supplemented by other quantitative 
analysis methods based on the analysis of the coupling mechanism of 
risk factors in the operation system. 

2.4. DBN in safety systems of a high coupling feature 

Due to the outstanding advantages of DBN in dealing with the 
coupling relationship of system factors, temporal dependence and in
formation uncertainty, it is widely used in reliability analysis, dynamic 
risk analysis, and resilience assessment of operations process of a high 
coupling feature such as deepwater drilling operation, emergency op
erations and construction equipment operation. Špačková and Straub 
[59] considered the random dependencies of human factors and other 
external factors, and carried out probabilistic assessment of tunnel 
construction performance by constructing a DBN model based on an 
improved Frontier algorithm. Guo et al. [60] combined the fuzzy set 
theory with DBN to propose a fuzzy DBN method that used triangular 
fuzzy numbers to preserve uncertainty information, to improve the 
ability of dynamic risk assessment methods. Li et al. [61] proposed an 
analysis model to analyze the hazard perception error (HPE) of con
struction equipment operators by combining a cognitive model and 
DBN. It was used to determine the conditional probability distribution of 
DBN through a key cognitive function calculation model and 
multi-source information synthesis. Zhang et al. [62] proposed a resil
ience evaluation method by combining DBN and a finite element model, 
and evaluated the temporal dynamic resilience of subsea wellhead 
connector from two aspects of degradation process and recovery pro
cess. The literature of DBN in safety analysis shows that the effective 
acquisition of the PP, CPT and transition probabilities of dynamic nodes 

in a DBN is the key to realize effective inference of temporal risk. DBN 
parameters need to be obtained according to scenario analysis, com
bined with simulation data, observation data, a Markov model, histor
ical data and expert judgment [47]. As a scenario risk, the individual 
ship pilotage operations process risk is highly dynamic and uncertain. It 
needs to rely more on scenario observation data and expert knowledge 
to obtain the input parameters of the model, and to realize the effective 
inference of risk evolution. It is therefore chosen as a key supporting 
technique in the newly developed methodology in Section 3. 

2.5. New contributions 

The literature review in the above sections shows that the research 
on ship collision risk focuses on the identification of collision-related 
RIFs and the analysis of ship operability. In the process of ship 
pilotage operations, the performance of ship collision RIFs will lead to 
changes in the safety behavior of ships during their navigation process. 
It presents a major research challenge on the evolution analysis of ship 
pilotage risk, as well as the understanding of random variables and 
random phenomena that are caused by the change of risk factors. This 
paper pioneers a Markov hypothesis to promote the development of risk 
assessment in the operations process of ship pilotage. Based on the 
network topology relationship of ship collision risk factors, a DBN model 
is established by a new approach through which the description of 
subjective and objective data collection, the development of the Markov 
chain hypothesis, the transition matrix of risk factors on random phe
nomena, and the capture of temporal risk characteristics are combined 
holistically under the time sequence within the context of ship pilotage 
operations. The combination of FRAM and ACAT introduced into the 
field of safety research has been first witnessed from the perspective of 
describing operation process risks. Furthermore, ship pilotage opera
tions are described in the functional resonance model of ship behavior 
for the first time, which can be tailored and generalized to model the 
operation process risk of similar features in the other sectors. 

3. Methodology 

This section proposes a novel hybrid approach of FRAM and DBN 
with new data from both objective sources and subjective judgement to 
analyze collision risk evolution characteristics of ship pilotage operation 
process. FRAM is used to describe the ship pilotage behavior, and then 
the results are combined with ACAT to analyze the factors leading to 
collision accidents and the coupling relationships between the factors 
for developing the structure of a DBN. To construct the DBN model, 
uncertainty methods such as the D-S evidence theory, a parameter 
adaptive learning algorithm (PALA) and a Markov model are used ho
listically to aid model parameters configuration. The research frame
work in Fig. 1 shows the three main research steps. 

Step 1: Identifying RIFs and coupling relationships with FRAM-ACAT. On 
the basis of Hierarchical Task Analysis (HTA) for the functions (sub- 
tasks) identification of the ship’s pilotage operation process, the 
FRAM is adopted to develop inter-level function model for describing 
system functions and identify potential variabilities and their critical 
coupling. Then, for each inter-level function, three intra-level func
tions are further identified to ensure the completion of the sub-task 
with ACAT model. Hence, the direct RIFs and their coupling re
lationships for the ship collision risk can be obtained from the inter- 
level functional resonance analysis and the intra-level functions 
resonance analysis can provide deep RIFs. 
Step 2: Determining DBN model of risk evolution analysis. The topo
logical structure of DBN is developed based on the identification 
results in step 1 to describe the complex relationship between the 
RIFs and collision accident evolution qualitatively. To parameterize 
the DBN model, the D-S evidence theory is used to fuse multiple 
experts knowledge to obtain nodes’ prior probabilities. Then, the 
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PALA is used to calculate the CPTs between the parent node and its 
child nodes. Further, the Markov characteristics of the dynamic risk 
factors in the pilotage process are analysed to configure the TPTs 
based on probability distribution assumption and Markov model. 
Step 3: Risk evolution analysis and model validation. The developed 
FRAM-DBN model is applied to the analysis of the collision risk 
evolution of a real ship pilotage operation process with scenario 
data. Not only the spatio-temporal evolution characteristics of the 
collision risk during the ship’s pilotage operation, but also the crit
ical RIFs can be obtained. Finally, the model is verified by various 
methods such as sensitivity analysis, literature comparison, expert 
validation, and face validity. 

3.1. FRAM-ACAT modeling 

The FRAM is integrated with ACAT to generate a proactive ship 
pilotage operational risk identification model, and provide an intuitive 
and structured way to characterize scenario-based RIFs and their re
lationships. For a detailed and rigorous description of functions, the 
ACAT model is used to enrich the FRAM by generating functions based 
on a closed-loop control system. Functional constraints and deep 
contributing factors to ship collision can be identified with the inte
grated model. As a result, the functional resonance analysis model can 

be developed and risk influencing factors and their coupling relation
ships for the pilotage operation failure leading to ship collision can be 
identified. 

3.1.1. FRAM 
In view of the dynamic and nonlinear coupling characteristics of the 

socio-technical system, FRAM reveals the mechanism of risk emergence 
through analysis of the system’s normal operation [50]. The FRAM 
method is based on four basic principles: equivalence of failure and 
success, approximate adjustment, emergence, and functional resonance. 
Functions are categorized as human-, organization-, and 
technology-related functions, which are described from the six aspects 
of input (I), output (O), time (T), resource (R), precondition (P) and 
control (C). The variability of a function’s output is determined in terms 
of time and precision, and the aggregation of its variability is estimated 
by examining the individual variability effects of a function, the vari
ability effects of an upstream function on the downstream function, and 
the variability of the working conditions. The use of FRAM analysis in 
this paper is to identify the variability that leads to undesired outputs 
and to propose corresponding management strategies. 

3.1.2. ACAT 
Although ACAT was chiefly proposed for accident investigation and 

analysis, its essence is to construct a normal and continuous operational 

Fig. 1. Framework of risk evolution analysis in ship pilotage operations process.  
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system mode based on the control loop. ACAT regards a complex system 
as a control system composed of four functional modules: actuator, 
sensor, controller, and communication. The safe and continuous oper
ation of the system depends on the coordination and cooperation of the 
four types of functions. Therefore, ACAT provides a new risk analysis 
method based on the control loop, which is an analysis model that 
considers both structural decomposition and functional abstraction 
[54]. 

A closed-loop control mode proposed by ACAT is composed of four 
parts to coordinately complete the system function, and its logical 
relationship and meaning are shown in Fig. 2. Risks arise from failures or 
defects in system components and poor communication. Actuator 
generally refers to on-site operators who take actions according to or
ders; sensor refers to monitoring equipment or supervisors, whose task is 
to supervise the behavior of operators; controller is responsible for 
auditing and evaluating operation results according to standards; 
communication refers to the effective transfer of information between 
the above three types of functional modules. 

3.1.3. FRAM-ACAT 
The traditional FRAM method identifies functions by dividing a ship 

pilotage operations process into several sub-tasks, and then connects 
them according to their dependencies to describe the functional opera
tion and coupling associations in a ship pilotage system. However, the 
process of function identification and description contains limitations of 
too much subjectivity and lack of unity and rigor. Using ACAT, each 
function in the FRAM model is regarded as a control loop, which is 
divided and functionally described from the actuator, sensor, controller, 
and communication perspectives. FRAM-ACAT [54] is a nested analysis 
method, with intra-level functions nested in each inter-level function. 
The inter-level function is constructed by the traditional FRAM method, 
while intra-level functions refer to the function modules in a closed-loop 
control structure using ACAT for each inter-level function. Due to the 
complex coupling relationship between various factors of the ship’s 
pilotage operation system, the traditional risk analysis method is diffi
cult to reveal factor coupling mechanism, this nested method can 
effectively identify the direct and deep-level RIFs and their coupling 
correlations regarding the risk of ship collisions in a ship pilotage 
process. 

3.2. DBN modeling 

As a dynamic probabilistic graphical model, DBN can be used to 
analyze temporal operational risk by using subjective and/or objective 
data. The FRAM-ACAT analysis results are used to construct the DBN 
topology structure, and then uncertainty methods such as D-S, PALA, 
and a Markov model are used to determine the model parameters’ PP, 
CPT, and TPT according to the scenario of a ship’s pilotage operations. 

3.2.1. DBN 
BN is the combination of probability theory, graph theory and de

cision theory. It is considered as one of the most effective theoretical 
models in the field of uncertain knowledge and probabilistic reasoning 
[42], which graphically represents the relationship between system 
variables. However, traditional BN ignores the correlation and 
complementarity of the information at the different time frames, which 
will cause either a loss of information or misjudgment of the actual state. 
Moreover, it is difficult to meet the inference requirements under 
complex dynamic environments and conditions with incomplete 
information. 

DBN is an extension of BN under time series. It is a graphical rep
resentation of dynamic stochastic process under a stationary assump
tion, and, as such, can deal with dynamic risk reasoning problems under 
time series, it is very suitable. for the reasoning of temporal risks in the 
process of ship pilotage operations. DBN is represented as an even pair 〈
B0, B→〉, where B0 is the initial BN that defines the probability distri
bution of P(X) at the initial time, and B→ is a 2-TBN containing two time 
slices that define the conditional probability distribution between the 
variables of two adjacent time slices, the state transition probability is 
expressed as Eq. (1) . 

P(Xt|Xt− 1) =
∏nt

i=1
P
(
Xi

t |Pa(Xi
t)) (1) 

Where, P(X) is the set of variables; Xi
t is the ith node of the time slice t; 

Pa(Xi
t) is the parent node of Xi

t; nt is the number of nodes in the tth time 
slice. 

In order to reduce the computational complexity of the model, the 
following two hypotheses are made [44].  

(1) First-order Markov hypothesis: The edges between nodes in the 
DBN structure are either located in the same time slice or in 
adjacent time slices, and cannot span time slices;  

(2) Stationarity hypothesis: The network topology and conditional 
probabilities do not change with time and remain unchanged 
during the study period. 

According to the two hypotheses stated above, by expanding the 
DBN to the T time slices, a joint probability distribution across entire 
time slices is obtained, namely: 

P(X1:T) =
∏T

t=1

∏nt

i=1
P
(
Xi

t |Pa(Xi
t)) (2) 

Where, X1:T = {X1,X2,⋯,XT}, represents the set of variables over T 
time slices. 

Fig. 2. A simplified closed-loop control diagram [54].  
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3.2.2. Establishment of conditional probability tables 
The CPTs of BN nodes are used to represent the quantitative rela

tionship between parent nodes and child nodes within the same time 
slice, and are generally obtained through the accident data learning, 
logical analysis, as well as expert judgment. In this paper, the condi
tional probabilities of parent-child nodes with logical gate relationships 
are obtained through logical analysis. Due to the differences in the 
correlation among factors in different ships pilotage scenarios, it is 
difficult to obtain CPTs through data learning due to the lack of targeted 
data for specific scenarios. As a scenario-based CPT calculation method, 
the PALA is used to obtain the CPTs of the child nodes under the 
comprehensive influence of the parent nodes [63]. The steps are as 
follows:  

(1) According to the dependencies between nodes in the BN model, 
assuming that the state of a parent node X is Xi(i = 1,2,⋯,n), one 
state of its child node Y is Yj(j = 1,2,⋯,m). Obtaining the CPT is 
to calculate the p(Yj

⃒
⃒Xi). For this parent node Xi, the states of its 

child nodes are sorted in an ascending order.  
(2) For a parent node, the related child nodes corresponding to its 

different states are different. Therefore, it is necessary to find out 
the related child nodes and irrelevant child nodes corresponding 
to each state of the parent node. 

(3) Find out the most preferred and least preferred relationship be
tween a state of the parent node Xi and the states of its related 
child nodes Yj(j = 1,2,⋯,m), and form an ascending order of CPT, 
for instance, the order of CPT for a certain child node Y of the 
parent node state Xi represents as 
p(Y1|Xi)< p(Y2|Xi) < ⋯ < p(Ym|Xi).  

(4) According to the importance of the child node, a negative high- 
power function is used to form the conditional probability [63], 
as shown in Eqs. (3) and (4). 

P
(
Yj|Xi

)
= 1

/

jk
∑m

j=1

1
jk (3)  

∑m

j=1
P
(
Yj|Xi

)
= 1 (4)  

where, P(Yj|Xi) is the conditional probability when X is in state Xi 
while Y is in state Yj, and k is a negative high-power coefficient, 
which is determined by experts according to the ship pilotage 
scenario. 

(5) Find out the most preferred and least preferred relationship be
tween the parent node state and the states of irrelated child nodes 
to form an ascending CPT order;  

(6) According to the importance of the child nodes, the method of 
negative high-power function is used again to form the condi
tional probability. So far, the CPTs between all parent nodes and 
child nodes may be obtained. 

3.2.3. Establishment of transition probability 
TPTs represent the probability distribution of the state transition of 

dynamic nodes in DBN over time, for variable nodes with Markov 
characteristics, the TPT is generally obtained by combining probability 
distribution assumptions and the Markov model [64]. The process of 
ship pilotage is a process in which the ship’s man-machine system 
continuously adapts to the complex and changeable environment and 
safely completes tasks such as navigation, berthing/berthing et al., so 
the RIFs in the ship pilotage operations process mainly include three 
categories: human factors, technical factors and environmental factors. 
Since the conditional probability distribution of the future state of the 
ship’s man-machine system in the stochastic process of pilotage opera
tions only depends on the current state, the state transition of human 
and technical factors presents Markov characteristics in the ship pilotage 

operations process, thereby their TPTs may be calculated using Markov 
model. The state of environmental factors presents a random mutation 
characteristic with the transition of the ship’s position during the 
pilotage process, which does not satisfy the Markov characteristic. 
Therefore, the nature of the environmental nodes is set to be deter
ministic in the DBN, and the temporal states of environmental nodes are 
obtained through observation data based on instruments. 

According to the Markov hypothesis, the state transition matrix of 
the technical factors is shown in Eq. (5). The states of the technical 
factors of the investigated ship are divided into three types: normal (N), 
partial failure (PF) and failure (F). According to the statistical law, the 
failure probability of ship equipment is in alignment with a negative 
exponential distribution (Chang et al. [65]). Due to the time limit of the 
ship’s pilotage operations process, the equipment’s maintenance rate is 
not considered when determining the state transition probability, so 
only the failure rate of equipment is considered: λ1 (N to F), λ2 (N to PF), 
λ3 (PF to F). The TPTs of the technical factors are obtained according to a 
negative exponential distribution function as shown in Eq. (6). 

Ti =

⎡

⎣
1 − (λ1 + λ2)Δt λ2Δt λ1Δt
0 1 − λ3Δt λ3Δt
0 0 1

⎤

⎦ (5)  

PT =

⎡

⎢
⎢
⎢
⎢
⎣

e− (λ1+λ2)Δt λ2

λ1 + λ2

(
1 − e− (λ1+λ2)Δt) λ1

λ1 + λ2

(
1 − e− (λ1+λ2)Δt)

0 e− λ3Δt 1 − e− λ3Δt

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

(6) 

Human error in a ship pilotage operations process is a random event. 
According to statistical laws, it is reasonable to assume that it adheres to 
a Poisson distribution, whereby the states of the human errors are 
divided into Yes (Y) and No (N). Let that the number of human errors 
occur per unit of time is λ, the probability of human errors occurring n 
times per unit of time is calculated by Eq. (7). The state transition of 
human error satisfies the Markov characteristic [64], so the TPT of 
human error is shown in Eq. (8). 

P{N(t+Δt) − N(t) = n} = e− λt(λt)n

n!
(7)  

PT =

[
1 − e− λ4Δt e− λ4Δt

λe− λ4Δt 1 − λe− λ4Δt

]

(8)  

3.2.4. Establishment of prior probability 
The PP reflects the state probability distribution of an uncertain node 

at the initial time slice, and the acquisition method is different due to the 
type of a variable. Environmental factors such as wind, current, visibility 
and traffic density during a ship pilotage operation process can be 
observed or received using instruments, so their states are deterministic 
in a specified time slice. The states of human and technical factors have 
random uncertainty, and it is difficult to obtain their PP distribution 
through direct observation. It is therefore necessary to use subjective 
data from expert judgement to compensate the incompleteness/un
availability of the objective data in this setting. The PP of human factors 
is evaluated by experts based on the historical performance of pilots, and 
the one of technical factors is evaluated by experts based on data such as 
ship PSC records, ship age, and maintenance records. In order to 
improve the accuracy of expert evaluation, this paper uses the failure 
probability of the corresponding factor in the relevant ship collision risk 
research literature as the benchmark, and sets a failure probability in
terval based on the benchmark for experts to evaluate. In the end, the D- 
S evidence theory is used to fuse the evaluation results of different ex
perts to obtain the final prior probability [43]. 

Y. Guo et al.                                                                                                                                                                                                                                     



Reliability Engineering and System Safety 229 (2023) 108850

8

3.3. Risk evolution of ship pilotage operation process 

3.3.1. Ship pilotage process risk 
A ship pilotage process refers to the operation process of completing 

all the tasks of ship navigation, berthing, unberthing and shifting when a 
ship enters/leaves a port, with the assistance of a qualified pilot. The 
safe implementation of pilotage tasks depends on the cooperation of the 
pilot and crews, reliable operation of ship equipment, good communi
cation and coordination with stakeholders, effective acquisition of 
environmental information, accurate judgment and response to hazards 
[3]. Fig. 3 describes the entire pilotage process of a ship entering and 
berthing from t0 to tn, the scope of this paper is to investigate the evo
lution characteristic of ship collision risk during the ship navigation 
from the pilot boarding at time t1 to the quayside at time tj. 

Each subtask may be regarded as a functional module, and the 
realization of its function is completed by its internal actuators, sensors 
and controllers, and the coupling effect between functions is a universal 
aspect throughout the entire process of ship pilotage. Ship pilotage 
process risk emerges when the functions cannot achieve normal output 
due to the change of the components’ state in functional modules during 
pilotage operation. The resonance effect is generated through the 
coupling relationship between the functions, so that a change in the risk 
of the pilotage process emerges. Assuming that the risk performance of a 
ship, at any time t in the pilotage process is Rt ∈ [0,1], where 0 means 
absolute safety, and 1 means the occurrence of a ship collision. It is 
expressed by Eqs. (9) and (10). 

Rt = Rt
Hi ⊗ Rt

Tj ⊗ Rt
Ok (9)  

where, Rt
Hi represents the output risk performance of the ith human 

functional module at time t, the functional output changes of operators 
due to factors such as physiological, psychological, or external in
fluences; Rt

Tj represents the output risk performance of the jth technical 
functional module at time t, the functional output changes of ship 
equipment due to the factors such as maintenance, repairment, or the 
external environment; and Rt

Ok represents the output risk performance of 
the kth organizational function module at time t, the functional output 
changes of the bridge team due to factors such as communication, 
teamwork, and supervision; ⊗ is the coupling algorithm, which repre
sents the measurement of the nonlinear relationship between variables. 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rt
m = f

(
At

m

)
⊗ f

(
St

m

)
⊗ f

(
Ct

m

)

At
m = At− 1

m • T1

St
m = St− 1

m • T2

Ct
m = Ct− 1

m • T3

(10)  

where, Rt
m represents the output risk performance of the mth functional 

module at time t; f(At
m), f(St

m), f(Ct
m) which represent the risk 

performance functions of the actuator, sensor, and controller of the mth 
functional module at time t, respectively; T1, T2, T3 which are the state 
transition matrix of the behavioral state of the mth functional module’s 
actuator, sensor and controller from t − 1 to t. 

3.3.2. Risk evolution in a ship pilotage operation process 
The risk evolution in a ship pilotage operations process in this paper 

refers to the spatiotemporal distribution of the collision risk perfor
mance that emerges from upstream and downstream coupling associa
tions due to the continuous behavior vulnerabilities of each functional 
module. Ship pilotage operations include a series of sub-tasks collec
tively handled by a bridge team involving a pilot, such as environmental 
perception, hazard judgment, action decision-making, and execution of 
collision avoidance action. Each functional module performs sub-tasks 
with temporal changes in the environment during the pilotage pro
cess. The collision risk is not a simple linear causal secondary conse
quence, it is difficult to judge the performance of the risk through the 
identification and causal reasoning of human error or equipment failure. 
The FRAM method, based on the perspective of Safety II [52], may 
reveal the risk emergence mechanism in the ship pilotage process. When 
being integrated with the dynamic quantification of DBN, it can reveal 
the risk evolution law of a pilotage process. 

4. Case study 

A case study of a container ship, via the Beicao deep-water channel 
from its pilot boarding place to quayside is used to demonstrate the 
feasibility of the proposed model towards the estimation of the risk 
temporal probability of ship collision during the navigation process. The 
chosen trip is representative as the ship type and size are the most 
common ones in the pilotage practice in Shanghai port, one of the 
busiest ports in the world. 

4.1. Scenario description 

In this section, a real case analysis is conducted by the investigation 
of the spatiotemporal evolution of the collision risk in the pilotage op
erations process of a container ship sailing from the Yangtze River es
tuary to Shanghai Waigaoqiao Pier No. 2 via a deep-water channel of the 
Yangtze River. In this case, the pilot boarded the ship from buoy D6 at 
15:23 pm on March 23, 2022 (4 h before the high tide of Zhongjun). The 
navigation phase of ship pilotage process from buoy D6 to D47 is 42 
nautical miles and lasts 4 h and 30 min, with the ship pilotage scenario 
parameters are obtained from the relevant objective database and 
shown in Table 1. 

The main tasks in the ship pilotage operations process are to locate 
the ship properly and avoid collisions. The pilot should judge the 
collision risk of the ship at any time, control the navigation elements 

Fig. 3. Schematic diagram of the ship pilotage process.  

Y. Guo et al.                                                                                                                                                                                                                                     



Reliability Engineering and System Safety 229 (2023) 108850

9

such as the ship’s course, speed, and position after analyzing the hy
drometeorological and traffic environments around the ship. According 
to the analysis of the risk characteristics of the pilotage scenario, the 
FRAM-ACAT method is used to analyze and identify the RIFs and their 
coupling correlations in the ship pilotage operations process. 

4.2. Risk identification in the ship pilotage operations process 

After the scenario analysis of the ship pilotage process [2], HTA is 
implemented to identify and describe the functions (missions) in the 
pilotage operations process (as shown in Fig. 4). Aiming at the target of 
navigation safety and collision avoidance in the ship pilotage process, 
the pilotage operation process is divided into several subtasks, such as 
“Identify danger of collision”, “Take collision avoidance actions”, 
“Adjust ship’s position”, “Keep a safe distance”, and “Ensure navigation 
safety”. By further dividing these subtasks, some specific subtasks at the 
operational level are obtained. 

The function identification is carried out according to the results of 
the HTA analysis in Fig. 4, thereby the 7 key operational tasks of 
implementing ship collision avoidance to ensure ship safety are taken as 
functional modules, i.e. “Maintain a proper look-out”, “Judge the 
collision risk”, “Take action to avoid collision”, “Adjust the proper 
course”, “Adjust the proper speed”, “Keep a safe distance from other 
ships”, and “Maintain normal operation of equipment”. On this basis, the 
FRAM method is used for functional description and coupling correla
tion analysis. First, combined with the specific pilotage operation sce
nario analysis, each functional module is described and analyzed from 
six aspects of I, O, T, R, P, and C. Then, by identifying whether the output 
of the upstream function is the I, T, R, P or C of downstream functions, 
that is, the coupling relationship between the upstream and downstream 
functions, the FRAM model for the functional resonance analysis of the 
ship’s pilotage operation is established (as shown in Fig. 5). 

For example, the outputs of the “Maintain normal operation of 
equipment” function are “Radar in order”, “Main engine in order” and 
“Rudder equipment in order”. “Radar in order” is the R of the function 
“Maintain a proper look-out”, “Main engine in order” is the P of “Adjust 
the proper speed”, and “Rudder equipment in order” is the P of “Adjust 
the proper course”, so “Maintain normal operation of equipment” as the 
upstream function realizes the coupling action with its downstream 

functions through the association between its output and the different 
characteristics of the three downstream functions. It is noteworthy that, 
due to the complex and changeable environment of ship pilotage oper
ations, ship characteristics, and the human factors, the functions 
description and coupling relationship between functions are not fixed, 
but depend on the actual pilotage operation scenarios. 

On the basis of function identification and description, the variability 
of each function output in the FRAM model is analyzed from the aspects 
of time and precision, thereby further revealing how individual func
tional variability can be associated with functional resonance through 
functional coupling actions (i.e. the generation mechanism of undesired 
outputs). Then, the ACAT method is used to describe and analyze the 
internal operating mechanism of each function from the three aspects of 
actuator, sensor, and controller. Identifying and analyzing for intra-level 
functions are implemented by explaining the internal mechanisms and 
causes of unfavorable outputs for each function. Refer to ship operation 
risk analysis in Uddin and Awal [66], the description, output and vari
ability of inter-level and intra-level functions in the ship pilotage process 
are shown in Table 2. 

Thus, according to the FRAM-ACAT analysis in Table 2, normal 
operational functions and internal control sub-functions required for 
safe navigation during the ship pilotage process are identified. Accord
ing to the principle of equivalence of success and failure, the abnormal 
variability of functional output will generate functional resonance 
through the coupling of upstream and downstream functions, thus 
resulting in the emergence of risk. The inter-level functional resonance 
analysis can obtain the direct RIFs of ship collision risk, and the intra- 
level functional resonance analysis can obtain even more specific and 
in-depth RIFs. Combined with the scenario analysis of the ship pilotage 
process, the influencing factors of the functions were further analysed by 
referring to related studies, the identification results of collision RIFs are 
shown in the Table 3. For example, for the look-out function, its failure 
output “Inadequate look-out” constitutes a direct RIF that affects the 
ship collision, and “Inadequate human look-out” and “Radar failure” as 
internal causes of “Inadequate look-out” constitute the deep RIFs of ship 
collision. 

Table 1 
Ship pilotage scenario parameters.  

Parameter Description Parameter Description Parameter Description 

Length 249 m Visibility Good Wave height 0.3 m 
Width 37 m Initial Position D6 buoy Wind 6.8 m/s 
Draft 9.6 m Final position D47 buoy PSC defect No 
Cargo 7600TEU Ship age 10 years Pilot level A2 
Registry Panama Voyage time 4 h 30min Average speed 10 kn  

Fig. 4. HTA analysis in ship pilotage process.  
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4.3. DBN modeling 

According to the risk identification results of the ship pilotage pro
cess, the DBN topological structure (Fig. 6) is developed by the pilotage 
risk evolution analysis as follows. The direct RIFs and deep-level RIFs in 
Table 3 are converted into nodes, and the coupling relationships be
tween RIFs are converted into directed edges in the DBN. Among them, 
11 nodes are set as dynamic nodes, including “Pilot in poor condition”, 
“Unfamiliar with handling performance”, “Inadequate supervision by 
captain”, “Inadequate supervision by pilot”, “Inadequate human look- 
out”, “Miscoordination with others”, “Main engine failure”, “Rudder 
equipment failure”, “Radar failure”, “Leeway and drift angle”, “Ship 
navigation density”, while other nodes are static. Among the dynamic 
nodes, “Leeway and drift angle” and “Ship navigation density” are set as 
deterministic node, their temporal states are obtained from observa
tions. The other dynamic nodes are chance nodes, and their probability 
distributions are jointly determined by their prior and transition prob
abilities. The states of “Main engine failure”, “Rudder equipment fail
ure” and “Radar failure” are defined as Normal (N), Partial failure (PF) 
and Failure (F); the states of “Leeway and drift angle” and “Ship navi
gation density” are classified as Large, Medium and Small; and the states 
of the remaining nodes are Yes (Y), and No (N). 

The calculation of leeway and drift angle γ is undertaken by Eq. (11). 

γ = TD − TC (11)  

where, TD represents the track direction of the ship, TC represents the 
true course of the ship. 

According to the wind and current statistics in the research waters 
and the experts’ practical experience, the angle is defined by the three 
states of Large (γ≥10◦), Medium (5◦≤γ<10◦), and Small (γ<5◦). During 
the ship pilotage process, the data of track direction and true course of 
the ship are obtained from its AIS and RADAR data. 

A ship domain is usually defined as an area around the ship that its 
navigators want to maintain clear from other ships, and it is often used 
for situational assessment and monitoring of the collision risk with other 
ships [69]. The number of other ships in the ship domain during the ship 
pilotage process reflects the degree of the surrounding navigational 

complication, which may be used to characterize the ship navigation 
density around the own ship [70]. The relevant ship parameters in this 
pilotage operation process are shown in Table 1. According to the test 
results of Pietrzykowski et al. [71], the ship domain for judging the 
navigation density of ships is set to be an ellipse, with the ship’s center 
offset out of the ellipse axis (Fig. 7). The long semi-axis of the domain in 
the heading direction is set to 4.5L(L is length of the ship), and its short 
semi-axis is set to 2 L. The number of other ships in the ship domain is δ, 
and the ship navigation density is divided into Large (δ≥3), Medium 
(δ=2), and Small (δ≤1). The temporal number of ships in the ship 
domain during the ship pilotage process is obtained through AIS dataset 
and RADAR observation records. 

4.4. Quantification of DBN parameters 

The parameters of the established DBN model are defined in three 
categories: PP, CPT and TPT of dynamic nodes. With respect to the BN- 
based maritime risk papers using expert judgements [23,25], five ex
perts (detailed in Table 4) are selected and invited to assess the PP of the 
nodes in the DBN model. 

By analyzing the characteristics of each node in the DBN topology, a 
total of 11 nodes need to obtain a PP or initial state. Among them, the 
two environmental factors X7 and X8 are deterministic nodes, and their 
initial states can be obtained through the actual observation of in
struments. X1, X3, X4, X5, and X6 are the nodes of human operational 
error factors. Referring to the operational error probability related to 
ship collision avoidance in the Shanghai port waters in [19] (as the 
benchmark of Cognitive Failure Probability (CFP0)), a new interval is set 
by having ±10% CFP0 as the lower and upper bounds, respectively. The 
five experts estimated the failure probability of the five factors within 
the given probability interval according to the scenario parameters of 
the ship’s pilotage operation and the historical performance of the pilot. 
Finally, the D-S evidence theory was used to fuse the estimated results of 
the five experts and the values obtained as the PP of the network nodes 
are shown in Table 5. 

The prior probability of X2, X9, X10, X11 in DBN is the failure prob
ability of pilot’s physical condition and ship’s technical status, the 

Fig. 5. Functional resonance analysis in ship pilotage process based on FRAM.  
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expert judgment method was used to obtain the failure probability due 
to the lack of relevant targeted accident data. In order to improve the 
accuracy of expert evaluation, this paper referred to the failure proba
bility of related factors in Ugurlu and Cicek [72] (as the benchmark of 
prior probability (PP0)). A new interval is set by having ±10%PP0 as the 
lower and upper bounds, respectively. The five experts estimated the 
failure probabilities of the five factors within the given evaluation in
terval according to the scenario parameters of the ship’s pilotage oper
ation, the ship’s PSC inspection records and the pilot’s historical 
performance. Finally, the D-S evidence theory was used to fuse the 
estimated results of the five experts and the values obtained as the PP of 
the network nodes are shown in Table 6. 

By using a logical analysis and PALA, the CPTs between each child 
node and their parent nodes are obtained. In the PALA method, five 
experts configured the values of the negative high-power coefficient K 
for different parent-child nodes according to the ship’s pilotage opera
tion scenario. Then, after taking the average, Eqs. (3) and (4) were used 
to obtain the CPTs between the parent and child nodes. Referring to 
Fowler and Sorgard [73], the failure/error probabilities of partial dy
namic nodes are shown in Table 7, which are respectively input into Eqs. 
(5)–(8) to obtain the TPTs of dynamic nodes. After the values of all 
network parameters are input into the DBN model for inference, the 
temporal distribution of collision risk in the ship pilotage process is 
obtained. It is noteworthy that in this probability configuration process, 
the used AIS data is used and purified. The AIS allows the automatic 
exchange of navigational information between ships and shore stations, 
which has become an important data source to describe ship traffic flow 
characteristics that have been used in maritime risk assessments [23]. 
However, AIS data have some widely known flaws and typical errors 
with relevant data trustworthiness and reliability, which are usually 
related to human errors, software, or hardware deficiencies and are 
considered inevitable [24]. In this paper, AIS records dataset corre
sponding to ships trajectories in the deep waterway of the Yangtze River 
between 15:23–19:53 pm on March 23, 2022 in the studied area is ob
tained from the Wusong VTS control center. The numbers of other ships 
in the ship domain during each time slice during ship navigation process 
are extracted from the AIS dataset, so as to determine the states of the 
ship navigation density in each time slice. In order to avoid the calcu
lation errors caused by the flaws of the AIS data or the lack of AIS on 
some small ships, the number of ships in the ship domain in each time 
slices is comprehensively determined by combining the shipborne 
RADAR data records. In addition, for the calculation of the leeway and 
drift angle, the heading and track direction of the ship in each time slice 
are comprehensively determined according to the AIS and RADAR data 
records. Then, the leeway and drift angle can be obtained according to 
Eq. (11), so as to determine the state of leeway and drift angle in 
different time slices. 

4.5. Risk evolution analysis in the ship pilotage operations process 

The ship pilotage process lasted 4 h and 30 min, since sailing time of 
the ship between two buoys was about 6 min, allocating every 6 min as a 
time slice, whereby the entire process was divided into 45 time slices. 
The relevant TPT were input into DBN for inference, whereby the tem
poral distribution of ship collision risk is obtained as shown in Fig. 8. The 
results show that the collision risk in the initial and the final stage of the 
ship pilotage process is relatively high, while at the middle stage they 
are relatively stable, and at a low risk level, indicating that the overall 
process risk evolution presents a U-shaped curve. From t0 to t44, the 
probability distribution of ship collision risk is 4.84E-05~7.37E-03, and 
the change rate of collision probabilities during the entire pilotage 
process is 15,127%, with a very large fluctuation range. It indicates that 
the dynamic coupling effect of various RIFs in the ship pilotage process 
has a significant impact on collision risk. Plotting the temporal state data 
of “Ship navigation density” and “Leeway and drift angle” to the evo
lution curve of ship collision risk (Fig. 8), it discloses that their temporal 

Table 2 
Representation and variability of outputs for ship pilotage process.  

Inter-level 
function 

Intra-level function Output Variability of 
output 

Maintain a 
proper look- 
out 

Maintain visual lookout 
and radar lookout; Pilot 
and captain 
supervision; Relevant 
rules and pilotage 
expertise 

The navigational 
situation; Natural 
and traffic 
environment 

Not at all, 
imprecise, or 
too late 

Judge the 
collision risk 

Pilot judges the 
collision risk; Captain 
supervision; Collision 
avoidance rules and 
pilot expertise 

Risk of collision Not at all, 
imprecise, or 
too late 

Adjust a 
proper speed 

Third officer undertakes 
the main engine 
operation; Pilot 
supervision, instrument 
monitoring; Recite 
orders and standardize 
operations 

Safe speed Not at all, 
imprecise, or 
too late 

Adjust the 
course 

Helmsman steering; 
Pilot supervision, 
instrument monitoring; 
Recite orders and 
standardize operations 

Proper course Not at all, 
imprecise, or 
too late 

Take action to 
avoid 
collision 

Pilot gives operation 
orders; Captain 
supervision; 
Regulations and hazard 
judgments 

Order to change 
speed; Order to 
change course 

Not at all, 
imprecise, or 
too late 

Maintain 
normal 
operation of 
equipment 

Ship equipment 
functions normally; 
Instrument, pilot and 
crews monitoring; 
Regular maintenance 
and inspection before 
sailing 

Equipment in order Not at all, 
imprecise, or 
too late 

Keep a safe 
distance 
from other 
ships 

Pilot and crew 
operation; Pilot, captain 
supervision, instrument 
monitoring; Regulations 
and pilot expertise 

Acceptable 
collision risk 

Not at all, 
imprecise, or 
too late  

Table 3 
Identification of ship collision RIFs.  

NO Functional 
failureDirect RIFs 

Intra-functional failureDeep RIFs Refs. 

1 Inadequate look-out 
(X12) 

Inadequate human look-out(X1); Radar 
failure(X11) 

[19] 

2 Pilot misjudgment 
(X16) 

Pilot in poor condition(X2); Inadequate 
look-out(X12); Miscommunication with 
others(X5) 

[3] 

3 Improper speed 
control(X17) 

Improper operation orders(X13); Improper 
operation of main engine(X14); Main 
engine failure(X9); Inadequate supervision 
by pilot(X6) 

[66] 

4 Improper course 
control(X18) 

Improper operation orders(X13); 
Helmsman operation error(X15); Rudder 
equipment failure(X10); Large leeway and 
drift angle(X7); Inadequate supervision by 
pilot(X6) 

[66] 

5 Improper operation 
orders (X13) 

Pilot misjudgment(X16); Unfamiliar with 
handling performance(X3); Inadequate 
supervision by captain(X4) 

[67] 

6 Unreasonable output 
of ship equipment 

Equipment failure (X9, X10); Improper 
operation of equipment (X14, X15); 
Inadequate supervision (X4, X6) 

[68] 

7 Existence of collision 
risk(X22) 

Improper position control (X19); Improper 
emergency action (X20); Large navigation 
density(X8); Forming close quarters 
situation(X21) 

[32]  
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state distributions are congruent with the overall trend of collision risk, 
indicating that two RIFs have significant influence on the ship collision 
risk during the pilotage process. When comparing the two factors, the 
influence of “Ship navigation density” is more significant. Particularly in 
time slices of t2, t37, and t42, the superimposed effects of the two RIFs 
cause a sharp increase in collision risk, which means that the coupling of 
the two factors with other RIFs produces a resonance effect during the 
pilotage process, resulting in a surge in the ship pilotage system risk. 

4.6. Sensitivity analysis 

Sensitivity analysis is mainly used to investigate how the state 
changes of some variables influence on the target object, in order to 
quantify the importance of system variables [64]. As a special relative 
entropy, mutual information is used to measure the degree of association 
between random variables. The larger the value, the greater degree of 
association between the variables is. Sensitivity analysis is often used to 
identify the RIFs [74], which are particularly sensitive to ship collision. 
The mutual information between variables X and Y may be calculated by 

Fig. 6. DBN model for risk evolution analysis in ship pilotage process.  

Fig. 7. Ship domain for judging navigation density.  

Table 4 
Details of the panel of experts.  

Expert 
NO. 

Institution Education Age Experience Gender 

Expert 
1 

Maritime Safety 
Administration 

Master 
degree 

34 He has worked as 
an officer in 
Wusong VTS of 
Shanghai MSA for 
8 years, has 
extensive 
experience in 
identifying ship 
hazard scenarios 

Male 

Expert 
2 

Pilot station Bachelor 
degree 

47 As a senior pilot of 
the Shanghai Pilot 
Station, he has 
years of experience 
piloting large 
container ships in 
the waters 

Male 

Expert 
3 

Shipping 
company 

Bachelor 
degree 

51 As a captain of 
container ships, he 
has years of 
experience 
navigating ship in 
Shanghai port 
waters 

Male 

Expert 
4 

Pilot station Bachelor 
degree 

45 As an officer of the 
Shanghai Pilot 
Station, he is 
responsible for 
assisting in the 
formulation and 
review of pilot 
schemes for ships 
in the waters 

Male 

Expert 
5 

University Doctor 
Degree 

48 He was a chief 
officer in ocean- 
going ships and has 
been engaged in 
ship safety 
management 
research for 15 
years in a world 
leading maritime 
university 

Male  
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the Eq. (12). 

H(X : Y) =
∑

y∈Y

∑

x∈X
p(x, y)log2

(
p(x, y)

p(x)p(y)

)

(12)  

where, p(x, y) is the joint probability distribution function of X and Y; 
p(x) and p(y) are the marginal probability distribution functions of X and 
Y. 

X1,X2,X3,X4,X5,X6,X9,X10,X11 were selected as the research ob
jects, the state of “Collision” node was set to “Y” in time slices t0, t15, 
t30, and t45 for backward analysis, and the posterior probabilities of the 
nine RIFs were obtained, then the mutual information values of RIFs at 4 
time slices were calculated according to Eq. (12), with the results shown 
in Fig. 9. The influential degree of each RIF shows an increasing trend 
with time, and the most prominent factors are X1 (Inadequate human 
look-out), X5 (Miscommunication with others), X2 (Pilot in poor con
dition), X3 (Unfamiliar with handling performance), X6 (Inadequate 
supervision by pilot), whereby the impact of each RIF on the collision 
risk at different time slices is X1>X5>X2>X3>X6. The strength influence 
analysis was carried out in the BN modeling software GeNIe, and the 
results shown in Fig. 10 are consistent with the calculation results of the 
mutual information value, further verifying the validity and sensitivity 
of the model. The results show that maintaining a proper look-out is 
essential to detect the danger of collision in time and avoid the occur
rence of collision. The ship pilotage waters are limited by the depth of 
water and the width of the channel, so the maneuverability space is 
limited, and due to the large navigation density and a high number of 
surrounding ships, it is necessary to maintain effective communication 
and coordination with other ships to avoid collision. 

The RIFs of “Ship navigation density” and “Leeway and drift angle” 

Table 5 
Prior probability of the human operational RIFs.  

Operational errors Cognitive function Generic failure type Reference value Refs. Scenario value based on D-S 

X1 Observation Inadequate observation 3.79 E-02 [19] 4.2E-02 
X3 Interpretation Delayed 

interpretation 
5.42 E-03 [19] 4.7E-03 

X4 Interpretation Faulty diagnosis 5.42 E-03 [19] 7.6E-03 
X5 Execution Missed action 1.63 E-02 [19] 5.3E-03 
X6 Interpretation Faulty diagnosis 5.42 E-03 [19] 3.6E-03  

Table 6 
Prior probability of physical and technical failure RIFs.  

Basic 
events 

States Reference failure 
probability 

Refs. Failure probabilitybased 
on D-S 

X2 Y 1.63E-03 [72] 2.6E-03 
X9 PF 5.57E-04 [72] 1.2E-04  

F 5.57E-04 5.8E-04 
X10 PF 1.86E-04 [72] 3.5E-04  

F 1.86E-04 8.3E-04 
X11 PF 4.18E-04 [72] 2.2E-04  

F 4.18E-04 4.6E-04  

Table 7 
Failure rate and error rate of RIFs.  

RIFs States Failure/ Error rate 

Radar failure PF 3.20E-05 
F 1.60E-05 

Main engine failure PF 4.80E-05 
F 1.10E-05 

Rudder equipment failure PF 6.30E-05 
F 4.70E-05 

Unfamiliar with handling performance Y 3.40E-04 
Pilot in poor condition Y 1.80E-04 
Inadequate supervision by captain Y 3.20E-04 
Inadequate supervision by pilot Y 2.80E-04 
Miscommunication with others Y 6.30E-04 
Inadequate human look-out Y 8.50E-04  

Fig. 8. Risk evolution curve in ship pilotage process.  
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are deterministic nodes in the DBN model, so their influence cannot be 
studied by calculating the mutual information entropy. Inferring the 
change of the collision risk probability by pairwise combination of the 
two variable states at time t1, the results are shown in Table 8. Taking 
the real states of two RIFs at time t1 as the baseline benchmark, the 

change rates of collision risk probability under several other combina
tions are ranging − 99%~141%. The results show that two environ
mental RIFs are salient sensitivity factors, in particular, the 
superimposed influence of them is significant, which is consistent with 
the results of the previous risk evolution reasoning, so they need 
particular attention during ship pilotage operations process. 

4.7. Model validation 

Model validation is an important methodological step to ensure the 
reliability, soundness and robustness of any new model structure and 
parameters, as well as the validity of output results. Along with the 
above sensitivity analysis and its partial validation on the results, this 
paper adopts other methods including literature comparison, expert 
validation, and face validity to test the validity of the developed FRAM- 
DBN model. 

Fig. 9. Sensitivity analysis of RIFs in different time slices.  

Fig. 10. Strength analysis of RIFs.  

Table 8 
Sensitivity analysis of environmental RIFs.  

Leeway and drift angle→ Large Medium Small 
Navigable density of ships↓    

Large 4.54E-03 1.88E-03 1.63E-03  
141% ↑ 0% − 13% ↓ 

Medium 8.01E-04 2.96E-04 2.48E-04  
− 57% ↓ − 84% ↓ − 87% ↓ 

Small 8.30E-05 2.91E-05 2.39E-05  
− 96% ↓ − 98% ↓ − 99% ↓  
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Firstly, the proposed FRAM-DBN model is applied to the ship 
pilotage process of a container ship in Shanghai Port as a case study, 
temporal collision risk for ship pilotage process is calculated, while the 
obtained results are compared with experience-based judgements from 
experts (see Table 4) to prove that the results are in a harmony with their 
experience. 

Next, the collision risk assessment results are compared with the 
statistics of collision accidents in this water. The average ship collision 
probability obtained by the model inference is consistent with the 
average collision probability of ship pilotage operations in this water in 
the past five years. Furthermore, the spatio-temporal evolution charac
teristics of navigation process risk are consistent with Hu et al. [29] 
(analogous operations scenario in the same water). Both comparative 
results further reveal that the proposed model can not only capture the 
risk evolution characteristics of the case ship pilotage operation process, 
but also deliver reliable results. 

As a qualitative analysis method, FRAM is highly dependent on the 
expertise and experience of the involved analysts. Despite the effort of 
combining the ACAT method to effectively improve the rigor and con
sistency of the analysis, the process of system analysis and modeling has 
still subjectivity and uncertainty at a certain level. To address it, the 
obtained FRAM (see Fig. 5) and further obtained RIFs (see Table 3) are 
sent to the five experts (in Table 4) for their evaluation. The results 
evident that the FRAM model well reflects the collision accident sce
narios during the ship piloting operation for the studied case, and the 
functional modules in the model and their coupling structure are 
consistent with their experience. 

The DBN model proposed based on the FRAM-ACAT analysis results 
has been validated via face validity. Face validity is proposed by 
Pitchforth and Mengersen [75] to present model’s reliability and val
idity. The panel of five experts (see Table 4) was invited to evaluate the 
rationality of the proposed DBN with their experience. Experts were 
invited to evaluate the model in a chain of the RIFs, the division of their 
states, and the dependency of the RIFs. The evaluation results against 
each element under investigation are all satisfactory. In the face validity 
process, some experts however suggested that more accident risks such 
as grounding and contact during pilotage operations process should be 
incorporated into the model in future research given their significant 
practical insights in the waters. 

Finally, a useful means to examine the validity of a subjective built 
model is to perform sensitivity analysis, sensitivity analysis is a common 
model validation way for BN to identify the critical RIFs that have a 
significant impact on collision risk [25]. Through sensitivity analysis 
(see Section 4.6), the root nodes (factors) in the model all show a certain 
sensitivity, increase/decrease in the prior probabilities of each parent 
node may cause a relative increase/decrease in the posterior probability 
of the collision node. According to the analysis results of the combined 
changes of environmental factors (see Table 8), the total influence on 
collision probability variations of two parameters is proven to be always 
higher than one of the two parameters. These sensitivity analysis results 
further suggest that the proposed model is in harmony with the Axiom in 
Zhang et al. [9], thus validating the reliability of the model. 

5. Discussions  

(1) FRAM-ACAT in systematic risk factors identification 

Traditional ship pilotage operational risk analysis is often conducted 
based on an accident causation theory to obtain RIFs and configure their 
causal relationships from historical accident data. Historical accident 
scenarios in the maritime industry have less significant and reference to 
guide ship pilotage scenario analysis due to the uniqueness of the pilot 
process. Therefore, the relevant RIFs and their coupling relationships of 
accident risks in ship pilotage require the development of a new 
scenario-based risk analysis method. In this paper, the FRAM-ACAT 
method is used to reveal the risk formation mechanism from the 

perspective of functional resonance of a ship pilotage operation system. 
It can not only identify the direct and deep-level RIFs of ship collision 
risk in a specific ship pilotage scenario, but also effectively capture the 
nonlinear coupling relationship between RIFs, to realize the systematic 
risk identification of the ship pilotage process. However, the FRAM- 
ACAT framework is in nature a qualitative risk analysis method, 
which will benefit from the incorporation of quantitative reasoning on 
the risk evolution law of pilotage process.  

(2) Maritime risk analysis using BN and DBN 

In the field of maritime traffic risk assessment, BN analysis method is 
widely used. With the help of the logical analysis of accident FTA, the BN 
topological relationship of the risk factor network in the marine traffic 
risk system is developed, and the Bayesian probability and conditional 
probability calculation are used to realize the reasoning, evaluation and 
monitoring of the marine traffic risk. The existing literature shows that 
this workflow is effective in coping with deterministic risk systems. 
Recently, researchers are gaining increasing awareness of incorporating 
the uncertain impact of stochastic process into marine traffic risk anal
ysis. One of the realistic ways is to develop a discrete DBN, to simulate 
the uncertain structure of marine RIFs. The traditional discrete DBN has 
exactly the same structure and parameters of the static BN for each time 
slice, hence often failing to model the mutation process. From the 
relationship analysis between parent node and child node in BN, as well 
as the relationship between various states, this paper proposes an 
adaptive generation algorithm for parameters. The application of nu
merical examples generates useful insights in practice.  

(3) Risk spatiotemporal evolution in maritime risk analysis 

A DBN model of collision risk in a ship pilotage process was con
structed according to the risk identification of ship pilotage scenarios. 
AIS, RADAR data, PSC data, expert judgment were used in a combined 
way for parameters learning, and the temporal distribution of collision 
risk in the pilotage operations process was obtained by forward 
reasoning. Combined with the spatiotemporal correlation information of 
shipborne AIS, the spatiotemporal evolution characteristics of collision 
risk are also obtained. The results show that the regional differences of 
collision risk during ship pilotage process are significant. The collision 
risks of ship at the entrance of the Beicao channel and the Yuanyuansha 
warning area are the most significant, while the collision risk of ship 
sailing in the Yuanyuansha warning zone is more than 100 times greater 
than that of the straight section in the Beicao channel. Therefore, when a 
ship navigating in the Yuanyuansha warning area, the pilot should look 
out with greater caution, cooperate well with the crew and make 
effective external communication. In addition, the influence of wind and 
current on ship maneuvering effects should be particularly considered 
when taking collision avoidance measures in restricted traffic waters.  

(4) Sensitivity analysis of RIFs in ship pilotage operations process 

Through sensitivity analysis, the influential degree distribution of 
RIFs in different time slices are obtained. As shown in Fig. 9, the influ
ence of each risk factor increases with time. Combined with mutual 
information analysis and strength influence analysis, it shows that 
“Inadequate human look-out” is the most sensitive risk factor in each 
time slice. The results show that due to the complex and changeable 
environmental factors and the high density of navigable traffic, the 
captain and bridge crews should conscientiously perform their lookout 
duties even if there is a pilot on board. They are obligated to assist the 
pilot in order to detect potential dangers in time. The second risk factor 
is “Miscommunication with others”, and there may exist complex situ
ations in which ship encounters multiple ships in the pilotage process, so 
it becomes difficult to make collision avoidance decisions by simply 
relying on collision avoidance rules. It will become necessary to conduct 
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sufficient and effective communication and coordination with sur
rounding ships. However, the communication on Very High Frequency 
(VHF) in dense navigable waters often interferes with each other, and it 
is necessary for the maritime administration to take corrective measures.  

(5) Uncertainty and limitations of the model 

The developed model can effectively simulate the temporal evolution 
of ship collision risk and identify critical RIFs in the ship pilotage op
erations process according to the real scenarios of ship navigation. 
Maritime administrative agencies such as VTS and pilot station can 
formulate targeted risk control measures based on the simulation re
sults, while pilots can also improve the pilot scheme accordingly. 
However, the model still reveals some uncertainty and limitations. 

First, the proposed model focuses on ship collision risks, and does not 
take into account other accident risk types such as grounding and con
tact damage. In the future, the Objected Oriented Bayesian Network 
(OOBN) will be investigated to see if it is a promising solution to tackling 
all types of accidents in a ship pilotage operations process. Secondly, 
additional factors such as visibility and waves that have shown less 
impact on ship collision risk should be analysed when the other types of 
accidents are investigated. Within this context, risk severity of different 
accidents could be analyzed and incorporate into the DBN model to 
extend the risk analysis from single-dimensional to multiple- 
dimensional perspectives [23]. 

Thirdly, the first-order Markov hypothesis and stationarity hypoth
esis well fit the model development and case analysis at this stage of the 
research. The extent to which they can reflect the operational mecha
nism of non-stationary random process of ship pilotage should be 
addressed as their settings affect the accuracy of temporal risk reasoning 
[26], when the risks of other accident types are analysed. Fourthly, 
observation data by instruments such as AIS and RADAR is used to 
obtain the temporal states of environmental factors, which can effec
tively reduce the influence of information uncertainty and improve the 
inferential accuracy of scenario risks. In the future, dynamic variables in 
DBN by means of temporal data monitored through instruments (such as 
advanced psychological techniques) will improve the acquisition of TPT, 
to reveal the spatiotemporal evolution of pilotage process risk in real 
scenarios. It can facilitate the model development and applications in 
the real world. Finally, risk-based resilience emerges in maritime safety 
analysis. Resilience is defined as the intrinsic property of the system to 
respond and adjust the functioning before or after a mishap or distur
bance to sustain the normal operational performance of the system [40]. 
This study highly associates with risk evolution analysis in a dynamic 
process, which is in principle in line with the risk evolution process 
across the whole process before and after the occurrence of an accident. 
The issue on how to incorporate the FRAM-DBN risk evolution model 
into resilience engineering seems promising, as it possibly enables the 
ship pilot safety system to adapt to emergent situations and conditions. 

6. Conclusion 

In this paper, the FRAM-DBN model is proposed to simulate the 
temporal collision risk during the normal ship pilotage operation pro
cess. The tempo-spatial evolution characteristics of ship collision risk are 
obtained. It is further revealed that ship accidents emerge from non- 
linear interconnections of the daily disturbances and variabilities, and 
high level of variability and uncertainty which arises from this 
complexity of ship pilotage socio-technical system. It makes contribu
tions from both theoretical and managerial perspectives as follows. 

The new theoretical contributions of this paper include 

(1) A new hybrid framework combining different methods in a ho
listic manner to achieve the analysis of ship collision risk 
spatiotemporal evolution in ship pilotage operations process is 
proposed.  

(2) FRAM and ACAT are integrated together to reveal the complex 
interaction of system micro-behavior from the perspective of ship 
pilotage operation real scenarios, to identify the direct and in- 
depth RIFs of ship collision in the pilotage operations process.  

(3) Combined uncertainty methods are used to quantify the CPT and 
TPT of a DBN in ship pilotage operations risk evolution, which 
can fully integrate observational evidence, historical data and 
expert knowledge to solve the problem of uncertainty inference. 

The managerial contributions of the case findings are 

(1) The collision risk evolution in the ship pilotage operations pro
cess shows large regional differences under the coupling effect of 
multiple factors. It is important to note, that particularly under 
the superposition effect of wind-current factors and navigation 
density factors, the functional resonance effect will lead to a surge 
in collision risk.  

(2) This study shows that for effective collision risk management in 
the ship pilotage operations process, it is not only necessary to 
pay attention to critical RIFs, but also to formulate corresponding 
prevention and control measures for the strong coupling between 
factors.  

(3) The integrated methods also suitable for risk evolution analysis in 
other operational processes such as ship berthing and unberthing, 
anchoring, etc., and can extend to the process risks evolution in 
other socio-technical systems such as construction, mining, and 
road transportation et al. 
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