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Abstract: In order to predict the compressive strength (σc) of Ultra-high performance fiber reinforced concrete (UHPFRC), developing a reliable and precise 

technique based on all main concrete components is a cost-effective and time- consuming process. To predict the UHPFRC compressive strength, four different 

soft computing techniques were developed, including the nonlinear- relationship (NLR), pure quadratic, M5P-tree (M5P), and artificial neural network (ANN) 

models. Thus, 274 data were collected from previous studies and analyzed to evaluate the effect of 11 variables that impact the compressive strength, 

including curing temperature. The performance of the predicted models was evaluated using several statistical assessment tools. According to the findings, 

ANN results performed more suitable than other models with the lowest root mean square error (RMSE) and highest coef- ficient of determination (R2) value. 

According to the sensitivity analysis, the most variables that affect the compressive strength prediction of UHPFRC are a curing temperature with a percentage 

of 17.36%, the fiber content of 17.13%, and curing time of 15.13%. 

 

Keywords: Ultra-high performance fiber reinforced concrete (UHPFRC), Compressive strength,  Durability, Curing  condition Soft computing Statistical evaluation 

1. Introduction 

Increasing demand for concrete to provide a durable, blast resis- 

tance, and safe structure is further developed. One symbol of every 

city’s development is the number of strategic, modern, and high-rise 

build- ings, but using concrete to protect such structures from 

environmental and technical hazards such as earthquakes, terrorist 

attacks, explosions, and plane impact is essential. The UHPFRC is the 

ideal selection since it provides a very high compressive strength, high 

tensile strength due to the inclusion of fiber, very low permeability, and 

less dimension [1]. This new type of concrete is specified by a high 

content of cement which 

is about two times more than common concrete, high fiber content, fine 

sand with particle sizes less than 1 mm, water/cement ratio ranging 

between 0.16 and 0.23, superplasticizer, high ratio of fiber normally 12 

mm length and 0.2 mm diameter [2–6]. The concrete packing is 

densi- fied by replacing cement with pozzolanic materials or mineral 

admiX- tures such as; Silica fume (SF), Nano silica, Pulverized fly ash, 

and Metakaolin [7–9]. When studying the impact of water content on 

the mechanical and flowability of UHPFRC, Corinaldesi and Moriconi 

[10] observed several miXes after keeping the cement, superplasticizer, 

and silica fume, and sand content constant with different water to 

binder ratios (up to 0.32). They claimed that 0.24 produced the 

optimum 
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Fig. 1.  The flow chart diagram for the current study’s procedure. 
 

mechanical and flowability for concrete miXes. The type and size of the 

sand particle are essential when preparing UHPFRC samples to 

reduce the overall cost of producing UHPFRC samples. Yang et al. 

[5] studied the impact of replacing silica sand with two natural sand 

and with Recycled Glass Cullet (RGC). The final results proved that 

the flowability of the miXture was reduced by using angular particles. 

Both natural grains of sand can be used as a silica sand replacement 

without losing mechanical and ductility properties, but RGC decreased 

the flexural and compressive strengths by 15 %. Most of the research 

focused on pre- paring UHPFRC at an elevated temperature since it 

provided high strength in a short duration of curing; as an attempt 

to bring and use 

UHPFRC in site construction applications. Hassan et al. [11] 

investi- gated the mechanical performance of UHPFRC and 

indicated that at early testing ages, to develop the strength properties 

curing temperature is crucial. Several samples were cast and cured 

at curing temperatures ranging between 10 and 90 ◦C for up to one 

year and compared the results of low curing with high curing 

temperature. Maximum compressive and flexural strength were 

measured at 7 days for 90 ◦C curing specimens, but similar strength 

was obtained for specimens cured at low temperature only after 90 

days of curing. 

Yang et al. [5] stated that concrete samples cured at 90 ◦C for 7 days 

recorded 80, 90, and 90 % higher compressive, flexural strength,and 
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Fig. 2.  (a) Compressive stress–strain curves concerning the steel fiber content (SF %) on the 28 days of curing and (b) Different types of steel fibres 
[11]. 

 

fracture energy, respectively than samples cured at the same time 

at 20 ◦C. Magureanu et al. [12] cured several samples using two 

different curing regimes, water curing at 20 ◦C, and ii) thermal curing 

at 90 ◦C for 5 days; after testing all specimens at the age of 6 days, 

they observed an increase in both compressive and flexural strength 

up to 181, and 17.5 MPa respectively but the results were less than 

130, and 6 MPa for the compressive strength and the tensile strength 

of the same samples cured in water at 20 ◦C. 

When fibers are incorporated, UHPC is called Ultra-High Perfor- 

mance ConcreteReinforced with Fibers (UHPFRC) [12]. Irrespective 

of its size, type, and shape, the fibers have a key role in enhancing the 

confrontation of plain UHPC to cracking, ductility, and toughness 

properties. In UHPFRC, fibers have the potential to promote energy 

absorption, strain hardening under tension, and avoid sudden failure. 

Microfibers from different resources, including steel, glass, and carbon, 

are usually employed to produce UHPFRC. To determine fracture en- 

ergy, inverse analysis can be utilized to classify it, but this needs to 

utilize a particular test program and numerical methods [18]. 

UHPFRC is usually characterized by ultimate strength, superior 

fracture param- eters, and enhanced durability if proper manufacturing 

techniques (water, steam, or autoclave curing) are adopted. Steam 

curing for UHPC is very effective because it enhances the hydration of 

large amounts of un-hydrated cement inside UHPCs due to large 

quantities of binder, but it also helps in controlling the moisture 

movement from and into the concrete [11,12]. Therefore, researchers 

preferred steam over water curing to produce UHPFRCs, and superior 

results were obtained. For instance, steam curing of concrete at 

atmospheric pressure results in a considerable increment in the 

strength development rate. This method is mainly used for 

prefabricated concrete parts such as pipes and pre- 
stressed elements; nonetheless, it can also be used for closed in 
situ 

constructions. In the manufacturing of precast concrete elements, 

steam curing enables higher production through faster turnover mold 
and formwork, shorter curing times before shipping, and less product 
dam- age during transport. The pozzolanic reaction, which is thermally 
acti- vated due to the high curing temperature of steam curing, leads to 

the growth of C–S–H and a decrease in calcium hydroXide [13,14]. 
The influence of the curing temperature on the properties of cement 

mortars and concretes was the focus of some studies. It has been 

largely clarified that curing at a high temperature immediately after 

casting provides the growth of mechanical characteristics in the initial 

ages. It adversely affects strength in the final ages. At 28 days, a 10 

% reduction in compressive strength was detected when the concrete 

was cured at 35 
◦ C, related to the concrete cured at 20 ◦C. Furthermore, with 
increasing 

the curing regime from 20 and 50 ◦C, the strength decreased by 28 %. 

This drop-down of strength in later age refers to the sudden 

hydration 

rate in early ages due to the higher temperature, which delays the 

consequent hydration and forms a non-uniform distribution of the hy- 

dration products [14]. The possible benefits of steam curing of 

concrete with the combination of fly ash, slag, and silica fume. It 

was obtained that miXtures with silica fume (SF) provided a good 

strength perfor- mance and low sorptivity at an early age [14]. The 

UHPC at 28 days cured in ambient condition showed a compressive 

strength of 126 MPa and tensile strength of 6.5 MPa. Further studies 

are required to imple- ment different curing methods of UHPC to 

investigate the development strength at different ages. For this 

purpose, in the current study, water curing (WC) and steam curing 

(SC) were applied to produce UHPC based on blended binders such 

as cement and SF [12–14]. 

The benefits of using silica fume (SF) in concrete miXes 
include: 

improving compressive strength, bond strength, and wear resistance; 

additionally, the resistance against permeability and the corrosion 
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resistance of the embedded is improved [27]. In the cementitious 

ma- triX, SF is the most widely used amorphous silica. The average 

particle 
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Fig. 3.  Failure path of the concrete in two different shapes (a & c) UHPC (without steel fiber) and (b & d) UHPFRC (with steel fiber) [11]. 
 

size of SF is approXimately-one-tenth that of cement. SF has been uti- 

lized in the range of 10–25 % by weight of cement since the 1950 s 

due to its Pozzolans and filler properties that make the concrete denser 

[8]. SF and calcium hydroXide react together to make more C–S–H 

gel, improving the final strength [9]. 

Furthermore, some investigators, such as Dunster [10], stated that 

the contributions of SF and concrete components could minimize 

cement consumption, which has become sustainable for economic and 

environmental development. Various studies have been implemented 

on the effects of different parameters, including fibers, mineral 

admiXtures, and curing conditions, on the behavior of UHPFRC. For 

instance, the effects of various types of fibers on the mechanical 

performance and ductility behavior cured in water have been studied 

by researchers [28,29]. For this purpose, a w/b of 0.195 and different 

types of fiber content ranging between 0.25 and 2 % fiber volume 

fraction were used. It was concluded that the maximum compressive 

strength was 180 MPa for the micro steel fibers (MSF) and that, for 

flexural strength, the hooked steel fibers were more effective [30]. 

Moreover, the effects of nano-silica and micro-silica on the 
me- 

chanical properties for the 0.2 w/b of UHPC were also investigated 

[14]. It was also detected that nano-silica and micro-silica binary usage 

pro- vides superior performance to individual utilization. Maleka et 

al. [20] 

investigate UHPFRC using blended cement and SF. The cement 

content chosen in this research was 700, 750, and 800 kg/m3, and 

SF content of 
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0, 15, and 30 % of cement content. The study has recommended the 

inclusion of the SF of up to 30 % of cement content. 

Also, the mechanical properties under different curing regimes 

containing mineral admiXtures. They revealed that steam and 

autoclave curing looked like very effective ways to improve the 

strengths of UHPCs. However, there is very limited research on 

investigating the optimum content of binder and its effect on the 

mechanical and fracture parameters of UHPFRC cured via different 

methods. As a result of reviewing the available literature, the question 

of how to find the op- timum balance between the binder content 

and aggregate volume to 

improve the performance of UHPC has become our main concern to 

find an answer. Therefore, an experimental program is prepared by 

taking different volumes of binder ranging between 850 and 1200 

kg/m3 with 

an augmentation of 50 kg/m3 for investigating the strength and 

fracture 

parameters of UHPFRC. Moreover, the effect of curing methods (WC 

and ST) on the UHPFRCs was considered. Furthermore, parameters 

such as flowability of concrete, w/b ratio, SF, and MSF content were 

kept con- stant, unlike the binder content and curing methods (steam 

curing and water curing) which were varied for optimization purposes 

of the results of compressive strength, splitting strength, modulus of 

elasticity, flex- ural strength, load–displacement curves, fracture 

energy, and charac- teristic length [13]. 

To provide necessary dataset required for establishing the model, 

50 dynamic load tests were conducted on precast concrete piles in 
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Fig. 4. (a) Direct tensile stress–strain curves concerning the steel fiber content (SF %) at different curing times and (b) the relationship between compressive 

strength and fracture Energy of UHPFRC [11]. 

 
Pekanbaru, Indonesia. The pile geometrical properties, pile set, 

hammer weight, and drop height were set to be the network inputs, 

and the pile ultimate bearing capacity was set to be the output of the 

GA-based ANN model. The best predictive model was selected after 

conducting a sensitivity analysis to determine the optimum GA 

parameters and a trial- and-error method for finding the optimum 

network architecture, i.e., the number of hidden nodes. Results 

indicate that the pile bearing ca- pacities predicted by GA-based ANN 

align with measured bearing ca- pacities. Coefficient of determination 

and mean square error equal to 0.990 and 0.002 for testing 

datasets, respectively, suggest that imple- mentation of GA-based 

ANN models as a highly reliable, efficient, and practical tool in 

predicting the pile bearing capacity is of advantage [19]. An artificial 

neural network (ANN) is considered an AI technique that can forecast 

almost all problems in science and engineering fields [20]. However, 

they have several limitations discussed and introduced in previous 

research [22–24]. As stated in several references [19–21], the use 

of efficient optimization algorithms (OAs) can overcome these 

limitations. Various optimization algorithms such as the genetic algo- 

rithm (GA), particle swarm optimization (PSO), artificial bee colony 

(ABC), and imperialist competitive algorithm (ICA) can be used to 

solve 

 
continuous and non-continuous problems. Due to the high ability of the 

global search for these OAs, weights, and deviations of an ANN can 

be determined to improve its performance forecast. The hybrid 

mentioned above models has been widely used to solve nonlinear and 

complex engineering problems [17–20]. 

1.1. Research objectives 

This study aims to assess the impact of different miXture 

proportions and curing temperatures on the compressive strength of 

UHPFRC. For this reason, various modeling techniques such as 

Linear, Pure quadratic, M5P-tree, and ANN were performed using 274 

data samples collected from previous research. The flowchart in Fig. 1 

shows the procedure of this study. The main objectives of this 

research are: 

(i) to perform a statistical study and evaluate the impact of 

different miXture compositions of UHPFRC on the compressive 

strength. 

(ii) to examine and design a reliable model for estimating the 

compressive strength among all models (linear, pure 

quadratic, 
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Table 1 

Summary of different UHPFRC miXtures. 

Ref. w/c C (kg/m
3
) S (kg/m

3
) SP (kg/m

3
) SF (kg/m

3
) t (day) F (kg/m

3
) Fiber AR T (⁰C) σc (MPa) 

 

[2] 0.3 657 1051 40 119 7–180 157 65 10–90 101.6–168 

[4] 0.25 1092–1280 292–647 30.2–77.2 273–320 28 0–468 63.50 60 124–162 

[5] 0.18 657 1050 1.05 119.4 7–56 156 65 20, 90 120 – 177 

[10] 0.24–0.32 960 960 24 240 7, 28 192 72 20 100 – 147 

[13] 0.25 1500 650 40 175 7–28 0–188 60, 120 28 93–118 

[16] 0.22 784–809 1045–1079 20.9–21.6 261–270 3–90 0–234 65.00 20 93–166 

[20] 0.26 700 1104 30 50 28 0–78 65 20 105–138 

[21] 0.15 712 1020 30.7 231 3–56 156 62.5 60, 90 139–186 

[22] 0.2 850 850 76.5 226 28 78–157 65 20 145–150 

[23] 0.28 657 1051 40 119 7–28 157 65 90 145–150 

[24] 0.23–0.33 612–874 1273.4 45.9 43.7 7, 28 39–195 65 21 99 – 156 

[25] 0.21 1050 678 42 350 5 0–117 60 80 107 – 140 

[26] 0.18 800 1250 80 240 7, 28 40 16.25 25 120–149 

[27] 0.35 413 1593–1827 9.75 32.5 28 0–234 50 20 114–128 

[28] 0.14–0.16 998.8 898–1014 49.4–88.2 176.25 7–28 0–78 722 21 112–160 

[29] 0.2 1163–1543 607–1923 34.1–89.7 5.5–20 28 0–468 0–63.5 60, 90 131–169 

[30] 0.20 788 795.88 14.77 197 28 157 81 200 140 – 171 

[31] 0.35–0.36 641–648 943–952 34.2–45.6 40–41 28 312–390 65 23 146 – 150 

[32] 0.22 788 867 14.77 197 28 0 0 20 132 

[33] 0.19 720 1025 30.00 240 28 0–157 63.50 22 112–149 

[34] 0.22 800 896–1056 39.00 200 28 80–240 59.00 21 150–152 

[35] 0.25 900 826 36.00 225 56 0–156 60.00 25, 200 145–184 

[36] 0.18 900 764–1055 40 44–220 28 157 85 22 125 – 161 

[37] 0.16–9.22 703–950 690 24.5–28.5 285 28 0–117 0–1014 21, 125 101 – 178 

[38] 0.24 900 1125 27 180–270 7, 28 0–154.8 380.79 2 90–136.6 

Ranged between 0.14–0.36 413–1543 292–1923 1.05–89.7 5.5–350 3–180 0–468 0–1014.29 10–200 90.18–186 

 
M5P-tree, and ANN models) using appropriate statistical 

evalu- ation tools. 

(iii) Compare and quantify the most reliable model to estimate the 

compressive strength of UHPFRC. 

 
1.2. Effect of steel fiber content on compressive strength 

The concretes have reached their ultimate strength within 7 days, 

similar to their tensile strength [11]. The effect of steel fiber content on 

the stress–strain behavior of UHPC is presented in Fig. 2. This is 

due to the curing regime of the elevated temperature of 90 ◦C. 

Furthermore, the elastic behavior for UHPFRC at different ages 

follows a similar trend up to the first crack strength. The steel fiber 

content in UHPFRC appears to have a relatively small effect on the 

pre-cracking compressive strength and elastic modulus. Steel fibers in 

UHPFRC increase the modulus of elasticity and peak strength over 

that for UHPC by (6 to 9 %) and (15 to19%), respectively. This is not a 

significant increase compared to the results reported for the tensile 

tests. However, steel fiber content was influential on the post-cracking 

behavior of UHPFRC compression tests; see Fig. 3 [2,9,11]. 

For the UHPC concrete, the elastic behavior was followed until 

the peak strength. The failure occurred with a sudden strain 

softening, similar to its tensile strength. Failure of the UHPC 

specimen occurred with the formation of the first crack when lateral 

deformation exceeded its tensile capacity. The UHPC specimens lost 

all their strength and failed in an abrupt, explosive manner, see Fig. 

15. In contrast, the UHPFRC specimens behaved elastically to 

approXimately 90–95 % of their compressive strength. At the end of 

the elastic stage, hairline cracks form, followed by strain hardening 

behavior (compression hardening) up to the peak strength. 

However, strain hardening behavior did not occur in some tests but 

failed after initial cracking. Following the peak strength, a progressive 

strain softening occurs in which the presence of steel fibers governs 

this stage, similar to its tensile behavior. The inter- action between 

the fibers and the matriX contributed to the ductile compressive 

failure, where the concrete surface remained intact even after a 

total strength loss, see Fig. 3. 

Furthermore, results obtained from this method for the modulus 
of 

elasticity of the UHPFRC at different ages were compared to conven- 

tional test methods using strain gauges [2,11]. Some of these fiber 

types 
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are very expensive, such as steel and carbon fibers. Generally, steel 

fi- bers are used for UHPFRC. The steel fibers differ in size, shape, 

and mechanical properties, as shown in Fig. 2 b. 

1.3. Direct tensile strength and fracture energy 

The direct tensile strength, also known as uniaxial tensile strength, 

represents concrete’s true tensile properties. Normal concrete has a 

low tensile strength, typically between 2.1 and 4.8 MPa, with low 

ductility. However, the tensile strength of UHPFRC is reported to be 

in the range of 8 to 13.5 MPa, with better ductility properties. This 

improvement was reported to be highly dependent on the type, 

quantity, and orientation of steel fibers in the miX. Moreover, the 

fiber–matriX bond strength was reported to influence this parameter 

significantly [11]. The behavior and value of the tensile strength of 

UHPFRC are considerably enhanced compared to normal concrete. 

Therefore, studying this concrete’s tensile strength and ductility is vital 

due to its contribution to tensile resistance in structural applications, 

particularly highway bridge applications (Fig. 4 (a)). Uniaxial tensile 

tests need to be performed to obtain the direct tensile strength and 

the tensile stress–strain relationship for UHPFRC. However, this test 

is avoided due to many implications involved during the test, in 

particular, for fiber-reinforced concrete. In addition, many research 

studies have attempted to design suitable test methods for fiber 

reinforced concrete, each with its interpretation [2,11]. The reliability 

of the test methods reported in the literature is questionable due to 

the variation of the results reported. Flexural 

toughness is similar to fracture energy and is an important 
material 

property of concrete to measure ductility. It relates to the ability of 

concrete to absorb energy after the formation of the first crack. 

Flexural toughness for a typical UHPFRC miX with and without fibers 

was approXimately 120 and 0.99 J [11]. The inclusion of fibers in 

UHPFRC and bond strength was reported to benefit this parameter 

significantly. However, increasing the fiber content to a very high 

percentage, i.e., 6 

%, might have an adverse effect and result in fiber balling which can 

reduce the workability. This was demonstrated experimentally, 

where 

the ideal percentage was reported to be 2 to 3.5 %, and the fracture 

energy of UHPFRC ranged between 19,000 to 24,000 j/m2 (Fig. 4 
(b)). 
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Fig. 5.  (a) Histogram for w/c used to prepare the UHPFRC miX and (b) Relationship between w/c and compressive strength of UHPFRC. 
 

2. Methodology 

The collected data from various literature for this paper was 274 

datasets inserting all data into an excel sheet; the data were sorted, 

statistically assessed, divided, and separated into three groups. The 

largest group, which consisted of two-thirds of the data, was named 

the training data set and utilized to develop the models. The other two 

groups, each with one- to siX of the data set, were used for testing and 

validating the proposed models. Table 1 includes the detailed ranges 

and information about each variable studied in the study, which 

includes (a) SF content, (b) cement content, (c) w/c, (d) curing 

temperature, (e) SP content, (f) sand, (g) curing time, (h) fiber content, 

(i) fiber AR, (j) Water content, and (k) SP content with compressive 

strength of the UHPFRC. All mentioned independent parameters were 

utilized to quantify and estimate the compressive strength and 

compare the results with the measured strength. The current study’s 

process is simply depicted in Fig. 1. 

Step 1: Data were collected from different research studies. 

Step 2: Statistical analyses were performed on the input variables. 

Step 3: Splitting the data randomly into three parts (training, 

testing, 

and validation). 

Step 4: Four soft computing techniques were performed on 
the 

training data set. 

Step 5: Different performance criteria were used to compare the 

developed models. 

Step 6: Sensitivity analyses were conducted to find the most 

effective parameter for the compressive strength of UHPFRC. 

3. Statistical evaluation 

This part of the paper is all about the statistical analysis of the 

dependent and independent variables separately to determine whether 

a strong relationship exists between each variable and the 

compressive strength of UHPFRC. Thus, the plot of all considered 

parameters, including (a) SF content, (b) cement content, (c) w/c, (d) 

curing tem- perature, (e) SP content, (f) sand, (g) curing time, (h) fiber 

content, (i) fiber AR, (j) water content, and (k) SP content with 

compressive strength was drawn (Fig. 5, Fig. 6, and Fig. 7), also to 

clarify the distribution of every variable with the compressive 

strength, statistical functions such as Standard Deviation (SD), 

Variance, Skewness, and Kurtosis were calculated. 
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Fig. 6.  (a) Histogram for cement content used to prepare the UHPFRC miX and (b) Relationship between cement content and compressive strength of 
UHPFRC. 

 

3.1. Compressive strength 

According to the total collected data, the σc of UHPFRC miXtures 

ranged between 90 and 186 MPa, with a median of 138.5 MPa. From 

the statistical analysis, the values for other variables were as follows: 

vari- ance of 435.37, A-squared of 1.83, the standard deviation of 

20.87, and value of skewness and kurtosis were —0.106 and —

0.745, respectively. 

4. Modeling 

According to the correlation matriX, no direct relationship was ob- 

tained from the analyzed data results in section 3; no direct 

relationship was obtained according to the correlation matriX (Fig. 8). 

Therefore, to quantify the influence of each parameter on the σc of 

UHPFRC. 
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Fig. 7. Histogram for (a) w/c, (b) cement, (a) sand, (b) SP, (c) SF, (d) Curing  temperature,  (e)  Curing  age,  (f)  Fiber  content,  and  (g)  fiber  aspect  ratio  

of UHPFRC miXtures. 

4.1. Nonlinear relationship model (NLR) 

This study focuses on designing a model that evaluates the effect 

of the maximum number of parameters on the σc of UHPFRC. 

Nonlinear regression is a general method for evaluating the 

compressive strength used in this study [39]. But to increase the 

reliability of the predicted 

strength value Eq. (1), eleven variables were proposed. 

σ =a + b*   
w c 

+ d*(C)
e 

+ f *(W)
g 

+ h*(S)
i 
+ j*(SP)

k 
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m 
+ n*(t)

o
 

+ i*(Fb)
p 

+ q*(AR)
r 
+ z*(T)

w 
+ x*(FC)
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(1) 
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Fig. 7. (continued). 

 

Where a to y are model parameters. 

 
4.2. Pure quadratic model 

Pure Quadratic technique (model) (Eq. (2)) was used to evaluate 
the 

σc of UHPFRC as follows: 

Where β0 to β22 are the model parameters and were obtained by 

using the Least Square Method. 

 
4.3. M5P tree model 

M5P-tree is a modified version of the Quinlan M5 technique [56–

58]. One of the key benefits of tree modeling is its capability to 

efficiently manage massive volumes of data with an infinite number 

of attributes 
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Fig. 7. (continued). 

 
deviation of a node’s class value. The feature that minimizes the 
ex- 

Error estimates and details on the tree division criteria used in the 

M5P-tree model are displayed on each node. Any function associated 

with that node is evaluated using the feature that most reduces 

expected error. The M5P-tree model’s tree division criteria are derived 

from node- level error estimations. The M5P-tree error represents the 

standard 

pected error reduction after analyzing each attribute at that node is used 

to divide the nodes. The data for child nodes (subtree or smaller nodes) 

has a lower standard deviation SD due to the branching approach. After 

evaluating all alternative structures, nodes that serve as parents (larger 

nodes) choose the structure with the best chance of reducing errors. 

This 
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Fig. 8.  Correlation matriX for the properties of UHPFRC. 
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Fig. 9.  Optimal neural network model structure (a) 16 neurons, and (b) 14 neurons. 

 

division is also in charge of generating a massive tree-like structure 

that encourages overfitting. 

 
4.4. Artificial intelligence (ANN) 

The inverse of forwarding neural networks is ANNs [57–59]. As 

shown in Fig. 9, it comprises three separate layers: input, output, and 

hidden. The input layer receives the signal to be inspected. The 

output 

layer is responsible for performing essential tasks such as prediction 

and classification. True computational ANN engines have many 

hidden layers between the input and output levels. Data travels from 

the source to the destination layer, similar to the feed-forward network 

in the ANN. Over trial cycles, the multi-hidden layer result was 

improved to deter- 

mine the best number of hidden layers for a model in error reduction 

and R2. Due to the complexity of the Equation for several hidden 

layers, a single hidden layer consisting of siXteen neural networks 

was chosen for 
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Table 2 

Properties of normal strength concrete collected from the literature.  

100 data of normal strength concrete with the strength range of 11 to 

55 MPa (Table 2) collected from different research studies [39–55], as 

References Water/cement 

ratio 

Curing time, 

t (days) 

Compressive  
strength, 

σc (MPa) 

shown in Fig. 10a, 11a, 12a, 13a. 

[39] 0.43 7 and 28 35–43 

[40] 0.49–0.66 28 31–51 

[41] 0.45–0.90 28 and 90 20–46 

[42] 0.32–0.42 28 38–46 

[43] 0.6 28 and 90 23–48 

[44] 0.5–0.8 28 19–43 

[45] 0.53 7, 14, 28 and 90 27–39 

[46] 0.53 1,3,7,28 and 90 19–45 

[47] 0.4 7,28 and 90 27–43 

[48] 0.49 7 and 28 24–33 

6.1. Nonlinear relationship model (NLR) 

The connection between measured and predicted σc of UHPFRC 

for training, validating, and testing is shown in Fig. 10a. The value of 

each parameter in the existing model was calculated by optimizing the 

sum of error squares and the least square method Eq.8. represent the 

final result of NLR. 

σ =— 2092 + 1131*
(w)—0.04 

+ 1438*(C)
—0.02 

+ 1.97*(W)
—3.86 

+ 317*(S)
—0.03

 
 

 

[49] 0.5 7, 28, 56 and 90 34–47 

[50] 0.36 7 and 28 25–39 

[51] 0.43 7 and 28 34–46 

[52] 0.5 28 and 56 17–30 

[53] 0.4–0.5 3,7,14 and 28 15–50 

[54] 0.33 7,14 and 28 35–55 

c 
c
 

+ 14.9*(SP)
0.16 

— 1251*(SF)
0.0008 

+ 743*(t)
0.017 

+ 0.21*(Fb)
0.84

 

— 0.03*(AR)
0.006 

— 0.009*(T)
—0.014 

+ 0.005*(FC)
0.094

 

 

 
(8) 

[55] 0.35–0.45 Up to 90 11–33 The predicted compressive strength ranged between 0.82 and 
1.21 

Ranged 

between 

0.32–0.9 Up to 90 days 11–55 MPa (Fig. 10 b). Based on the above Equation, the water to cement 

ratio has highly impacted the σc of UHPFRC, and the aspect ratio has 

the least. The value for assessment parameters such as R2, RMSE, 
and MAE is 0.70, 

this study by trial and error to get better performance based on 
statistical measures such as RMSE, MAE (mean absolute error), and 

R2. The lower value of RMSE and MAE and the higher value of R2 

indicates that the 

model has good performance (Fig. 9). An ANN equation with a single 

hidden layer is depicted in Eqs. (3) and (4). 

11.55 MPa, and 8.719 MPa. 

 
6.2. Pure quadratic model 

In Fig. 11a, the predicted σc is compared to the measured σc 
produced 

βn =an(w/c) + bn(C) + cn(W) + dn(S) + en(SP) + fn(SF) + gn(t) + hn(F) 

+ in(AR) + jn(FC) + hn(FC) + in 

 

 
(3) 

from UHPFRC’s training, testing, and validation datasets. As 
demon- 

strated in Fig. 11b, the residual error ranged from 0.83 to 1.15. Ac- 

cording to this model, the w/c ratio and Fiber content concentration are 

the most important factors impacting the compressive strength 

of 
UHPFRC. The Pure Quadratic model with distinct variable 
parameters 

σc =
 Node1    

+
 Node2    

+ ⋯ +
 Noden  

+ Treshold (4) (Equation (9)) can be represented as follows: 
1 + e—α1    1 + e—α2 1 + e—αn 

 

 

(w) 

 

The coefficient of determination (R2), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Scatter Index (SI), and OBJ 

were used to evaluate the precision and efficiency of the model 

predictions. Four other models were predicted. All models were 

assessed using several standard evaluation criteria to compare all 

models and select the 
most accurate one, such as; Model validation, lowest residual 
error, 

+ 0.14*(SF) + 0.67*(t) + 0.12*(Fb) — 0.02*(AR) + 0.48*(T) 

— 1.87*(FC) + 0.014*

(
w2 

) 

— 1.5 × 10—5 *  C2   — 0.0002*  W2 

4.85   106 * S2 0.002* SP2 0.003* SF2 0.0026* t2 

— 0.0014*
 

Fb2
) 

— 1.8 × 10—5 *
 

AR2
) 

— 0.001*
 

T2
) 

+ 0.52*
 

FC2
)
 

2 

 
 
 

(9) 

highest R2, lower MAE, OBJ, RMSI, and SI 
values. 

Their equations are: 

This model’s R , RMSE, and MAE parameters are 0.83, 8.50, 
and 

6.89 MPa. 

⎡ 

∑p

 

 

2 

 
(yi — y)(xi — x) ⎥ 

 
  

6.3. M5P tree model 

The M5P tree model (with value m) was developed [60–64]. In 
this 

⎣√√ n 
yi y 2 

n=1 

p 
xi x 2 

p=1 

work, the M5P-tree model tree is utilized to forecast the compressive 
strength of conventional concrete using 274 miX-design data. As 
noted 

before, 2/3 of the dataset was randomly chosen for training and the 

remaining 1/6 for testing, and 1/6 for validation prediction [41–44]. 

RMS
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(6) 

The training, testing, and validation sets were examined using 
various 

predictive accuracy criteria. The R2, MAE, and RMSE were all 

employed to assess the suggested performance of the model in this 

research. The 

SI = 
RMSE (7) 

M5P-tree technique divides the input space (independent variables) 

into two linear tree regression functions (marked LM1 and LM2). Y = 

= 

2 R 

c 
5.  Assessment criteria for the developed models 

σc =35 + 141.4* + 0.07*(C) — 0.27*(W) + 0.01*(S) + 0.42*(SP) 

(5) 

⎦ 
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b0 + 

yi    experimental value; xi    predicted value by the proposed 

model; the average value of experimental values; x average of 

the pre- 

dicted value, and n is the number of data points. 

6. Analysis and output 

The relationship between measured and predicted values of 

compressive strength for UHPFRC using four models was compared 

with 

b1*X1 b2*X2, where bo, b1, and b2 are linear regression constants 

representing the model parameters. The relation between predicted 

and measured compressive strength is shown in Fig. 12. The study 

dataset has a      15 % error line, indicating that all measured values 

fall within 

the      15 % error line. The coefficient of determination R2 for this 

model 

is 0.82, which indicates that the model performance is better than the 

NLR model. The statistical evaluation parameters, such as R2 and 

RMSE, 0.828 and 6.344 MPa, respectively (Fig. 12). 

Age (days) <= 14 use LM1. 

y 
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Fig.10.  Comparison between measured and predicted the σc of UHPFRC using Non-Linear Regression Model (NLR) (a) datasets and (b) residual error. 

 

Age (days) > 14 use LM2. 

LM num: 1 

σc =65.175 * w/c + 0.0063 * C — 0.1756 * W + 0.2007 * SP + 1.4205 * t 

+ 0.1261 * F + 0.3807 * T + 118.8463 

(10) 

LM num: 2 

σc =0.0219 * C — 0.2277 * W + 0.274 * SP + 0.0161 * SF + 0.2 * t 
(11)

 

+ 0.0913 * F + 0.2342 * T + 124.1994 

 
6.4. Artificial neural network (ANN) 

The network was fed training, testing, and validation data to 

forecast the σc values for the appropriate input parameters (Fig. 9). 

The devel- opment of an ANN model is an iterative process (such as 

the number of hidden layer neurons, learning rate, momentum, and 

iteration). Nine- teen neural networks were used in this study to 

represent hidden layers. The learning rate is 0.1, the training length is 

50,000, and the mo- mentum is 0.1. The number of epochs is also a 

hyperparameter that controls how many times the learning algorithm 

may process the 
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Fig.10. (continued). 

 
 

training dataset. The greater the number of epochs, the higher the 

R2 and the lower the RMSE as the error is minimized. The predicted 

versus actual values of σc are shown in Fig. 13. Choosing proper 

input variables is critical in system modeling [46]. The input variables 

picked should provide all necessary information about the goal values. 

Eleven distinct parameters were considered in this investigation to 

predict the σc of UHPFRC. Iterative development is required while 

creating an ANN model (such as the number of neurons, number of 

hidden layers, mo- mentum, learning rate, and iteration). One hidden 

layer, including siXteen neural networks, was used in this study, with a 

learning rate of 0.1, a momentum of 0.1, and a training length of 

50000. 

Furthermore, the   number   of   epochs   is   a   hyperparameter   
that 

specifies the number of times the learning algorithm may process 

the training dataset. The bigger the number of epochs, the higher the 

R2, the lower the RMSE, and the lower the MAE as the error is 

minimized. Based 

on statistical variables, the ANN model predicts the σc of UHPFRC 

more accurately than the NLR, M5P-tree, and pure quadratic models. 

ANN is a 

form of machine learning that employs a feed-forward algorithm with a 

high iteration rate to minimize the error percentage. R2, RMSE, and 

MAE (mean absolute error) parameters for this model are 0.977, 

3.197 MPa, 

and 2.275 MPa, respectively. Additionally, the SI value for 

the. current model is 0.023 for the training dataset (Fig. 

14). 
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Fig. 11.  Comparison between measured and predicted the σc of UHPFRC using Pure Quadratic Model (LR) (a) datasets and (b) residual error. 
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6.5. Comparison between developed 
models 

Fig. 11. (continued). 

 
The boX plot in Fig. 17 was also used to validate the model 

perfor- mance for conventional concrete’s measured and predicted 

compressive 

Three statistical parameters (R2, MAE, RMSE) were utilized to 

examine the efficiency of the suggested novel models, as described in 

earlier sections. Compared to the NLR, Pure Quadratic, and M5P-

tree 

models, the ANN model had the lowest RMSE and MAE and the 

high- est R2 values. Fig. 14 depicts the predicted σc vs the actual 
training and 

testing values for the all-developed model. The residual error for all 

models employing training, testing, and validating data sets is shown in 

Fig. 15, suggesting that the ANN model outperforms other models. 

The SI assessment parameter values for the proposed models 

during the training, validating, and testing phases are shown in Fig. 16. 

The SI values for all models and stages (training, testing, and 

validating) were less than 0.1, suggesting good performance for all 

models, as shown in Fig. 16. Furthermore, like the other performance 

factors, the ANN model has lower SI values than other models. The 

ANN model had lower SI value values in all phases than the NLR 

model, including 208 percent lower in training, 68 percent lower in 

testing, and 50 percent lower in invalidating. 

Finally, the M5P-tree model has a 3 percent higher SI value in the 

training phase and a 12.5 percent higher SI value in the validation 

phase, but a 60 percent lower SI value in the testing dataset than the 

pure quadratic model. This also demonstrated that the Pure quadratic 

model is more efficient and performs better when predicting the 

compressive strength of UHPFRC miXtures than the NLR and M5P 

tree models. 

strength. Between the first and third quartiles, a boX plot is 

constructed. The line inside the boX shows the median. The 

whiskers extend to the boX minimum. 

and maximum values from both ends. Thus, a boX and whisker 

plot is a distribution graph; it depicts how data are distributed around 

the median, skewed, or symmetrical. The results indicated that the 

ANN model has a better performance than the other models. 

 
6.6. Sensitivity investigation 

A sensitivity test was performed on the models to determine and 

assess the most influencing variable that affects the σc of UHPFRC 

combinations [56]. The ANN model was used to analyze sensitivity, an 

efficient method. Several separate training data sets were employed 

in the sensitivity analysis, each with a single input variable extracted 

at a 

time. The assessment parameters for each training dataset, such as 

R2, 

RMSE, and MAE, were established individually. The data show that 

the most important and affecting variables for σc prediction of 

UHPFRC combinations are curing temperature, fiber content, and 

curing time. As a result, increasing the curing time and fiber content 

enhanced the σc significantly. The impact of miX proportions on the σc 

of UHPFRC is shown in Fig. 18. Based on the RMSE curing 

temperature and w/c pa- rameters having the greatest and least impact 

on the output of the ANN model, respectively (Fig. 18), the same 

result was observed by [11]. 
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Fig. 12.  Comparison between measured and predicted the σc of UHPFRC using M5P-tree Model (LR) (a) datasets and (b) residual error. 
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Fig. 12. (continued). 

 
 

6.7. Limitation of this study 

Although this study is based on a scientific study of various 

concrete elements, it has several flaws that must be addressed. 

The important limitations are defined below: 

Machine learning models are a programming or scientific method 

where the training and testing of data are completed based on the 

capability of the models. While this investigation displays better accu- 

racy, the compressive strength of UHPFRC may be predicted using 

the regression model by testing and training data. This study is 

completely fiXated on models and gives a comprehensive compressive 

strength of UHPFRC prediction. However, for highly accurate, 

valuation-based collection of compressive strength data is very 

suitable for predicting the compressive strength. However, estimating 

the compressive strength of UHPFRC and traditional methods is not a 

high cost but a very time- consuming process compared to soft 

computing and machine learning models. 

7. Conclusions 

Models for compressive strength prediction that are precise and ac- 

curate will save time and money. The following conclusions were 

drawn based on the study and simulation of data derived from prior 

research to predict the compressive strength of UHPFRC for 274 

different miXed compositions: 

1. At 28 days of curing, the average compressive strength of 

UHPFRC was 140.1 MPa. The development of compressive 

strength was enhanced as the curing temperature increased. 

2. The compressive strength of UHPFRC was increased to 180 MPa 

after 7 days of curing, which is linearly proportional to a curing 

temper- ature range between 10 and 90 ◦C. 

3. Depending on the statistical analysis, the median percentage of 

Fiber content for the production of UHPFRC was 2 %. Furthermore, 

the percentage of fiber inside all miXes ranged between 0 and 6 %, 

with 3 

to 180 days of curing and sand content ranging between 292 to 

1923 kg/m3. 

4. Based on the correlation matriX, the direct relationship between the 

compressive strength of UHPFRC and the miX proportions was not 

observed. 

5. NLR model, pure quadratic model, M5P-tree, and ANN model 
were 

developed to predict the compressive strength of UHPFRC 

miXtures. The ANN model outperformed other training, testing, and 

validating data sets, with higher R2 values, lower RMSE, MAE, 

lower OBJ 

values, and SI values. 

6. All SI values were less than 0.1 for all models and phases (training, 

testing, and validating), indicating exceptional performance. 

Furthermore, the ANN model has lower SI value values in all 

phases than the NLR model. For example, 208 percent lower in 

training, 68 percent lower in testing, and 50 percent lower in 

invalidate. 

7. conventional test methods developed for normal concrete such as 

tensile splitting, flexural and compression tests were applied to 
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Fig. 13.  Comparison between measured and predicted the σc of UHPFRC using ANN Model (LR) (a) datasets and (b) residual error. 
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Fig. 13. (continued). 
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Fig. 14.  Comparison between developed models of σc of UHPFRC using (a) training dataset, and (b) testing 
dataset. 
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Fig. 15.  Residual error of the compressive strength of UHPFRC using training, testing, and validating dataset. 

 
 

 

Fig. 16.  Comparison of the SI performance parameter of different developed models for the training dataset and testing dataset. 
 

define the stress–strain relationship of UHPFRC and UHPC in both 

tension and compression. The influence of steel fibre content and 

age on these properties was also studied. The existing test 

methods for normal concrete were found unreliable in determining 

the stress–- strain relationship of UHPFRC in both tension and 

compression. In particular, for capturing the post-cracking 

behavior of the concrete. 

8. The ANN model has the lowest RMSE values compared to 
other training, testing, and validation datasets. The proposed 

models’ R2, RMSE, MAE, and boXplot functions indicated that 

the ANN model 



  

25 

 

 

had better centered mean square error and standard deviation 

performance. 

9. According to a sensitivity analysis, the curing temperature is the 

most critical input variable for forecasting the compressive 

strength of UHPFRC miXes. 

Availability of data and materials. 

The data supporting the conclusions of this article are included in 

the article. 
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Fig. 17.  BoX Plot of predicted compressive strength of UHPFRC using different models (a) training dataset, and (b) testing dataset. 
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Fig. 18.  Sensitivity analysis to investigate the effect of input variables on the 

σc 

based on RMSE by using the ANN model. 
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