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Abstract: Water level prediction is an essential task in inland water transportation and 15 

infrastructure operation. However, in recent years, the level of uncertainly in the current methods 16 

has increased significantly due to infrastructure operation and climate change, therefore, the need 17 

to develop more accurate models for multi-station daily water level prediction along the long and 18 

volatile inland rivers. This study proposes a two-stage modelling method to improve the 19 

accuracy and efficiency in simultaneous prediction of daily water levels for multiple stations. To 20 

achieve this goal, this paper takes Yangtze River trunk line as case study. First, we divide the 19 21 

stations along the Yangtze River trunk line into 6 clusters by dynamic time warping (DTW) and 22 

hierarchical clustering algorithm (HCA). Then, the long short-term memory (LSTM) network 23 

and seasonal autoregressive integrated moving average (SARIMA) model are tailored to 24 

construct a multi-station daily water level prediction (MSDWLP) model for each cluster. Finally, 25 

to validate the proposed method, the daily water level data of 912 consecutive days from the 19 26 

stations are analysed and predicted in detail. The results demonstrate that the proposed approach 27 

can yield more reliable forecasts than traditional deterministic models. Insight from the models 28 

can be used to predict daily water levels to better inform decision-making about waterborne 29 

transportation, water management, and water emergency response. 30 

Key Words: water level prediction; multi-station; clustering; deep learning; Yangtze River 31 
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1. Introduction 1 

Water level prediction related to rivers and coastal waters is highly valuable for waterborne 2 

transportation, water resources management, flood mitigation, and water emergency response 3 

(Kasiviswanathan et al. 2016; Wang and Zhang, 2018; Gabela and Sarmiento, 2020; Liu et al., 4 

2021). In particular, high and low water levels are a major concern to the safe and efficient 5 

operation of inland shipping. Moreover, accurate and efficient water level modelling and 6 

prediction is essential for inland water transportation and infrastructure operation (Coraddu et al., 7 

2017; Xu et al., 2017; Li et al., 2020a; Yuan et al., 2021a). As shown in Fig. 1,  water levels 8 

prediction plays an important supporting role in ship speed control, trajectory prediction, fuel 9 

consumption analysis, cargo loading, navigation planning, hydroelectric power, agricultural 10 

irrigation and flood mitigation, which has become an important research topic in the fields of 11 

ship operation, navigation planning and infrastructure operation. However, accurate prediction of 12 

stations daily water level prediction along the long and volatile inland rivers has become a vital 13 

challenge since they are affected by many complex factors, such as climate, waterway 14 

topography, and periodic characteristics (Yuan et al., 2021b). 15 
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Fig. 1. Water levels prediction in inland water transportation and infrastructure operation. 17 

By analyzing historical data of daily water level, an effective model can be established to 18 

predict the future daily water level accurately (Quilty and Adamowski, 2020; Yaseen et al., 19 

2020; Zhu et al., 2020; Ehteram et al., 2021). In some existing literature, regression analysis 20 

methods and base models (such as method of lines, auto-regressive, etc.) have been widely used 21 
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in water level correlation analysis and prediction. For instance, Wei (2015) introducted the 1 

locally weighted regression and the k-nearest neighbor models, and developed a methodology for 2 

formulating water level models to forecast river stages during typhoons. Paul et al. (2018) 3 

adapted the method of lines in addition with a newly embedded RKARMS(4,4) (RKAM(4,4) 4 

(Runge-Kutta arithmetic mean) and RKRMS(4,4) (Runge-Kutta root mean square)) technique 5 

for numerical prediction of water levels considering the effect of tide and surge related to a 6 

cyclone. Ebtehaja et al. (2019) presented a novel linear-based model for Lake Level Time Series 7 

forecasting and evaluated the performance of the methodology using two case studies of the Van 8 

Lake, in Turkey and the Michigan-Huron Lake, in North America. Chen et al. (2020) developed 9 

a hybrid model combining the auto-regressive (AR) analysis and the non-stationary tidal 10 

harmonic analysis model to improve short-term (with time scale of days) water level predictions 11 

in the tide-affected estuaries. The above models achieved good prediction results under certain 12 

circumstances. However, the water levels at inland river stations are all characterized by strong 13 

nonlinearities, which are difficult to be captured by linear models. 14 

On the other hand, machine learning algorithms and  techniques (Jordan and Mitchell, 2015) 15 

can accurately capture complex relationships and make predictions, and have been recently 16 

developed and implemented to water level prediction research. Zhong et al. (2017) established a 17 

hybrid ANN (Artificial Neural Network)-Kalman filtering model for forecasting the water level 18 

of Wuhan station, which locates at the middle section of the Yangtze River. Sahoo et al. (2019a) 19 

analyzed the suitability of Support Vector Regression for modelling monthly low flows time 20 

series for three stations in Mahanadi river basin, India. Zhu et al. (2020) used the feed forward 21 

neural network and deep learning  technique to predict monthly lake water level. Yang et al. 22 

(2020) proposed an Edge COMputing-based Sensory NETwork for water level monitoring and 23 

prediction. Li et al. (2020b) proposed the weighted integration based on accuracy and diversity 24 

and kernel extreme learning machine algorithm to achieve the forecasting of Xiangjiang River 25 

and Yuanjiang River water level. Zhou et al. (2020) employed deep learning technique and 26 

multilayer perceptron to perform forecast of Nanjing navigable river’s water-level fluctuation. 27 

Liu et al. (2021) proposed a hybrid Bayesian vine copula model for daily and monthly water 28 

level prediction. Besides, due to the superior learning and memory ability of the LSTM network, 29 

it has shown great advantages in time series modelling and predictive analysis (Zhang et al., 30 

2018; Yuan et al., 2020; Adikari et al., 2021), which can provide valuable reference for water 31 

level series prediction. However, the above works mainly focus on the water level of a few 32 

stations or a certain segment, which can hardly be directly employed to forecast the water level 33 

of multi-station for long and volatile inland rivers, such as the Yangtze River trunk line, which 34 

contains 19 stations, as shown in Fig. 2. 35 
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Fig. 2. The Yangtze River trunk line. 2 

Recently, a new method in the field of water levle series prediction is a combination of 3 

linear models and non-linear models (Moeen et al., 2017; Ebtehaja et al., 2019; Xu et al., 2019; 4 

Phan and Nguyen, 2020). Moeeni and Bonakdari (2017) combined the linear SARIMA model 5 

with the non-linear ANN model to develop a hybrid SARIMA-ANN model, and used the model 6 

to improve the prediction accuracy of the monthly inflow to the Jamishan dam reservoir in 7 

western Iran. Subsequently, Moeeni et al. (2017a) by considering the different deterministic 8 

terms (jump, trend and period) of monthly inflow time series, proposed a hybrid method based 9 

on the combination of SARIMA and adaptive neuro-fuzzy inference system (ANFIS). The 10 

prediction results approved a higher performance of the proposed SARIMA-ANFIS method in 11 

comparison with individual ones. Xu et al. (2019) proposed a combined Auto-regressive 12 

Integrated Moving Average-Recurrent Neural Network (ARIMA-RNN) model for water level 13 

prediction. Sahoo et al. (2019b) explored the suitability of a proposed LSTM-RNN and artificial 14 

intelligence method for low-flow time series forecasting, and used the method to forecast the 15 

daily discharged data collected of the Basantapur gauging station located on the Mahanadi River 16 

basin, India. Phan and Nguyen (2020) took advantange of linear and nonlinear models, and 17 

proposed a hybrid approach combining statistical machine learning algorithms and ARIMA for 18 

Red river water level forecasting. The effectiveness of the hybrid models has been verified 19 

through performance evaluation of the prediction water level. 20 

In summary, some research on water level prediction have been conducted in existing 21 

literature, and some conclusions have been presented, including (1) linear models are difficult to 22 

capture the nonlinear relationship between water level series; (2) artificial intelligence methods 23 

show capability to capture nonlinear relationships and are widely used in water level prediction; 24 

(2) the hybrid model combining linear and nonlinear methods can effectively improve the 25 

accuracy of water level prediction. However, due to the complex interaction between waterways 26 
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conditions and river dynamics, inland rivers’ water levels are less predictable than ocean tides 1 

and rainfall (Chen et al., 2020). The current water level prediction models and methods rarely 2 

consider both the spatial and temporal changes of the water area, and it is difficult to be used for 3 

the daily water level prediction of multi-station along inland rivers. Therefore, to achieve 4 

simultaneous prediction of daily water level in multiple stations along inland rivers, the 5 

following two problems need to be explored and solved:  6 

(1) Build and train a single model for each station, which increases the calculation cost; 7 

(2) Build and train a single model for all stations, which reduces the prediction accuracy. 8 

To address the above mentioned two problems, this study makes two main contributions, 9 

including: 10 

(1) Clustering stations with similar characteristics, which reduces the calculation cost of 11 

modelling; 12 

(2) Tailor a single prediction model for each cluster stations, including hybrid model, which 13 

improve the accuracy of simultaneous prediction of water level in multiple stations. 14 

To achieve this goal, a two-stage divide-and-conquer method for daily water level of multi-15 

station analysis and prediction is proposed, and a real-world case study of daily water level 16 

forecasting for 19 stations along the Yangtze River trunk line is presented. The hope is that the 17 

research framework, modelling strategy and experimental design presented herein can be 18 

informing for other researchers or practitioners to explore simultaneous predictions of various 19 

hydrology and water resources indicators from multiple related stations.  20 

The remaining of this paper is organised as follows: In Section 2, the collected daily water 21 

level data of 19 stations are presented and analysed. In Section 3, the modelling strategy and 22 

methods are described. Section 4 provides experimental details concerning the case study. The 23 

detailed experiments and discussion about the water level modelling are presented in Section 5. 24 

Finally, conclusions and perspectives are drawn in Section 6. Table 1 summarises the 25 

abbreviations used in the paper. 26 

Table 1. A list of abbreviations. 27 

Abbreviation Meaning Abbreviation Meaning 

ANFIS Adaptive Neuro-fuzzy 

Inference System 

LSTM Long Short-Term Memory 

ADF Augmented Dickey-Fuller MA Moving Average 
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AE Absolute Error MAE Mean Absolute Error 

AIC Akaike Information Criterion MAPE Mean Absolute Percentage 

Error 

ANN Artificial Neural Network MSDWLP Multi-station Daily Water 

Level Prediction 

AR Auto-regressive NSE Nash–Sutcliffe efficiency 

coefficient 

ARIMA Auto-regressive Integrated 

Moving Average 

RMSE Root Mean Square Error 

ARMA Auto-regressive Moving 

Average 

RKAM Runge-Kutta Arithmetic Mean 

DTW Dynamic Time Warping RKRMS Runge-Kutta Root Mean 

Square 

HCA Hierarchical Clustering 

Algorithm 

RNN Recurrent Neural Network 

IDE Integrated Development 

Environment 

SARIMA Seasonal Auto-regressive 

Integrated Moving Average 

 1 

2. Study area and data 2 

2.1. Study area 3 

The Yangtze River is the longest inland river in China, which is known as the “golden 4 

waterway”. The annual freight volume of this river ranks first among the world’s inland rivers 5 

(Notteboom et al., 2020), reaching 2.69 billion tons in 2019. The Yangtze River trunk line has 6 

become the key area of shipping and water research, where the prediction of daily water level 7 

along the line is one of the key problems that need to be solved urgently at present. 8 

As shown in Fig. 3, the Yangtze River is 6,387 kilometres long and it is the longest river in 9 

Asia. The main stream of the Yangtze River traverses central China from west to east, between 10 

90°33′-122°25′ east longitude and 24°30′-35°45′ north latitude. It flows through 11 provincial 11 

administrative regions, including Qinghai, Tibet, Sichuan, Yunnan, Chongqing, Hubei, Hunan, 12 

Jiangxi, Anhui, Jiangsu and Shanghai, and finally empties into the East China Sea. The trunk line 13 

of the Yangtze River is characterised by winding and uneven terrain. In some sections, the 14 
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mountains are high, the valleys are deep and the current flows fast, while other sections have 1 

gentle slopes and gentle water. Therefore, the entire Yangtze River trunk line is divided into 2 

three water areas: upper reach, middle reach and lower reach. From the source to the Yangtze 3 

River Estuary, the a.s.l. (above sea level) of the Yangtze River mainstream gradually decreases. 4 

Among them, the section from Yibin station to the estuary is the Yangtze River trunk line, 5 

mainly including 19 stations, which can be seen in Fig. 2. 6 
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Fig. 3. Profile map of the Yangtze River mainstream. 8 

2.2. Water level data 9 

In order to study the daily water level of the entire Yangtze River, this research collected 10 

the daily water level data of 19 stations along the main stream of the Yangtze River, i.e. Yibin, 11 

Luzhou, Chongqing, Cuntan, Fuling, Wanzhou, Maoping, Yichang, Zhijiang, Shashi, Jianli, 12 

Chenglingji, Hankou, Huangshi, Jiujiang, Anqing, Wuhu, Nanjing and Zhenjiang (as shown in 13 

Fig. 2). In this paper, the 19 stations are indexed sequentially from station 1 to station 19, where 14 

station 1 is Yibin and station 19 is Zhenjiang. The summary statistics for the 19 stations as 15 

shown in Table 2. 16 

Table 2. Statistics of 19 Stations along the Yangtze River Trunk Line. 17 

 Stations a.s.l. (m) Mileage (km) Waterway level 

Upper reach Station 1~2 200~500 384 III 

Station 3~8 160~200 660 II 

Middle reach Stations 9~13 15~50 623.5 II 

Lower reach Stations 14~19 2~10 1020.3 I 
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From the topographical point of view, the 19 stations are distributed along three different 1 

parts of the Yangtze River trunk line: stations 1-8 located in the upper reach, stations 9-13 2 

located in the middle reach and stations 14-19 located in the lower reach. It is worth noting that 3 

the terrain, topography and water flows of each station in different water areas have different 4 

characteristics. Specifically, the terrain in the upper reaches is high and steep, with an a.s.l. of 5 

3000-4000m in some places, while the a.s.l. suddenly drops to 200-600m at the edge of the 6 

Sichuan Basin. The river enters the hilly area in the middle reach, with densely covered beaches 7 

and branching water flows. The valleys of certain river sections are several kilometres wide, and 8 

the river surface is 155-500m wide. The lower reaches of the river have gentle water and wide 9 

river surface and are with low mountains and wide valleys. In addition, the data of daily water 10 

level in different water areas have different value ranges. For example, the water levels of 11 

stations 3-7 are all above 145 meters, because they are in the reservoir area of the Three Gorges 12 

Dam. The highest water level of stations 5, 6 and 7 exceeds 170 meters, while the highest water 13 

level is less than 6 meters in station 19. The water level data come from the daily records issued 14 

by the Ministry of Transport of the People’s Republic of China
1
, which include the daily water 15 

level for two and a half years (912 days), form January 1, 2018 to June 30, 2020. The daily water 16 

level data of each station are shown in Fig. 4. 17 

      18 

 19 

     20 

 21 

      22 

 23 

                                                           

1 http://www.mot.gov.cn/shuiluchuxing/changjiangshuiweigonggao/  

http://www.mot.gov.cn/shuiluchuxing/changjiangshuiweigonggao/
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Fig. 4.  Daily water level of 19 stations. 12 

It can be seen from Fig. 4 that the water level data are time-series data, because they present 13 

two obvious characteristics: the data of water level changes with time and the data are 14 

interrelated. Therefore, the analysis and prediction of the daily water level of 19 stations is the 15 

analysis and prediction of 19 different time series. To improve the efficiency in analysis and 16 

prediction of multi-station daily water level and improve the applicability of the proposed 17 
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prediction method, it is considered to build one model for several stations with similar water 1 

level sequence rather than build one model for each station. 2 

3. Methodology 3 

The research framework is as shown in Fig. 5. Firstly, the daily water level data of 19 4 

stations along the Yangtze River trunk line are collected. After specific analysis, some feature 5 

information of the water level data is obtained. To avoid building separate models for all stations, 6 

a strategy of divide and conquer is proposed. The DTW algorithm is emploed to measure the 7 

similarity of the water level data of multiple stations, and a HCA is utilised to group the stations 8 

with similar characteristics according to the similarity matrix. Then, the MSDWLP models are 9 

constructed based on the LSTM network and the SARIMA method for different clusters. To 10 

improve the prediction accuracy of each station, StatsModels algorithm (Lemenkova, 2019) is 11 

employed to decompose the water level series (training set) into trend, period and residual. For 12 

the complex water levels with shorter periodicity (2~20 days, because a voyage time of the ship 13 

in the Yangtze River trunk line is about 20 days), LSTM is used to approximate the trend and 14 

SARIMA is used to approximate the residual term (sum of period and residual). Finally, the 15 

daily water levels of the 19 stations in the next 7 days are predicted and analysed in detail. 16 
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Fig. 5. The research framework for daily water level prediction of multi-station along the Yangtze 18 

River trunk line. 19 

3.1. Modelling strategy 20 

In this paper, a two-stage modelling strategy is proposed as shown in Fig. 6. 21 
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At the first stage, the water level data from multiple stations are clustered based on 1 

similarity measurement using a hierarchical clustering algorithm. Stations with a similar trend in 2 

water level data would be integrated into a single prediction model.  3 

At the second stage, daily water level of each cluster will be firstly decomposed into an 4 

additive model, for the clusters whose data have a long periodicity, such as yearly or longer, or 5 

have no obvious periodicity, one may preferentially adopt an efficient LSTM network in 6 

modelling. Contrarily, a LSTM-SARIMA method is proposed for the clusters with shorter 7 

periodicity. In this method, a daily water level will be decomposed into a long-term trend, a 8 

period change trend and residual. Then, different parts of the decomposition are processed using 9 

different methods. In particular, the long-term trend is modelled using the LSTM network, and 10 

the residuals including period and residual  is modelled with SARIMA. And the prediction 11 

results of each part are combined to obtain the integral water level prediction. 12 
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Fig. 6. The proposed two-stage modelling strategy. 2 

3.2. Clustering method 3 

HCA (Zhou et al., 2017) is a clustering technique that does not need to consider the 4 

selection of the number and positions of initial clusters. The hierarchical clustering algorithm is 5 

very intuitive, i.e. clustering layer by layer. The core of an agglomerative clustering algorithm is 6 

to start with individual clusters and merge the two closest clusters at each step. The clustering 7 

algorithm used for grouping stations is designed based on the hierarchical clustering principle 8 

and is shown below. 9 
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 1 

Algorithm 1. The clustering algorithm for stations. 

1. Calculate the similarity matrix of the water level of stations 

2. Repeat 

3.     Merge the two nearest clusters 

4.     Update the similarity matrix to reflect the proximity between the new cluster and the 

original clusters 

5. Until only one cluster remains 

 2 

It can be seen from Algorithm 1 that we need to first calculate the similarity matrix between 3 

the water levels of the 19 stations. It is worth noting that the number of the water level data is the 4 

same for all stations. That is to say, the water level data of the 19 stations are 19 time series of 5 

equal length. Therefore, we can employ the DTW algorithm to calculate the similarity distance 6 

between the water level sequences of different stations. DTW is a dynamic programming 7 

algorithm suitable for accurately calculating the similarity between multiple series (Dürrenmatt 8 

et al., 2013; Yu et al., 2018). In addition, DTW has no parameter restrictions and is robust to 9 

time. Assuming that 𝑆1 and 𝑆2 are the water level sequences of station 1 and station 2, the 10 

similarity distance matrix between 𝑆1 and 𝑆2 is calculated as follows: 11 

(𝐷𝑃[𝑖][𝑗])2 =

{
 
 

 
 (𝑆1[0] − 𝑆2[0])

2                                                                                                    𝑖 = 0, 𝑗 = 0

(𝑆1[0] − 𝑆2[𝑗])
2+ 𝐷𝑃[0][𝑗 − 1]                                                                                  𝑖 = 0

(𝑆1[𝑖] − 𝑆2[0])
2 + 𝐷𝑃[𝑖 − 1][0]                                                                                  𝑗 = 0

(𝑆1[𝑖] − 𝑆2[𝑗])
2+min(𝐷𝑃[𝑖 − 1][𝑗], 𝐷𝑃[𝑗 − 1][𝑖], 𝐷𝑃[𝑖 − 1][𝑗 − 1])           𝑖, 𝑗 > 0

 

where 𝐷𝑃 is the similarity matrix, 𝑖 and 𝑗 are the indices of 𝑆1 and 𝑆2, 𝐷𝑃[𝑖][𝑗] is the similar 12 

distance between 𝑆1[𝑖] and 𝑆2[𝑗]. 
13 

3.3. Predictive modelling methods 14 

3.3.1. Water level time series decomposition 15 

In general, time series prediction technology is to study the variation trend and law of the 16 

target series by processing the historical data, so as to predict the data of the future time. 17 

Assuming that 𝑇(𝑡) represents the long-term trend item of the time series 𝑦(𝑡), 𝑃(𝑡) represents 18 
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the item of periodic change trend, and 𝑅(𝑡) represents the random interference item, there are 1 

three common time series models (Wang et al., 2017) as follows:  2 

(1) Addition model: 𝑦𝑡 = 𝑇𝑡 + 𝑃𝑡 + 𝑅𝑡. 
3 

(2) Multiplication model: 𝑦𝑡 = 𝑇𝑡 ∙ 𝑃𝑡 ∙ 𝑅𝑡. 
4 

(3) Mixed model: 𝑦𝑡 = 𝑇𝑡 ∙ 𝑃𝑡 + 𝑅𝑡 or 𝑦𝑡 = 𝑇𝑡 + 𝑃𝑡 ∙ 𝑅𝑡.  
5 

where 𝑦𝑡 is the observation record of the target sequence. 6 

In this work, the addition format and StatsModels algorithm were employed for water level 7 

time series decomposition, and the water level of each station was decomposed into trend, period 8 

and residual: 𝑊(𝑡) = 𝑇(𝑡) + 𝑃(𝑡) + 𝑅(𝑡). The specific decomposition steps are as follows: 9 

Step 1: Decompose trend items by using the centralized moving mean method. 10 

Step 2: Subtract the trend term from the original water level, average the values at the same 11 

frequency in each period to obtain the periodic term, and further centralize to obtain the period 12 

term of the original water level.  13 

Step 3: Calculate the residuals: 𝑅(𝑡) = 𝑊(𝑡) − 𝑇(𝑡) − 𝑃(𝑡). 14 

3.3.2. LSTM 15 

The LSTM network is one type of RNN, which was designed to tackle the problem of 16 

gradient dispersion existing in the conventional RNNs. It has strong ability of learning and 17 

memory, and can efficiently process the sample data of time series (Fang et al., 2020; Yuan et al., 18 

2020).  19 

The LSTM network contains three control gates: 𝐼𝑔𝑎𝑡𝑒𝑡, 𝐹𝑔𝑎𝑡𝑒𝑡 and 𝑂𝑔𝑎𝑡𝑒𝑡, and two 20 

transmission states: 𝐶𝑡 and 𝐻𝑖𝑑𝑡, where 𝑡 is time. 𝐼𝑔𝑎𝑡𝑒𝑡 represents the input gate at time 𝑡, 21 

which is a control gate from the previous long-state information to the current long-state 22 

information. It is used to control how much new information is saved. 𝐹𝑔𝑎𝑡𝑒𝑡 represents the 23 

forget gate at time 𝑡, which is also a control gate from the previous long-state information to the 24 

current long-state information. It is used to control how much history information is forgotten. 25 

𝑂𝑔𝑎𝑡𝑒𝑡 represents the output gate at time 𝑡, which is a control gate from the current information 26 

to the output-state information. The summation of the long-state information and the short-state 27 

information is the current information. 𝐶𝑡 is named “cell state”, which memorises information, 28 

and 𝐶𝑡−1 is the cell memory at the time point 𝑡 − 1. 𝐻𝑖𝑑𝑡 is named “hidden state”, which 29 

represents the output of the hidden node. 𝐼𝑛𝑡 represents the input sequence that can be a series 30 

with one dimension or multiple dimensions. 𝑓 is a sigmoid activation function and ℎ is a 31 
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hyperbolic tangent activation function. The calculation of control gates and transmission states 1 

are shown in equations (1)-(5) (Gers et al., 2000). 2 

𝐼𝑔𝑎𝑡𝑒𝑡 = 𝑓(𝑊𝐼𝐼𝑛𝑡 + 𝑈𝐼𝐻𝑖𝑑𝑡−1 + 𝑏𝐼) 
(

1) 

𝐹𝑔𝑎𝑡𝑒𝑡 = 𝑓(𝑊𝐹𝐼𝑛𝑡 + 𝑈𝐹𝐻𝑖𝑑𝑡−1 + 𝑏𝐹) 
(

2) 

𝑂𝑔𝑎𝑡𝑒𝑡 = 𝑓(𝑊𝑂𝐼𝑛𝑡 + 𝑈𝑂𝐻𝑖𝑑𝑡−1 + 𝑏𝑂) 
(

3) 

𝐶𝑡 = 𝐹𝑔𝑎𝑡𝑒𝑡⨀𝐶𝑡−1 + 𝐼𝑔𝑎𝑡𝑒𝑡⨀ℎ(𝑊𝐶𝐼𝑛𝑡 + 𝑈𝐶𝐻𝑖𝑑𝑡−1 + 𝑏𝐶) 
(

4) 

𝐻𝑖𝑑𝑡 = 𝑂𝑔𝑎𝑡𝑒𝑡⨀ℎ(𝐶𝑡) 
(

5) 

where 𝑊{𝐼,𝐹,𝑂,𝐶} are the weight matrices linking the input layer with the hidden layer, 𝑏{𝐼,𝐹,𝑂,𝐶} are 3 

offset weight matrices and 𝑈{𝐼,𝐹,𝑂,𝐶} are the self-looping weight matrices of the hidden layer 4 

(Yuan et al., 2021a). 5 

The specific modelling steps for daily water level using the LSTM network are designed as 6 

follows. 7 

Step 1: Extracting the data of the daily water level of each station according to the station 8 

index. 9 

Step 2: Normalising data. The data are normalised to be between 0 and 1 to eliminate the 10 

adverse effects of singular sample data. 11 

Step 3: Generating time series. In this step, the time series is generated according to time, 12 

time steps and batch size. The format of the time series is [samples, time steps, features], which 13 

the LSTM network adapts to. 14 

Step 4: Setting the parameters of the LSTM network, including the number of neurons, the 15 

number of hidden layers, epochs (training iterations), activation function, training function and 16 

loss function. 17 

Step 5: Training and optimising the initial LSTM network until termination criteria are 18 

satisfied. 19 

Step 6: Predicting the future data in a single step or multiple steps using the trained LSTM 20 

network. It should be noted that the prediction results need to be denormalised. 21 
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Step 7: Results evaluation and analysis. The prediction accuracy is analysed by calculating 1 

some performance measures. 2 

3.3.3. SARIMA 3 

The SARIMA model is an evolution model of seasonal or periodic data based on the 4 

ARIMA model (Sun et al., 2020). The ARIMA model refers to the model established by 5 

transforming non-stationary time series into a stationary time series, and then regressing the lag 6 

value of the dependent variable (Phan and Nguyen, 2020), and the present value and lag value of 7 

the random error term, including AR process, Moving Average (MA) process, Auto-regressive 8 

Moving Average (ARMA) process and ARIMA process (Velasco and Lazakis, 2020). 9 

The expression of the SARIMA model can be written as 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)𝑠, where, 10 

𝑝, 𝑃, 𝑞, and 𝑄 represent the maximum lag order of non-seasonal, seasonal, autoregressive and 11 

moving average, respectively; 𝑑 and 𝐷 represent the order of the differentiate and seasonal 12 

difference, respectively; 𝑠 denotes the period of the seasonal time series. It is worth noting that in 13 

the process of modelling and analysis using the SARIMA method, the values of parameters 𝑝, 𝑃, 14 

𝑑, 𝐷, 𝑞, and 𝑄 are not very large, and 𝑑 and 𝐷 usually take 0 and 1 to meet the requirements. 15 

The specific modelling steps for time series using the SARIMA model are designed as 16 

follows. 17 

Step 1: Visual analysis of time series data. The time series diagram of the data is drawn to 18 

visualise the trend of sequence changes over time. 19 

Step 2: Test the stationarity of the data. In statistics, the Augmented Dickey-Fuller (ADF) 20 

test is a common and effective method for testing sequence stationarity. 21 

Step 3: Sequence stabilisation. The stabilisation of the time series is to eliminate the trend 22 

effect and seasonal effect of the sequence, and the differencing method is the most common 23 

method to achieve sequence stabilisation.  24 

Step 4: Model order determination, that is, determining the parameters of the SARIMA 25 

model: 𝑝, 𝑃, 𝑑, 𝐷, 𝑞 and 𝑄. This is a very critical step, this paper uses the network search 26 

method to systematically select the optimal values of the parameters. At the same time, the 27 

Akaike Information Criterion (AIC) is selected as the criterion for selecting the best model 28 

parameters. The AIC not only improves the degree of model fitting, but also introduces a penalty 29 

term to make the model parameters as few as possible, which is helpful to reduce the possibility 30 

of overfitting. 31 

Step 5: Building of the SARIMA model according to the optimal parameters determined in 32 

step 4. 33 
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Step 6: Model testing. Verify if the residuals of the model are correlated and they are 1 

normally distributed with zero mean. If not, the model can be further improved. 2 

Step 7: Data prediction. Use the constructed SARIMA model to predict the future data of 3 

the time series. 4 

Step 8: Results evaluation and analysis. 5 

3.4. Data partitioning 6 

In this study, water level data with 912 rows and 19 columns were collected, which came 7 

from the daily water level records of 19 stations on the Yangtze River trunk line for 912 days 8 

(from January 1, 2018 to June 30, 2020). In our strategy, the daily water level data of two and a 9 

half years were treated as time series, and were divided into two parts. Therefore, the 80% data 10 

from the first 2 years (January 1, 2018 to December 31, 2019) were used as training data, and the 11 

20% data from the next half year (January 1, 2020 to June 30, 2020) were used as testing data. 12 

In our methodology, the training data is for LSTM network and SARIMA model training, 13 

and the testing data is for models validation. In the constructed models, the variables presented to 14 

the models are vectors composed of the consecutive days daily water level data from the 19 15 

stations. In specifically, the daily water levels of training set are cyclically extracted in 16 

chronological order, and constructed into vectors with length 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 + 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 and 17 

presented to the basic LSTM network, where, the first 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 variables are the input and the 18 

last 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 variables are the output. The daily water levels of testing set are divided into 26 19 

groups and presented to the trained models, where, the length of each group of variables is 20 

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝, and 26 groups of water level prediction values for 7 consecutive days are obtained 21 

through loop prediction. The framworks of LSTM model training and testing are shown in Fig. 7 22 

and Fig.  8, where, 𝑊𝐿 represents water level, 𝑡𝑠 represents 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝, and other symbols are 23 

described in Section 3.3.2. 24 
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 1 

Fig. 7. Training framework of LSTM network. 2 
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Fig. 8. Testing framework of trained LSTM network. 4 

3.5. Performance measures 5 

To assess the accuracy and reliability of the proposed MSDWLP models, the prediction 6 

results are analyzed by several performance measures (Ebtehaja et al., 2019), including AE 7 

(Absolute Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), RMSE 8 

(Root Mean Square Error) and NSE (Nash–Sutcliffe efficiency coefficient), as shown in 9 

Equations (6)-(10). 10 

𝐴𝐸 = |𝑧𝑡 − 𝑧�̂�| (6) 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑧𝑡 − 𝑧�̂�|

𝑧𝑡

𝑛

𝑡=1

× 100% (8) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑧𝑡 − 𝑧�̂�)

2

𝑛

𝑡=1

 (9) 

𝑁𝑆𝐸 = 1 −
∑ (𝑧𝑡 − 𝑧�̂�)

2𝑛
𝑡=1

∑ (𝑧𝑡 − 𝑧�̅�)
2𝑛

𝑡=1

 (10) 

where 𝑡 represents the time index of a datum, 𝑡 = 1,2,⋯ , 𝑛, 𝑛 represents the length of the 1 

prediction sequence, 𝑧�̂� and 𝑧𝑡 are the predicted value and the measured value of the 𝑡th datum, 2 

and 𝑧�̅� is the mean of 𝑧𝑡. 
3 

In addition, to supplement these performance evaluation, scatter plots and time series plots 4 

are also inserted for a graphical demonstration. 5 

4. Experimental details 6 

In this section, details concerning the experiment study are presented, mainly including 7 

stations clustering, model settings and experimental design. The data analysis and modelling 8 

experiments were conducted using a desktop PC with Intel Core i7-7700 CPU and 16GB RAM  9 

main memory. Its operating system was 64-bit Windows 10 and the programming language 10 

employed was Python 3.7, where a Python IDE (integrated development environment) Spyder 11 

and an open-source library Keras and sklearn were employed. 12 

4.1. Stations clustering 13 

First of all, the DTW-based hierarchical clustering method was employed for the clustering 14 

of daily water level sequences from 19 stations. For the daily water level data (912 consecutive 15 

days from the 19 stations, which from January 1, 2018 to June 30, 2020), using the DTW and 16 

clustering algorithms introduced in Section 3.2, the hierarchical clustering tree of the 19 stations 17 

obtained from the similarity distance matrix is shown in Fig. 9 (a). Different clustering results 18 

can be obtained by moving a cross-cut line up and down. For example, moving the cross-cut line 19 

to the top, as shown by the black line in the figure, the 19 stations are divided into two rough 20 

clusters: stations 3, 4, 5, 6 and 7 as one cluster and the other stations as another cluster. In fact, 21 

stations of 3, 4, 5, 6 and 7 are all located in the Three Gorges Reservoir area, which have much 22 

higher daily water levels (>145 meters) than the other stations. Moreover, the overall water 23 

levels at stations 3 and 4 are higher and more complex than that of stations 5, 6, and 7, which can 24 

be seen from Fig. 4. Therefore, stations 3, 4, 5, 6 and 7 are further divided into two clusters: 25 

stations 3 and 4 as one cluster and stations 5, 6 and 7 are with another cluster. At this time, the 19 26 
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stations were divided into 3 clusters. Moreover, moving the cross-cut line down to the position of 1 

the red line, 6 clusters can be obtained. Fig. 9 (b) shows 7 different clustering results for 19 2 

stations, including 2, 3, 4, 5, 6, 7 and 9 clusters. 3 

Cluster = 2

    

2 clusters

3 clusters

4 clusters

5 clusters

6 clusters

7 clusters

9 clusters

1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 3, 4, 5, 6, 7

1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 3, 4 5, 6, 7

1, 2, 8, 9, 10, 17, 18, 19 3, 4 5, 6, 711, 12, 13, 14, 15, 16

1, 2, 8, 9, 10 3, 4 5, 6, 711, 12, 13, 14, 15, 1617, 18, 19

1, 2 3, 4 5, 6, 711, 12, 13, 14, 15, 1617, 18, 198, 9, 10

1, 2 3, 4 5, 6, 711, 13, 14, 15, 1617, 18, 198, 9, 10 12

1, 2 3, 4 511, 13, 14, 15, 1617, 18, 198, 9 1210 6, 7
 4 

(a) Hierarchical clustering tree                                 (b) Clustering results 5 

Fig. 9. Hierarchical clustering tree and clustering results of 19 stations. 6 

As can be seen from Fig. 9, 19 stations can be clustered into at least 2 clusters and at most 7 

19 clusters (moving the cross-cut line to the bottom of Fig. 9 (a)). However, for multi-station 8 

daily water level prediction, the fewer the clusters, the less distinct the water level features of the 9 

stations are; the more clusters, the more expensive the modelling and computation. For example, 10 

with 9 clusters, stations 5, 6, and 7 are divided into two clusters. However, their water level 11 

ranges and trends did not change significantly (as shown in Fig. 4), and one model could be 12 

constructed for all 3 stations, as well as stations 8, 9, and 10. Therefore, considering the 13 

performance and computational cost, 6-cluster result is accepted for follow-up research (in 14 

additional experiments, it is also verified that 6-cluster is an ideal clustering results). 15 

4.2. Model settings 16 

According to the proposed divide-and-conquer modelling strategy, 4 types of MSDWLP 17 

models are constructed and tested. To verify the effectiveness of the proposed method which use 18 

LSTM for the trend components and SARIMA for the residual component in our strategy, 19 

different MSWLP models for are set comparison, including MSDWLP_S, MSDWLP_CS, 20 

MSDWLP_CH1 and MSDWLP_CH2, which are described as follows: 21 

MSDWLP_S denotes the MSDWLP model that constructed by using LSTM alone for all 19 22 

stations without, including one daily water level prediction model. 23 



21 

 

MSDWLP_CS denotes the MSDWLP models that constructed by using LSTM alone for 1 

each cluster based on stations clustering results, including 6 daily water level prediction models. 2 

MSDWLP_CH1 denotes the MSDWLP models that constructed by combining LSTM and 3 

SARIMA for each cluster based on stations clustering results, where the LSTM is used for the 4 

trend components and SARIMA is used for the residual term components (period and residual ), 5 

including 6 daily water level prediction models. 6 

MSDWLP_CH2 denotes the MSDWLP models that constructed by combining LSTM and 7 

SARIMA for each cluster based on stations clustering results, where the SARIMA is used for the 8 

trend components and LSTM is used for the residual components (period and residual ), 9 

including 6 daily water level prediction models. 10 

In the next sub-section, the model parameters settings of the models are introduced. 11 

4.3. Parameter settings 12 

The optimal parameters are crucial to the performance improvement of the model. For a 13 

high-performing LSTM network, there are multiple hyperparameters and activation functions 14 

that need to debugged and optimized (Yuan et al., 2020). In the experiments, the parameters and 15 

their candidate values are described as follows: 16 

Neurons: the number of neurons of the LSTM network. 17 

Time step: the length of the input time series of the LSTM network. 18 

n_features: the length of the output time series of the LSTM network. 19 

Batch size: the size of each input data of the LSTM network. 20 

Training epochs:the training times of the LSTM network, that is, number of iterations. 21 

Learning rate: control the rapid convergence of the LSTM network model to the optimum, 22 

generally ranging from 0.001 to 0.1. 23 

Activation functions: relu, a rectified linear unit function; linear, a linear activation 24 

function; tanh, a hyperbolic tangent function; softsign, similar to tanh but smoother; sigmoid, a 25 

common s-type function. 26 

Loss functions: mae, mean absolute error; mse, mean squared error; mape, mean absolute 27 

percentage error; msle, mean squared logarithmic error; hinge and squared hinge. 28 

Optimisation algorithms: rmsprop, root mean square propagation optimiser; adam, 29 

adaptive moment estimation; adamax, a variant of adam with infinity norm; nadam, nesterov-30 
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accelerated adaptive moment estimation; adagrad, adaptive gradient algorithm; adadelta, 1 

extension of adagrad with smaller learning rate. 2 

In addition, to avoid overfitting of the network, the  early stopping method is used to 3 

improve the generalization performance of the LSTM network. The specific steps are as follows: 4 

(1) divide the original training data set into training set and validation set; (2) calculate the error 5 

of the validation set in each Batch size period, and stop training if the error increases; (3) use the 6 

parameters from the previous iteration result as the final parameters of the LSTM. 7 

Parameters settings are into different groups, and a network search algorithm (NSA) is 8 

designed based on the minimum error criterion and AIC to systematically select the optimal 9 

values of the parameters. For example, Table 3 records the NSE of the LSTM network parameter 10 

setting experiments for the daily water level prediction of station 1, where, activation function, 11 

optimiser function, time step, batch size, and neurons number are determined in group 1, 2, 3, 4 12 

and  5. As shown in Table 3, the following parameters settings is found to be appropriate: the 13 

neurons was set to 150, the batch size was set to 36, the time step was set to be 6, the activation 14 

function was the rectified linear unit function "relu", the loss function was set to mse, and the 15 

optimization algorithm was the nesterov-accelerated adaptive moment estimation optimiser 16 

"nadam". 17 

Table 3. Experimental records of LSTM network parameter settings (for station 1). 18 

Group Neurons 
Batch  

size 

Time 

 step 

Activation 

function 

Optimization 

algorithm 
NSE 

1 

150 36 5 linear rmsprop 0.784 

150 36 5 relu rmsprop 0.801 

150 36 5 sigmoid rmsprop 0.692 

150 36 5 tanh rmsprop 0.746 

150 36 5 softsign rmsprop 0.684 

2 

150 36 5 relu adagrad  0.802 

150 36 5 relu adadelta 0.794 

150 36 5 relu adam 0.782 

150 36 5 relu adamax 0.806 

150 36 5 relu nadam 0.815 
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3 

150 36 4 relu nadam 0.818 

150 36 6 relu nadam 0.868 

150 36 7 relu nadam 0.851 

150 36 8 relu nadam 0.836 

4 

150 24 6 relu nadam 0.835 

150 30 6 relu nadam 0.838 

150 42 6 relu nadam 0.842 

150 48 6 relu nadam 0.841 

5 

130 36 6 relu nadam 0.814 

140 36 6 relu nadam 0.817 

160 36 6 relu nadam 0.825 

170 36 6 relu nadam 0.821 

 1 

Similarly, 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 model has 7 key parameters that need to be set (Sun 2 

et al., 2020), namely the maximum lag order of non-seasonal 𝑝, the maximum lag order of 3 

autoregressive 𝑞, the maximum lag order of seasonal 𝑃, the maximum lag order of moving 4 

average 𝑄, the order of the differentiate 𝑑, the order of seasonal difference 𝐷, and the period of 5 

the time series 𝑠. The best parameters 𝑝, 𝑃, 𝑑, 𝐷, 𝑞 and 𝑄 are also determined by a network 6 

search method, which is based on a variant of Hyndman-Khandakar algorithm (Hyndman et al., 7 

2008).  8 

After a series of preliminary experiments for different models, the following parameter 9 

settings were found to be appropriate: the Neurons was set to 150, the batch size was set to 36, 10 

n_features was set to 1 (cyclic rolling method is used to predict the daily water level in future 11 

days), training epochs was set to 1000, learning rate was set to 0.002, and other parameter 12 

settings are shown in Table 4. 13 

Table 4. Optimal parameter settings for different MSDWLP models. 14 

Model 

LSTM SARIMA 

Time 

step 

Activation 

function 

Loss 

function 

Optimization 

algorithm 
(𝑝, 𝑑, 𝑞) (𝑃,𝐷,𝑄) 𝑠 
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MSDWLP_S 8 relu mse nadam -- -- -- 

MSDWLP_CS 

Cluster 1 6 linear mse nadam -- -- -- 

Cluster 2 6 relu mse adam -- -- -- 

Cluster 3 5 linear mse adagrad -- -- -- 

Cluster 4 10 tanh mse adagrad -- -- -- 

Cluster 5 8 relu mse nadam -- -- -- 

Cluster 6 10 linear mse rmsprop -- -- -- 

MSDWLP_CH1 

Cluster 1 6 relu mse nadam (2,1,1) (3,1,0) 7 

Cluster 2 6 linear mse adam (2,1,1) (3,1,0) 8 

Cluster 3 5 relu mse nadam -- -- -- 

Cluster 4 10 tanh mse rmsprop -- -- -- 

Cluster 5 8 relu mse nadam -- -- -- 

Cluster 6 10 relu mse nadam (2,0,1) (2,1,1) 15 

MSDWLP_CH2 

Cluster 1 7 linear mse adam (2,2,1) (3,2,0) 7 

Cluster 2 8 relu mse nadam (2,1,2) (3,1,1) 8 

Cluster 3 5 tanh mse rmsprop -- -- -- 

Cluster 4 10 relu mse rmsprop -- -- -- 

Cluster 5 8 relu mse adagrad -- -- -- 

Cluster 6 15 linear mse nadam (2,1,1) (2,0,1) 15 

 1 

5. Results and discussion 2 

5.1. The results of stations clustering 3 

Firstly, through the proposed Algorithm 1, 19 stations are clustered into 6 clusters, with 4 

cluster 1: stations 1 and 2, cluster 2: stations 3 and 4, cluster 3: stations 5, 6 and 7, cluster 4: 5 

stations 8, 9 and 10, cluster 5: stations 11, 12, 13, 14, 15 and 16, and cluster 6: stations 17, 18 6 

and 19. Fig. 10 demonstrates the daily water levels of 6 clusters of 19 stations. As shown in Fig. 7 
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10, based on the 6-cluster result, the daily water level sequences within the same cluster show 1 

very similar characteristics in the data distribution and change trend. 2 

       3 

(a) Clusters 1, 4, 5 and 6                               (b) Clusters 2 and 3 4 

Fig. 10.  Visualization of 6 clusters result of 19 stations. 5 

5.2. The results of daily water level prediction in 19 stations 6 

Table 5 records the daily water level prediction performance of different models for the test 7 

set, in which, the parameters of each model are set according to Section 4.3. From the values of 8 

performance measures in Table 5, the following conclusions can be drawn:  9 

(1) For each lead time, the models of MSDWLP_CS, MSDWLP_CH1 and MSDWLP_CH2, 10 

which were constructed based on the clustering results of 6 clusters, exhibited more 11 

accurate predictions in terms of the MAE, MAPE, RMSE and NSE than MSDWLP_S. 12 

Therefore, the multi-station clustering was an important factor that resulted in a more 13 

accurate prediction for our case study.  14 

(2) For each lead time, the combined models, MSDWLP_CH1 and MSDWLP_CH2, both 15 

provided low errors (MAE, MAPE and RMSE) and high NSE. It can be seen that the 16 

combined models present improvements in the daily water level prediction accuracy. 17 

(3) For each lead time, the MSDWLP_CH1 model, which is proposed in this paper, further 18 

improved the performance of daily water level prediction for multi-stations. For 19 

example, the MAE and RMSE on the 1
st
 day were only 0.06m and 0.07m, and the NSE 20 

reached 0.999; on the 7
th

 day, they were 0.41m, 0.45m, and 0.946, respectively. 21 

The results in Table 5 present support to the proposed two-stage divide-and-conquer method 22 

for multi-station daily water level analysis and prediction. To further verify this claim, we select 23 

a special example, the first 7 days of testing data, which are from January 1, 2020 to January 7, 24 

2020, and summarize the detailed prediction results of the stations in each cluster as follows. 25 
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Table 5. Test set performance for different MSDWLP models. 1 

Model MAE (m) MAPE (%) RMSE (m) NSE 

1 Day Lead Time 

MSDWLP_S 0.36 15.14 0.41 0.691 

MSDWLP_CS 0.23 9.42 0.25 0.785 

MSDWLP_CH1 0.06 2.61 0.07 0.999 

MSDWLP_CH2 0.14 5.89 0.16 0.946 

3 Day Lead Time 

MSDWLP_S 0.62 26.14 0.71 0.602 

MSDWLP_CS 0.48 21.24 0.62 0.716 

MSDWLP_CH1 0.19 7.71 0.21 0.972 

MSDWLP_CH2 0.30 10.23 0.38 0.915 

7 Day Lead Time 

MSDWLP_S 1.21 58.48 1.46 0.561 

MSDWLP_CS 1.13 51.51 1.32 0.643 

MSDWLP_CH1 0.41 11.78 0.45 0.946 

MSDWLP_CH2 0.56 23.75 0.67 0.836 

 2 

5.2.1 Cluster 1: a LSTM-SARIMA model 3 

Cluster 1 contains stations 1 and 2. It can be seen from Fig. 4 that the water level data of 4 

station 1 and station 2 are not changing smoothly, but the daily water level appears to have a 7 5 

days period. Firstly, using the addition model, the daily water level (training set) of station 1 is 6 

decomposed into trend and residual. Where, the residual term contains the period of small 7 

amplitude and residual. This was achieved by implementing the method of day period 8 

decomposition. From the trend part, we can find that it can reflects the changing trend of the 9 

daily water level, and is much smoother than the original water level data.  10 

Then, the LSTM neural network was tailored and implemented to build a model for the 11 

trend prediction, and the SARIMA method was used for predictive modelling for the residual 12 
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part. According to the experiments in Section 4.3, the following parameters settings were used: 1 

for the LSTM network, the number of neurons was set to 150, the batch size was set to 36, the 2 

time step was set to be 6, the number of epochs was set to 1000; the activation function was the 3 

rectified linear unit function "relu", the loss function was set to mse, and the optimiser function 4 

was the Nesterov-accelerated adaptive moment estimation optimiser "nadam"; for the SARIMA 5 

model, 𝑠 = 7 and 𝑝 = 2, 𝑃 = 3, 𝑑 = 1, 𝐷 = 1, 𝑞 = 1 and 𝑄 = 0. 6 

Finally, the trend predicted by LSTM, and the residual predicted by SARIMA were added 7 

to obtain the predicted daily water level. As an example, the water level prediction results of 8 

stations 1 and 2 for certain 7 days (January 1, 2020 to January 7, 2020) are shown in Fig. 11 (a). 9 

It can be seen that the prediction accuracy is very good for the future 7 days, where the absolute 10 

error for the future 1
st
 day is less than 0.07m and the one for the future 2

nd
 day is less than 0.13m 11 

in station 1. Moreover, the absolute error are only 0.03m and 0.04m in station 2. 12 

5.2.2 Cluster 2: a LSTM-SARIMA model 13 

Cluster 2 includes stations 3 and 4, which are located in the Three Gorges reservoir area. As 14 

with cluster 1, the water level after decomposition also has an obvious period 8 days. In the same 15 

way, the LSTM network was used for forecasting the trend, and SARIMA was used for 16 

forecasting the residual. All the parameters of the LSTM network are the same as those in cluster 17 

1. Except for 𝑠 = 8, the parameters of SARIMA are also consistent with those in cluster 1. The 18 

predicted results of the daily water level of the future 7 days (January 1, 2020 to January 7, 2020) 19 

for stations 3 and 4 are shown in Fig. 11 (b). It can be seen that the prediction is very accurate for 20 

the first two days, where the absolute error for the future 1st day is less than 0.14m and the 21 

absolute error for the future 2
nd

 day is less than 0.13m. 22 

5.2.3 Cluster 3: a LSTM model 23 

Cluster 3 contains three stations: 5, 6 and 7, which are also located in the Three Gorges 24 

reservoir area. Unlike clusters 1 and 2, after the water level was decomposed, no short period 25 

was found. However, good water level predictions can still be obtained using only the LSTM 26 

network. The predicted results of certain future 7 days (January 1, 2020 to January 7, 2020) for 27 

station 4 are as shown in Fig. 11 (c). The LSTM network settings were as follows: the batch size 28 

was set to 36, the number of neurons was set to 150, the epochs was set to 1000, the mean square 29 

error function was selected as loss function, the rectified linear unit function was selected as the 30 

activation function, the Nesterov-accelerated adaptive moment estimation was selected as the 31 

training function, and the step-times was set to 5. It is worth noting that the parameters are 32 

consistent with the LSTM network for clusters 1 and 2, except for the time step being 5. 33 

Although the absolute errors of stations 5, 6 and 7 are larger than those of stations 1, 2, 3 and 4, 34 

their absolute percentage errors are very small, because the daily water level of the three stations 35 

has always been above 145m. It can be found the prediction accuracy of the developed model is 36 

very good in forecasting the future several days, especially for stations 6 and 7. 37 
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5.2.4 Cluster 4: a LSTM model 1 

Cluster 4 has three stations: no. 8, no. 9 and no. 10. Similar to cluster 3, the decomposed 2 

water levels have no short period. When the LSTM network is used for the daily water level 3 

prediction of cluster 4 of stations, the prediction results for the next 7 days (January 1, 2020 to 4 

January 7, 2020) are shown in Fig. 11 (d). In the experiments, all the parameters of the LSTM 5 

network are the same with those in the previous clusters, except that the time step is 10. It can be 6 

observed the developed model can well predict the water level for future several days, especially 7 

for the future 1
st
 and 2

nd
 days. 8 

5.2.5 Cluster 5: a LSTM model 9 

Cluster 5 includes six stations: no. 11, 12, 13, 14, 15 and 16. Most of these six stations are 10 

located in the lower reach of the Yangtze River trunk line. Although the water level data of the 11 

six stations have no obvious periodic characteristics, they are all relatively smooth. The LSTM 12 

network was set to have the same parameters as those for previous clusters, except for the time 13 

step being 8. The prediction results of the six stations in the future 7 days (January 1, 2020 to 14 

January 7, 2020) are shown in Fig. 11 (e). From Fig. 11 (e), we can see that the absolute errors of 15 

the six stations in the future 1st and 2nd days are all less than 0.09m. More importantly, the 16 

absolute errors of each station in the next 3 days are no more than 0.18m, and in the next 7 days 17 

are no more than 0.59m. 18 

5.2.6 Cluster 6: a LSTM model 19 

Cluster 6 contains stations 17, 18 and 19. After the decomposition of the water level data, 20 

an obvious period of 15 days was found. Similarly, the LSTM network for forecasting the trend, 21 

it was set to the same parameters as those for cluster 4. And the SARIMA was used for 22 

forecasting the residual term including period and residual , it settings were found as follows: 23 

𝑝 = 2, 𝑃 = 2, 𝑑 = 0, 𝐷 = 1, 𝑞 = 1, 𝑄 = 1, and  𝑠 = 15. The absolute errors of the six stations 24 

do not exceed 0.03m in the future 1st day and 0.06m in the future 2nd day. The prediction results 25 

of the three stations of cluster 6 for the future 7 days (January 1, 2020 to January 7, 2020) are 26 

shown in Fig. 11 (f). 27 

 28 
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(a) Cluster 1 (stations 1~2)

(d) Cluster 4 (stations 8~10)

(b) Cluster 2 (stations 3~4) (c) Cluster 3 (stations 5~7)

(e) Cluster 5 (stations 11~16) (f) Cluster 6 (stations 17~19)

 1 

Fig. 11. The AE of water level of the future 7 days (January 1, 2020 to January 7, 2020) for 6 2 

clusters. 3 

Table 6. Configuration of MSDWLP_CH1. 4 

Cluster Stations Shorter period Prediction model 

1 1, 2 7 days LSTM [6, 36, 150, 1000]-SARIMA(2,1,1)(3,1,0)7 

2 3, 4 8 days LSTM [6, 36, 150, 1000]-SARIMA(2,1,1)(3,1,0)8 

3 5, 6, 7 No LSTM [5, 36, 150, 1000] 

4 8, 9, 10 No LSTM [10, 36, 150, 1000] 

5 11, 12, 13, 14, 15, 16 No LSTM [8, 36, 150, 1000] 

6 17, 18, 19 15 days LSTM [10, 36, 150, 1000] -SARIMA(2,0,1)(2,1,1)15 

In summary, in our MSDWLP_CH1, clusters 1, 2 and 6 adopt the combined model LSTM-5 

SARIMA, while clusters 3, 4 and 5 used the LSTM model, where all the models have shown 6 
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good prediction results. The water level prediction models and their main structural parameters 1 

of all clusters are shown in Table 6. 2 

As a specific example, January 1, 2020 to January 7, 2020, the MAE and MAPE of 19 3 

stations for a certain prediction case, are also tested and analyzed. In general, as the number of 4 

days increases, the prediction errors MAE of each station also increase. However, in the stations 5 

of each cluster, good water level prediction results have been achieved. In addition, to verify 6 

advantages of the proposed method, it is compared with two models MSDWLP_S and 7 

MSDWLP_CS, and the performances (mean of 10 experiments) of different models can be 8 

shown in Table 7. Compared with the proposed method, both MSDWLP_S and MSDWLP_CS 9 

have relatively high prediction errors. When MSDWLP_S is used to predict the case, the MAE 10 

and MAPE have further increased in all stations. When MSDWLP_CS is employed, the MAE 11 

and MAPE have greatly increased in stations 1~4 and 17~19. Obviously, the method 12 

MSDWLP_CH1 proposed in this paper has better accuracy in 19 stations daily water level 13 

prediction. More importantly, fewer model parameters are required for multi-station daily water 14 

level prediction in our method in that the clustering in the first stage reduces the number of 15 

objects that modelling in the second stage. 16 

Table 7. MAE and MAPE of future 7 days (January 1, 2020 to January 7, 2020) with different 17 

MSDWLP models. 18 

Station 

MAE (m) MAPE (%) 

_S _CS _CH1 _C _CS _CH1 

1 0.44 0.37 0.21 48.13 40.19 22.27 

2 0.48 0.38 0.23 54.12 42.79 26.80 

3 2.46 1.98 0.27 1.62 1.14 0.15 

4 2.42 1.83 0.51 1.41 1.05 0.29 

5 1.54 0.93 0.93 0.89 0.54 0.54 

6 1.05 0.14 0.14 0.58 0.08 0.08 

7 1.12 0.29 0.29 0.63 0.16 0.16 

8 0.13 0.06 0.06 18.22 7.79 7.79 

9 0.11 0.08 0.08 98.68 49.98 49.98 

10 0.14 0.09 0.09 9.84 5.63 5.63 
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11 0.16 0.09 0.09 7.89 3.91 3.91 

12 0.15 0.08 0.08 5.43 2.67 2.67 

13 0.26 0.22 0.22 18.31 11.96 11.96 

14 0.38 0.31 0.31 25.06 20.37 20.37 

15 0.19 0.12 0.12 13.14 8.55 8.55 

16 0.12 0.08 0.08 8.74 5.15 5.15 

17 0.23 0.18 0.12 19.02 14.58 9.74 

18 0.19 0.17 0.10 16.17 14.30 8.19 

19 0.11 0.07 0.02 12.82 7.81 1.66 

5.3. Discussion and insights 1 

The predictive performance NSE of the developed MSDWLP_CH1 against all the training 2 

data (ranging from January 1, 2018 to December 31, 2019, 730 days) and testing data (ranging 3 

from January 1, 2020 to June 30, 2020, 182 days) is shown in Fig. 12. Among them, the testing 4 

data containing 182 days of daily water level is divided into 26 groups for prediction and 5 

analysis, and the output of each group includes 7 days. As can be seen from Fig. 12, the NSE of 6 

all training and testing are over 0.97 in the future 3 days. Moreover, the NSE of all stations in the 7 

future 7 days are basically above 0.90, except for 0.887 and 0.863 in the future 6
th

 and 7
th
 days at 8 

station 2, and most of them exceed 0.95. 9 

     10 

      (a) Training                                                   (b) Testing 11 
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Fig. 12. Modelling performance in NSE against all training and testing data. 1 

     2 

      (a) RMSE                                                   (b) MAPE 3 

Fig. 13. The RMSE and MAPE of the developed models against all testing data. 4 

Fig. 13 illustrates the prediction RMSE and MAPE of 19 stations in all testing data. As can 5 

be seen from Fig. 13 (a), at all stations, the RMSE becomes greater if the prediction time is 6 

longer. This means that the models always perform the best in predicting the near future, such as 7 

the future 1
st
 day, and become less accurate when predicting the far future, such as the future 7

th
 8 

day. The bigger RMSEs appear in stations 4, 5, 6 and 7, where the stations are located in the 9 

Three Gorges Reservoir area and their daily water levels are above 145 meters all year round. 10 

The smaller RMSEs appear in stations 8, 9 and 10, which belong to the fourth cluster. Except for 11 

the stations in cluster 2 and cluster 3, the RMSEs of other stations for the future 1st day are less 12 

than 0.12m, and the RMSEs for the future 3rd day are less than 0.20m. From Fig. 13 (b), it can be 13 

seen the smallest MAPE appears in stations 3, 4, 5, 6 and 7, and the large MAPEs appear in 14 

stations 1, 2, 8, 9 and 10. Stations 1 and 2 belong to the first cluster and are located in the upper 15 

reach of the Yangtze River. Stations 8, 9 and 10 belong to the fourth cluster and are located in 16 

the middle reach. In fact, these two river sections are the most curved sections and the water 17 

regime is the most complicated. The variation of MAPE in other stations is relatively small, 18 

especially in the lower reach of the Yangtze River, such as stations 14~19. 19 

In general, as the number of days increases, the prediction errors of each station also 20 

increase. The method proposed in this paper showed decent accuracy in 19 stations daily water 21 

level prediction, and more importantly, fewer model parameters are required in that the 22 

clustering in the first stage reduces the number of modelling objects in the second stage. 23 
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5. Conclusions 1 

In this paper, the daily water level data of multiple stations on the Yangtze River trunk line 2 

have been collected, analysed and predicted in order to better inform decision-making about safe 3 

and effective waterborne transportation, water management, and emergency response. A new 4 

two-stage divide-and-conquer modelling strategy has been proposed. In the first stage, the DTW 5 

algorithm is employed to calculate the similarity distance of water level series, and the 6 

hierarchical clustering algorithm is used to divide 19 stations into 6 clusters according to the 7 

similarity matrix. In the second stage, the LSTM network and SARIMA model are tailored and 8 

implemented to build the MSDWLP models for each cluster. In particular, for the clusters with 9 

short periodicity and obvious seasonal change trend, the daily water level is decomposed into 10 

long-term trend, periodic change trend, and residual . Then the MSDWLP_CH1 model is 11 

employed for better results, in which, the long-term trend part is approximated by the LSTM 12 

network, and the residual term part is approximated by the SARIMA model. In the validation 13 

experiments, the daily water levels of 19 stations in the future 7 days are predicted. The results 14 

show that the proposed analysis and modelling method can be well applied to the case of the 15 

Yangtze River trunk line. The RMSE of the prediction is no more than 0.12m for the future 1
st
 16 

day and is no more than 0.26m for the future 3
rd

 day. The average MAPE across 19 stations is 17 

2.03% for the future 1
st
 day and is 6.91% for the future 7 days. 18 

The water levels of inland rivers is affected by many complex factors, such as a.s.l., 19 

waterway topography, periodic characteristics, and flood control and drought resistance 20 

strategies, which make it difficult to elicit conventional predictive models. In the proposed two-21 

stage method, firstly, 19 stations were clustered into 6 categories according to the similar 22 

characteristics of daily water level, which reduced the influence of a.s.l. and waterway 23 

topographic changes on daily water level change, thereby reducing the complexity of multiple 24 

stations’ daily water level prediction. Secondly, a prediction model was constructed for each 25 

cluster stations according to the periodic characteristics of daily water level, which reduced the 26 

number of prediction models and the parameters that need to be determined, thereby improving 27 

the accuracy of daily water level prediction. Moreover, the anticipation of the water level 28 

variation will support decision making in planning and operation of waterborne transportation, 29 

water management, and emergency response. 30 

Meanwhile, a potential improvement in the following study is to employ more factors in the 31 

proposed method, and which is flexible to use other data, such as precipitation and tide, as 32 

predictors if available. The inland reginal and oceanic climate variables play a critical role in 33 

providing valuable information for the multi-station river water level prediction. Additionally, 34 

the performance of the proposed approach at smaller timescales, for example, hourly forecasting, 35 

is worth exploring. 36 
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