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In this paper we combine two classical generalisations of finite automata (weighted

automata and automata on infinite words) into a model of integer weighted automata
on infinite words and study the universality and the emptiness problems under zero

weight acceptance. We show that the universality problem is undecidable for three-state
automata by a direct reduction from the infinite Post correspondence problem. We also
consider other more general acceptance conditions as well as their complements with

respect to the universality and the emptiness problems. Additionally, we build a universal
integer weighted automaton with fixed transitions. This automaton has an additional
integer input that allows it to simulate any semi-Thue system.

Keywords: Weighted automata; automata on infinite words; undecidability.

1. Introduction

Weighted automata have been extensively studied in recent years [1, 7, 14] and have

a wide range of applications, such as speech-recognition [20] and image compres-

sion [5]. In weighted automata models a quantitative value (weight) is added to

each transition of a finite automaton allowing to enrich the computational model

with extra semantics. For example, these weights could be associated with the

consumption of resources, time needed for the execution or the probability of the

execution. Depending on the semantics (how these weights are used), the acceptance

conditions could be defined in various ways, significantly changing the complexity of

the weighted automata model.

∗Supported by emmy.network foundation under the aegis of the Fondation de Luxembourg.
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The acceptance conditions could be defined using various aggregation functions

for deterministic or non-deterministic automata that combine weights either on a

single path or a set of equivalent paths. For example, consider weighted automata

over tropical semirings, i.e., (Z∪{∞},min,+,∞, 0). A weight of a word is calculated

using the semiring product (i.e., +) and the acceptance can be defined using the

semiring sum (i.e., min). Furthermore, a word is accepted if its value using the

semiring sum is at most a given ν. In [4], the acceptance of infinite words was

based on the property that, in the corresponding computation path, a label with

the maximal weight is appearing infinitely often in analogy to Büchi automaton.

The automata on infinite words have been often motivated for modeling concurrent

and communicating systems [23] and more recently infinite words have been used to

simulate various processes in computational games [11, 18].

Recently, in [3], the author discussed historical context and the fundamental dif-

ferences between different weighted automata models based on aggregation functions

and acceptance conditions.

In this paper we combine these two fundamental extensions by considering

weighted automata on infinite words. The model we consider has weights from the

additive group of integers Z with the zero element 0 and the weights are summed

along the path. This model can be seen as a blind one-counter automaton operating

on infinite words. Under the zero acceptance condition an infinite word w is accepted

if there exists a path in the automaton reading w reaching a final state with weight

0 on a finite prefix of w. First we consider two classical decision problems for integer

weighted automata on infinite words: the emptiness (checking whether some word is

accepted) and the universality problems (checking whether all words are accepted).

In contrast to other acceptance conditions with decidable emptiness and universality

problems [4], we show that for the zero acceptance, while the emptiness problem is

decidable, the universality problem is undecidable.

In this paper we improve the result of [11], where it was shown that the universality

problem is undecidable for automata with five states. We prove that the problem

remains undecidable for a very minimalistic automaton with only three states. The

undecidability result is based on the reductions from the undecidability of the

infinite Post correspondence problem (ωPCP) and the state reduction is achieved

by proving more restricted form of the ωPCP than in [10]. The idea of proving

the undecidability of the universality problem is to construct an automaton that

verifies whether a given word is not a solution of a given instance of the infinite Post

correspondence problem. This is done by storing the difference of lengths of images

in the counter until automaton reaches a symbol that we try to show is different in

the images under the morphisms. We store this symbol and let the second morphism

catch up after which we verify that the symbols were indeed different. This proof is

presented in Section 3.

In Section 4, we investigate variants of zero acceptance in the sense of expanding

the condition from the existence of a zero on a path to existence of a weight in a given

set. We also modify the acceptance to consider all paths rather than an existence
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of an accepting path. We call this strong acceptance. This leads to new variants of

universality and emptiness problems with emptiness problem being undecidable for

strong acceptance for co-zero acceptance.

Finally, in Section 5 we consider a variant of the automaton where all transitions

are fixed and the weight given as an input determines whether a word is accepted or

not. This automaton can be seen as universal in the same sense as a universal Turing

machine. That is, for any given semi-Thue system with an input u, the automaton

accepts all words if and only if the semi-Thue system terminates on its input.

This paper is an extended version of the conference paper [12] containing addi-

tional details of the constructions and full proofs of the results.

2. Notation and definitions

An infinite word w over a finite alphabet A is an infinite sequence of letters w =

a0a1a2a3 · · · where ai ∈ A is a letter for each i = 0, 1, 2, . . .. We denote the set of

all infinite words over A by Aω. The monoid of all finite words over A is denoted by

A∗. The empty word is denoted by ε. A word u ∈ A∗ is a prefix of v ∈ A∗, denoted

by u ≤ v, if v = uw for some w ∈ A∗. If u and w are both nonempty, then the prefix

u is called proper, denoted by u < v. A prefix of an infinite word w ∈ Aω is a finite

word p ∈ A∗ such that w = pw′ where w′ ∈ Aω. This is also denoted by p ≤ w. The

length of a finite word w is denoted by |w|. The length of ε is 0. For a word w, we

denote by w(i) the ith letter of w, i.e., w = w(1)w(2) · · · . The number of letters a

in a word w is denoted by |w|a. The set dAω denotes all infinite words starting with

d, i.e., {dw | w ∈ Aω}.
Consider a finite (integer) weighted automaton A = (Q,A, σ, q0, F,Z) with the

set of states Q, the finite alphabet A, the set of transitions σ ⊆ Q×A×Q× Z, the
initial state q0, the set of final states F ⊆ Q, and the additive group of integers Z.
We write the transitions in the form t = ⟨q, a, p, z⟩ ∈ σ.

A configuration of A is any triple (q, u, z) ∈ Q×A∗ × Z and it is said to yield a

configuration (p, ua, z1 + z2) if there is a transition ⟨q, a, p, z2⟩ ∈ σ.

Let π = t1t2t3 · · · be an infinite path of transitions of A where ti =〈
qji , aki , qji+1 , zi

〉
for i > 0 and qj0 = q0. We call such path π a computation

path. Denote by R(π) the set of all reachable configurations following a path π. That

is, for π = ⟨q0, ak0
, qj1 , z0⟩ ⟨qj1 , ak1

, qj2 , z1⟩ ⟨qj2 , ak2
, qj3 , z2⟩ · · · the set of reachable

configurations is

R(π) = {(q0, ε, 0), (qj1 , ak0
, z0), (qj2 , ak0

ak1
, z0+z1), (qj3 , ak0

ak1
ak2

, z0+z1+z2), . . .}.

Further, we denote the path π by πw if w = ak0
ak1

ak2
· · ·. Let c = (q, u, z) ∈ R(π) for

some computation path π. The weight of the configuration c is γ(c) = z. We say that

the configuration c reaches the state q. If a computation path π reading w is fixed,

by the weight of prefix γ(p) we denote the weight of configuration (q, p, z) ∈ R(π)

where w = pu for some u ∈ Aω.

We are ready to define an acceptance condition. An infinite word w ∈ Aω is

accepted by A if there exists an infinite path π such that at least one configuration
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c in R(π) reaches a final state and has weight γ(c) = 0. The language accepted by A
is

L(A) = {w ∈ Aω | ∃πw ∈ σω ∃(q, u, 0) ∈ R(πw) : q ∈ F} .

We call this zero acceptance. We discuss other acceptance conditions in Section 4.

The universality problem for weighted automata over infinite words is a problem

to decide whether the language accepted by a weighted automaton A is the set

of all infinite words. In other words, whether or not L(A) = Aω. The problem of

non-universality is the complement of the universality problem, that is, whether or

not L(A) ̸= Aω or, for zero acceptance, whether there exists w ∈ Aω such that for

every computation path π reading w and every configuration c ∈ R(π), γ(c) ̸= 0

holds.

An instance of the Post correspondence problem (PCP, for short) consists of

two morphisms g, h : A∗ → B∗ where A and B are alphabets. A nonempty word

w ∈ A∗ is a solution of an instance (g, h) if it satisfies g(w) = h(w). We say that

g(w) (resp. h(w)) is the g-image (resp. h-image) of w. It is well-known that it is

undecidable whether or not an instance of the PCP has a solution [19]. The problem

remains undecidable for A with |A| ≥ 5; see [17]. The cardinality of the domain

alphabet A is said to be the size of the instance.

The infinite Post correspondence problem, ωPCP, is a natural extension of the

PCP. An infinite word w is a solution of an instance (g, h) of the ωPCP if for every

finite prefix p of w either h(p) < g(p) or g(p) < h(p) holds. In the ωPCP, it is asked

whether or not a given instance has a solution or not. Note that in our formulation

prefixes have to be proper. It was proven in [10] that the problem is undecidable for

domain alphabets A with |A| ≥ 9 and in [6] the result was improved to |A| ≥ 8. A

more general formulation of the ωPCP was used in both proofs, namely the prefixes

did not have to be proper. However, both constructions rule out non-proper prefixes;

see [10, 6] for details.

3. Universality problem for zero acceptance

In this section we improve the result of [11], where it was shown that the universality

problem is undecidable for automata with five states. We prove that the problem

remains undecidable for automata with three states. The tighter bound relies on

deriving new properties about the ωPCP instance. In the proof of undecidability

of the universality problem for weighted automata, for each instance (g, h) of the

ωPCP, we need to construct a weighted automaton A such that L(A) ̸= Aω if and

only if the instance (g, h) has an infinite solution.

Theorem 1. It is undecidable whether or not L(A) = Aω holds for a 3-state integer

weighted automaton A over its alphabet A.

Let us first focus on constructing the instance of the ωPCP. In [11], a weighted

automaton was constructed from an arbitrary instance of the ωPCP. We reiterate
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the construction of an instance of the ωPCP found in [10], highlighting the properties

that simplify the construction of the automaton.

The ωPCP was shown to be undecidable for instances of size 9 in [10]. The proof

uses a reduction from the termination problem of the semi-Thue systems proved to

be undecidable for 3-rule semi-Thue systems from [15]. We shall now present the

construction from [10].

A semi-Thue system is a pair T = (Σ, R) consisting of an alphabet Σ =

{a1, . . . , an} and a relation set R ⊆ Σ∗ × Σ∗, the elements of which are called

the rules of T . For two words u, v ∈ Σ∗, we write u −→T v, if there are words u1 and

u2 such that u = u1xu2 and v = u1yu2 where (x, y) ∈ R. Let −→∗
T be the reflexive

and transitive closure of the relation −→T . Therefore, we have u −→∗
T v if and only if

either u = v or there exists a finite sequence of words u = v1, v2, . . . , vn = v such

that vi −→T vi+1 for each i = 1, 2, . . . , n− 1.

Let w0 ∈ Σ∗ be a word, and T = (Σ, R) a semi-Thue system. We say that

T terminates on w0 if there is no infinite sequence of words w1, w2, . . . such that

wi −→T wi+1 for all i ≥ 0. Thus, T terminates on w0 if all derivations starting from

w0 are of finite length. In the termination problem we are given a word w0 called an

input word, and a semi-Thue system T and it is asked whether or not T terminates

on w0. As mentioned above the termination problem was proved to be undecidable

for 3-rule semi-Thue systems in [15]. Observe that the size of the alphabet Σ plays

little role as a binary alphabet is sufficient for the undecidability. Let T1 = (Σ, R1)

be a semi-Thue system where Σ = {a1, a2, . . . , ak}. Define a coding φ : Σ∗ → {a, b}∗
with φ(ai) = abia for all i. Then let R′

1 = {(φ(u), φ(v)) | (u, v) ∈ R1} be a new set

of rules, and define T ′
1 = ({a, b}, R′

1). It follows immediately that w −→T1
w′ in T1 if

and only if φ(w) −→T ′
1
φ(w′) in T ′

1. Therefore, if T1 has the undecidable termination

problem, then so does the semi-Thue system T ′
1.

Let T = ({a, b}, R) be an n-rule semi-Thue system with the undecidable termi-

nation problem, and let the rules in T be ti = (ui, vi) for i = 1, 2, . . . , n. Let u be

the input word.

The domain alphabet of our instance of the ωPCP is A = {a1, a2, b1, b2, d,#}∪R,

where d is for the beginning and synchronisation and # is a special separator of

the words in a derivation. Note that the rules in R are considered as letters in the

alphabet. Define two special morphisms for x ∈ A+. Morphisms lx and rx are called

the desynchronising morphisms, and defined by ℓx(a) = xa and rx(a) = ax for each

letter a.
In [10] the following construction was given for a semi-Thue system T and an

input word u: Define the morphisms g, h : A∗ → {a, b, d,#}∗ by (recall that for
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ti ∈ R, we denoted ti = (ui, vi))

h(a1) = dad, g(a1) = add,
h(b1) = dbd, g(b1) = bdd,
h(a2) = dda, g(a2) = add,
h(b2) = ddb, g(b2) = bdd,

h(ti) = d−1ℓdd(vi), g(ti) = rdd(ui), for ti ∈ R,
h(d) = ℓdd(u)dd#d, g(d) = dd,
h(#) = dd#d, g(#) = #dd.

(1)

Note, that d−1ℓdd(·) means that the image starts with a single d. In the special

case, where vi = ε, we define h(ti) = d.

Let us illustrate the construction with an example.

Example 2. Let T = ({a, b}, {t}) be a semi-Thue system with the input word u = a

and the rule t = (a, aa). The corresponding instance of the ωPCP over alphabet

{a1, b1, a2, b2, t, d,#} is

h(a1) = dad, g(a1) = add, h(b1) = dbd, g(b1) = bdd,

h(a2) = dda, g(a2) = add, h(b2) = ddb, g(b2) = bdd,

h(t) = dadda, g(t) = add, h(d) = ddadd#d, g(d) = dd,

h(#) = dd#d, g(#) = #dd.

It was proved in [10] that the following property holds for this construction:

Property 3. Let (g, h) be an instance of the ωPCP defined in (1). Each infinite

solution of (g, h) is of the form

dw1#w2#w3# · · · , where wj = xjtijyj (2)

for some tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j.

Indeed, the image g(w) is always of the form rd2(v), and therefore, by the form of

h, between two separators # there must occur exactly one letter t ∈ R. Also, the

separator # must be followed by words in {a1, b1}∗ before the next occurrence of a

letter t ∈ R. By the form of h(t) the following words before the next separator must

be in {a2, b2}∗. The form (2) follows when we observe that there must be infinitely

many separators # in each infinite solution. Indeed, all solutions begin with the

letter d, and there is one occurrence of # in h(d) and no occurrences of # in g(d).

Later each occurrence of # is produced from # by both g and h. Therefore there

are infinitely many letters # in each infinite solution.

Property 4. Let (g, h) be as in (1). In a solution, for any finite prefix, the g-image

cannot be longer than the h-image.

Assume towards a contradiction that w is a solution and p its prefix such that

|g(p)| ≥ |h(p)|. Observe that the word h(p) has more occurrences of # than g(p).

Indeed, |h(p)|# = |g(p)|# + |p|d ≥ |g(p)|# + 1. Therefore, h(p) ≮ g(p).
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Property 5. Let (g, h) be as in (1). In a word w beginning with the letter d, the

first position where h(w) and g(w) differ (called an error) is reached in h(w) at least

one letter (of w) earlier than it is reached in g(w).

Let us restate this property and prove it.

Lemma 6. Let (g, h) be as in (1) and assume that w ∈ dAω is not an infinite

solution of the instance (g, h). Let p = u′c, where c ∈ A, be the shortest prefix of w

such that g(p) ≮ h(p). Let r be the least position such that h(p)(r) ̸= g(p)(r). Then

r ≤ |h(u′)|.

Proof. Note first that |p| ≥ 2 by the definition of h(d) and g(d). By the minimality

of p, we have g(u′) ≤ h(u′).

Let v be the longest prefix of u′ of the form in (2), that is,

v = dw1#w2#w3# · · ·wn#,

where

wj = xjtijyj

for some tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j = 1, 2, . . . , n. Now

g(v) = v1#v2# · · · vn#dd

and

h(v) = v1#v2# · · · vn#ddvn+1#d

where vi ∈ (B \ {#})+ for i = 1, 2, . . . , n+ 1. More precisely,

v1 = dd g(w1) = ld2(u)dd,

vj = dd g(wj) = d h(wj−1) dd for j = 2, . . . , n and

vn+1 = d h(wn) dd.

We prove that the error must appear within vn+1#d in the image h(v) which

proves the claim. Assume to the contrary that the error is not within vn+1#, i.e.,

that the error appears after the last occurrence of # in the h-image of v. To cover

vn+1#d there must exist wn+1 such that wn+1 = xn+1tin+1
yn+1 (where tin+1

∈ R,

xn+1 ∈ {a1, b1}∗ and yn+1 ∈ {a2, b2}∗). By the maximality of v, vwn+1# is not

a prefix of u′, and therefore, u′ = vwn+1 and c = #. But then g(p) ≤ h(p); a

contradiction.

The two properties are illustrated in Figure 1. In the next theorem, we restate

and sharpen the result of [10] by improving the undecidability claim of the ωPCP.

Theorem 7. Let (g, h) be an instance of the ωPCP defined as in (1) that satisfies

Properties 3, 4, 5. It is undecidable whether a solution to (g, h) exists.
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Next, we construct the weighted automaton based on the undecidable instance

of the ωPCP of Theorem 7. This will allow us to prove Theorem 1.

Let (g, h) be a fixed instance of the ωPCP as defined in (1). Then g, h : A∗ →
B∗ where A = {a1, a2, b1, b2, d,#, t1, . . . , tn} and B = {a, b, d,#}. Recall, that
letters ti correspond to the rules of an n-rule semi-Thue system. We construct a

weighted automaton A = (Q,A, σ, q0, F,Z), where Q = {q0, q1, q2} and F = {q2},
corresponding to the instance (g, h) such that an infinite word w ∈ Aω is accepted

by A iff for some finite prefix p of w, g(p) ≮ h(p). Moreover, by Property 5, such p

exists for all infinite words except for the solutions of the instance (g, h). We call

the verification that g(p) ≮ h(p), for a prefix p, error checking.

Let us begin with the transitions of A. The automaton is depicted in Figure 2.

Let us define τ : B → {1, 2, 3, 4} as τ(a) = 1, τ(b) = 2, τ(d) = 3 and τ(#) = 4. First

for each c ∈ A, let ⟨q0, c, q0, 5(|h(c)| − |g(c)|)⟩, ⟨q1, c, q1, 5(−|g(c)|)⟩, ⟨q2, c, q2, 0⟩ be
in σ and for all c′ ∈ A \ {d}, let ⟨q0, c′, q2, 0⟩ ∈ σ. For the error checking we need the

following transitions for all letters c ∈ A: Let h(c) = bj1bj2 · · · bjn1
, where bjk ∈ B,

for each index 1 ≤ k ≤ n1. Then let, for each k = 1, . . . , n1,

⟨q0, c, q1, 5(k − |g(c)|) + τ(bjk)⟩ ∈ σ. (3)

Let g(c) = bi1bi2 · · · bin2
, where biℓ ∈ B, for each index 1 ≤ ℓ ≤ n2. For each

ℓ = 1, . . . , n2 and letter be ∈ B such that biℓ ̸= be, let

⟨q1, c, q2,−5ℓ− τ(be)⟩ ∈ σ. (4)

We call the transitions in (3) error guessing transitions and in (4) error verifying

transitions.

Before proving the main result, let us illustrate the construction with an example.

Example 8. Consider the ωPCP of Example 2. We will not present the whole

weighted automaton as even for such small semi-Thue system and ωPCP instance,

the automaton has 115 transitions. Recall that τ(a) = 1 and τ(#) = 4.

Let w ∈ da1a1A
ω. It is easy to see that this is not a solution of the ωPCP.

Indeed, g(da1a1) = ddaddadd ≮ ddadd#ddaddad = h(da1a1). First we show that

guessing that the error is in the g-image of the first a1 does not lead to an accepting

computation, since g(da1) = ddadd < ddadd#ddad = h(da1), then we show that

there is an accepting computation when we guess that the error is in the g-image of

the second a1.

h(w1) h(w2) h(w3) h(w4) · · ·

g(w1) g(w2) g(w3) g(w4)
· · ·

Fig. 1. An illustration of a solution candidate to the instance of the ωPCP satisfying Properties 4
and 5. Here, represent the first letter of h(w1w2w3w4 · · · ) that is compared to a letter of

g(w1w2w3w4 · · · ) which is represented by .



Integer Weighted Automata on Infinite Words 9

If we guess that the error will occur in the third position of the images, we need to

store the symbol a and position 3 when reading d. This is done by using the transition

⟨q0, d, q1, 5(k − |g(d)|) + τ(bjk)⟩ = ⟨q0, d, q1, 5(3− 2) + 1⟩ = ⟨q0, d, q1, 6⟩ .

Then we have to verify the error using a transition

⟨q1, a1, q2,−5ℓ− τ(be)⟩ = ⟨q1, a1, q2,−5− τ(be)⟩ ,

where τ(be) = 2, 3, 4. After these two transitions the weight is at most −1 and thus

w is not accepted with this path.

On the other hand, if we guess that the error will occur in the 6th position of the

h-image, we use the transition

⟨q0, d, q1, 5(6− 2) + 4⟩ = ⟨q0, d, q1, 24⟩ .

Then the first a1 is read in the state q1 with the transition ⟨q1, a1, q1,−5 · 3⟩ after
which the weight is 9. Then we verify the error with the transition ⟨q1, a1, q2,−5− 4⟩.
After these three transitions the weight is 0 and the computation has reached the

state q2. Thus w is accepted by the automaton.

The next lemma shows a key property about words accepted by A. The proof

relies on analysis of weights along computation paths.

Lemma 9. A word w ∈ Aω is accepted by A if and only if w is not a solution of

the instance (g, h) of the ωPCP as defined in (1).

Proof. Let w = c1c2 · · · with ci ∈ A for all i = 1, 2, . . . . Assume first that w is not

a solution of the instance (g, h) of the form (1). Now either the first letter is d or

not. In the latter case w is accepted by a path starting with ⟨q0, c1, q2, 0⟩.
In the first case by Properties 4 and 5, there exists a prefix p of w such that

g(p) ≮ h(p) and the first error position is reached in the h-image of w at least

one letter (of w) before it is reached in the g-image of w. Let r be the minimal

position for which h(w)(r) ̸= g(w)(r). In other words for p = dc2 · · · cn, there
exists a position t < n such that r = |h(dc2 · · · ct−1)| + k where k ≤ |h(ct)|, and
r = |g(dc2 · · · cn−1)|+ ℓ where ℓ ≤ |g(cn)|. Denote h(w)(r) = bjk . It is the kth letter

of the image h(ct), and g(w)(r) is the ℓth letter of the image g(cn). By the choice of

r, these letters are nonequal.

Now, w is accepted in the state q2 with the following path: First, the prefix

dc2 · · · ct−1 is read in the state q0 with the weight

5(|h(dc2 · · · ct−1)| − |g(dc2 · · · ct−1)|).

When reading ct, the automaton uses the error guessing transition

⟨q0, ct, q1, 5(k − |g(ct)|) + τ(bjk)⟩ ,

and then the word ct+1 · · · cn−1 is read in the state q1 with the weight

5(−|g(ct+1 · · · cn−1)|).
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Finally, while reading the letter cn, the state q2 is reached by the error verifying edge

⟨q1, cn, q2,−5ℓ− τ(bjk)⟩. Note that such an error verifying edge exists as the ℓth

letter in g(cn) is not equal to the kth letter, bjk , of h(ct). Naturally, after reaching

q2 the weight does not change as for all letters there are only transitions with zero

weight. Now the weight of the above path is

γ(p) = 5(|h(dc2 · · · ct−1)| − |g(dc2 · · · ct−1)|) + 5(k − |g(ct)|) + τ(bjk)

+ 5(−|g(ct+1 · · · cn−1)|)− sℓ− τ(bjk)

= 5
(
|h(dc2 · · · ct−1)|+ k − |g(dc2 · · · cn−1)| − ℓ

)
= 5(r − r) = 0.

Therefore, w is accepted, as claimed.

Next we prove that if w is a solution of the instance (g, h), then it is not accepted

by A. Assume contrary to the claim that w is a solution and there is an accepting

path of w in A. As stated in (2), we have w = dw1#w2#w3# · · · , where wj = xjtijyj
for some tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j.

There are two possible computation paths for w. It can be accepted by a path

visiting q1 or not. In the second case, the part of w that is read in q0 has to have

equal lengths under g and h. By Property 4, w is not a solution of the instance of

the ωPCP.

If the computation path visits q1, then we can partition w into different parts

according to the state-transition of the automaton. That is, w has a prefix p = uxvy,

where x, y ∈ A, such that u ∈ A∗ is read in the state q0 and v ∈ A∗ in the state q1,

and when reading the letter x the path reaches q1 and when reading the letter y the

path reaches q2. The weight γ(p) of p is now

γ(p) = 5(|h(u)| − |g(u)|) + 5(k − |g(x)|) + τ(bjk) + 5(−|g(v)|) + (−5ℓ− τ(be))

= 5
(
|h(u)|+ k − |g(uxv)| − ℓ

)
+ τ(bjk)− τ(be)

where h(x)(k) = bjk and g(y)(ℓ) ̸= be. As τ(bjk) < 5 and τ(be) < 5, we have

that γ(p) = 0 if and only if |h(u)| + k = |g(uxv)| + ℓ and τ(bjk) = τ(be). Denote

r = |h(u)|+ k. Now, γ(p) = 0 if and only if h(w)(r) = bjk ̸= bc = g(w)(r), which is

a contradiction since w was assumed to be a solution of (g, h).

We are ready to prove the main theorem. By Lemma 9, a word w ∈ Aω is

accepted by the above constructed integer weighted automaton A iff w is not a

solution of a given instance (g, h) of the ωPCP. By Theorem 7, it is undecidable

whether or not the instance (g, h) has a solution or not. This proves Theorem 1.

Note that the number of the letters in the alphabet A in Theorem 1 is small.

Indeed, |A| = 9 by the construction in (1). The number of transitions on the other

hand is huge. The number of error guessing and verifying transitions is dependent

on the lengths of the images. One of the rules consists of encoding of all the rules of

the 83-rule semi-Thue system with an undecidable termination problem. Its image

is several hundreds of thousands letters long.

Next, we consider the universality problem for automata, where all states are

final. That is, we consider an acceptance condition, where a word is accepted
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q0 q1 q2
(c, 5(k − |g(c)|) + τ(bjk))

(c, 5(|h(c)| − |g(c)|))

(c,−5ℓ− τ(be))

(c, 5(−|g(c)|)) (c, 0)

(c′, 0)

Fig. 2. The weighted automaton A. In the figure c ∈ A and c′ ∈ A \ {d}.

based solely on weight. Formally, L(A) = {w ∈ Aω | ∃πw ∈ σω ∃(q, u, 0) ∈ R(πw)}.
Relaxing the state reachability condition on the previously defined automaton leads

to new accepting paths. For example, an infinite word starting with a1 is accepted

in the state q0 since |h(a1)| − |g(a1)| = 0. On the other hand this word can also be

accepted in q2 with the transition ⟨q0, a1, q2, 0⟩. So we need to show that no new

words are accepted in states q0 and q1.

Corollary 10. It is undecidable whether or not L(A) = Aω holds for a 3-state

integer weighted automaton A over its alphabet A.

Proof. We show that languages accepted by the previously constructed automaton

are the same under both acceptance conditions. It is clear that L(A) ⊆ L(A). For

the other inclusion, we note that an infinite word cannot be accepted in q1 as

τ(bjk) ∈ {1, 2, 3, 4} is added to the counter when entering q1. It is enough to show

that a word accepted in q0 can also be accepted in q2.

Let w ∈ Aω that is accepted in the state q0. That is, there is a prefix p that is

read in q0 and γ(p) = γ(5(|h(p)| − |g(p)|)) = 0. Now w is accepted in q2 when the

next letter, say c, is read using the transition ⟨q0, c, q2, 0⟩.

It is also natural to consider the emptiness problem for weighted automata. That

is, whether for a given weighted automaton A, L(A) = ∅. In contrast to the result

of Theorem 1, the emptiness problem is decidable.

Theorem 11. It is decidable whether or not L(A) = ∅ holds for an integer weighted

automaton A over its alphabet A.

Proof. Let A be a weighted automaton on infinite words. Consider it as a weighted

automaton on finite words, B, defined in [9]. Clearly L(A) = ∅ if and only if L(B) = ∅.
Indeed, an infinite word w is accepted by A if and only if there is a finite prefix u of

w with γ(u) = 0. This u is accepted by B. On the other hand, if some finite word u

is accepted by B then an infinite word starting with u is accepted by A. In [8] it was

shown that languages defined by weighted automata on finite words are context-free

languages. It is well-known that emptiness is decidable for context-free languages.

Corollary 12. For weighted automata A and B the following problems are unde-

cidable:
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(i) Language equality: Whether L(A) = L(B).
(ii) Language inclusion: Whether L(B) ⊂ L(A).

(iii) Language union: Whether L(A) ∪ L(B) = Aω.

(iv) Language regularity: Whether L(A) is recognised by a Büchi automaton.

Proof. Let A be the automaton from Theorem 1.

(i) Let B be a weighted automaton with one state q and transitions ⟨q, c, q, 0⟩ for
all c ∈ A. Clearly L(B) = Aω. Now the automata A and B accept the same

language if and only if A accepts Aω.

(ii) Let B = ({q0, q1}, A, σ, q0, {q1},Z) where

σ = {⟨q0, d, q1, 0⟩ , ⟨q1, d, q1, 1⟩} ∪ {⟨q0, c, q1, 1⟩ , ⟨q1, c, q1, 0⟩ | c ∈ A \ {d}}.

Let w be a solution of an instance (g, h) of ωPCP. It is accepted by B but not

by A. Now if the instance (g, h) of ωPCP has a solution, then L(B) ̸⊂ L(A).

On other hand if the instance (g, h) of ωPCP does not have a solution, then

L(B) ⊂ L(A).

(iii) Let B be an automaton accepting the empty language. Now L(A)∪L(B) = Aω

holds if and only if L(A) = Aω.

(iv) The claim follows as Aω is an omega-regular language.

Corollary 13. It is undecidable whether L(A) = L(A′) for two weighted automata

A,A′ such that there exists a bijective mapping from edges of A to edges of A′.

Proof. Let A be the automaton of Theorem 1. Consider an automaton A′ with a

single state q′. Let Tc = {⟨q, c, p, z⟩ ∈ σ} be the set of all transitions in A reading

a letter c. Denote by nc the size of the set Tc. Now, in A′ for each letter c we add

a transition ⟨q′, c, q′,−i⟩ where i = 0, . . . , nc − 1. Clearly L(A′) = Aω. There is an

obvious bijection between transitions of A and A′. Now the automata accept the

same language if and only if A accepts Aω.

4. Different acceptance conditions

We will examine another non-deterministic acceptance that we call strong accep-

tance. It is informally defined as “a word is accepted iff every path in the machine

according to this word satisfies the property φ”. We will use notation Z-WA(∃φ)
for integer weighted finite automata on infinite words with an acceptance condition

φ. Analogously, Z-WA(∀φ) denotes the strong acceptance.

In [11], integer weighted automata on infinite words were introduced and it was

proven that the universality problem is undecidable for zero acceptance. In this

section, we investigate other acceptance properties and their effect on the decidability

of language theoretic problems. The two problems we study are the universality and

the emptiness problems. In the universality problem we are asked whether every

word is accepted and in the emptiness problem whether at least one infinite word is
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Acceptance (∃): w ∈ L(A) ⇐⇒ ∃πw ∈ σω φ(πw)

Strong acceptance (∀): w ∈ L(A) ⇐⇒ ∀πw ∈ σω φ(πw)

Zero acceptance (Z): φ(πw) = ∃(q, u, z) ∈ R(πw) (q ∈ F ∧ z = 0)

Co-zero acceptance (¬Z): φ(πw) = ∀(q, u, z) ∈ R(πw) (q ̸∈ F ∨ z ̸= 0)

Set acceptance (S): φ(πw) = ∃(q, u, z) ∈ R(πw) (q ∈ F ∧ z ∈ S)

Co-set acceptance (¬S): φ(πw) = ∀(q, u, z) ∈ R(πw) (q ̸∈ F ∨ z ̸∈ S)

Table 1. Different acceptances and acceptance conditions. Note that S ⊆ Z.

accepted. That is, we are interested in the universality and the emptiness problems

for Z-WA(∃φ) and Z-WA(∀φ) for various φ. We present different acceptances and

acceptance conditions in Table 1.

Let us discuss these acceptance properties next. In the already mentioned zero

acceptance, a word w is accepted iff on a computation path reading w there is an

intermediate configuration where the state is final and the weight is zero. We denote

this property by Z. The complementary property, co-zero acceptance, is defined in

the obvious way. That is, a word w is accepted iff on a computation path reading

w, all configurations are either not in a final state or do not have weight zero. This

property is denoted by ¬Z.
It is straightforward to see that since the universality problem is undecidable for

Z-WA(∃Z) as proven in [11] and Theorem 1, the emptiness problem is undecidable

for Z-WA(∀¬Z). Indeed, the universality and the emptiness problems are comple-

mentary and so are zero acceptance and strong co-zero acceptance. Next we show

the decidability of the other combinations. That is, that the emptiness problem

is decidable for Z-WA(∃Z), Z-WA(∃¬Z), Z-WA(∀Z), Z-WA(∀¬Z) and that the

universality problem is decidable for Z-WA(∃¬Z), Z-WA(∀Z), Z-WA(∀¬Z).

Theorem 14. Let A be a Z-WA(∃¬Z) or Z-WA(∀Z). It is decidable whether

L(A) = ∅ holds.

Proof. Let us consider Z-WA(∃¬Z) as the proof for the other class is analogous.

Let A be a Z-WA(∃¬Z). Now the question can be restated as

∃w ∈ Aω ∃πw ∈ σω ∀(q, u, z) ∈ R(πw)(q ̸∈ F ∨ z ̸= 0).

As we are interested in an existence of such path, we can ignore the letters. Indeed, if

we find a path, there is a corresponding word that is accepted and hence L(A) is not

empty. That is, A can be considered as a Z-VASS for which the reachability relation

is effectively semi-linear [2]. Hence, the property can be expressed as a sentence in

Presburger arithmetics, which is a decidable logic.

Corollary 15. Let A be a Z-WA(∀¬Z), Z-WA(∀Z)or Z-WA(∃¬Z). It is decidable

whether L(A) = Aω holds, where A is over alphabet A.
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Zero acc.:
0

Co-zero acc.:

Set acc.: Co-set acc.:

Fig. 3. An illustration of different acceptance conditions. In red are weights that are to be reached

in an accepting path.

Proof. The universality problem for Z-WA(∀¬Z) is dual to the emptiness problem

for Z-WA(∃Z), which is decidable by Theorem 11. Analogously, the universality

problems for Z-WA(∀Z) and Z-WA(∃¬Z) are dual to the emptiness problems for

Z-WA(∃¬Z) and Z-WA(∀Z), respectively, which are decidable.

In both zero acceptance and co-zero acceptance, the integer 0 seems to play

an important role. This is not true. One can alter some of the transitions to have

acceptance for any fixed integer. For example, by introducing a new initial state

q′0 and transitions ⟨q′0, a, q, z + 1⟩ for every transition ⟨q0, a, q, z⟩ ∈ σ. Furthermore,

one can multiply all the weights in the transitions by some constant N to ensure

that in the interval {0, . . . , N − 1} only 0 is actually reachable. This leads to an

acceptance condition for intervals with the same decidability statuses. Note that

due to the construction, no weights 1k, . . . , (N − 1)k are reachable for any integer

k. This leads us to an observation that we can consider finite or infinite sets and

retain the decidability statuses. For example, multiplying all the weights in the

transitions by an even N , we can specify an acceptance condition where “a word is

accepted iff upon reaching a final state, weight is either in interval {0, . . . , N
2 − 1}

or interval {N
2 + 1, N − 1}”. Let us call this acceptance condition set acceptance.

Figure 3 illustrates the differences between zero, co-zero, set and co-set acceptances

with respect to weights that are reached on accepting paths.

Let S ⊆ Z. In the set acceptance, a word w is accepted iff on a computation

path reading w there is an intermediate configuration where the state is final and

the weight is in S. For the dual co-set acceptance, a word w is accepted iff on a

computation path reading w all intermediate configurations are either not in a final

state or the weight is not in S.

It is straightforward to see that the undecidability of the universality problem

follows from the undecidability of the universality problem for zero acceptance.

Likewise, the emptiness problem is decidable due to the decidability of the empti-

ness problem for zero acceptance. The other decidability results for variants of set

acceptance can be proven mutatis mutandis. That is, in the emptiness problems,

the automaton can be considered as a Z-VASS with effectively semi-linear reacha-

bility relation. While the decidability of the universality problems for Z-WA(∃¬S),
Z-WA(∀S) and Z-WA(∀¬S) follows as they are complementary to the emptiness

problems for Z-WA(∀ S), Z-WA(∃¬S) and Z-WA(∃S), respectively.
This is summarised in Table 2 where the decidability statuses of the universality



Integer Weighted Automata on Infinite Words 15

Acceptance Universality Emptiness

Zero Undecid. Decid.

Co-zero Decid. Decid.

Set Undecid. Decid.

Co-set Decid. Decid.

Strong acc. Universality Emptiness

Zero Decid. Decid.

Co-zero Decid. Undecid.

Set Decid. Decid.

Co-set Decid. Undecid.

Table 2. Decidability status of the universality and emptiness problems under different acceptances
The result in blue implies other undecidability results.

and the emptiness problems for the different acceptance conditions.

Corollary 16. The following hold:

• The universality problem is decidable for Z-WA(∃¬S), Z-WA(∀S) and

Z-WA(∀¬S) and undecidable for Z-WA(∃ S).
• The emptiness problem is decidable for Z-WA(∃S), Z-WA(∃¬S) and

Z-WA(∀S) and undecidable for Z-WA(∀¬S).

It is worth highlighting that the construction of [11] constructs a weighted

automaton that non-deterministically checks for errors in a ωPCP solution candidate.

It is possible to construct an automaton that instead verifies that the input word

is a solution to the ωPCP instance. This would give an alternative proof to the

undecidability of the emptiness problem for strong co-set acceptance from which other

undecidability results would follow. The construction is similar to the construction in

this section and relies heavily on the properties of both strong and co-set acceptance

with two intervals to be avoided.

5. A universal weighted automaton

In this section we consider a universal weighted automaton. The goal is to construct

a universal weighted automaton similar to a universal machine which has fixed rules

and can simulate any machine that is given as an input. It is well-known that there

exists a universal Turing machine [21] and a universal 2-counter machine [16]. A less

well-known fact is that there is also a universal semi-Thue system [22]. Note that this

universal semi-Thue system does not have fixed rules. To be precise, all but one rules

are fixed. The final rule can be effectively constructed from a given semi-Thue system

that the universal semi-Thue system simulates. That is, there exists a semi-Thue

system TU with fixed rules RU such that for any given semi-Thue system T and

an input word u, there is a semi-Thue system T ′
U with rules RU ∪ {(xT , yT )}. This

T ′
U terminates on an input word uT if and only if T terminates on u. Furthermore,

words xT , yT and uT are effectively constructable from T and u.

In [13], the authors constructed a universal semi-Thue system where all rewriting

rules are fixed and the initial word is an encoding of the system to be simulated. This

construction has 24 rules and its alphabet has 8 letters. Note that this semi-Thue

system is universal with respect to the termination problem. Other undecidable
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problems for semi-Thue systems have their own universal semi-Thue systems.

Theorem 17 ([13]) Let T be a semi-Thue system with input u. There exists a

fixed semi-Thue system TU , and a morphism φ, such that TU terminates on φ(T, u)

if and only if T terminates on u.

In this section we observe that by applying the previous construction to TU , we

obtain a weighted automaton that has fixed transitions and accepts all words if

and only if TU terminates on its input. That is, we revisit all previous steps of our

construction. The automaton is constructed using the same idea as in Section 3.

Namely, that all words but a solution to the ωPCP are accepted. Unlike the previous

definition, where the initial weight was 0, in the universal weighted automaton, there

is an additional initial weight. This weight is used to store the information on the

input word of the semi-Thue system.

Our aim is to construct a pair of morphisms g and h that map all letters to

fixed finite words. From the details of the ωPCP construction presented in (1), it is

evident that most of the images are already fixed. Indeed, images of a1, b1, a2, b2,#

under both g and h do not depend on the given semi-Thue system, while images

of ti ∈ R and d are dependant. Now, by considering a semi-Thue system with fixed

rules, also the images of ti ∈ R are fixed. The remaining non-fixed image is the

h-image of d, which contains the input word of the semi-Thue system TU . Note, that

by Property 3, d has to be the first letter of a solution and that is the only time

letter d appears in the word.

Following the construction of the weighted automaton from an instance of the

ωPCP, we observe that only transitions corresponding to the letter d are not fixed.

We use the fact that d has to be the first letter by fixing weight for d to be 0 and

having the input, i.e., the initial weight, depend on d.

There are two cases that can happen when reading the first letter, d, which

contains the input of the underlying semi-Thue system TU . Either the error is in

the h-image of d or not. If there is no error in the h-image of d, then the difference

of lengths of the images is given as an input. If there is an error, then its position

and letter are given. For these two cases, we have two paths in the automaton; see

a depiction in Figure 4. In the first path the automaton of Section 3 has all the

weights multiplied by 5. In the second path the error verifying part of the automaton

is used with weights multiplied by 5 and error verifying transitions have weights

−ℓ ·52−τ(be) ·5−τ(be) instead of −ℓ ·5−τ(be) as in the original automaton. That is,

the input of our universal weighted automaton is an integer z ·52+j ·5+j where z ∈ N
and j ∈ {0, 1, 2, 3, 4}. This integer is either (|h(d)|−|g(d)|)52+0·5+0 corresponding to

the case when there are no errors in the h-image of d or (k−|g(c)|)52+τ(bjk)·5+τ(bjk)

corresponding to the case where k is the position of the error in d and τ(bjk) is the

error.

Let us define the automaton. Recall that we defined τ : B → {1, 2, 3, 4} as

τ(a) = 1, τ(b) = 2, τ(d) = 3 and τ(#) = 4. The universal automaton is

U = ({q, q0, q1, q2, q′1,⊥}, A, σ, q, {q2},Z). The states q0, q1, q2 correspond to the first
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No errors in the h-image of d

An error in the h-image of d

(d, 0
)

(d, 0)

Fig. 4. A illustration of the idea of the construction of the universal weighted automaton. Here, the

two blocks contain modified parts of the automaton constructed in Section 3.

q0 q1 q2

q

q′1 ⊥

(c, 52(k − |g(c)|) + 5τ(bjk))

(c, 52(|h(c)| − |g(c)|))

(c,−52ℓ− 5τ(be))

(c, 52 · (−|g(c)|)) (c′, 0)

(d, 0)

(d, 0) (d
, 0)

(d
, 0
)

(d, 0)

(c, 0)

(c,−52ℓ− 5τ(be)− τ(be))
(c, 52(−|g(c)|))

(d, 0)
(c′,±1)

Fig. 5. The universal weighted automaton U . In the figure c ∈ A \ {d} and c′ ∈ A.

path with transitions for each c ∈ A \ {d} and c′ ∈ A,
〈
q0, c, q0, 5

2(|h(c)| − |g(c)|)
〉
,〈

q1, c, q1, 5
2(−|g(c)|)

〉
, ⟨q2, c′, q2, 0⟩ are in σ. For the error checking we need the

following transitions for all letters c ∈ A \ {d}: Let h(c) = bj1bj2 · · · bjn1
where

bjk ∈ B, for each index 1 ≤ k ≤ n1. Then let, for each k = 1, . . . , n1,〈
q0, c, q1, 5

2(k − |g(c)|) + 5τ(bjk)
〉

∈ σ. Let g(c) = bi1bi2 · · · bin2
where biℓ ∈ B,

for each index 1 ≤ ℓ ≤ n2. For each ℓ = 1, . . . , n2 and letter be ∈ B such that

biℓ ̸= be ∈ B, let
〈
q1, c, q2,−52ℓ− 5τ(be)

〉
∈ σ.

The state q′1 corresponds to the second path with transitions, for each c ∈ A\{d},〈
q′1, c, q

′
1, 5

2(−|g(c)|)
〉
are in σ. For the error verification we need the following

transitions for all letters c ∈ A\{d}. Let g(c) = bi1bi2 · · · bin2
where biℓ ∈ B, for each

index 1 ≤ ℓ ≤ n2. For each ℓ = 1, . . . , n2 and letter be ∈ B such that biℓ ̸= be ∈ B,

let
〈
q′1, c, q2,−52ℓ− 5τ(be)− τ(be)

〉
∈ σ.

Finally, transitions ⟨q, d, q0, 0⟩ , ⟨q, d, q′1, 0⟩ to pick a path, transitions ⟨q, c,⊥, 0⟩,
for each c ∈ A \ {d}, for words not starting with d, transitions ⟨p, d,⊥, 0⟩ where

p ∈ {q0, q1, q′1}, for words that have more than one occurrence of the letter d,

transitions ⟨⊥, c,⊥,±1⟩ , ⟨⊥, c, q2, 0⟩ for c ∈ A and finally ⟨q2, d, q2, 0⟩.
Let (g, h) be an instance of the ωPCP as in (1). We define the inputs next. Note

that the possible input values correspond to weights that can be added when reading

d in the automaton of Section 3 with slight modifications as discussed above. Let
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the set of inputs corresponding to the letter d be α(d), defined as the union of

{(|h(d)| − |g(d)|)52} and

(5)

{(i− |g(d)|)52 + τ(bj)5 + τ(bj) | i = |g(d)|+ 1, . . . , |h(d)| and bj = h(d)(i) ∈ B}.
(6)

Note that (|h(d)| − |g(d)|)52 ̸= 0 as per construction of the instance. Now a word

dw ∈ Aω is accepted by U if and only if for a computation path π of dw there exists

a prefix p ≤ π that reaches q2 with weight 0. That is, γ(p) + β = 0 where β ∈ α(d).

Next, we show that an input defines the path that needs to be chosen. Assume

first that the input is z52 + τ(bjk)5 + τ(bjk) and the first transition is ⟨q, d, q0, 0⟩.
Now the automaton is in state q0 with weight z52 + bjk5 + τ(bjk) but none of the

weights on this path modify the coefficient of 50 (unless letter d is read) and thus

the weight is nonzero in the state q2. Assume then that the input is z52 + 0 · 5 + 0

and the first transition is ⟨q, d, q′1, 0⟩. The path reaching q2 (without visiting ⊥) has

x52 − e · 5− e for some x ∈ Z and e ∈ {1, 2, 3, 4} which is nonzero. That is, for an

input z52 + τ(bjk)5 + τ(bjk) the upper path has to be chosen and for an input z52

the lower path has to be chosen. It is clear that after that the computation follows

the corresponding computation of A.

From the construction, it is evident that only a solution to the ωPCP instance

does not have a path that ends in q2 with weight 0 for all β ∈ α(d). Note that in U
all transitions are fixed as, regardless of h(d) and g(d), the transitions are always

⟨p, d, p′, 0⟩ or ⟨⊥, d,⊥,±1⟩.
Let β ∈ Z. If w ∈ Aω is accepted by U with the input β, we denote it by

w ∈ L(Uβ). From the previous consideration we obtain that for an instance of the

ωPCP of form (1), we can compute a finite set α(d) such that
⋃

z∈α(d) L(Uz) = Aω

if and only if (g, h) has no solution.

Example 18. Let us consider a universal weighted automaton constructed from the

ωPCP instance of Example 2. As in Example 8, the resulting automaton has too

many transitions to be presented in a sensible manner. However, the set α(d) and

its effect on the computation can be presented. Recall, that the input word of the

semi-Thue system of Example 2 is a and it is encoded by letter d in the ωPCP in

the following manner h(d) = ddadd#d and g(d) = dd. Recall also that τ encodes a

as 1, b as 2, d as 3 and # as 4. Now as discussed before, the set α(d) containing all

possible input values is

α(d) = {(7− 2) · 52, (3− 2) · 52 + 1 · 5 + 1, (4− 2) · 52 + 3 · 5 + 3,

(5− 2) · 52 + 3 · 5 + 3, (6− 2) · 52 + 4 · 5 + 4, (7− 2) · 52 + 3 · 5 + 3}
= {125, 31, 68, 93, 124, 143},

where the first integer is of form (5) and the rest are of form (6). A word starting

with db1 is accepted with input 6 as there the transition ⟨q, d, q′1, 0⟩ is followed by the

transition
〈
q′1, b1, q2,−52 · 1− 5 · 1− 1

〉
, reaching the final state q2 with zero weight.



Integer Weighted Automata on Infinite Words 19

Finally, by applying the construction of the ωPCP instance presented in Section 3

to a universal semi-Thue system of Theorem 17, we obtain the following result.

Theorem 19. Let TU be a universal semi-Thue system and let u be its input. There

exists a computable finite set Z ⊆ Z such that
⋃

z∈Z L(Uz) = Aω if and only if TU

terminates on u.

By following the chain of reductions one step further, we note that the above

result holds for any semi-Thue system. That is, for a given semi-Thue system T and

its input u, we first construct TU and φ(T, u) and then apply Theorem 19.

Corollary 20. Let T be a semi-Thue system and let u be its input. There exists a

computable finite set Z ⊆ Z such that
⋃

z∈Z L(Uz) = Aω if and only if T terminates

on u.

Corollary 21. Given a finite set of integers, Z ⊆ Z, it is undecidable whether

or not
⋃

z∈Z L(Uz) = Aω holds for a fixed integer weighted automaton U over its

alphabet A.
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