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related to impaired muscle function amongst older adults 
may lead to an even greater risk of vitamin D deficiency 
[16, 17], which may further contribute to the development 
of sarcopenia in this already at-risk group.

Recently, our research group published results from 
Mendelian randomization (MR) analysis which provide evi-
dence for a potentially causal association of serum 25(OH)
D with total, trunk and upper body appendicular (arm) fat-
free mass (FFM) [18]. These findings are broadly in agree-
ment with some cross-sectional, population-based studies, 
which have shown a positive relationship between serum 
vitamin D status and fat free mass [3, 19, 20]. In a popu-
lation of 127 pre-frail and frail older people (79.0 ± 7.8 y) 
in the Netherlands, serum vitamin D status was associ-
ated with both appendicular lean mass (ALM) (β = 0.012, 
P = 0.05) and physical performance (β = 0.020, P < 0.05), 
after adjustment for confounding factors [3]. Similarly, in an 
adolescent population (15.3 ± 1.9 y) with (60%) and without 
(40%) type 1 diabetes from Poland, serum vitamin D levels 
correlated positively with LBM Z-scores (r = 0.3; P = 0.020) 
[19]. Furthermore, in a meta-analysis of 12 studies with a 
total of 22,590 subjects, individuals with sarcopenia were 
reported to have lower blood 25(OH)D concentrations than 
healthy controls [20].

      Low vitamin D status is associated with multiple chronic 
diseases [1] as well as reduced muscle mass and other 
aspects of musculoskeletal health [2, 3]. However, up to 
40% of the European population is believed to suffer from 
vitamin D (25(OH) D) insufficiency (25(OH) D level < 50 
nmol/L) and while prevalence of deficiency varies by geo-
graphical location, ethnicity and multiple other factors, it is 
widespread enough to be considered a global health issue 
[4, 5].

Reduced muscle mass and in particular sarcopenia, the 
age-associated decline in muscle mass, strength and qual-
ity [6], are associated with a multitude of chronic condi-
tions. These include cardiovascular disease (CVD) [7], type 
2 diabetes mellitus (T2DM) [8], frailty [9], increased risk 
of falls and fractures [10], cognitive decline and depression 
[11, 12], and all-cause mortality [13]. Of particular concern, 
the prevalence of vitamin D deficiency is believed to be par-
ticularly high (65%) amongst older adults in the UK [14, 
15]. Increased time spent indoors due to poor mobility, also 

	
 Richard Kirwan
r.p.kirwan@2018.ljmu.ac.uk

1	 Research Institute for Sport and Exercise Sciences, Liverpool 
John Moores University, Liverpool, UK

Abstract
Vitamin D insufficiency is a global health concern and low vitamin D status is regularly associated with reduced muscle 
mass and sarcopenia in observational research. Recent research using Mendelian randomization (MR) has highlighted 
the potentially causal positive effect of serum vitamin D (25(OH)D) on total, trunk and upper body appendicular fat-free 
mass (FFM). However, no such effect was found in lower body FFM, a result that mirrors the outcomes of some vitamin 
D intervention studies. Here we review the current literature on vitamin D, muscle mass and strength and discuss some 
potential mechanisms for the differing effects of vitamin D on upper and lower body FFM. In particular, differences in 
distribution of the vitamin D receptor as well as androgen receptors, in the upper and lower body musculature, will be 
discussed.

Keywords  Muscle mass · Mendelian randomization · 25-Hydroxyvitamin D · 25(OH)D · Sarcopenia · Lean mass · Fat-
free mass

Received: 23 March 2022 / Accepted: 30 September 2022
© The Author(s) 2022

Differential effects of vitamin D on upper and lower body fat-free 
mass: potential mechanisms

Richard Kirwan1

1 3

http://orcid.org/0000-0003-4645-0077
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-022-07998-7&domain=pdf&date_stamp=2022-11-3


Molecular Biology Reports

Additionally, some interventional studies have shown 
increases in muscle mass upon supplementation with vita-
min D [21, 22]. Ceglia et al. investigated the effects of 
vitamin D supplementation (4000 IU for 4 months) in 21 
mobility-limited women (78 ± 5 y). The intervention group 
(n = 9) was observed to experience a 10.6% ± 20.0% increase 
in muscle fibre cross-sectional area, compared with the pla-
cebo group which experienced a 7.4% ± 18.9% decrease 
(P = 0.048) [21]. In a study of 77 overweight and obese 
women (38 ± 8.1 y), 12 weeks of supplementation with vita-
min D3 (25 µg per day) lead to a 1.8 ± 2.1 kg increase in 
FFM in the supplement group compared to a 0.4 ± 2.1  kg 
increase in the placebo group (p < 0.001) [22].

Indeed, there are a number of potential mechanisms by 
which vitamin D may exert its effects on skeletal muscle 
including the regulation of expression of genes involved in 
muscle growth, via the vitamin D receptor (VDR), as well 
as non-genomic pathways involved in skeletal muscle intra-
cellular signaling [23]. However, of particular note from our 
MR analysis was the fact that genetically determined serum 
25(OH)D had no statistically significant positive association 
with lower body appendicular (leg) FFM.

In our paper [18] we acknowledged that some cross-
sectional research has revealed similar findings i.e. stron-
ger associations between vitamin D and various measures 
of muscle mass or strength in the upper compared with 
lower body appendages [3, 24]. For example, while serum 
vitamin D status was associated with total ALM (β = 0.012, 
P = 0.05) in pre-frail and frail older people (79.0 ± 7.8 y), no 
statistically significant association was observed with leg 
lean mass alone (β = 0.009, P = 0.079) [3]. Similarly, in a 
sample of 419 men and women (age range 20–76 y), serum 
vitamin-D was observed to be associated with both isomet-
ric and isokinetic strength of the arms (P < 0.05 for all mea-
sures of elbow flexion and extension) [24]. However, serum 
vitamin-D was only associated with isometric strength of 
the legs after multivariate regression (P > 0.05 for isokinetic 
knee extension and flexion) [24]. It should also be noted 
that studies showing vitamin D supplementation improving 
lower body strength also exist. In a 6-month trial of vita-
min D (90,000-150,000 IU per month) and calcium supple-
mentation, those receiving supplementation experienced an 
increase in hip flexor strength (16.4% p = 0.0001) and knee 
extension strength (24.6% p = 0.0007) [25]. The discrepancy 
in the relationship between leg and arm muscle properties 
with vitamin-D deserves further consideration and here we 
elaborate on putative mechanisms.

Vitamin D receptor and muscle fibre type

Murine cell models have demonstrated that skeletal muscle 
is a direct target for vitamin D via the VDR, highlighting the 
importance of vitamin D for muscle hypertrophy [26]. VDR 
gene knockout (VDR -/-) mice have been observed to have 
smaller muscle fibre sizes [27, 28] and to have significantly 
weaker grip strength than controls [28] with similar effects 
observed due to diet-induced vitamin D deficiency [28]. In 
rats, overexpression of VDR is known to stimulate muscle 
hypertrophy through multiple potential mechanisms includ-
ing increased protein synthesis, translational efficiency, 
ribosomal expansion and upregulation of genes related to 
extracellular matrix (ECM) remodeling [29]. As part of the 
same research study, VDR expression was quantified in 
human subjects who had performed whole body resistance 
exercise for 20 weeks and VDR expression was observed to 
correlate significantly with muscle hypertrophy [29]. Fur-
thermore, it has been proposed that lower vitamin D levels 
in the elderly may lead to reduced expression of VDR due to 
downregulation of the receptor [30]. This could potentially 
reduce protein synthesis leading to a reduction in fat-free 
mass and specifically, the decline in type 2 fibres charac-
teristic of sarcopenia [31, 32]. Skeletal muscle consists of 
different muscle fibre types which are broadly classified as 
type 1 and types 2A, 2X, and 2B, based on different myosin 
heavy chain (MHC) composition [33]. Indeed, vitamin D 
supplementation has been shown to activate VDR in skel-
etal muscle tissue, stimulating protein synthesis [34] and 
to increase the size and number of type 2A muscle fibres 
in older adults when supplemented daily with calcium for 
3–6 months [35]. in vitamin D-insufficient women, Ceg-
lia et al. [21] reported that 4 months of daily vitamin D3 
(4000IU), lead to a 10% increase in muscle fibre size and a 
30% increase in intramyonuclear VDR concentration, par-
ticularly in type 2 muscle fibres [21]. However, there was 
no difference between supplemented and control groups 
in measures of knee extension strength and short physical 
performance battery score, nor were there any measures of 
muscle mass [21].

Fibre types are known to be differentially distributed 
in skeletal muscle throughout the body [36]. For exam-
ple biceps brachii have been reported to contain a higher 
proportion of type 2 fibres [37], while the knee extensors 
are known to have higher proportion of type 1 fibres [38]. 
Broadly speaking, upper body appendicular skeletal muscle 
has a higher proportion of type 2 fibres with a higher pro-
portion of type 1 fibres found in human lower body appen-
dicular muscle [36, 39]. A recent study by Srikuea et al. 
reported higher levels of the VDR in predominantly type 2 
muscles (plantaris) compared to predominantly type 1 mus-
cles (soleus) in a mouse model [40]. These findings may 
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suggest that a factor related to fibre type composition may 
contribute to VDR expression in different muscles. Interest-
ingly, in a rat model of VDR-overexpression, type 2x fibres 
displayed a greater content of satellite cells per fibre than 
controls (0.024 ± 0.007 per fibre vs. 0.014 ± 0.006 per fibre, 
respectively, P < 0.05) [29]. Satellite cell accumulation is 
believed to contribute to the hypertrophic response to resis-
tance exercise [41].

One could speculate that the greater density of VDR in 
type 2 muscle fibres, found in proportionally greater quan-
tity in upper body appendicular muscle compared to lower 
body, may lead to the positive effect of vitamin D status on 
arm fat-free mass observed in our MR analysis.

Testosterone and androgen receptors

Other potential causes for discrepancies in the effect of vita-
min D on upper and lower appendicular muscles should also 
be considered. For example, another difference between 
upper and lower body musculature is the content of andro-
gen receptors (AR) which have been reported to be higher in 
upper-body muscles (trapezius) compared with lower body 
muscles (vastus lateralis) [42]. It is feasible to imagine that 
this difference in ARs might lead to differential effects of 
androgen hormones such as testosterone in upper and lower 
body skeletal muscle. Vitamin D is thought to play a role in 
the development and expression of genes in the testes [43], 
including the production of sex-steroid hormones such as 
testosterone [44]. Research using isolated human adult pri-
mary testicular cells has revealed that treatment with vita-
min D3 results in an upregulation of enzymes involved in 

androgen production as well as an increase in testosterone 
synthesis [44].

In men, higher serum 25(OH)D (≥ 75 nmol/L) has also 
been associated with significantly higher levels of testoster-
one [45–47], an androgen hormone associated with muscle 
mass, and Free Androgen Index (FAI) compared to those 
with lower levels [46]. However, some cross-sectional 
research has found no such association [48] or even a nega-
tive association between serum vitamin D levels and circu-
lating free testosterone levels [49]. Furthermore, in a trial 
of 54 men (mean age 49.4 years) with insufficient vitamin 
D levels (< 50 nmol/L), daily supplementation of vitamin 
D (3,332 IU) for 1 year lead to significant increases in both 
total and free testosterone [50]. It could be speculated that 
the testosterone-stimulating effects of vitamin D may have 
a greater effect on upper body lean mass due to a poten-
tially greater content of androgen receptors in upper body 
musculature [42]. Figure 1 illustrates the potential VDR and 
androgen receptor dfferences of upper and lower body skel-
etal muscle in response to serum 25(OH)D.

Metabolic mechanisms

Additionally, there are a number of metabolic differences 
between these upper and lower body muscle groups, par-
ticularly related to fat utilization. Specifically, compared 
to legs, arm muscles have been reported to display lower 
fat oxidation capacity [51], lower 3-hydroxy-acyl-CoA-
dehydrogenase (HAD) activity (necessary for fatty acid 
oxidation) [39], lower intramyocellular lipid (IMCL) con-
tent [52], and higher exercise-induced lactate release [53]. 
While these factors are not directly related to fat-free mass, 
they highlight some considerable differences in upper and 
lower body skeletal muscle metabolism, which could have 
implications for the effects of vitamin D status on muscle 
size in the upper and lower extremities.

A growing body of literature highlights the importance 
of serum vitamin D levels in muscle mass hypertrophy and 
maintenance i.e. body compositional changes that are asso-
ciated with lower morbidity and mortality rates [7–13]. As 
the aging process is known to decrease the amount of vita-
min D produced in the skin [54], the elderly, a population 
already at considerable risk of sarcopenia [6], may be even 
more likely to suffer muscle loss due, in part, to vitamin 
D deficiency. Considering the globally widespread preva-
lence of vitamin D insufficiency [4, 5], methods for attain-
ing and maintaining sufficient serum 25(OH)D levels in the 
population deserve investigation and implementation. Fur-
thermore, current research highlights that lower leg muscle 
function in particular is associated with greater risk of some 
chronic diseases [55]. If it is indeed the case that vitamin D is 

Fig. 1  Potential mechanisms for differential upper and lower body 
muscle property responses to increased serum 25(OH)D levels. Upper 
body skeletal muscle contains a proportionally greater proportion of 
type 2 muscle fibres which are known to have a higher concentration of 
the vitamin D receptor. Vitamin D is also associated with elevated tes-
tosterone levels which interact with skeletal muscle androgen recep-
tors, also higher in upper body skeletal muscle. Created with BioRen-
der.com
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of less benefit to lower body muscle mass and strength, then 
some vitamin-D-related strategies to prevent or ameliorate 
sarcopenia may need to be reconsidered. The discrepancies 
in the effects of vitamin D on arm and leg muscle mass and 
strength, reported in our recent MR analysis and in observa-
tional and intervention studies warrant further investigation 
to better understand their potential mechanisms.
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