
Esper, IDM, Smolkin, O, Manko, M, Popov, A, From, PJ and Mason, A

 Evaluation of RGB-D Multi-Camera Pose Estimation for 3D Reconstruction

http://researchonline.ljmu.ac.uk/id/eprint/17890/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Esper, IDM, Smolkin, O, Manko, M, Popov, A, From, PJ and Mason, A (2022) 
Evaluation of RGB-D Multi-Camera Pose Estimation for 3D Reconstruction. 
Applied Sciences, 12 (9). ISSN 2076-3417 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Citation: de Medeiros Esper, I.;

Smolkin, O.; Manko, M.; Popov, A.;

From, P.J.; Mason, A. Evaluation of

RGB-D Multi-Camera Pose

Estimation for 3D Reconstruction.

Appl. Sci. 2022, 12, 4134. https://

doi.org/10.3390/app12094134

Academic Editors: Luis Gracia and

Carlos Perez-Vidal

Received: 15 March 2022

Accepted: 17 April 2022

Published: 20 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Evaluation of RGB-D Multi-Camera Pose Estimation for
3D Reconstruction
Ian de Medeiros Esper 1,* , Oleh Smolkin 2,3, Maksym Manko 2,4, Anton Popov 2,3,4 and Pål Johan From 1

and Alex Mason 1,5,*

1 Faculty of Science and Technology, Norwegian Univiersity of Life Sciences, Universitetstunet 3,
1430 Ås, Norway; pal.johan.from@nmbu.no

2 Ciklum Data & Analytics, 03680 Kyiv, Ukraine; osmo@ciklum.com (O.S.); mman@ciklum.com (M.M.);
poant@ciklum.com (A.P.)

3 Faculty of Applied Sciences, Ukrainian Catholic University, 79000 Lviv, Ukraine
4 Electronic Engineering Department, Igor Sikorsky Kyiv Polytechnic Institute, 03056 Kyiv, Ukraine
5 Animalia, Norwegian Meat Research Institute, 0513 Oslo, Norway
* Correspondence: ian.esper@nmbu.no (I.d.M.E.); alex.mason@nmbu.no (A.M.)

Abstract: Advances in visual sensor devices and computing power are revolutionising the interaction
of robots with their environment. Cameras that capture depth information along with a common
colour image play a significant role. These devices are cheap, small, and fairly precise. The infor-
mation provided, particularly point clouds, can be generated in a virtual computing environment,
providing complete 3D information for applications. However, off-the-shelf cameras often have a
limited field of view, both on the horizontal and vertical axis. In larger environments, it is therefore
often necessary to combine information from several cameras or positions. To concatenate multiple
point clouds and generate the complete environment information, the pose of each camera must
be known in the outer scene, i.e., they must reference a common coordinate system. To achieve
this, a coordinate system must be defined, and then every device must be positioned according to
this coordinate system. For cameras, a calibration can be performed to find its pose in relation to
this coordinate system. Several calibration methods have been proposed to solve this challenge,
ranging from structured objects such as chessboards to features in the environment. In this study,
we investigate how three different pose estimation methods for multi-camera perspectives perform
when reconstructing a scene in 3D. We evaluate the usage of a charuco cube, a double-sided charuco
board, and a robot’s tool centre point (TCP) position in a real usage case, where precision is a key
point for the system. We define a methodology to identify the points in the 3D space and measure the
root-mean-square error (RMSE) based on the Euclidean distance of the actual point to a generated
ground-truth point. The reconstruction carried out using the robot’s TCP position produced the
best result, followed by the charuco cuboid; the double-sided angled charuco board exhibited the
worst performance.

Keywords: pose estimation; robotics; 3D reconstruction; charuco cuboid

1. Introduction

The idea and use of 3D imaging dates back to the 19th century, and laser scanning
to the 1960s [1], but only recently has it been capable of revolutionising the interaction
between robots, the environment and humans. Many advances in computational power,
sensor precision and affordability have made this possible [2–4].

The recent development of RGB-D cameras has provided visual sensor devices capable
of generating pixel-wise depth information, together with a colour image. The technology
behind these cameras has been constantly improving, with developers working to reduce
noise and increase precision, e.g., Microsoft Kinect Azure and Intel RealSense L515 and
D455 [3].
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The depth information from those devices can be used to generate a three-dimensional
projection of the captured object. Understanding the well-known pinhole camera model [5]
is important to understand how the reprojection works, and how it is affected by noise in
the depth data.

The model describes the transformation from the 3D world to the 2D image plane, as
shown in Figure 1 and in the Equation (1) [6]. It can also be used to calculate the inverse
path for reprojecting from 2D to 3D.

Equation (1) has two matrices: one for the intrinsic parameters and another for the
extrinsic parameters. The first contains the camera’s internal parameters, which are constant
for each camera. The second describes where the camera is in the world, i.e., the pose of
the camera in relation to an origin coordinate system.

Figure 1. Pinhole camera’s projective geometry.

The direction vector of the ray from the camera projection centre can be found using
these parameters, but the length of the vector cannot. This information is lost in the
conversion from 3D to 2D. However, when using an RGB-D camera this information is
saved, as a depth that determines where the point lies in the world. The set of points
reprojected from these data is called a point cloud.

Other parameters that are important for reprojection are the distortion coefficients
which are used to correct the radial and tangential distortions of the lens [7]. In this work,
the FRAMOS Industrial Depth Camera D415e, which was built with Intel® RealSense™
technology, was used. The Intel® RealSense module claims to have no lens distortions [8,9].
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The intrinsic parameters of a camera are normally represented as a 3 × 3 matrix, as
shown in Equation (2).

K =

 fx 0 cx
0 fy cy
0 0 1

 (2)

where fx and fy are the focal lengths in the x and y directions, respectively. Furthermore,
cx and cy are the optical centres of the image plane, shown as a solid red line in Figure 1.

As illustrated in Figure 1, the focal length is the distance from the camera lens to the
image plane; since the pixel is not necessarily square, the focal length is divided by the
pixel size in x and y, resulting in the variables fx and fy, respectively, expressing the values
in pixels.

The extrinsic parameters are typically represented by a homogeneous transformation
matrix, shown in Equation (3), and this was well explained by Briot and Khalil (2015) [10].
This contains the rotation matrix R3×3 and the translation vector T3×1, representing the
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camera’s transformation in relation to the origin of the reference coordinate system in the
desired scene.

D =

[
R3×3 T3×1
01×3 1

]
(3)

The distortion coefficients are the parameters used to describe the radial and the
tangential distortion. They are represented as kn and pn, respectively. The most notable
distortion model is the Brown–Conrady model [11].

The term calibration normally refers to methods of estimating the intrinsic parameters,
distortion coefficients and extrinsic parameters.

Quaternions are another way to express rotations in the three-dimensional vector space.
This method has a compact representation and has some mathematical advantages [12,13].
It is commonly used by the robotics industry because it is more mathematically stable and
avoids the gimbal lock phenomenon, where two axes align and prevent the rotation in
one dimension.

The robotic arm used in this work, the ABB IRB 4600, uses quaternions for the orienta-
tion of its TCP. Equation (4) [14] shows the conversion method from quaternions to Euler
angles used in the homogeneous transformation matrix which was used in this work.φ

θ
ψ

 =

atan2(2(q0q1 + q2q3), 1 − 2(q2
1 + q2

2))
asin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), 1 − 2(q2
2 + q2

3))

 (4)

1.1. Point Cloud

Reprojecting the points in 3D using the intrinsic parameters in a pinhole model, as
shown in Equation (1), with no distortion is carried out according to Equations (5)–(7).
For an RGB-D device, Z is the depth information extracted from the depth frame, x is the
column index and y is the row index. In these equations, a point is a 3D structure with
(x, y, z) data representing a point in the camera’s coordinate frame.

point.z = Z; (5)

point.x = ((X − cx)/ f x) ∗ Z; (6)

point.y = ((X − cy)/ f y) ∗ Z; (7)

The origin of the coordinate system for each point cloud is one sensor of the camera,
in this case, the left infrared sensor. To reconstruct the scene from multiple cameras or
perspectives, the camera’s positionin the scene, i.e., the global coordinate system, must
be known.

The global coordinate system’s origin is chosen according to the task. It can be the
optical centre of one of the camera’s sensors, for example. In this work, the chosen origin
was the base coordinate system of an ABB IRB 4600 robot [15].

1.2. Related Work

The problem of scene reconstruction has been well studied in different scenarios. To
solve the challenge of registering two or more point clouds together, the six degrees of
freedom (DoF) transformation between them has to be found. This can be calculated using
the point clouds by either selecting the matching points manually or using algorithms
to find possible matching points. Another method is to calculate a known position for
the sensors.

Chen and Medioni [16] and Besl and McKay [17] proposed one of the most widely
used algorithms for the registration of 3D shapes, the iterative closest point (ICP). It tries
to find the best match between the point clouds by finding the closest points from one
point cloud to the other, then it determines the transformation matrix that minimises the
distance between the points, and finally, it iterates until it converges. Due to fact that it relies
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on the data association of the points between point clouds, a good overlap is necessary
for convergence.

Wang and Solomon [18] proposed a replacement of ICP called the deep closest point
(DCP) method, which uses a three-step approach, first embedding the point clouds into a
common space, then capturing co-contextual information in an attention-based module
and finally using singular value decomposition to find the transformation matrix.

Aoki et al. [19] used the Pointnet [20] method with the Lukas and Kanade (LK) [21]
algorithm to solve the registration problem.

Other methods include that of Stoyanov et al. [22], who used a three-dimensional
normal distribution transform representation of the distance between the models, followed
by a Newton optimisation, and that of Zhan et al. [23], who proposed an algorithm based
on normal vector and particle swarm optimisation. These methods all rely on having a
sufficient overlap between the point clouds to solve the problem. Moreover, these methods
tend to be slow.

Performing an estimation of the position of the sensorprovides a more reliable trans-
formation for the point clouds. Initially, work on camera calibration was focused on
finding the intrinsic parameters of a single camera. Zhang [24] was the first to propose
the solution to this challenge using a chessboard pattern, i.e., a planar target, through
least-square approximation.

With the intrinsic parameters, in theory, it would be possible to calculate the pose
of the camera with four coplanar points that are not collinear, but Schweighofer and
Axel [25], discussing pose ambiguities, proved that two local minima exist, and proposed
an algorithm to solve this problem.

Fiducial markers became popular for camera pose estimations, and several markers
have been proposed, including point-based [26], circle-based [27], and square-based [28,29]
markers, which can determine the pose using the four corners and have the ID in the
middle of the marker.

Garrido-Jurado et al. [28] proposed a system with configurable marker dictionaries,
specially designed for camera localization. The authors developed a marker generator,
as well as an automatic detection algorithm. These ArUco markers form the basis of the
charuco board used in this work.

Other publications have proposed ways to solve the problem of pose estimation using
an arbitrary scene with texture [30–32]. These are not relevant to this project, since it was
designed in a contained environment.

In this work, we propose and carry out a novel evaluation method for multiple camera
perspectives. We used a charuco to identify and label the points on which the metrics
were based, and calculated the errors of three different methods in order to carry out the
transformation of the cameras to the global coordinate system.

2. Materials and Methods

This investigation was part of two projects called Meatable [33] and RoButcher
(https://robutcher.eu, accessed on 15 February 2022). The projects involved research-
ing the design and robotisation of a cell to process pig carcasses, called the Meat Factory
Cell, and proposing a significant deviation from existing meat processing practices. The
process was briefly described by Alvseike et al. (2018) [34,35]. The projects defined con-
straints on the data captured due to the specific data configuration of the scene and the
application requirements.

Due to the inherent characteristics of the projects, precision was a key aspect of the
system; otherwise, the cutting and manipulation of carcasses would be unsatisfactory or
ineffective (e.g., the robot could cut too deep into the carcass, or not cut it at all).

For these projects, a bespoke machine called a carcass handling unit (CHU) was used,
as shown in Figure 2. Its function was to grip a pig’s carcass and present it to the robot,
which would perform automated cutting to segment or dissect the parts.

https://robutcher.eu
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Figure 2. Carcass handling unit in the RoButcher laboratory.

The robot needed to have a complete understanding of the environment in the 3D
space. However, the camera had a limited angle of view. To solve this constraint, multiple
camera perspectives had to be transformed to obtain a complete view of the scene.

The robotic arm had a camera attached to the tool centre point (TCP), as illustrated in
Figure 3, to capture the data. It cycled the camera to six positions around the CHU, with
two on the right, two on top, and two on the left side. With this configuration, almost
360◦of the scene could be captured.

Figure 3. FRAMOS D415e Camera and its bespoke support.

The cameras are referred to as left/right/up and front/back. The left/right is defined
in relation to the CHU, not to the pig, which can be rotated once grabbed by the CHU. TThe
left, right, front, and back sides of the CHU were defined as shown in Figure 4.

Figure 4. Carcass handling unit (CHU) with sides labelled.

The FRAMOS D415e has 3 image sensors (2 infrared (IR) and 1 RGB) and one IR
laser projector. It calculates depth based on the disparity between the two IR sensors.
Furthermore, it is stated by the documentation that the infrared cameras have no distortion;
hence, all the distortion coefficients are 0.0 [9]. Furthermore, the cameras come from the
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factory calibrated with intrinsic parameters recorded in the memory and can be easily read
using the appropriate Intel RealSense SDK library.

The Intel RealSense D415 was evaluated in regard to its the accuracy, performance,
and precision by Lourenco and Araujo [36], with an RMSE accuracy distance for an analysis
of 100 images of 0.07927, an average failed points ratio of 0.5414%, and average outliers
(±10 cm) of 0.0667%, measured at 1 m. The repetitive pattern of the board also prejudices
the depth calculation, and consequentially the point cloud, as illustrated in Figure 5.

Figure 5. Charuco board with noise and artefacts due to the repetitive pattern.

The data are recorded in a bag file (http://wiki.ros.org/Bags, accessed on 1 February
2022) using the SDK. The bagfile is a container file that contains the image and the depth
frame, the intrinsic parameters for both sensors, and metadata information. These data are
used to extract the parameters needed to execute the calibration.

The file-naming conventions used in the work used camera positions numbered from
0 to 5, and the sequential take number, with the following relation to the CHU:

• Left/Front: Cam 0
• Left/Back: Cam 1
• Up/Back: Cam 2
• Up/Front: Cam 3
• Right/Front: Cam 4
• Right/Back: Cam 5

2.1. Evaluation Metrics

To quantify the quality of the reconstruction in each method, the root-mean-square
error (RMSE), shown in Equation (8), was used. The error used in the RMSE calculation
was the Euclidean distance in three-dimensional space R3, and it was calculated after
reprojecting the points in the point cloud, as shown in Equation (9).

rmse =

√√√√√ n
∑

i=0
error2

n
(8)

error =
√
(xo − xr)2 + (yo − yr)2 + (zo − zr)2 (9)

The depth information received from the camera was able to have an error of 2%, thus
increasing the RMSE. However, as this affected all methods similarly, it did not interfere
with the final comparison.

To measure the distance between the correspondents points, these points must be
known, i.e, which point in one point cloud should match which point in the other point

http://wiki.ros.org/Bags
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cloud. Since the point cloud from the RGB-D device did not contain information enabling
us to identify which point was which, a method was proposed to label some points.

In this work we used OpenCV [37], as it is a stable and robust library for computer
vision. ArUco markers were used as fiducial markers and a charuco board was used as the
pattern board for the pose estimation, as proposed by Garrido et al. (2014) [28].

The ArUco module in OpenCV has all the necessary functions for pose estimation
using the implemented charuco board [38].

2.2. Labelling Points

The method used to identify and label the points in order to enable error calculation
was based on the unique ID of each ArUco marker. Each ID and the corners of the marker
could be found on the board during the pose estimation process, as shown in Figure 6.

Figure 6. Charuco Board showing the identified ArUco markers.

Equation (10) shows the calculation of the point label values at points on the charuco
board. Each corner receives a label to identify the specific point in the point cloud.

label = (i ∗ 4) + j (10)

where i is the ArUco ID and it is multiplied by 4 because every marker gives four corner
points. j is the index of the ArUco in the vector where it is stored.

2.3. Methodology

The methodology used to measure the reconstruction error was based on a charuco
cuboid with 3 faces, which was used to identify the points and calculate the RMSE. The
chosen charuco boards were 300 mm by 200 mm, with a checker size of 20 mm and a marker
size of 15.56 mm with 14 columns and 9 rows. This was manufactured using precision
technology in aluminium by Calib.io (https://calib.io, accessed on 13 January 2022).

A charuco rectangular cuboid was built, as shown in Figure 7, using three boards.

2.4. Pre-Processing RGB-D Data

The first step was to improve the data by minimising the noise and the artefacts in the
point cloud. To perform this task, some post-processing was applied to the captured frames.

In this work, the chosen post-processing methods were: alignment of colour and
depth frame, sharpening of the colour frame and temporal and spatial filters applied to the
frameset. Although the alignment and sharpening were always applied, the results were
tested with both temporal and spatial filters enabled and disabled.

https://calib.io
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Figure 7. Charuco rectangular cuboid.

2.4.1. Alignment of Frames

The FRAMOS D415e camera had its origin reference in the left IR imager sensor and
the RGB imager on the right side, as shown in Figure 8. As the sensors are different, an
alignment between the colour image and the information was performed.

Figure 8. FRAMOS D415e origin reference system.

The alignment was performed in relation to the colour imager, i.e., the depth infor-
mation was aligned to the colour frame. Since the alignment changes the relation of the
pixels in the depth frame to match the colour sensor, the intrinsic matrix used to reproject
the point cloud was also derived from the colour imager.

2.4.2. Sharpening Filter

Besides the alignment, a sharpening filter was applied to the colour image to improve
the ArUco marker identification. The filter kernel used is shown in Equation (11).∣∣∣∣∣∣

−1 −1 −1
−1 9 −1
−1 −1 −1

∣∣∣∣∣∣ (11)

Figure 9a shows the charuco board before the sharpening filter was applied and the
identified ArUco markers. Figure 9b shows the image after filtering, showing a signifi-
cant improvement of the corners and edges. The sharpening filter improved the edges
between the white and the black pixels of the board, increasing the number of identified
ArUco markers.
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(a) (b)
Figure 9. Use of a sharpening filter to improve ArUco recognition. (a) No filter applied. (b) Filter applied.

2.4.3. Temporal and Spatial Filters

To diminish the noise artefacts of the data, two post-processing techniques were
applied to the captured frames, a temporal filter and a spatial filter. Both filters were
implemented in RealSense SDK and these have been well explained by Grunnet-Jepsen
and Tong [39].

The temporal filter performs a time average of the frames to improve the depth
calculation. The filter implements three parameters, those being the alpha, delta, and
persistence filter. The alpha parameters represent the temporal history of the frames. The
delta is a threshold to preserve edges, and the persistence filter tries to minimise holes by
keeping the last known value for a pixel.

The spatial filter implemented in the SDK is based on the work of Gastal and Oliveira [40].
It preserves edges while smoothing the data. It takes four parameters, alpha and delta, which
have the same function as in the temporal filter. This method also involves the filter magnitude,
which defines the number of iterations, and hole filling parameters, which improve artefacts.

2.4.4. The Ground-Truth

After post-processing, the next step for the evaluation of the reconstruction is to
generate a cuboid of reference points, in relation to the robot’s base, to be used as ground-
truth data. This was performed based on the first camera data. The charuco board was
identified and the markers’ corner was extracted from the image, as shown in Figure 6.
Based on the cuboid geometry, the top reference was generated by rotating −90° around
the x-axis, followed by a rotation of 180° around the y-axis. Then, a translation of 280 mm,
187 mm and −190 mm in the x, y and z directions, respectively, was carried out, as shown
in Equation (12). The backside was generated by rotating 180° around the y-axis and
translating 280 mm and −200 mm in the x and z directions, respectively, as shown in
Equation (13).

topTb = T0 ∗cub Tcam0 ∗ transa ∗ rotx−90 ∗ roty180 ∗ (cubTcam0)−1 (12)

where topTb is the transformation from the top of the charuco origin to the robot’s base, T0

is the transformation from TCP to the base, cubTcam0 is the transformation from the first
camera to the charuco, transa is the translation, rotx−90 is the rotation in the x-axis, roty180

is the rotation in the y-axis, and (cubTcam0)−1 is the inverse transformation from the first
camera to the charuco.

rTb = T0 ∗cub Tcam0 ∗ transb ∗ roty180 ∗ (cubTcam0)−1 (13)

where topTb is the transformation from the top of the charuco origin to the robot’s base, and
the other terms have been explained in the previous paragraph.

The final reference cuboid can be seen in Figure 10 with the coordinate system of every
side shown as a visual aid.
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Figure 10. Cuboid with reference points and the coordinate frame of each board.

The camera positions make it impossible to see only one charuco board at a time. To
solve this challenge, the board can be rotated when it can be seen in at least two camera
positions, or two (or more) boards can be used with known geometries.

In this work, two reconstructions were performed using the charuco board and one
using a robotic arm’s position.

2.5. Charuco Cuboid

When using the charuco cuboid, each side is seen in two camera positions. Con-
sequently, the pose estimation is based on the visible board. The defined origin for the
reconstruction was set to be the first camera position. To obtain an optimal reconstruction,
one must perform a rotation and translation on the data from camera positions, where
the camera is facing a different board, based on the cuboid geometry, as explained in
Section 2.4.4.

Notably, to calibrate all camera views (i.e., in all six possible positions), the charuco
cuboid can remain stationary within the environment (i.e., it does not require repositioning
for each camera).

2.6. Charuco Double-Sided Angled Board

Using a double-sided board follows the same principle as the cuboid but is more
simple since the camera can see the same side in 4 positions, and the back of the board in
the other two, as shown in Figure 11a–c.

To perform the transformation, the left and the upper cameras were transformed to
the inverse matrix of charuco to camera transformation (chaTcam), to make the charuco
board origin the same for these cameras. Then, the right cameras had to perform a 180°
rotation around the y-axis and a translation of 280 mm and 1.2 mm in the x and z directions,
respectively, according to the board geometry.

(a) (b) (c)
Figure 11. Charuco board views from the camera positions. (a) Left view from camera 1. (b) Top
view from camera 3. (c) Right view from camera 5.

2.7. Robot’s TCP Transformation

The robotic arm used in the setup was an ABB IRB 4600 40/2.55. The TCP position
for every robot target position of the arm was recorded with the x, y, z position and the
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rotation q1, q2, q3, q4 in quaternions. A transformation from the camera’s origin to the TCP
was applied.

This transformation was calculated using the hand-eye calibration method proposed
by Horaud and Dornaike [41]. A set of 30 different positions were defined for the calibration.
The result was compared with the holder geometry, as seen in Figure 12.

The transformation found during calibration was the translation of −0.050 mm in
the x direction, −0.0442 in the y direction, and 0.0780 in the z direction, and rotations of
90.9179◦around the x-axis, 1.1774◦around the y-axis, and 0.4859◦around the z-axis.

Figure 12. Camera holder CAD model with dimensions in TCP’s z-axis.

Pair Matching

With the reference points ready, the transformation for each camera pose was solved
based on the chosen methods explained above. The correspondent marker points were
identified, and the metrics were calculated according to the explanation given in Section 2.1.
Figure 13 shows arrows between the reference point and the board points, showing the
correct identification of the pairs in which the error was calculated.

Figure 13. Arrows showing the correct correspondence between measured pair pointsbased on the
labelling method.

3. Results

The results of the reconstruction follow the metrics explained in Section 2.1. The first
step was to identify the two most accurate methods for the 3D reconstruction of the scene.
For this, each system used 1188 points to calculate the reconstruction error for the six
camera views.

Table 1 shows the mean absolute error (MAE), the mean square error (MSE), and the
root-mean-square error (RMSE) of each system, expressed in millimetres. It is interesting to
note that the MAE and the RMSE exhibit a large difference, meaning that there was not a
high discrepancy between the errors.
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Table 1. Summary results with MAE, MSE, and RMSE for one set of data.

Method MAE MSE RMSE

Charuco cuboid 7.5812 5.7475 × 10−2 6.8093
Double-sided Angled 10.12 0.1156 10.75

Robotic Arm 3.9888 1.5886 × 10−2 3.7121

Based on these results, a program was written to run 20 sets of data for each method,
with each set calculating the error between approximately 1188 points, depending on how
many markers were found by the charuco algorithm.

3.1. Charuco Double-Sided Angled Board

The double-sided board with an angle (to enable four cameras to see it simultaneously)
exhibited a poorer performance when compared with the other two methods. The angle
applied to the board made it harder to identify the markers, as shown in Figure 14a,b,
possibly making it less accurate than the other methods.

Visually, it was able to calculate the pose well in the 2D image, but there was a
degradation in the RMSE, which in this case was 10.12 mm.

(a) (b)
Figure 14. Charuco double-sided board marker detection for pose estimation. (a) Camera 1. (b) Camera 2.

Figure 15 shows a detail of the reconstructed image with the double-sided charuco
board, where small gaps between the top and lateral panel can be observed.

Figure 15. Reconstruction view using charuco double-sided angled board.

Due to this method’s less accurate 3D reconstruction compared to the other methods,
we focused more on the other methods discussed below.

3.2. Cuboid vs. TCP Reconstruction Accuracy

The program was written in C++ using the Qt Library (https://www.qt.io, accessed
on 8 February 2022), and it is available at GitHub (Please see “Data Availability Statement”),
together with the dataset captured.

The program iterated over a directory with the files and calculated the RMSE, the
mean squared error (MSE), and the mean absolute error (MAE) for both chosen methods.
In addition, it assisted with the visualization of the point cloud.

https://www.qt.io
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The program was executed with both filtered and unfiltered data, as explained in
Section 2.4.

3.2.1. Unfiltered Data

After running the program for the 20 sets, a total of 23,117 paired points were used to
calculate the error values. Figure 16 shows a screenshot of the program after the calculation
with the reconstruction of the point cloud for both methods, with the TCP method on the
left and the cuboid on the right side.

Figure 16. GUI showing the resulting 3D reconstruction using unfiltered data.

Table 2 summarises the results, showing a smaller error for the TCP method.

Table 2. Summary results for cuboid and TCP reconstruction with MAE, MSE, and RMSE for
unfiltered data.

Method MAE MSE RMSE

Charuco cuboid 1.10809 8.6994 × 10−3 2.6417
Robotic Arm 0.8734 4.8808 × 10−3 1.9651

3.2.2. Filtered Data

For the filtered data, a total of 23,603 paired points were used to calculate the error
values. Figure 17 shows a screenshot of the program after the calculation.

Figure 17. GUI showing the final result of the error measurement of the 3D reconstruction using
filtered data.
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Table 3 summarises the results obtained, again showing a smaller error for the
TCP method.

Table 3. Summary results for cuboid and TCP reconstruction with MAE, MSE, and RMSE for
filtered data.

Method MAE MSE RMSE

Charuco cuboid 1.2708 1.0987 × 10−2 2.9837
Robotic Arm 0.6983 3.1597 × 10−3 1.7432

3.3. Charuco Cuboid

The reconstruction using the charuco cuboid had a low RMSE of 2.9837 mm for the
filtered set, and an RMSE of 2.6417 mm for the unfiltered set, showing a better result for
the unfiltered dataset.

3.4. Robot’s TCP Transformation

The robotic arm ABB IRB 4600 had a payload of 40 kg and a reach of 2.55 m. It had
a position repeatability of 0.06 mm, a path repeatability of 0.28 mm, and an accuracy
of 1 mm [15]. With this precision, the reconstruction showed the best performance with
an RMSE of 1.7432 mm for the filtered dataset and an RMSE of 1.9651 mm for the unfil-
tered. In this method, the filtered dataset showed an improved result in relation to the
unfiltered dataset.

4. Discussion

The accuracy of the reconstruction is vital to robotics tasks when using depth infor-
mation to generate trajectories for a robot in a large scene. The usage of depth stream to
reconstruct the scene, as in Newcombe et al. [42], may not be appropriate if the system is
time-sensitive. It is faster to move the robotic arm to positions at a high speed and then
capture a frame than it is to cycle through at a slower speed to capture the data.

The algorithms currently available for point cloud registration, such as iterative closest
point (ICP) [16,43] and its variants, as well as other methods that try to find the trans-
formation between point clouds, use overlapping, which in this case is minimal due to
the fact that the observed scene is large. Moreover, they are too slow to be used in a
time-sensitive system.

The ABB IRB 4600 has a preset maximum speed of 7000 mm/s, and the axis speed
varies from 175◦/s (axis 1) to 500 ◦/s (axis 6). With these high speeds, the data acquisition
and reconstruction can be sped up through a straightforward mathematical approach, such
as the TCP transformation method. The idea is to have a fast and reliable transformation
for the camera positions.

Further investigations could involve the study of how the trajectory generated for the
TCP is affected by the errors in the reconstructions. Understanding this impact could help
in developing a faster method without having repercussions on the desired output.

This work will assist in developing new designs and understanding one’s options
when responding to reconstruction challenges using multi-camera views and a robotic arm.
It casts light on two different approaches and how to evaluate the reconstruction of the 3D
scene. However, it is not an exhaustive study on the topic.

5. Conclusions

In this study, we evaluated three pose estimation methods for RGB-D (3D) cameras
in the context of 3D point cloud reconstruction. We proposed a method to identify the
point pairs, and performed error measurements. Using a charuco cuboid, we identified
and labeled the corner of the ArUco markers in order to create a pairwise set of points to
measure the error values.
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Two of our developed methods used the charuco board to estimate the pose of the
cameras, whereas the third method used the robots’ TCP position to calculate and transform
the point clouds to reconstruct the scene. The data were captured with a fixed position and
at a distance of around 1 m from the board in each direction.

This distance reduces the resolution of the charuco board and consequently reduces
the camera’s ability to recognise markers on it. To improve the recognition of markers, a
sharpening filter was applied. Further filters were used to mitigate artefacts in the point
cloud, due to the stereo vision system used by the camera.

Two methods, the cuboid and TCP methods, provided a good reconstruction with
low RMSE values, taking into account the often noisy nature of point clouds derived
from RGB-D cameras. The double-sided angled board had the highest RMSE, and it was
excluded from further assessments. The increased error was assumed to be a result of the
combination of the angle and distance from the camera. The robot’s TCP position had a
high accuracy, exhibiting the best overall performance.
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