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Enhanced survival prediction using 
explainable artificial intelligence 
in heart transplantation
Paulo J. G. Lisboa1,4, Manoj Jayabalan1, Sandra Ortega‑Martorell1, Ivan Olier1, 
Dennis Medved2 & Johan Nilsson2,3,4*

The most limiting factor in heart transplantation is the lack of donor organs. With enhanced 
prediction of outcome, it may be possible to increase the life‑years from the organs that become 
available. Applications of machine learning to tabular data, typical of clinical decision support, pose 
the practical question of interpretation, which has technical and potential ethical implications. In 
particular, there is an issue of principle about the predictability of complex data and whether this is 
inherent in the data or strongly dependent on the choice of machine learning model, leading to the 
so‑called accuracy‑interpretability trade‑off. We model 1‑year mortality in heart transplantation data 
with a self‑explaining neural network, which is benchmarked against a deep learning model on the 
same development data, in an external validation study with two data sets: (1) UNOS transplants 
in 2017–2018 (n = 4750) for which the self‑explaining and deep learning models are comparable in 
their AUROC 0.628 [0.602,0.654] cf. 0.635 [0.609,0.662] and (2) Scandinavian transplants during 
1997–2018 (n = 2293), showing good calibration with AUROCs of 0.626 [0.588,0.665] and 0.634 
[0.570, 0.698], respectively, with and without missing data (n = 982). This shows that for tabular data, 
predictive models can be transparent and capture important nonlinearities, retaining full predictive 
performance.

Heart transplantation is life-saving for patients with end-stage heart disease. A limiting factor is the lack of donor 
organs. Recently, the United Network for Organ Sharing (UNOS) organ allocation system has been changed to 
a more granular distinction of medical urgency, resulting in lower waitlist mortality. However, recent analysis 
has shown worse posttransplantation  survival1. To reduce posttransplantation mortality, the factors affecting 
posttransplantation survival must be better  understood2.

Artificial intelligence is experiencing explosive growth in clinical applications from specialist data processing, 
such as radiology and text mining, to diagnostic and prognostic risk stratification with tabular data typically 
comprised of clinical factors, demographics and multiple indicators derived from physiological measurements. 
This opens the potential for more precise predictions that add to the evidence base used for clinical decision 
making. Since the value of quantitative outcome models is highest where data are complex and noisy, this raises 
the question of a trade-off between model complexity and predictive performance, particularly in real-world 
settings with high stake outcomes. Recent studies in organ transplantation have shown that machine learning 
(ML) techniques have the potential to improve outcomes for transplant recipients. However, work is needed to 
improve the interpretation of these algorithms, ensure generalizability through external validation, and create 
an infrastructure to enable clinical  integration3.

This study is about the prioritisation of patients to receive a scarce and highly valuable resource, a donor’s 
heart. For the clinician, the first priority is to have access to the most accurate predictive model. Linked to this is 
the ethical question of justifying the choice of the recipient based on all of the available evidence, now augmented 
with an AI-based prediction.

A recent review indicates that there is no appreciable performance loss for sparse, linear-in the-parameters 
models compared with deep learning applied to tabular data, that is to say flat, unstructured data with a mixture 
of largely independent continuous and discrete variables, widely used in clinical decision  making4. This is espe-
cially the case when the signal-to-noise ratio is low. This finding echoes the view that machine learning models 
for high stake decisions should be interpretable by design as part of a drive to encourage responsible machine 
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learning  governance5. Model transparency brings additional advantages when seeking to find and fix problems 
in data sets, such as control of bias, which is a key consideration for observational data frequently used in cross-
sectional and cohort  studies6.

Among the algorithmic challenges for interpretable machine learning, generalized additive models (GAMs) 
are attractive, as they are inherently interpretable, certainly to the same level of understanding as popular risk 
stratification algorithms such as logistic  regression5. Additive models have generic value for  interpretability7 
and meet accepted criteria for robust interpretability laid out in the following  desiderata8—explicitness/intel-
ligibility: “Are the explanations immediate and understandable?”; faithfulness: “Are relevance scores indicative of 
"true" importance?”; and stability: “How consistent are the explanations for similar/neighbouring examples?”. In 
addition, GAMs can also achieve parsimony/sparsity “Do the explanatory variables comprise a minimal set?” and 
consistency: “How robust are the explanations to perturbations in the data?”.

The challenge is to maintain the well-known data fitting capabilities of neural networks without sacrificing 
predictive  performance9.

The main novel contribution of the paper is to show, with a substantive external validation study, that this 
question can be addressed by a method to efficiently derive a self-explaining neural network model while pre-
serving the predictive performance of a much larger deep learning model. We derive an accurate predictor in 
the form of a sparse model with meaningful features constructed through an iterative process. The method is 
generic for tabular data in real-world applications where non-linear effects are estimated in the presence of 
significant levels of noise.

The motivation for the Partial Response Network (PRN) is that multivariate functions can be written as a 
summation of functions of fewer  variables6,10. In our paper this is done in a novel way by utilising the formal 
framework of functional Analysis of Variance (ANOVA) decompositions where the component functions have 
interesting theoretical  properties11. In particular, they are orthogonal with respect to a given metric, which pro-
vides a principled way to separate univariate from bivariate terms. Since our component functions are identified 
from a trained neural network, we can proceed to model selection without having to also estimate the terms of the 
GAM in parallel. If the metric is a Dirac function, then the component functions in the ANOVA decomposition 
are derived from cuts of the multivariate function at a given point, which we choose to be the overall median of 
the data. This is known as an anchored ANOVA decomposition. In application to medical data, the key prin-
ciple is that the derived functions of one or two variables represent main effects and pairwise interactions that, 
between them, can reasonably comprise much of the discriminant information that is required of the model. 
The methodology to derive and optimize these functions is explained in more detail in the “Methods” section.

The first novel contribution of this paper is to benchmark the classification performance of the PRN model 
with that of a previously published deep learning model (International Heart Transplant Survival Algorithm 
[IHTSA]) and a traditional scoring model (Index for Mortality Prediction After Cardiac Transplantation 
[IMPACT])12,13. This study aims to assess the relative performance of the interpretable model and a deep neural 
network with two external cohorts, one comprising recent heart transplants from the UNOS data and the other 
with transplant data from a regional database in Scandinavia. This is a gold standard benchmarking study since it 
uses three data cohorts: 1997–2013 to train the model and 2014–2016 to find the hyperparameters that optimise 
model performance, but a subsequent cohort of patients operated on in 2017–2018 to calculate the generalisation 
performance and compare it between the different models.

The second novelty is to verify consistency between the independent effects identified by the PRN for indi-
vidual variables and pairs of variables and clinical expertise. Our study seeks to move the focus of discussion of 
machine learning models of clinical risk from mainly classification performance, where different models often 
have comparable performance, to clinical insights coupled with performance, meaning interpretability without 
compromising predictive accuracy.

A further benchmark included for completeness is to compare against an alternative interpretable method 
from the machine learning literature, Explainable Boosting Machines (EBMs)14. In common with the PRN, this 
uses the structure of a GAM. However, it models the univariate and bivariate component functions using rule 
ensembles, resulting in staggered rather than smooth functions. Moreover, there is no constraint of orthogonal-
ity between the component functions, as is the case in the ANOVA decomposition that underpins the PRN. The 
model results are compared in the “Discussion” section.

Results
Patient demographics in all cohorts/population. Clinically relevant information about transplanted 
patients collected from the UNOS database between 1997 and 2016 was used for model development (deriva-
tion cohort [DC], n = 31,315) and test cohort ([TC], n = 6120). The third cohort of patients transplanted between 
2017 and 2018 was used as an external blinded validation cohort (VC, n = 4750) (Fig. 1). The derivation and 
validation cohorts comprised 296,451 patient years (median survival time 12.1 years, IQR 5.3–19.2). The 1-year 
mortality was 11.8% (n = 4978). The three study cohorts, DC, TC, and the blinded external VC, have a different 
distribution of most of the included variables. As shown in Tables 1, 2, the patients were older, heavier, and pre-
sented with more comorbidities, such as diabetes mellitus and need for dialysis, in the VC group than in the DC 
group. Furthermore, the presence of critical state variables such as ECMO, inotropic support, and mechanical 
assistance were more common in VC. Despite this, the 1-year mortality was significantly lower in the VC (9.8%) 
compared with TC (10.8%) and DC (12.3%), p < 0.001 (Kruskal–Wallis test). On the other hand, the duration 
of donor heart ischemia, infection, and need for a ventilator before transplantation were lower in the VC group 
than in the DC group.

The starting pool of inputs for model selection by the PRN consists of variables commonly used to predict 
1-year mortality (recipient age, donor age, creatinine, ischemic time, ventilator at orthotopic heart transplantation 
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(OHT), diagnosis of nonischemic disease in recipients, recipient female sex, infection within 2 weeks, history 
of prior transplantation).

Supplementary Figs. 1, 2, 3, 4 shows the deviance and values of beta for both Lasso models, one derived from 
the original MLP and the other from the PRN model derived from it. The duration of ischemia came in early on 
as part of a core set of five variables (donor age, ischemic time, creatinine, ventilator at OHT, transplant year) 
selected even for very high regularisation. This indicates that the duration of ischemia, together with the other 
variables above, is consistently important.

The final PRN-Lasso model includes nine univariate effects: recipient age, donor age, creatinine, ischemic 
time, ventilator at OHT, diagnosis of nonischemic disease in recipients, recipient female sex, infection within 
2 weeks, and transplant year, together with a 2-way interaction involving recipient age and diagnosis of ischemic 
cardiomyopathy (ICM) in recipients. The AUROC for the prediction of 1-year mortality was 0.653 (95% CI 
0.643–0.662) in DC and 0.605 (95% CI 0.582–0.628) in TC. The partial response additive contribution to the 
logarithm of the odds of death in year one for each univariate effect is presented in Fig. 2a–i. As illustrated in 
Fig. 2a, the recipient age contributes to the model most at younger and older ages, so it has a U-shape, whereas 
the donor age contribution is monotonically increasing and close to linear (Fig. 2b). Figure 2c identifies a critical 
boundary for the influence of Creatinine on the 1-year mortality risk. It is expected that unusually high values 
of this variable are associated with an exceptionally high contribution to the mortality risk. The sparsity of data 
means that there will be a larger confidence interval associated with the risk estimate for each individual arising 
from this variable at very high values. The duration of ischemia starts to contribute significantly after three and 
a half hours (Fig. 2d). Figure 2e–h show functions that are evaluated only at binary values. Therefore, they in 
effect calculated odds-ratios for the least populated binary values of the variables against their median values. 
Figure 2i shows the effect of transplant era.

The 2-way interaction is of interest, as it suggests a protective effect for ischemic disease in younger recipients, 
in contrast to the expected increase in mortality for older age. A crude calculation of the hazard ratio for 1-year 
mortality by filtering recipients in the age groups 18–40 and 60–70 shows values of 0.117 and 0.124, respectively, 
lower than and marginally higher than the overall prevalence of 0.123 in the DC. This is consistent with the 2-way 
effect shown in Fig. 2j, which was found to be statistically significant by Lasso.

Predictive performance. As shown in Table 3 and Fig. 3, the discrimination (AUROC) for the PRN-Lasso 
including 10 partial responses was similar for the IHTSA and IHTSA recalibrated models in the blinded external 
VC, 0.628 (CI 95%: 0.602–0.654) vs 0.635 (CI 95%: 0.609–0.662), p = 0.488, and 0.643 (CI 95%: 0.617–0.669), 
p = 0.197. The Hosmer–Lemeshow (HL) chi-square in VC was 15.01 for the PRN model (p = 0.135), suggesting 
that there was good calibration (Fig. 4a). As shown in Fig. 4b–d, the calibration for the IHTSA and IMPACT 
models was poor (p < 0.001). The discrimination for the IHTSA and IHTSA recalibrated models compared with 
the IMPACT model was significantly superior, p = 0.023 and p = 0.004, respectively.

The machine learning benchmarking method applied to the external cohort 2017–18, EBM, has a high esti-
mated ROC area of 0.634 (CI 95%: 0.607–0.660), selecting the following variables: donor age, ischemic time, 
recipient age, creatinine, infection within 2 weeks, ventilator at OHT, female gender of the recipient, transplant 
era and diagnosis of ICM. These variables are entirely consistent with those selected by the PRN, lacking only 
the interaction between the diagnosis of ICM and NICM.

Further external validation of the PRN-LASSO model was carried out using a regional data set from the 
Scandia Thoracic Transplantation Database from Scandinavia (n = 2293). This time, the timeframe overlaps as 
the transplants took place over the period 1997–2018. There is also a significant proportion of missing data in 
all but 982 rows of data. Missing values were imputed using the median value for that column, as in data stand-
ardization, this maps onto zero so that missing values do not contribute to the model prediction. The AUROC 
for the full data set imputed was 0.626 (CI 95%: 0.588–0.665), and for observed values, it was only 0.634 (CI 

Figure 1.  Flow chart. Flow diagram for recipients collected from OPTN. OTPN denotes Organ Procurement 
and Transplantation Network.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19525  | https://doi.org/10.1038/s41598-022-23817-2

www.nature.com/scientificreports/

N

Ext. validation 
2017–2018
N = 4750

Test 2014–2016
N = 6120

Train/validation 
1997–2013
N = 31,315 Test statistic

Age (yrs)*,#,† 42,185 47 57 64
54 ± 13

47 56 63
54 ± 13

46 55 61
52 ± 12 F2 42182 = 91, P < 0.0012

Female gender*,† 42,185 26%1244⁄4750 26%1562⁄6120 24%7423⁄31,315 χ2
2 = 20, P < 0.0011

Height (cm)* 42,076 167.6 175.0 180.3
173.8 ± 10.1

167.6 175.0 180.3
173.8 ± 10.0

167.6 175.2 180.3
173.9 ± 9.7 F2 42073 = 1.7, P = 0.192

Weight (kg)* 42,091 71 84 97
84 ± 18

70 83 95
83 ± 18

69 80 92
81 ± 17 F2 42088 = 109, P < 0.0012

Race# 42,185 χ2
8 = 377, P < 0.0011

Asian 3.6%169⁄4750 3.6%222⁄6120 2.3%709⁄31,315

Black 22.8%1082⁄4750 22.5%1374⁄6120 16.5%5168⁄31,315

Hispanic 8.8%420⁄4750 8.7%532⁄6120 6.8%2115⁄31,315

Other 1.2%57⁄4750 1.3%78⁄6120 1.0%310⁄31,315

White 63.6%3022⁄4750 64.0%3914⁄6120 73.5%23,013⁄31,315

Diagnosis*,#,† 42,185 χ2
10 = 531, P < 0.0011

Congenital 3.1%145⁄4750 2.8%171⁄6120 2.4%739⁄31,315

Graft failure 2.7%126⁄4750 2.8%171⁄6120 3.1%975⁄31,315

ICM 30.7%1460⁄4750 34.2%2094⁄6120 43.8%13,711⁄31,315

NICM 60.1%2856⁄4750 57.0%3488⁄6120 46.7%14,616⁄31,315

Other 2.3%111⁄4750 1.9%118⁄6120 2.0%617⁄31,315

Valve 1.1%52⁄4750 1.3%78⁄6120 2.1%657⁄31,315

Diabetes mellitus* 41,700 29%1382⁄4748 29%1780⁄6114 24%7313⁄30,838 χ2
2 = 124, P < 0.0011

Infection within 
2 weeks*,#,† 42,181 9.1%430⁄4750 10.8%662⁄6120 10.7%3343⁄31,311 χ2

2 = 12, P = 0.0021

Dialysis# 41,359 4.7%222⁄4748 4.2%256⁄6117 3.3%1020⁄30,494 χ2
2 = 27, P < 0.0011

Previous blood transfu-
sion* 39,870 21%1009⁄4732 27%1598⁄5993 22%6387⁄29,145 χ2

2 = 69, P < 0.0011

Previous organ transpl.* 42,185 3.0%142⁄4750 3.0%182⁄6120 3.4%1078⁄31,315 χ2
2 = 5.4, P = 0.0691

Prior cardiac surgery 
(non-OHT)* 29,165 50%2380⁄4750 56%3416⁄6120 48%8727⁄18,295 χ2

2 = 121, P < 0.0011

Medical condition at 
OHT* 42,185 χ2

4 = 78, P < 0.0011

Home 53%2516⁄4750 54%3296⁄6120 49%15305⁄31,315

Hospital 16%759⁄4750 17%1050⁄6120 18%5478⁄31,315

ICU 31%1475⁄4750 29%1774⁄6120 34%10532⁄31,315

Ventilator at OHT*,#,† 42,185 0.9%42⁄4750 0.9%58⁄6120 2.6%807⁄31,315 χ2
2 = 105, P < 0.0011

ECMO* 42,185 1.3%64⁄4750 0.8%50⁄6120 0.5%150⁄31,315 χ2
2 = 54, P < 0.0011

IABP*,# 42,185 8.7%414⁄4750 7.0%428⁄6120 5.3%1667⁄31,315 χ2
2 = 99, P < 0.0011

VAD at OHT*,# 36,831 χ2
10 = 3317, P < 0.0011

LVAD 45.6%2168⁄4750 45.5%2787⁄6120 19.4%5032⁄25,961

LVAD + RVAD 1.5%71⁄4750 2.0%121⁄6120 2.4%625⁄25,961

No device 51.9%2463⁄4750 50.7%3102⁄6120 68.5%17,772⁄25,961

RVAD 0.2%11⁄4750 0.2%10⁄6120 0.2%54⁄25,961

TAH 0.8%37⁄4750 1.6%100⁄6120 0.8%196⁄25,961

Unknown device 0.0%0⁄4750 0.0%0⁄6120 8.8%2282⁄25,961

PVR (wood units)* 34,075 1.4 2.0 2.8
2.3 ± 1.4

1.4 2.0 3.0
2.4 ± 1.5

1.4 2.1 3.1
2.5 ± 1.7 F2 34072 = 23, P < 0.0012

SPP (mmHg)* 39,300 29 37 47
39 ± 13

30 38 49
40 ± 14

32 41 52
42 ± 14 F2 39297 = 197, P < 0.0012

Creatinine (μmol/l)*,#,† 41,367 85 106 133
120 ± 74

85 106 133
119 ± 69

88 106 133
120 ± 68 F2 41364 = 4.8, P = 0.0082

Serum bilirubin 
(μmol/l)*,# 40,640 6.8 12.0 17.1

16.6 ± 31.8
8.6 12.0 18.8
17.0 ± 33.1

8.6 13.7 22.2
20.9 ± 41.6 F2 40637 = 313, P < 0.0012

PRA > 10%* 36,978 24%916⁄3773 22%1149⁄5287 15%4188⁄27,918 χ2
2 = 306, P < 0.0011

HLA-DR mismatch* 27,383 χ2
4 = 18, P = 0.0011

0 4.6%156⁄3410 5.2%226⁄4312 4.2%830⁄19,661

1 37.6%1283⁄3410 38.1%1642⁄4312 40.1%7883⁄19,661

2 57.8%1971⁄3410 56.7%2444⁄4312 55.7%10,948⁄19,661

ABO blood type* 42,185 χ2
6 = 36, P < 0.0011

A 40.1%1903⁄4750 38.9%2382⁄6120 42.2%13,222⁄31,315

Continued
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95%: 0.570–0.698). It is of interest to note that the calibration of the model developed with UNOS data, when 
applied to the regional data, is almost perfect (Supplementary Figs. 5 and 6).

Test cases in the external validation cohort. The self-explaining neural network has a modular form 
that, for each individual row of data, calculates separate univariate or bivariate functions. These functions are 
then added to form the logit of the model prediction. In the case of the GAMs, the component functions are 
first orthogonalized using an ANOVA decomposition. In both cases, the form of Equation 1 shows that the 
logit of the prediction is the sum of component functions, which we call partial responses, which are explicitly 
shown in Fig. 2. For an individual prediction, the input values for the variables in the functions in Fig. 2 gen-
erate contributions that are then added to make the logit that, in turn, is put through the sigmoid function to 
predict the 1-year mortality prediction. A detailed example for a particular patient is shown in Supplementary 
Tables 1 and 2. The predictions for a patient are made out of the following contributions used in each of the plots 
(Fig. 2). Note that the contributions to the logit are the partial responses. They are referenced to the median 

Table 1.  Recipient baseline characteristics for the study cohorts. a b c represents the lower quartile a, the 
median b, and the upper quartile c for continuous variables. x ± s represents X ± 1 SD. N is the number of non-
missing values. Variables included in * IHTSA, # IMPACT, and † PRN model. SPP, Systolic pulmonary pressure; 
PRA, panel reactive antibody level, HLA, human leucocyte antigen; OHT, orthotopic heart transplantation; 
VAD, ventricular assist device; LVAD, left ventricular assist device; RVAD, Right ventricular assist device; TAH, 
total artificial heart; ECMO, extracorporeal membrane oxygenation. ICU, Intensive care unit; NICM, non-
ischemic cardiomyopathy; ICM, ischemic cardiomyopathy; PVR, pulmonary vascular resistance; IABP, intra 
aortic balloon pump. Tests used: (1) Pearson test; (2) Kruskal–Wallis test.

N

Ext. validation 
2017–2018
N = 4750

Test 2014–2016
N = 6120

Train/validation 
1997–2013
N = 31,315 Test statistic

AB 5.2%248⁄4750 6.0%369⁄6120 5.3%1661⁄31,315

B 15.4%730⁄4750 15.4%943⁄6120 13.9%4352⁄31,315

O 39.3%1869⁄4750 39.6%2426⁄6120 38.6%12,080⁄31,315

Table 2.  Donor baseline characteristics for the study cohorts. a b c represents the lower quartile a, the 
median b, and the upper quartile c for continuous variables. x ± s represents X ± 1 SD. N is the number of non-
missing values. Variables included in * IHTSA, # IMPACT, and † PRN model. CNS, Central nervous system 
tumours. Tests used: 1Pearson test; 2Kruskal–Wallis test.

N
Ext. validation 2017–2018
N = 4750

Test 2014–2016
N = 6120

Train/val. 1987–2013
N = 31,315 Test statistic

Donor age (yrs)*,† 42,185 24 31 40
33 ± 11

23 31 41
32 ± 11

21 30 42
32 ± 12 F2 42182 = 18, P < 0.0012

Donor female gender* 42,185 30%1443⁄4750 30%1828⁄6120 29%9214⁄31,315 χ2
2 = 2.1, P = 0.361

Donor height (cm)* 42,144 168.0 175.0 180.3
174.0 ± 9.6

167.6 175.0 180.3
173.8 ± 9.6

167.6 175.3 182.9
174.6 ± 9.5 F2 42141 = 19, P < 0.0012

Donor weight (kg)* 42,179 70 81 95
84 ± 19

70 80 93
83 ± 20

68 79 90
81 ± 18 F2 42176 = 69, P < 0.0012

Donor ABO blood type* 42,184 χ2
6 = 7.7, P = 0.261

A 36.7%1745⁄4750 35.3%2163⁄6120 36.4%11,413⁄31,314

AB 2.1%99⁄4750 2.5%154⁄6120 2.3%706⁄31,314

B 10.9%520⁄4750 11.3%690⁄6120 10.5%3295⁄31,314

O 50.2%2386⁄4750 50.9%3113⁄6120 50.8%15,900⁄31,314

Donor cause of death* 42,149 χ2
8 = 2669, P < 0.0011

Anoxia 38.2%1813⁄4748 29.8%1823⁄6118 12.3%3850⁄31,283

Cerebrovascular/stroke 14.8%703⁄4748 19.1%1166⁄6118 25.6%8000⁄31,283

CNS tumor 0.5%23⁄4748 0.3%21⁄6118 1.0%313⁄31,283

Head trauma 44.6%2119⁄4748 48.6%2971⁄6118 59.3%18,544⁄31,283

Other 1.9%90⁄4748 2.2%137⁄6118 1.8%576⁄31,283

Ischemic time (min)*,† 40,394 138 184 223
183 ± 64

143 186 227
187 ± 62

146 188 229
190 ± 63 F2 40391 = 23, P < 0.0012

Recipient-donor height 
ratio* 42,037 0.963 1.000 1.036

1.000 ± 0.056
0.967 1.000 1.040
1.002 ± 0.057

0.958 1.000 1.036
0.998 ± 0.061 F2 42034 = 16, P < 0.0012

Recipient-donor weight 
ratio* 42,086 0.87 1.03 1.18

1.03 ± 0.23
0.88 1.02 1.17
1.03 ± 0.22

0.88 1.02 1.16
1.02 ± 0.21 F2 42083 = 2.6, P = 0.0712
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Figure 2.  Partial response representing the additive contribution to the logarithm of the odds of death in year 
one. The partial response representing the additive contribution of: (a) recipient age (≥ 18 yrs), (b) donor age 
(≥ 15 yrs), (c) creatinine, (d) ischemic time, (e) ventilator at OHT, (f) diagnosis: nonischemic cardiomyopathy, 
(g) recipient female gender, (h) infection within 2 weeks, and (i) transplantation era to the logarithm of the odds 
of death in year one i.e. the logit. The black line shows the initial estimate of the partial response directly from 
the ANOVA decomposition, and the red curve is the same function recalibrated in the second step of back error 
propagation. Overlaid in the figure is the histogram of the input variable. (j) shows the partial response from 
the bivariate effect between recipient age and diagnosis of ICM. MLP denotes the partial responses obtained 
from the original neural network; PRN denotes the partial responses obtained after subsequent retraining of the 
SENN in Fig. 6.
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value of the variable; that is, the partial response is 0 when the variables are at their median value. P(death in 
year 1|x) = sigmoid function of (f1(donor_age) + f2(ischemic_time) + … + f9(diagnosis:NICM) + f10((recipient_age 
x diagnosis:ICM)) + intercept). In the PRN-Lasso model, there are nine univariate effects and one 2-way inter-
action (f10). For this patient, P(death in year 1|x) = sigmoid function of the contributing logits listed in Sup-
plementary Table 1 plus the intercept (− 2.335) = − 2.833. Sigmoid (− 2.833) = 0.056. For this patient, the main 
effect was protective, and the diagnosis was NICM = 1 (nonischemic disease). The only factor that increases risk 
is donor age 35, but this is small in value. In summary, this patient has protective factors that far outweigh the 
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Figure 2.  (continued)

Table 3.  AUROC—exernal validation cohort. PRN, partial response network; EBM, explainable boosting 
machines; IHTSA, International Heart Transplant Survival Algorithm; IMPACT, index for mortality prediction 
after cardiac transplantation.

N ROC area [95% conf.] P

PRN-Lasso 4750 0.628 0.602–0.654

EBM13 4750 0.634 0.607–0.660 0.173

IHTSA10 4750 0.635 0.609–0.662 0.488

IHTSA  recalibrated26 4750 0.643 0.617–0.669 0.197

IMPACT 11 4750 0.602 0.575–0.628 0.094

Figure 3.  ROC curves of the different models. The ROC curves show the sensitivity and 1-specificity of the 
prediction of 1-year mortality for the PRN with 10 responses (navy blue solid line), EBM (maroon solid line), 
IHTSA (forest green solid line), IHTSA recalibrated (dark orange solid line) and IMPACT (teal green solid line) 
risk algorithms. The black dashed line represents the absence of discrimination. Heart transplant patients in the 
blinded validation cohort 2017–2018 (n = 4570) were included in the analysis.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19525  | https://doi.org/10.1038/s41598-022-23817-2

www.nature.com/scientificreports/

risk factors, so not surprisingly, the prediction is a good outcome, and this is also the observation. The second 
patient was 66 years old, had a long ischemic time, infection, and renal failure and was supported by a ventilator 
pretransplant. This is a high-risk case where 5 risk factors contribute to the mortality risk. Here, the donor age 
was protective together with the diagnosis. A nomogram that can be used to predict the 1-year probability of 
death after heart transplantation is shown in Fig. 5.

Discussion
The development of a new risk calculator for decision support to be used in the clinical care of patients is complex. 
It is not only about achieving better performance compared to previous decision support tools but also about 
increasing the understanding and importance of the risk factors involved. To achieve this, the new decision sup-
port must be interpretable, which can be difficult when it is based on machine learning. The results from this 
study show that an interpretable machine learning model is competitive in performance compared to previously 
developed deep learning models tested on the same data. Although the two IHTSA models have the best overall 
score in terms of AUCROC, the interpretable PRN-Lasso model was within their confidence intervals, unlike 
the classical interpretable model, IMPACT. Furthermore, the PRN-Lasso model was better calibrated on the 
external validation data compared to IHTSA and IMPACT.

Considering the confidence intervals, all the machine learning models in Table 3, PRN-Lasso, EBM, IHTSA 
and IHTSA recalibrated, are comparable in performance. This supports the view that the limiting factor in overall 
predictive power is noise; therefore, any model capable of fitting the structure in the data should result in similar 
performance to the optimum achievable. A particular strength of interpretable machine learning models is the 
clear link between the input variables and the model prediction.
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Figure 4.  Calibration plot of PRN. The calibration plot, (a–d), shows observed against expected probabilities 
for assessment of the four prediction models with the overall external validation cohort according to the 
TRIPOD guidelines. The red spike plot shows the distribution of events and nonevents. Green circles indicate 
the expected probabilities in groups with 95% CI. The green line demonstrates the lower smoothness smoother. 
The model performance statistics are summarized with EO: exp/obs ratio; CITL: calibration-in-the-large; and 
AUC: area under the curve.
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Why is it important to be able to risk-stratify a patient before transplantation? One reason may be to identify 
the best combination of risk factors for recipients/donors to optimize the outcome. This also includes avoiding 
combinations that result in a poor result to make the best use of the available  organs15. It is also important to 
understand how the input factors on which the decision support is based arrive at the result. A potential disad-
vantage of using risk scoring models is that if the model focuses on clinical criteria and is difficult to interpret, any 
ethically negative effects that are built into the model might not be  identified16. Furthermore, it can be difficult 
for a model to identify risk factors from small subgroups. Such negative effects are important to identify early 
in the development  phase17. After the model is implemented, it can be difficult to change it. This emphasises the 
importance of a model being interpretable as well as the importance of evaluation before clinical implementation.

There are currently approximately 15 different algorithms that predict survival after heart transplantation. 
They all have a relatively poor ability to discriminate i.e. identify an individual patient with increased risk when 
used on external  data18. The most cited risk stratification model is the IMPACT score—an interpretable algorithm 
published in 2011 by Weiss et al.13. The scoring model is developed using logistic regression analysis where only 
recipient characteristics are included. Compared with the IHTSA model developed with artificial neural net-
works (ANNs), the ability to discriminate the IMPACT score is inferior. On the other hand, IMPACT is easier 
to interpret than IHTSA. The PRN-Lasso model, which is based on both recipient and donor variables, has the 
same discriminatory ability as IHTSA and is interpretable as IMPACT. Tree of prediction (TOP), an interpretable 
model developed using regression trees, showed similar discrimination results in an internal validation, such as 
PRN-Lasso19. However, no external validation is available for this model.

To assess how well decision support can work in clinical practice, it should be appropriately validated. Simple 
cross-validation is usually not sufficient, and a separate test cohort should be used. This was recently demon-
strated in a study evaluating the predictive power of popular ML and statistical algorithms. The authors use 
different validation techniques to assess the accuracy of the prediction of 1-year mortality. The results showed 
that temporal validation similar to that used in this study is important due to the temporal changes in the sample 
of patients and  donors20.

In medical fields where the patient population is not very large, clinical databases are often required, which 
gather information from many different centres. Thus, external validation alone is not sufficient, but local 

Figure 5.  Nomogram predicting 1-year mortality after heart transplantation. The partial response representing 
the additive contribution: (a) donor age (blue solid line), recipient age and diagnosis Other (red solid line), 
recipient age and diagnosis ICM (green solid line), recipient age and diagnosis NICM (orange solid line); (b) 
creatinine (red solid line), and ischemic time (blue solid line), (c) ventilator at OHT, recipient female gender, 
infection within 2 weeks; (d) transplantation year to the odds of death in year one. To calculate the logarithm of 
the total odds for an individual patient, the logarithm of the odds ratios (contributing logits) are summed for all 
the contributing factors, adding an overall intercept of − 2.3354.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19525  | https://doi.org/10.1038/s41598-022-23817-2

www.nature.com/scientificreports/

validation is equally important. This is due to differences in local processes and protocols that may change the 
measurement of individual covariates, as well as factors that change over time. The external validation on the 
Scandia data set shows how well our model trained on UNOS data applies. This indicates that there is a high level 
of consistency between the measurement of the predictive variables and for the overall mortality trend over time.

In the PRN-Lasso and IHTSA models, the year of transplantation was one of the most significant variables. 
It is well known that 1-year survival has improved continuously over the last two decades, as have the temporal 
changes in the sample of patients and  donors20,21. Interactions between different risk factors may also vary over 
time, as Hsich et al. recently demonstrated using random  forest2. If the model does not take this into account, 
performance will be impaired, as we can see for the IMPACT model in this study. IMPACT was significantly less 
well calibrated in the external validation cohort than the PRN-Lasso model. The fact that the calibration of the 
IHTSA models also does not work so well is because the variable is divided into time eras instead of years and 
the last era in the development cohort was 2010. The PRN-Lasso model treats transplant years as a continuous 
variable and can therefore extrapolate risk forward in time. The transplant year acts as a recalibration to take 
into account the gradual decrease in mortality from year to year.

The five most significant variables in the PRN model are also among the top 10 most important variables in 
the IHTSA model in addition to  ischemia12. The IMPACT model lacks donor-related variables, which are two 
of the top  five13. Both donor age and ischemia are known predictors of 1-year survival. Their efficacy persisted 
despite strong regularization at the LASSO selection in this study, especially donor age, which has proven to be 
the most important variable in other prediction models. In the early 1970s, Griepp et al. argued that an ideal 
heart donor should be younger than 30 years, as confirmed in the present  study22. A donor age above 30 years 
carries an increased risk of mortality. Unlike a noninterpretable model, the PRN-Lasso model clearly shows that 
the risk increase for donor age is not linear but is protective at young ages. Our model also shows that the risk 
increase caused by ischemia comes at 3 h and not at 4 h, which is an old clinical  rule21. The fact that ischemia is 
not ranked as highly in the IHSTA model is probably because this model was not primarily optimised for 1-year 
survival but for long-term survival time.

When quantifying the univariate and bivariate effects modelled, the input factors whose weights add together 
to make the final prediction may be checked against clinical expertise. The importance of recipient age for sur-
vival varies in the literature. The biological difficulty for the algorithm to model is that the risk of total mortality 
increases with age, as for other diseases. The risk of transplant-related complications increases with  age2,12. For 
example, the ISHLT report shows that mortality risk for 1 year increased after the age of  5523. In addition, the 
risk of rejection is reduced. The immune system is at its most active at younger ages. The findings from this 
study show an increased mortality rate for older recipients but a protective effect for those between 35 and 
55 years of age (Fig. 2a). In contrast to the IHTSA model, we see that the risk again increases for the youngest 
recipients. However, it is interesting to note that the predicted risk is reduced for younger recipients if the patient 
is diagnosed with ICM. While this bivariate effect is consistent with crude filtering of the data as noted in the 
results section, it may be difficult to explain biologically. ICM is traditionally a diagnosis associated with higher 
mortality, especially compared to NICM. An explanation might be that the aetiology of ICM is often different 
for younger patients compared to older ones. For an older patient, ICM is usually associated with general ath-
erosclerotic disease, whereas for a younger patient, the cause is  different24. It may be in the form of a coronary 
artery anomaly, meaning that the problem is completely bypassed when the heart is replaced.

The results of this study have limitations associated with the retrospective analysis of a registry database, 
the quality of source data, and the lack of standardization associated with multi-centre studies (such as various 
immunosuppressive regimens and various matching criteria), as has been described  previously25. The existence 
of missing values is another problem that can affect the result. We used a multiple imputation technique to be 
able to use the entire material and avoid selection bias if one would instead choose to remove patients or vari-
ables with missing values. However, this means that the importance of variables with many missing values is 
more difficult to quantify.

In this study, we present an interpretable sparse algorithm with the same classification performance as today’s 
most well-known deep learning models. In particular, the PRN model is considered to be self-explanatory 
because the impact of the input variables on the output is transparent. By dividing a complex multivariate 
algorithm into elements with lower dimensionality, the elements of this additive model are easy to read and can 
be interpreted by clinicians. Although interpretability is better, the low level of discrimination still persists i.e. 
low predictive power at the individual level. However, this is a known problem when modelling tabular data 
where the data are largely preprocessed. Classification performance measured by the AUROC is maintained 
for the interpretable mode compared with others on the same data. However, the clear weights associated with 
individual effects enable a detailed discussion to be had about the clinical plausibility of the inputs to the model, 
which is where the discussion of risk models for high-stakes applications needs to go. This level of transparency 
provides both a rigorous explanation for predictions made with respect to individual decisions and a diagnostic 
route for potential failure modes present in the model. Both are essential elements in deciding when the model 
is and is not safe to use.

Methods
Data source. The data set of heart transplant patients was obtained from the United Network for Organ 
Sharing (UNOS) database, SRTR (Scientific Registry of Transplant Recipients). UNOS (http:// www. unos. org) is 
a nonprofit organization that administers the Organ Procurement and Transplantation Network (OPTN) in the 
United States of America. The SRTR includes data on all donors, waitlisted candidates, and transplant recipients 
in the United States submitted by the members of the OPTN. Human error in data entry is minimized by error 
checks at the time of data entry and internal verification of outliers. The database contains data from October 1, 

http://www.unos.org
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1987, onwards and includes almost 500 variables that encompass recipient, donor, and transplant information. 
It consists of both deceased- and living-recipient transplants.

The Ethics Committee for Clinical Research at Lund University, Sweden approved the study protocol 
(2016/987). The data were anonymized and de-identified prior to analysis, and the institutional review board 
waived the need for written informed consent from the participants. The research was performed in accordance 
with the Declaration of Helsinki. No organs/tissues were procured from prisoners.

Study population. Data on heart donors and the corresponding recipient who were transplanted between 
January 1, 1987, and June 30, 2020, were collected from the UNOS registry (n = 76,844). Pediatric cases (recipi-
ents younger than 18 years, n = 7577), donor age < 15 years and those with incomplete mandatory data (age, sex, 
duration of follow-up, and/or vital status) were excluded (Fig. 1). The development data set was divided into 
two temporal cohorts: transplantation performed between 1997 and 2013 (derivation cohort) and after or dur-
ing 2014 until 2016 (test cohort). The number of variables extracted from the database was 111 in total, where 
IHTSA uses 43 of them and IMPACT 18. The primary endpoint was 1-year mortality.

To evaluate and calculate the metrics for the models, an external validation cohort was created from SRTR 
using the same inclusion and exclusion criteria. Here, the endpoint was masked from the development team. 
The blinded validation set contained patients transplanted between 2017 and 2018, and the latest follow-up was 
August 31 2020.

The Scandinavian Thoracic Transplantation Database is a registry within the Scandia Transplant organiza-
tion, incorporating all thoracic transplantations performed in Norway, Denmark, Sweden, Finland, and Estonia 
(http:// www. scand iatra nspla nt. org). The registry has been in existence since 1983 and consists of more than 400 
variables, and it is mandatory for all centres performing transplantations. The total number of registered heart 
transplants was 3930 on December 31, 2020.

The IMPACT model. IMPACT was created with a data set of heart transplant patients between 1997 and 
2008 that was collected from the UNOS  database13. IMPACT only utilises recipient variables. By apportioning 
points according to the relative importance of the variables for the 1-year mortality, a risk index was created. 
The minimum number of scoring points a patient can have is 0, and the maximum is 50. The points are then 
converted to a predicted probability of 1-year mortality by a formula derived from logistic regression.

The IHTSA model. The data set used in developing IHTSA was extracted from the ISHLT registry con-
taining HT patients who were transplanted between 1994 and  201012. IHTSA utilises both recipient and donor 
variables. The survival model consists of a flexible nonlinear generalisation of the standard Cox proportional 
hazard model. Instead of using a single prediction model, this model integrates ensembles (10 submodels) of 
ANNs. Each ANN consisted of an input layer (43 inputs), one hidden layer (18 nodes) and an output layer. In 
addition, its prediction capability is not limited to 1 year. The variables hypertension and antiarrhythmic drugs 
are not recorded in the UNOS database from 2007 onward. To handle this when evaluating the IHTSA model, 
we imputed those two variables with random values taken from the earlier time period. In the recalibrated 
IHTSA model, these two variables were excluded, and the neural network retrained (calibrated), utilizing a 
fivefold cross-validation of the patients between 1997 and 2008 in UNOS. The same training procedure was used 
as described in the original IHTSA article, but we did not carry out any new variable selection. We called this 
model the recalibrated IHTSA  model26.

Development of the partial response network (PRN) and PRN‑Lasso model. The PRN is proba-
bilistic; hence, it readily manages data imbalance by adjusting the threshold for class assignment, and it models 
the logarithm of the predicted odds ratio using a linear combination of terms. This is similar to logistic regres-
sion, except that the additive elements are semiparametric; hence, they are nonlinear functions of the original 
variables. The modeling methodology is explained in the “Methods” section and in the supplementary Methods. 
Formally, the PRN has the structure of a GAM, so the interpretation of the model is the model itself. Each input 
contributes an amount to the model prediction, given by explicit functions of only one or two variables.

An overview of the stages involved in developing the model is as follows. First, a multilayer perceptron (MLP) 
is fitted to the data. This pretrained network provides the initial estimate of the posterior probability of class 
membership, P(Class|x). However, it has the form of a black box. Second, we carry out a functional ANOVA 
decomposition of the logit(P(Class|x)) anchored at the median of the data. This results in a set of partial responses 
of one and two variables, together with orthogonal functions involving more than two variables, which, together, 
add up to exactly the predictions of the logit of the MLP.

The third step is to take the univariate and bivariate partial responses only, hence truncating the ANOVA 
decomposition. To recalibrate the model, these partial responses form the inputs for a GAM, which is the logistic 
regression Lasso10. Lasso optimisation is particularly efficient for model selection, as it applies L1 regularization 
to collapse the coefficients of the less informative inputs to zero. The result of this step is a fully interpretable 
model in the form of a GAM with main effects and pairwise interactions derived from the original black box, 
the MLP.

However, the presence of uninformative variables in the original MLP may reduce performance since they 
will affect the response of the variables retained in the final model selection. For this reason, the three steps are 
repeated with a new model structure to optimise performance. In step 4, the previously derived GAM is mapped 
onto the structure of a Generalised Additive Neural Network (GANN). The GANN is then further trained by 
backpropagation, so its classification performance is optimized, resulting in what we call the PRN. This new 
network is shown in Fig. 6.

http://www.scandiatransplant.org
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Finally, the same process of ANOVA decomposition followed by Lasso modelling can be applied to the output 
of the PRN rather than the MLP. The result is the PRN-Lasso. In all of the figures, partial responses derived from 
the MLP are shown as dashed lines and those from the PRN using solid lines. The performance of the PRN and 
PRN-Lasso models are listed in the Results section.

Statistical analysis. Statistical analyses were performed using the Stata MP statistical package version 16.1 
(2021) (StataCorp LP, College Station, TX). Data are presented as the means with standard deviation, median 
with interquartile range (IQR) and frequency as appropriate. Unpaired Mann–Whitney U-tests were used to 
compare continuous variables, and χ2 tests were used to compare categorical variables among groups. The Hos-
mer–Lemeshow goodness-of-fit test was used to assess predictive accuracy. The discriminatory power for 1-year 
mortality was assessed by calculating the area under the receiver operating curve (AUROC). To compare differ-
ent areas, the nonparametric approach described by DeLong was  used27.

wij

vj

1

X1

X2

…

Xp

P(C|x)

1

bj v0

wij vj

1

X1

X2

Xp

P(C|x)

1

bj

v0

…

X3

A

B

Figure 6.  Structure of the original fully connected MLP (top) and the partial response network (PRN) 
(bottom), which has the structure of a self-explaining neural network. The structure of the partial response 
network (PRN) is comprised of modular replicas of the relevant weights from the original multilayer perceptron 
(MLP) for each univariate or bivariate response retained by the Lasso, adjusted by Eqs. (6–11) to initialize the 
PRN with the exact functional response of the Lasso. Further training smooths out the responses and improves 
predictive performance. The equations can be found in the supplementary material.
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We used a multiple imputation technique consisting of probability imputation with stratification of the era. 
Each missing value was imputed 10 times with a random existing data point from another patient, resulting 
in 10 study cohorts with a variation in variables that had missing data. We combined all imputed datasets into 
the derivation cohort [DC], consisting of the 10× imputed datasets (n = 313,150), resulting in a counterweight 
of random fluctuations. Note that the overall proportion missing of all data points for our PRN-Lasso model 
was < 1% (0.69%), which is significantly less than the Impact and IHTSA models. The number of complete cases 
is noted in Table 1.

Data availability
The data that support the findings of this study are available from the SRTR (https:// www. srtr. org/ reque sting- 
srtr- data/ data- reque sts/), but restrictions apply to the availability of these data, which were used under license 
for the current study and are not publicly available. Data are however available from the authors upon reasonable 
request and with permission of SRTR.

Code availability
The PRN Lasso model was developed in MATLAB 2020b (MathWorks, Natick, MA). The code files are available 
on request from the authors.
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