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A B S T R A C T   

As the solar PV harvesting energy system are becoming more important sector of renewable energy day to day, 
improving the efficiency of the solar PV module and reducing the cost of modules are receiving more attentions 
of PV module manufacturers. Design of the PV module interconnection ribbons is one of the main focus for 
developing the efficiency of the PV modules and improving the reliability of the modules. In the last decade, new 
designs for the PV module interconnection ribbon have been introduced, however, there is still a need to opti-
mize their configuration and geometry to achieve higher reliability without dropping the efficiency of the PV 
modules. Indeed, solely using the wider interconnection ribbons (to provide more joint length) may increase the 
reliability of the module, but it directly reduces the efficiency of module due to more shading effect. This study 
provides the results for determining the optimal design for long-term reliability of PV module interconnections. 
Three main PV module ribbon interconnection designs including Conventional Ribbon (CR), Light-Capturing 
Ribbon (LCR), and Multi-Busbar (MBB) interconnections are compared in terms of number of cycles to creep- 
fatigue failure. This study uses the FEM simulation and creep-fatigue reliability formulations to find the effect 
of the main geometrical parameters on the failure of different PV module ribbon interconnection designs. The 
finding showed that the MBB interconnections has up to 15 % higher creep-fatigue lifetime compared to the LCR 
and the CR interconnections.   

1. Introduction 

The rapid growth of solar PV cells has been driven by several factors, 
including the energy security and environmental concerns, the 
improving cost-competitiveness, and the growing demand for energy in 
developing and emerging economies where energy access remains a 
challenge. According to the IEA's latest 5-year forecast, renewable power 
capacity is set to expand by 50 % between 2019 and 2024, led by solar 
PV cell technologies [1]. Despite the global popularity and widespread 
use of solar PV modules, improving the performance and reliability of 
PV module designs remains a key challenge for the solar PV 
manufacturing sector, as manufacturer strive to satisfy their products' 
lifetime warranties. 

The design of the PV module components involves achieving the best 
performance and the highest reliability and at the same time, saving the 
material consumptions and keeping the manufacturing cost low. Indeed, 

several performance parameters such as fill factor and power output of 
PV modules under damp heat-exposed and UV-aged tests are surveyed 
by researchers to find the effect of different designs and materials on the 
performance of the PV modules [2]. 

1.1. PV module ribbon interconnection 

In a conventional PV module, the front-to-back cell interconnection 
technique is the most common cell connecting technique for generating 
suitable voltage to feed energy into the electrical power networks [4]. 
The front-to-back cell interconnection technique uses ribbon in-
terconnections to connect the cells, and these ribbons are one of the key 
components of the PV module as it is widely known that over 40 % of PV 
module failures are linked to PV module interconnection solder failures 
[3]. The front-to-back cell interconnection technique also suffers the 
series resistance in the interconnection ribbon. This problem can be 
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effectively solved by using wider interconnection ribbons. However, 
using wider ribbons leads to high partial shading effect due to reflection 
of the incident rays from ribbon surface (about 2.3 % of the cell surface 
is covered by the conventional ribbon (CR)) and subsequently it results 
in more reduction of the short circuit current and the power output 
[5–7]. 

1.2. Efficient PV module ribbon interconnections 

To solve the introduced challenges with shading effect intercon-
nection ribbons for solar cell tabbing and subsequently the challenge 
with the efficiency of the system, there are new design of the intercon-
nection ribbons such as Light Capturing/Harvesting Ribbon (LCR/LHR) 
and Multi-Busbar (MBB) which help to reduce the shading effect of 
ribbons on the cell. The LCR uses a grooved surface to reflect more light 
back onto the cell surface and improves the photocurrent recapture ratio 
of ribbon which causes an increase the power gain by 1.7 % [8]. Also, 
the roundness of the circular wire geometry in the MBB design assists to 
reflect the incident light from the ribbon surface onto the wafer surface 
and it makes less losing the received energy in comparison with the 
standard interconnection ribbons [9]. Besides, the MBB design uses high 
number of small round wires to decrease the busbar width and it results 
in an increase of the number of current paths to associate more uniform 
current distribution [10]. However, the MBB connector may suffer 
manufacturing errors associated with the non-homogeneity of solder 
coating around the copper-wire which results in earlier solder failure 
and crack (up to 21 %) [11,12]. Fig. 1 shows a schematic view of optical 
path and reflecting light from the interconnection back onto the cell 
surface for the designs using LCR and MBB interconnections compared 
to the CR interconnection. 

1.3. The challenge 

To understand the failure modes of the PV module including the 
failure mode of the PV module solder joint interconnections, investi-
gation of the filed data could be the first step. However, the design based 
on the observation of failure modes in operation of the PV module, needs 
a long time equal to the service life the modules and this is not applicable 
as the manufacturers are motivated to introduce new designs with better 
performance and but with lower manufacturing cost. In terms of the 
reliability and failure mechanism of the PV module parts, particularly 
solder joints, the designs are not still sufficiently based on the available 
standards and more experimental and numerical analysis are needed to 
estimate the service life of the PV modules. To solve the challenge on 
better understanding of failure mechanism of different PV module 
components, the numerical analysis is the most available and is the 
lowest expensive way to find the failure behavior of crucial components 

such as PV module solder joint. These numerical analyses are mainly 
proposed to be implemented on the PV modules operating under service 
condition to find the lifetime of the components those massively affect 
the reliability of the whole PV module (in particular, PV module ribbon 
interconnections and solder joints). Therefore, the FEM study of main 
failure modes of crucial components (specially in case of the PV module 
solder joints, creep-fatigue failures) are required to achieve the exact 
results; and then to define the optimized designs. 

The evaluation of creep-fatigue damage and the estimating the life-
time of the joint components have been widely studied from 1990s. 
However, there are still many introduced gaps of knowledge in facilizing 
the estimation techniques and methodologies for different material 
types and applications. For this, using new computing methods such as 
applying machine learning algorithms as well as FEM simulations have 
been developed to aid and speed up the evaluation of design parameters 
for a wide range of applications from microelectronics applications to 
heavy size structures [13–16]. This study investigates the creep-fatigue 
behavior of the solder joints used in the efficient PV module intercon-
nection designs. For this purpose, the ABAQUS software package is used 
to implement the FEM models and the results from the FEM simulations 
are combined with the reliability terms (based on the creep strain energy 
models) to estimate the creep-fatigue life of the solder joints in each 
design. Also, a comparative study is presented to optimize the best PV 
module interconnection configuration in terms of high reliability and 
low material consumptions. 

2. Methodology 

The energy based models such as developed Morrow Energy Density 
model (based on the total strain energy density per cycle) have been 
developed in several works for estimating the creep-fatigue lifetime of 
solder joints [17,18]. In this approach, the experimental data and ob-
tained the results of the FEM simulation are correlated to derive the 
formulation for prediction of the thermal creep fatigue life of SAC solder 
joints. Syed et al., developed a formula to estimate the number of cycles 
to creep-fatigue failure (Nf) for the solder joints operating under thermal 
cycling loads, as the following equation [19]. 

Nf = (W ′ wacc)
− 1 (1)  

where W′ is the energy density constant for failure (0.0019 for that SAC 
solder joints) and wacc is the average accumulated creep energy density 
(per cycle). The average accumulated creep energy density for the solder 
joints is then given by the following equation: 

wacc =

∑
WiVi

∑
Vi

(2) 

Fig. 1. Schematic views of optical path and reflecting light from different interconnections back onto the cell surface (left: the LCR, middle: CR and right: MBB 
interconnections). Continuous line shows the incident rays and the dashed lines shows the reflected rays. 
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where Vi and Wi are the element volume and the accumulated creep 
energy for each element, respectively. 

In this study, to find Vi and Wi, the developed Morrow Energy Density 
model is used to determine the Nf. This model uses the stress–strain 
hysteresis energy loops for predicting the creep energy in each cycle. 
The strain-stress terms used in the models can be found by using the 
analytical constitutive models of creep behavior such as Hyperbolic Sine 
[19–21]. 

The Hyperbolic-Sine creep model in ABAQUS is used to find the total 
dissipated energy in the solder joint of LCR and MBB interconnections. 
Then, Nf of the solder joints are estimated by using the reliability 
formulation found by Syed et al. [19]. The Hyperbolic-Sine creep model 
is one of the most famous constitutive models to evaluate the elastic 
plastic creep behavior, as it considers temperature and strain rate de-
pendency of the material properties [22]. Eq. (1) shows the formula to 
express Hyperbolic-Sine creep model; and the related parameters and 
the values for the SAC solder joint materials are shown in Table 1. 

ε̇cr = A(sinh(βσ))nexp
(

−
Q

RT

)

(3)  

2.1. Validation of the approach 

To validate the present methodology for creep-fatigue investigation, 
the results from the simulation of SAC solder joint in Wafer Level Chip 
Scale Packages (WLCSP) are compared with the literature [24–26]. For 
this, the 2D and 3D FEM simulation models for the WLCSP under 
operating a standard thermal cycling load (with temperature ranging 
between − 40 ◦C and 125 ◦C during 15 min, and 10 min dwell time) are 
considered to find the best simulation approach in terms of the running 
speed and the accuracy of results. The package size is 132 × 77 × 1 mm, 
and the diameter, pitch and height of solder joints are 0.25 mm, 0.4 mm 
and 0.166, respectively (see Fig. 2) [24]. 

Fig. 3 compares the FEM results for 2D and 3D models (from this 
study) with the results from the literatures [24,25]. As Fig. 3 shows, the 
corners of solder joint in contact with the chip has the maximum creep 
strain and creep dissipated energy density where is reported as nucle-
ation of the crack [26]. 

Table 2 compares estimated Nf using the present methodology with 
the Nf reported in the literatures. As Table 2 shows, there are good 
agreements between the estimated lifetime using the present method-
ology in this study and the experimental lifetime. The results show that 
3D modelling provides more accuracy (6 % error) compared to 2D 
modelling (9.8 % error). The main reasons for the errors can be un-
certainties in considering the constant material properties for the solder 
joints, in addition to the consideration of more simplifications in the 
geometry of model and load fluctuation Furthermore, the higher error of 
the 2D modelling could be because the used creep-fatigue lifetime model 
parameters in the present methodology have been determined based on 
the investigation of the 3D FEM models. However, the geometry of 
solder joint in the PV module interconnection is very simpler than the 
geometry of solder joint in the WLCSP, and the cross-section of solder 
joint in the PV module interconnection is same for each slice of the 

model. So, it should be expected that using the 2D FEM model for the 
solder joint in the PV module interconnection can have less errors rather 
than the solder joints in the WLCSP. Although the results show that using 
the 3D model can provide more accurate estimated lifetime, there is still 
a convincing accuracy for the estimation of lifetime using the 2D model. 
I t should be also mentioned that using the 2D model for the simulation 
has reduced the computing time about 85 % compared to the 3D model. 
Hence, the 2D models used in this study can reasonably predict the 
creep-fatigue life of the PV module solder interconnection. 

3. FEM modelling 

3.1. PV module ribbon interconnection dimensions 

Table 3 summarizes the design parameters for the investigated LCR 
and MBB interconnections in this section. As Table 3 introduces seven 2- 
cases for the LCR and MBB interconnections to be compared for finding 
effect of the LCR width, the MBB diameter on the number of cycles to 
creep-fatigue failure (Nf). The required number of ribbons is also 
considered to have same cross-section area for both ribbon intercon-
nection types. For example, the case number #1 for MBB interconnec-
tion uses 15 ribbons with 276 μm diameters (0.9mm2 cross-section area) 
which is comparable with the LCR interconnection with 5 ribbons and 
900 μm ribbon width. The maximum thickness of the LCR in-
terconnections presented in Table 3 is considered 250 μm (the average 
thickness is 200 μm). Also, the solder thickness for both LCR and MBB 
interconnection are assumed 20 μm and the silver-pad thicknesses are 
40 μm and 20 μm for the LCR and MBB interconnection, respectively. 

3.2. Material properties 

The metallic materials used in this study are assumed with elastic- 
plastic behavior and the details of the mechanical properties of the 
materials are from the previous work [27] (see Tables 4 and 5). For a 
more realistic simulation, the temperature dependency of PV module 
materials used in the present FEM simulations are considered and they 
include temperature dependency of the CTE for copper, silver, 
aluminum, SAC solder joint and silicon, and the temperature de-
pendency of the Young's Modulus and Plastic Stress for solder joints 
[27]. 

3.3. Load condition 

To simulate the PV module operating under thermal cycling creep- 
fatigue condition, the models are subjected to a homogenous thermal 
cycling load, with time history in accordance with the IEC 61215-2:2016 
standard (see Fig. 4) [28]. For this study, a minimum temperature of 
-40 ◦C and a maximum temperature of the 85 ◦C are considered for the 
thermal cycles. The cycles start at ambient temperature (25 ◦C) and then 
the minimum temperature is experienced after cooling the module with 
a rate of 100 ◦C per hour and then the temperature remains constant for 
10 min (dwelling time). Following this, with a similar heating up rate 
(100 ◦C per hour), the temperature increases to jump up to 85 ◦C and 
again it remains without any change for another 10 min. After staying 
10 min at the highest temperature of the cycle, the model starts to cool 
down to reach the ambient temperature and to finish the cycle and then 
immediately the second cycle starts with the same temperature oscil-
lating of the first cycle. 

3.4. Elements and boundary conditions 

In this study, to increase the computational solution speed, 2D 
models (using four-node bilinear plane strain quadrilateral, CPE4) are 
considered for the simulation of the PV module interconnections due to 
high ratio of the interconnection length to the other dimensions of 
model. Also, the symmetry boundary condition is applied to the mid- 

Table 1 
Parameters of the Hyperbolic-Sine creep model and the values for SAC solder 
joint material [23].  

Symbol Parameter Unit Value 

ε̇cr Scalar creep strain rate Sec. − 1 Found during analysis 
A Boltzmann's constant J/K 1.381 × 10− 23 

β Constant MPa− 1 0.02447 
n Constant – 6.41 
σ Von Mises effective stress MPa Found during analysis 
R Gas constant J⋅Mol− 1⋅K− 1 8.314 
Q Activation energy J⋅Mol− 1 6500 × R 
T Absolute temp. K Changing during analysis  
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points of the ribbon interconnection section and bottom-end of the 
Tedlar material is fixed in thickness direction. Fig. 5 shows the FEM 
views of the simulated MBB and LCR interconnections studied in this 
work, showing the applied boundary conditions, meshing style and the 
arrangement of component materials. 

Fig. 2. FEM view of the WLCSP model used for the validation of creep-fatigue analysis, Right: 2D FEM model, Left: 3D FEM model (symmetry in Z direction).  

Fig. 3. (a) Observed failure due to crack in solder joint from experiment [26], (b) equivalent creep strain after cycle 5 (CEEQ) in the corner solder joint of WLCSP, 
from previous 2D model [25], (c) CEEQ, from the present 2D model, (d) CEEQ, from the present 3D model, (e) total creep dissipated energy density (ECDDEN, in mJ/ 
mm3) after cycle 5 and 6 from the present 2D model, and (f) ECDDEN from the present 3D model. 

Table 2 
Lifetime model parameters and estimated Nf for the solder joint in WLCSP.  

Lifetime model 
parameter Nf =

C(wacc)η 

FEM 
simulation  
[25] 

FEM 
simulation  
[24] 

Present 3D 
FEM 
simulation 

Present 2D 
FEM 
simulation 

wacc (from FEM) 0.35 0.39 0.49 0.44 
C 145 175 526 526 
η − 2 − 1.9 − 1 − 1 
Nf 1152 1058 1074 1112  

Nf from experiment [26]: 1013 
Error for the Nf 13.7 % 4.4 % 6 % 9.8 %  

Table 3 
Dimensions and numbers of the LCR and MBB ribbon interconnections for the 
creep-fatigue analysis.  

Case 
number 

MBB interconnection LCR interconnection 

Ribbon 
diameter 
(μm) 

Ribbons 
numbers 

Cross- 
section 
Area 
(mm2) 

Ribbon 
width 
(μm) 

Ribbons 
numbers 

Cross- 
section 
area 
(mm2) 

1  276  15  0.90  900  5  0.90 
2  291  15  1.00  1000  5  1.00 
3  306  15  1.10  1100  5  1.10 
4  319  9  0.72  1200  3  0.72 
5  332  9  0.78  1300  3  0.78 
6  345  9  0.84  1400  3  0.84 
7  357  9  0.90  1500  3  0.90  
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4. Results and discussion 

4.1. Number of cycles to creep-fatigue failure 

To find the effect of the LCR and the MBB geometry design on the 
number of cycles to creep-fatigue failure (Nf), several FEM cases (pre-
sented in Table 2) are simulated and investigated operating under 
thermal cycling condition with temperature ranging from − 40 ◦C to 
85 ◦C. 

Fig. 6 compares the value of Nf for the LCR and MBB designs pre-
sented in Table 3. It is seen that the MBB interconnection designs can 
provides higher reliability compared to the LCR interconnection designs 
due to having higher Nf (10 % to 15 % higher). Also, as Fig. 6 suggests, 
the samples number #1 has higher Nf rather than other samples, which 
means that using the MBB interconnection with 15 ribbons with diam-
eter of 276 μm; and also using a design with 5 LCR interconnections with 
900 μm width can provide more reliability. However, the LCR in-
terconnections with 1000 μm width (sample number #2) can be also 
suggested as it provides almost same Nf, and it provides more cross- 

section area compared to the sample number #1; and this means that 
there is less electrical resistance in the ribbon designed based on the 
sample number #2. Similarly, to have consistency in the cross-section 
areas of ribbons, the MBB interconnection sample number #2 (with 
diameter of 291 μm) is selected for finding the effect of geometrical 
parameters on the creep-fatigue lifetime of different PV module ribbon 
interconnection designs. 

4.2. Effect of solder and copper thickness 

Fig. 7 shows the effect of solder thickness and also copper (Cu) 
thickness on the value of Nf for the LCR interconnection deigns using 5 
ribbons with 1000 μm width and 40 μm silver-pad thickness. The results 
show that an increase in the solder joint thickness leads to a slight in-
crease in Nf (up to 5 %). In addition, Fig. 7 shows that increasing the 
copper thickness leads to a decrease in Nf, in which the LCR intercon-
nection with 150 μm average copper thickness provides about 6 % 
higher Nf, when it is compared to the LCR interconnection with 200 μm 
average copper thickness. The results shown in Fig. 7 suggests that a LCR 

Table 4 
Mechanical Properties of material used in the FEM simulation of PV module interconnection [27].   

IMC Solder 
(SAC) 

Silver Al Copper EVA Silicon Tedlar Glass 

Elastic 
modulus 
(GPa) 

110 See  
Table 5 

69 68.3 121 11 130 2.138 73.0 

Poisson's 
ratio 

0.3 0.35 0.365 0.34 0.34 0.499 0.28 0.4 0.235 

Yield Stress 
(MPa) 

– – 43 85 121 12 170 41 – 

Thermal 
expansion 
coefficient 
(ppm/K) 

See  
Table 5 

See  
Table 5 

See Table 5 See Table 5 See Table 5 270 See  
Table 5 

78 8.0 

Plastic stress 
(MPa) @ 
strain 

– See  
Table 5 

43@0.001120@0.04 85@0.001100@0.12 121@0.001217@0.01234@0.02248@0.04 – – 41@0.00 
55@0.9 

–  

Table 5 
Temperature dependency of the material properties used in the FEM simulation [27].  

Temp. (◦C) Interpolated data for the coefficient of thermal expansion (ppm/K) Young's modulus (GPa) Yield stress (MPa) Plastic stress (MPa) at 0.065 strain 

Copper Silver Al Silicon IMC Solder Solder 

0  16.22  18.67  22.50  2.35  17.7  21.3  49 71 145 
30  16.60  18.98  23.29  2.63  18  21.81  46.9 52 131 
60  16.91  19.20  23.85  2.87  18.3  22.32  44.8 16 110 
90  17.22  19.42  24.41  3.04  18.6  22.83  42.7 – – 
120  17.53  19.65  24.97  3.20  19  23.34  40.6 – – 
150  17.76  19.91  25.40  3.36  19.8  23.85  38.5 – –  

Fig. 4. Applied thermal cycle amplitude in accordance with the IEC 61215-2:2016 [28].  
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interconnection with 20 μm solder joint thickness and 150 μm average 
copper thickness can be an optimal design as this configuration provides 
high value of Nf (3850 cycles), but it remarkably saves the material 

consumptions. This finding is consistent with the results obtained for the 
cracking parameters in the previous work [29]. 

4.3. Effect of silver-pad thickness and solder thickness 

Fig. 8 shows the effect of silver-pad thickness on the associated Nf for 
the LCR and MBB interconnections with 20 μm solder thickness. Average 
copper thickness of the LCR interconnection and ribbon diameter of the 
MBB interconnection are considered 150 μm and 291 μm, respectively. It 
is shown that increasing the silver-pad thickness from 20 μm to 50 μm 
causes 32 % increase of Nf for the LCR interconnection. However, Fig. 8 
suggests that there is no change of Nf when the silver-pad thickness of 
the MBB interconnection increases. To re-check the effect of solder 
thickness on the reliably of the MBB interconnection, the results of 
creep-fatigue analysis for the MBB interconnections with different solder 
joint thicknesses are presented in Fig. 9. As Fig. 9 shows, increasing the 
solder thickness results in an increase of Nf for the MBB in-
terconnections, in which for the MBB interconnection with 40 μm silver- 
pad thickness, the increase of the solder thickness from 10 μm to 15 μm 
causes a significant increase in the Nf (166 %). However, for the MBB 
interconnection with solder thickness thicker than 15 μm, there is also a 

Fig. 5. FEM views of the MBB (left) and the LCR (right) PV module interconnections.  

1 2 3 4 5 6 7

LCR 3475 3367 3286 3249 3238 3242 3251

MBB 4078 3954 3922 3861 3793 3733 3677
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Fig. 6. Number of cycles to creep-fatigue failure (Nf) for different LCR and MBB 
interconnection designs with same cross-section areas, but with different ribbon 
width/diameter and numbers. 
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linear increase in Nf (up to 22 %) in which the Nf is not affected by the 
silver-pad thickness. Consequently, the MBB interconnection with 20 μm 
solder coating and silver-pad thickness can suggest more reliability for 
the PV module and also can help to save the material consumption. 

4.4. Effect of initial crack on the Nf for selected PV module 
interconnection designs 

According to the results for different studied PV module intercon-
nection designs (namely: CR, LCR, and MBB interconnections), three 
configurations for each design are selected to be compared in terms of 
providing higher thermo-mechanical reliability. The selected configu-
rations are based on reducing the solder and the silver consumptions in 
the designs, and at the same time providing relatively higher reliability 
of the interconnections. Furthermore, to consider the effect of initial 
cracks due to the high temperature lamination process (150 ◦C) (found 
from previous studies), Nf is calculated and compared for each selected 
designs with and without initial crack [12,27,29]. 

Table 6 shows dimensions of the selected PV module interconnection 
designs, and it also presents the high temperature crack specifications 
(crack initiation temperature and crack growth rate) and the calculated 
Nf (with and without considering the initial crack) for the selected PV 
module interconnection configurations. For instance, Table 6 presents 
that the best configuration for the CR interconnection uses 5 ribbons 
with the 900 μm ribbon width, the 200 μm copper thickness, the 20 μm 
solder thickness and the 40 μm silver-pad thickness. This configuration 
has 0.9mm2 cross-section area of the copper which helps to keep the 
electrical resistance low. As it is showed, this configuration exhibits a 18 
μm initial crack length due to the high temperature lamination process, 
and the associated Nf is 3331 cycles. 

As Table 6 indicates, using 5 LCR interconnections (LCR sample 
number #1) with 1000 μm ribbon width, with 150 μm average copper 

thickness, with 20 μm solder thickness and with 40 μm silver-pad 
thickness (0.75mm2 total cross-section area of the copper) is recom-
mended for the LCR interconnection, in which this configuration can 
endure the 3281 thermal cycles (with considering the initial crack). 
However, the LCR sample number #2 (with the 900 μm ribbon width 
and the 250 μm copper thickness, the total cross-section of copper is 
0.9mm2) can be also recommended as this configuration exhibit lower 
electrical resistance, but still provided high Nf, 3114 cycles. 

Table 6 shows that the CR interconnection shows less Nf affected by 
initial cracks compared to other designs, and the maximum effect of 
initial crack on Nf is on the LCR designs (10.4 % for sample number #2). 
However, Table 6 shows that the MBB interconnection has higher Nf (up 
to 15 %) compared to the CR and the LCR interconnection designs (i.e. 
higher thermal creep-fatigue lifetime). It is found that the MBB sample 
number #1 and #2 (with 15 ribbons, with 20 μm solder thickness with 
20 μm silver-pad thickness, and with 291 μm and 276 μm copper di-
ameters, respectively) provide much higher Nf (3813 and 3808 cycles, 
respectively) compared to the sample number #3 with 15 μm silver-pad 
thickness (with Nf of 3380 cycles). 

5. Conclusion 

This study considered three main PV module interconnection designs 
(Conventional Ribbon (CR), Light-Capturing Ribbon (LCR), and Multi- 
Busbar (MBB) interconnections) to find the effect of different geomet-
rical parameters (namely: solder thickness, silver pad thickness, copper 
thickness, and ribbon width) on the number of cycles to creep-fatigue 
failure, Nf. 

For each interconnection designs, the FEM simulation and the creep- 
fatigue reliability formulation were used to define the best three con-
figurations in terms of using less the solder and the silver material, and 
also providing higher Nf for long-term reliability of PV module 
interconnections. 

The effect of initial cracks in the solder joint (due to high tempera-
ture lamination process) on Nf was also considered to define the optimal 
design and configuration. The results showed that the Nf of CR inter-
connection is less affected by initial cracks compared to other designs, 
and the maximum effect of initial crack on Nf is for the LCR designs 
(10.4 %). 

The results suggested that using 5 LCR and CR interconnections with 
900-1000 μm ribbon width, with 20 μm solder thickness and with 40 μm 
silver-pad thickness and with copper thickness of 200 μm and 150 μm 
(for LCR and CR, respectively), relatively provide the best configuration 
for theses interconnection designs. 

The results suggested that the MBB interconnections can provide 
more thermo-mechanical reliability compared to the LCR and the CR 
interconnection designs (up to 15 %), and the MBB interconnection with 
15 ribbons, with 291 μm and 276 μm copper diameters, with 20 μm 
solder thickness and with 20 μm silver-pad thickness has higher 
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Fig. 9. Effect of solder thickness and silver-pad thickness on Nf for the MBB 
interconnection. 

Table 6 
Dimensions, initial crack specification, and the Nf for the selected PV module interconnection designs.  

Designs CR LCR MBB 

Geometrical parameters 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

Number of ribbons  5  5  3  5  5  5  15  15  15 
Ribbon width (μm)  900  1000  1200  1000  900  1000  291  276  276 
Ave. copper thickness (μm)  200  200  200  150  200  100  291  276  276 
Solder thickness (μm)  20  20  20  20  20  20  20  20  15 
Silver-pad thickness (μm)  40  40  40  40  40  40  20  20  20 
Copper area (mm2)  0.9  1  0.72  0.75  0.9  0.5  1  0.9  0.9 
Crack initiation temp. (◦C)  98  102  104  87  69.5  106  98  102  110 
Crack growth rate (μm/◦C)  0.35  0.45  0.6  0.5  0.58  1  0.1  0.19  0.25 
Initial crack length at 150 ◦C (μm)  18  22  28  31.5  46.69  44  5  9  10 
Nf (cycle) T: − 40 ◦C to 85 ◦C W.O. crack  3471  3334  3205  3502  3475  3369  3954  4078  3644 

With crack  3331  3190  3058  3281  3114  3073  3813  3808  3380 
Effect (%)  4.0  4.3  4.6  6.3  10.4  8.8  3.6  6.6  7.2  
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reliability compared to all studied designs. 
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