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Performance evaluation of ROS-based SLAM
algorithms for handheld indoor mapping and

tracking systems
Quang Huy Nguyen, Princy Johnson, Senior Member, IEEE and David Latham.

Abstract— Simultaneous Localization and Mapping is an important field of work not only
in robotics, but also in mobile platforms. This research work provides insight into how
SLAM techniques are deployed in an indoor environment to aid first responders with their
duties. Due to the hazardous nature of the environment and the need for sensitivity due to
potential involvement of human subjects, autonomous robots cannot be used. So, the first
responders must carry the scanning equipment and perform SLAM at the same time. As a
result, unlike standard robot platforms, there will be no reliable odometry source, and SLAM
will have to deal with the user’s unpredictable movement. In this work, we compare and
examine ROS-based SLAM approaches without using any odometry for their application
in the above-mentioned circumstances. Gmapping, HectorSLAM, and Cartographer have
been chosen as the candidates for this evaluation. We evaluated these approaches in two
different environments: a lab office, and a long corridor. The research results show that
Cartographer outperforms the other two techniques in our test setup in terms of map quality and trajectory tracking. The
Cartographer’s mapping error ranged from 0.017m to 0.3548m.

Index Terms— Cartographer, Gmapping, HectorSLAM, Indoor mapping, LiDAR, ROS, SLAM.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) [1]
is a prominent topic among mobile robotics scientists. In

environments such as, indoor or underground environments,
where the Global Positioning System (GPS) does not have
the reach or provide the necessary resolution [2-3], it would
be useful to be able to generate and track a map of the
region with non-GPS technology. This is one of the most
active indoor positioning issues, attracting many researchers
who have provided various solutions. [4-5]. When SLAM is
used for tracking and mapping in a given space, dealing with
sensor accumulative error is a conundrum for academics and
engineers [6]. Furthermore, in operations such as firefighting,
exploration, military, or rough terrain where robots cannot be
used, human beings involved in the operation need to carry
the equipment containing sensors that execute SLAM while
performing their duties [7]. Additionally, unlike robots, human
movements may be irregular and unpredictable, especially
while carrying out firefighting tasks [8]. As a result, odometry
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free SLAM has become one of the most challenging issues to
tackle.

Today, Robotic Operating System (ROS) [9] is one of the
most widely used robotic framework for developing automated
data collection and decision making for indoor mapping space
[10]. It is commonly used by both beginners and expert users,
as well as startup companies to study robotic problems, and
for rapid prototyping [11-12]. ROS provides libraries, drivers,
and toolkits to help solve robotics problems efficiently, and it
enables the development of both simulation and real-world ap-
plications. The SLAM techniques used in this research study,
such as Gmapping [13], HectorSLAM [14], and Cartographer
[15], all perform well within ROS environment.

Most SLAM systems are equipped with LiDAR or stereo
cameras. In addition, RADAR, SONAR, depth camera and
Inertial Measurement Unit (IMU) are often used to improve
the technique’s accuracy. While each sensor has its own bene-
fits and limitations, most studies show that LiDAR, though
expensive, is superior to other sensors for high-precision
mapping.

The purpose of this research work was to compare and
evaluate the performance of ROS-compatible SLAM algo-
rithms based on low-cost LiDAR in wearable and handheld
systems. The achieved result is the first step toward our
ultimate goal of developing an aid system for emergency fire
rescue operations when the environment contains smoke and
dust. As a result, examining the most widely used methods is
essential, and we believe our study will act as a guideline
for our future approaches as well as for other researchers
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working in odometry-free SLAM techniques and ROS in
general. Sections 2 and 3 of this paper cover related research
and background. Section 4 follows with a description of the
system configuration and environment. Section 5 presents and
discusses the experimental results. Finally, section 6 concludes
with findings and future directions.

II. RELATED WORK

In this section, we will review the studies that compared and
assessed multiple SLAM techniques, with a particular focus on
the LiDAR-based SLAMs used for this research experimenta-
tion. Furthermore, as previously mentioned, this research is the
initial step toward the development of an assistance system for
first responders. Therefore, a comparative evaluation of studies
using SLAM techniques that do not strictly rely on odometry
or that are deployed on unstable platforms such as handheld
and wearable systems will be considered.

There has been a lot of recent studies comparing differ-
ent SLAM systems for indoor environments, such as [16-
18]. The performance of LiDAR-based SLAMs in mobile
robotics applications such as Gmapping, KartoSLAM [19],
HectorSLAM, CoreSLAM [20], and LagoSLAM [21] were
evaluated by the authors in [16]. They demonstrated that the
last three techniques provide higher-quality maps. They did
emphasize, however, that this is largely due to the efficiency of
wheel odometry data. The study in [17] evaluated three SLAM
methods, CoreSLAM, Gmapping, and HectorSLAM, using
simulations to identify the most suitable technique for military
UAVs operating in a variety of terrains. The authors of [18]
investigated the performance of Gmapping and Cartographer
for autonomous vehicles. In [22], the authors proposed a Fast-
SLAM which has a similar foundation as Gmapping since both
use Rao-Blackwellised particle filter [13]. Both [18] and [22]
concluded that their approach produced satisfactory results but
only with the help of IMU and very reliable wheel odometry
data. Authors of [23] described a dual LiDAR system paired
with IMU and wheel odometry to achieve mapping accuracy
of up to 4cm. Besides, Ali and co-authors focused on the long-
term operation of the SLAM process in [24]. They suggested
a novel method based on adaptive local mapping algorithms.
The experiment using test data yielded results with greater than
90% precision and significantly lower CPU utilisation when
compared to typical SLAM methods.

The authors of [25-27] presented several techniques for gen-
erating 3D mapping using handheld devices, which employed
odometry-free SLAM. The authors not only utilized LiDAR
but also integrated it with additional sensors such as an RGBD
camera or an IMU sensor to improve accuracy of scanning
process in an indoor environment. In [28], Zhou and colleagues
proposed a novel plane adjustment for LiDAR in the interior
environment. Though the final outcome showed that its per-
formance surpassed that of its competitions, a powerful CPU
was required to process the data. In [29], authors ultilized
GPS and LiDAR-based SLAM to overcome the odometry-
free challenges. Also a camera was required to complete the
mapping process. The root mean square error achieved was
3.14m. Zhou et al. in [30] proposed a fusion of LiDAR

with Ultra Wide Band (UWB) to solve the odometry-free
and multi-robot mapping problems. The accuracy error was
in the 0.1-0.4m range. However, this technique necessitated
prior preparation and in-depth knowledge of the surroundings.

As can be seen, a major part of the research has concentrated
on mapping for robots when odometry data is available.
Furthermore, odometry-free techniques are being developed
for 3D scanning applications, which need the employment of
expensive sensors. In the context of this study, we consider
three well-known LiDAR-based SLAM algorithms for hand-
held or wearable systems. The performance of these techniques
will be compared in terms of the accuracy of the occupancy
grid mapping. The main objective of this paper is to provide
an overview of the strengths and weaknesses of all three ROS
algorithms mentioned above, and to provide a set of guidelines
for ROS users to select an algorithm that best suits their
individual odometry-free application requirements.

III. MAPPING WITH ROS

ROS [9] is a specialized open source software platform that
is used to program and control robots. ROS includes libraries,
programming tools, graphical tools, tools for direct control
communication with hardware, and libraries for data retrieval
from sensors and devices.

ROS’s programming environment makes it easier to con-
struct complex robot capabilities, such as teleoperation and
navigation. ROS functions similar to a network made up of
several nodes, each with a specific function that corresponds
to the robot’s parts. Rather than agreeing to use the same
programming language, each node can be created and coded in
accordance with the developer’s concept. C++ can be used to
create one node, whereas Python can be used to create another
node. As a result, developers no longer need to be concerned
about the robot’s hardware because ROS provides a common
interface for operating the robot’s hardware. Thus, instead of
dealing with the specific hardware API, the software becomes
the primary focus. This makes robot software development
considerably easier, independent, and versatile to use.

The focus of this research is on LiDAR-based SLAM. Many
SLAM techniques were created in the ROS ecosystem and
are widely used in both research and industry environments.
Several SLAM techniques, such as HectorSLAM, Gmapping,
Cartographer, LagoSLAM, and CoreSLAM, have been devel-
oped and widely used in ROS. Many researchers have shown
that HectorSLAM, Gmapping, and Cartographer outperform
other options for autonomous robotics in indoor environment.
Gmapping is one of the most popular SLAM packages de-
veloped by Griseetti et al [13]. Gmapping is a laser-based
method that employs the Rao-Blackwellized particle filter [13]
SLAM approach. Gmapping is usually suggested for use with
precise odometry data, such as wheel odometry, to assure
accuracy. HectorSLAM is a SLAM method that makes use
of the Extended Kalman Filter (EKF) [14]. The high update
rate and low noise output of a high-end LiDAR are utilized
to predict the robot’s movements in real time. Although
odometry data may not be used, the Inertial Measurement
Unit (IMU) can be used for 3D state estimation. However,
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HectorSLAM may have problems with low-end LiDARs be-
cause its output is often noisy and has a slow update rate.
Cartographer is a graph-based SLAM system created in 2016
[15]. It reconstructs the environment using two subsystems:
global SLAM and local SLAM. In the most basic scenario,
with 2D mapping, the Cartographer requires only the laser
scanner and no odometry data. However, this is a technique
that can deplete a large amount of resources. The authors
of [31] and [32] compared the capabilities of Gmapping,
HectorSLAM, and Cartographer for robot indoor mapping.
The results showed that the Cartographer performs well with
the robot. However, as previously stated, estimating human
mobility is significantly more difficult. Hence, this research
article specifically considers this circumstance.

IV. ODOMETRY FREE SLAM EXPERIMENTATION

A. System setup and environment
To evaluate the performance of each of the LiDAR based

SLAM techniques for the handheld devices in the indoor
environment, we performed an extensive set of experiments.
We developed a handheld device that can do two functions:
data collection and data processing. RPLIDAR A2 [33] was
the LiDAR utilized in the experiment. It is a low-cost scanner
capable of 360-degree scanning within 10m and collecting up
to 8000 points per second. Fig. 1a shows the picture of our
finished prototype, while Fig. 1b depicts the dimensions of our
device in millimeters. The LiDAR and processor are powered
by a custom designed 3Ah battery, which allows our prototype
to function continuously for more than 1 hour. The enclosure
was 3D printed and the prototype weighs nearly 1100 grams
in total, which is comparable to the weight of a lightweight
modern ultrabook. Thus, our prototype is portable and can be
carried comfortably by hand. Table I presents its specifications
and our experimental setup. Gmapping, HectorSLAM, and
Cartographer have been chosen as the three representations. As
previously stated, these three solutions are considered because
they are widely used in research and industry.

We conducted the experiment in two different environments
and with two different modes of movement to validate its
reliability. The first environment was a real lab office with
numerous objects and complex lighting. The second location
was a long corridor at Liverpool John Moores University. Long
corridor SLAM is a typical issue that many SLAM systems
deal with. Normal walking with smooth rotations, and quick
walking with sharper rotations were the two movement types.
We attempted to recreate the handheld system’s ambiguity and
unpredictability using these two types of movement. This is
also the most significant distinction between a portable device
and a robot system.

B. Implementation and results
1) Scene 1: Lab office: The system was used to map the of-

fice environment; laser readings, trajectory, and true landmarks
were recreated in real time. The user traced a pre-defined path
with the device in two different modes: normal walking pace
with smooth rotations, and fast walking with abrupt rotations.
The lab office that we used for the experimentation is seen

(a)

(b)

Fig. 1: Handheld SLAM system prototype: (a) Built prototype.
(b) Prototype dimension.

TABLE I: System setup

Parameters Configuration
Hardware Jetson Xavier [34]
Processor 6-Core Carmel ARM v8.2
GPU NVIDIA Volta architecture
RAM 8GB
LiDAR RPLiDAR A2
OS Ubuntu 18.04
ROS Melodic
Walking Mode 1 Standard speed, smooth rotation
Walking Mode 2 Fast speed, sharp rotation

in Fig. 2 and 3. Walking path is indicated by the dashed red
line. Our lab office environment includes a mixture of objects
of varying heights, and the lighting situation is complicated.
Light comes from both natural sources such as sunlight passing
through large windows and artificial sources such as electric
bulb lights and working monitors. There are also glass doors,
as illustrated in Fig 3b.

The outcome will be visually evaluated as this is the user’s
initial impression of the system. The Root Mean Square Error
Formula will be used for additional analysis:

RMSE =

√√√√ 1

n

n∑
i=1

(de − dt)2 (1)

where n is the number of sampled points, de is the distance
estimated by the SLAM approach and dt is the true distance.
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Fig. 2: Lab office floor plan and walking path.

(a) (b)

Fig. 3: Sample views of the lab office environment used in the
experimentation: (a) Objects and furniture. (b) Glass doors.

Noting that we calculate this value only when the mapping
process was defined as successful.

The result of mapping and tracking in this scene is presented
visually in Fig. 4 to 6. RMSE value is shown in Table II.

2) Scene 2: long corridor: The system was tested in the
LJMU corridor, as shown in Fig. 7 and 8, in the same way that
it was examined in the complex office. The walking path is
represented as red dashed line in Fig. 7. Similar to the above
experimentation, the system was tested using the two walking
modes as in the complex office environment. Fig. 9 to 11
present our findings. Table III shows the accuracy calculated

TABLE II: Accuracy comparison complex office

Walking
Mode

RSME (m)

Gmapping HectorSLAM Cartographer
Mode 1 N/A 0.454 0.1864
Mode 2 N/A N/A 0.2789

(a)

(b)

Fig. 4: Maps of the lab office environment produced by
the prototype using Gmapping SLAM technique when using
two different walking modes: (a) Walking mode 1: standard
speed, smooth rotation. (b) Walking mode 2: fast speed, sharp
rotation.

using RMSE metric.

V. DISCUSSION OF RESULTS

A. Mapping Quality

1) Scene 1: lab office: Visual inspection reveals that Gmap-
ping produced poor results and was incapable of producing
a comprehensive map. This is due to the fact that Gmapping
requires odometry information, and in our configuration, laser
data was transformed to odometry using the ROS package
called “laser scan matcher” [35]. As can be seen, this was in-
sufficient to assist Gmapping in completing its map, especially
in the event of a sharp rotation.

In the first walking mode, when the results from Hec-
torSLAM and Cartographer are compared, it is evident that
both approaches produce exceptionally good maps as shown in
Fig. 4a and 5a with the RMSE of Cartographer was impressive
at about 0.017m while the HectorSLAM’s value is not bad at
0.454 m. The discrepancy was most noticeable at the corners
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(a)

(b)

Fig. 5: Maps of the lab office environment produced by
the prototype using HectorSLAM technique when using two
different walking modes: (a) Walking mode 1: standard speed,
smooth rotation. (b) Walking mode 2: fast speed, sharp rota-
tion.

of walls, where Cartographer is able to display considerably
sharper angles with greater accuracy, and a percentage of
occupied grids that was around 20% lower than HectorSLAM
at these spots. On the other hand, the Cartographer gave
the map a slightly blurry appearance in red circled area.
Interestingly, this wasn’t a bad thing at least in our experiment.
In Fig. 5 and 6, the glass window is circled in green, and the
fuzzy areas represent the sections behind the window where
there is no direct walking route for the operator to access. In
fact, LiDAR is the sensor that cannot detect glass, allowing
it to look through glass windows. The presence of a fuzzy
area in Cartographer’s output implies that these locations have
not yet been validated as actual landmarks. As a result, it is
understandable that there may be some glass objects in the
region. Cartographer technique appears to be potentially better
at recognizing genuine landmarks inside the user’s perspective
as a result of their usage of submaps and global maps. For our
future work, we will target this problem, which is to clarify
real landmark and other moveable objects with the help of

(a)

(b)

Fig. 6: Maps of the lab office environment produced by the
prototype using Catographer SLAM technique when using
two different walking modes: (a) Walking mode 1: standard
speed, smooth rotation. (b) Walking mode 2: fast speed, sharp
rotation.

Fig. 7: Long corridor floor plan and walking path.

other sensors.
The distinction though, was obvious in the second walking

mode. In this case, the Cartographer generated a quite similar
map to that of the first walking mode, thus proving its ability
to behave consistently in our setup. HectorSLAM was unable
to complete the mapping, as shown in Fig. 4b. This is because
HectorSLAM was designed with a considerably higher spec
LiDAR than the RPLIDAR A2 we used. As a result, the
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Fig. 8: Sample view of the long corridor used in the
experimentation.

(a)

(b)

Fig. 9: Maps of the long corridor environment produced by
the prototype using Cartographer SLAM technique when using
two different walking modes: (a) Walking mode 1: standard
speed, smooth rotation. (b) Walking mode 2: fast speed, sharp
rotation.

resolution of our low-cost system is significantly lower than
that required by the HectorSLAM technique. In the second
walking mode, the user’s speed was increased, and the turning
curves were made much sharper. As a result, HectorSLAM
accumulated errors, leading to the map breaking down after
the fourth turn.

2) Scene 2: long corridor: The long corridor results are
unsurprising, with Cartographer still delivering the highest
performance. Meanwhile, Gmapping’s mapping is still incom-
plete. More specifically, in both walking modes, the maps
generated by Gmapping are quite noisy, with the walls and
the room adjacent to the hallway not correctly recognized and

(a)

(b)

Fig. 10: Maps of the long corridor environment produced
by the prototype using HectorSLAM technique when using
two different walking modes: (a) Walking mode 1: standard
speed, smooth rotation. (b) Walking mode 2: fast speed, sharp
rotation.

(a)

(b)

Fig. 11: Maps of the long corridor environment produced by
the prototype using Cartographer SLAM technique when using
two different walking modes: (a) Walking mode 1: standard
speed, smooth rotation. (b) Walking mode 2: fast speed, sharp
rotation.

reconstructed.
In the two walking modes, HectorSLAM performed dif-

ferently and interestingly. In the first walking mode, Hec-
torSLAM was unable to fully reconstruct the area. The two
rooms adjacent to the corridor, in particular, were mapped
twice: once when the user walked forward and again when the
user returned to the starting point. Both of these reconstructed
rooms were in the wrong spot. Their difference from the
actual location is around 1.2m and 2.5m, respectively. This
can be explained as starting with a typical long corridor area,
HectorSLAM struggles to recognize its position in an environ-
ment with few differentiating features. Surprisingly, the room
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TABLE III: Accuracy comparison long corridor

Walking
Mode

RSME (m)

Gmapping HectorSLAM Cartographer
Mode 1 N/A N/A 0.017
Mode 2 N/A 1.2878 0.3548

repeating issue did not occur in the second walking mode.
The quick movement speed allowed the user to enter the room
early, assisting HectorSLAM in the mapping task. Regardless,
the position of both rooms is incorrect in comparison to the
actual floor plan. As a result, the RSME in this situation is
fairly high, at around 2.857m.

Whereas, the Cartographer performed admirably, with the
RSME only around 0.007m. It can also be noticed that the
Cartographer did better in walking mode 1 than in walking
mode 2. In walking mode 2, the RMSE was 0.134m.

In general, Cartographer, produced the best mapping results
consistently in both circumstances. More crucially, in both
movement scenarios, the Cartographer’s error was minimal,
and its performance was consistent.

B. Trajectory analysis
Unlike when using a robot or a simulation, when human

subjects are used to carry the equipment, it is impractical to
preserve all tests with a perfectly matching walking path for
mathematical analysis, due to the nature of human movement
and the desire to keep walking as natural as possible. There-
fore, the trajectory will be examined visually, and we will
concentrate on overall tracking pattern, particularly turning
around the corners. In addition, significant distinctions will be
highlighted and analyzed. Fig. 12 to 17 depict the trajectory
tracking results.

Gmapping’s trajectory tracking was lost in the office envi-
ronment since it was unable to complete its map. In the first
walking mode, Cartographer and HectorSLAM track the user
well and closely to ground reality. A detailed examination of
the tracking records reveals that the Cartographer’s trajectory
has three sudden spikes shown by the black circles in Fig.
14a. This could be due to the sudden turning movement of
the user. This, however, was not shown by HectorSLAM.

Nonetheless, while HectorSLAM lost its map and tracking
after the fourth turn (red circled area in Fig. 13b) in the second
walking mode, Cartographer’s was able to follow very closely
to the floor plan. It is also interesting to see that the spikes
did not appear in this mode. Higher walking speed seems to
reduce the effect of user’s hand movement. As can be seen,
Cartographer is the sole viable option, and it runs admirably
in this walking mode.

In the long corridor, Gmapping was once again unable
to finish its trajectory tracking. This demonstrates that our
conversion of laser scan data to odometry information is
insufficient for Gmapping in a handheld system. HectorSLAM
and Cartographer, on the other hand, show comparable results.
Both techniques track the walking path extremely effectively
and close to the actual path in the first walking mode. It

(a) (b)

Fig. 12: Gmapping trajectory in the lab office: (a) Walking
mode 1: standard speed, smooth rotation. (b) Walking mode
2: fast speed, sharp rotation.

(a) (b)

Fig. 13: HectorSLAM trajectory in the lab office: (a) Walking
mode 1: standard speed, smooth rotation. (b) Walking mode
2: fast speed, sharp rotation.

(a) (b)

Fig. 14: Cartographer trajectory in the lab office: (a) Walking
mode 1: standard speed, smooth rotation. (b) Walking mode
2: fast speed, sharp rotation.

(a) (b)

Fig. 15: Gmapping trajectory in long corridor: (a) Walking
mode 1: standard speed, smooth rotation. (b) Walking mode
2: fast speed, sharp rotation.

is worth noting that Cartographer lost the tracking near the
completion of the walking path in walking mode 2. The
tracking ability was impacted by a sharp rotation when the
user turned around. Surprisingly, even if HectorSLAM’s map
is inaccurate, its tracking capabilities remain intact. Overall,
in this experiment, HectorSLAM and Cartographer performed
comparably and provide sufficiently accurate results, espe-
cially the Cartographer when we take into consideration of
trajectory tracking within the generated map.
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(a) (b)

Fig. 16: HectorSLAM trajectory in long corridor: (a) Walking
mode 1: standard speed, smooth rotation. (b) Walking mode
2: fast speed, sharp rotation.

(a) (b)

Fig. 17: Cartographer trajectory in long corridor: (a) Walking
mode 1: standard speed, smooth rotation. (b) Walking mode
2: fast speed, sharp rotation.

Fig. 18: CPU Usage - normalized to Cartographer’s value.

C. CPU Usage
CPU usage was recorded while the experiments were con-

ducted. This record is shown in Fig. 18. Cartographer was
used to normalize the results. Cartographer, as can be seen,
consumed the most CPU power. When compared to the other
two procedures, this value is five times higher. HectorSLAM
and Gmapping consume relatively little CPU power, and Hec-
torSLAM has been proved to be the most efficient approach
in terms of computing resource utilization. Given how each
strategy works [6-8], this is not surprising.

VI. CONCLUSION

In this paper, we have presented an experimental evaluation
of three types of SLAM techniques (Gmapping, HectorSLAM
and Cartographer) for mapping and tracking of first responders
within unprepared indoor environment where GPS or Internet
is not available. The conditions considered are in-line with that
of experienced by the first responders, which is the focus of
our research.

Purpose built hand-held sensor system prototype was made
in-house at CAL International for the evaluation. Experimenta-
tions were carried out in two different indoor environments for
comparison purposes. A thorough discussion of the experimen-
tal results is presented above, and the summary is presented
below.

Out of the three SLAM techniques, Cartographer excelled
in all scenarios.This approach is also robust to sudden move-
ments and changes in direction. In our test, the Cartographer’s
RMSE was as low as 0.017m, and the largest RMSE was
just around 0.35m. This error is within the acceptable margin
for majority of circumstances faced by the first responders,
in hazardous indoor environments. However, the Cartographer
technique has not been optimized for CPU performance.

HectorSLAM on the other hand, provides the second-best
mapping results, but its performance suffers when dealing with
sudden shifts and long corridor areas. HectorSLAM’s CPU
utilization however, was the best of the three choices, which
is a major selling point. Due to the lack of a reliable odometry
source, Gmapping was unable to complete the mapping in the
office setting.

These results may be influenced by the parameter choices.
The optimum settings can only be determined by the actual
environment. Our experimental study demonstrated that Car-
tographer is a solid choice for producing 2D maps using low-
cost LiDAR in odometry-free handheld systems. As a result
of this finding, we have decided to adopt Cartographer as the
primary technology for the next stage of our research, which
will be a 2D mapping system with multiple agents.
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