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Abstract: Stringent environmental regulations and efforts to improve the shipping operations sus-
tainability have resulted in designing and employing more complex configurations for the ship
power plants systems and the implementation of digitalised functionalities. Due to these systems
complexity, critical situations arising from the components and subsystem failures, which may lead
to accidents, require timely detection and mitigation. This study aims at enhancing the safety of
ship complex systems and their operation by developing the concept of an integrated monitoring
safety system that employs existing safety models and data fusion from shipboard sensors. Detailed
Fault Trees that model the blackout top event, representing the sailing modes of a cruise ship and the
operating modes of its plant, are employed. Shipboard sensors’ measurements acquired by the cruise
ship alarm and monitoring system are integrated with these Fault Trees to account for the acquired
shipboard information on the investigated power plant configuration and its components operating
conditions, thus, facilitating the estimation of the blackout probability time variation as well as the
dynamic criticality assessment of the power plant components. The proposed concept is verified
by using a virtual simulation environment developed in Matlab/Simulink. This study supports
the dynamic assessment of the ship power plants and therefore benefits the decision-making for
enhancing the plant safety during operations.

Keywords: cruise ship; complex systems safety; blackout prevention; sensors fusion; safety monitor-
ing system; dynamic blackout probability

1. Introduction

The maritime industry pillars the world trade as it transports around 90% of goods
in volume and 70% in value [1]. Apart from cargo transfer, the cruise ship industry has
exhibited substantial growth the last decade [2]. To support the functions and improve
the sustainability of modern cruise industry, highly sophisticated cruise ships have been
designed and built, which employ advanced propulsion and power plant systems, com-
partment arrangement and exterior design. It is widely acknowledged that the modern
cruise ships are the most technologically sophisticated ships compared to other ship types.

The cruise ship industry is a highly competitive market that has been rapidly develop-
ing with both the vessels’ size and number constantly increasing [2]. As cruise ships carry
large numbers of passengers and crew, it is paramount to ensure the safety considering
humans, assets, environment and business. Potential power system malfunctions, such as
blackout may lead to collision, contact or grounding, which, in turn, may end up in signifi-
cant human losses as well as severe environmental pollution [3,4]. This may also severely
damage the financial and social profile of the cruise ship operator, and respectively of the
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whole cruise industry. The recent total blackout incident on-board of the Viking Sky [5],
where all the generator sets in both engine rooms shut down, provides a representative
example of the potential safety, financial and social implications associated with blackout
events. In this respect, it is important to minimise the blackout probability of the cruise
ships’ power plants design as well as to ascertain that adequate power will be available
when required [6].

Another critical parameter is the significant cognitive load imposed by the ship sys-
tems on the cruise ships’ crews and operators with respect to prevention of accidents and
incidences [7]. The cruise ships power and propulsion systems are categorized as complex
cyber-physical systems [8] consisting of a significant number of heterogeneous components,
interacting with each other in multiple ways. Such complexity leads to significant number
of alarms that the crew must deal with constantly [9], whilst it may hinder the classification
of the critical alarms. This type of cognitive operator overload has been identified as one
of the contributory factors to the Three Mile Island nuclear reactor accident [8,10]. In
the recent blackout case on a cruise ship, the crew accepted and cleared low lubrication
oil alarms (the reason for this were not reported), which in combination with heavy roll
and pitch led to loss of three Diesel Generators (DGs) out of the four of this ship power
plant [11].

One potential solution to overcome the problem of cognitive load is to combine
sensors and alarms with system safety models, rather than to use them independently from
each other in specifically dedicated devices. The role of such automated safety monitoring
devices “is to detect conditions that signal potentially hazardous disturbances and assist the
operators of the system in the timely control of those disturbances” [12]. The idea of using
sensor measurements for safety enhancement during operations was introduced during the
1980s decade. For example, Ref. [12] used those elements in condition monitoring systems.

Numerous studies focused on integrating safety models with sensor measurements
on other systems. Hu et al. [13] used a Bayesian network model for integrating condition
monitoring and inspection data for risk assessment of a nuclear power plant system al-
lowing for a more effective system health estimation compared with approaches based on
the traditional Event Trees. Jinqiu et al. [14] used Hazard and Operability study results to
develop a dynamic Bayesian network for a gas turbine compressor system integrating sen-
sor measurements. In a follow-up study [15], the previously developed dynamic Bayesian
network was applied to the gas turbine compressor for the purposes of risk assessment.
Aizpurua et al. [16,17] integrated the prognostics estimations for power distribution system
with Boolean Driven Markov Processes and Stochastic Activity networks. Gomes et al. [18]
combined Fault Trees with prognostics based remaining useful life estimation for an aircraft
system. Pattison et al. [19] have integrated the dynamic Bayesian networks with random
forests and memetic algorithms for the development of real-time maintenance system for
windfarms.

Nonetheless, very few studies focused on the ship propulsion systems. Abaei et al. [20]
have employed multinominal process trees and hierarchical Bayesian inference for predict-
ing failures in machinery systems in the context of unmanned vessels. Eriksen et al. [21]
applied a modified version of Failure Modes and Effects Analysis for more effective main-
tenance of unmanned ship systems. However, both studies did not consider the utilisation
of the sensor measurements for dynamic risk analysis.

This study aims at the development and demonstration of a potential blackout moni-
toring system for a cruise ship power plant system integrated with sensor measurements.
The novelty of this study stems from: (a) an application and an advancement of the concept
of integrating sensor measurements with safety methods to monitor and prevent blackout
event in cruise ships power plants; (b) development of a methodology for concept demon-
stration in a virtual simulation environment, and; (c) verification of the concept in this
virtual environment. Whilst this study employs material from previous publications on
cruise ship power plants, it improves the current state-of-the-art knowledge by demon-
strating how the existing safety methods can be fused with sensors measurements and
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integrated with reliability data to develop a safety monitoring system that predicts the
selected safety metrics time variations.

The remaining of this study is structured as follows. Section 2 elaborates the proposed
methodology for concept development and verification. In Section 3, the information about
the investigated system is provided. Section 4 presents and discusses the derived simulation
results as well as provides recommendations for further developing the proposed safety
system. Section 5 summarises the min findings and the conclusions of this study.

2. Materials and Methods
2.1. Methodology Overview

The general overview of the followed methodology for the development and valida-
tion of the proposed blackout monitoring system is provided in Figure 1. The first step
includes the development of a safety model suitable for the blackout monitoring for the
investigated cruise ship power plant system. In the second step, the parameters that can be
monitored using sensors from the investigated cruise ship monitoring system are identified.
During the third step, the failure rates of the investigated system components are estimated
based on sensor measurements. In the fourth step, the methodology for fusion of selected
system parameters/sensor measurements with the developed safety models and existing
reliability data is presented. In the fifth step, criteria and metrics for the dynamic analysis
of the observed situations are provided. In the sixth step, the system is simulated in a
virtual environment and the concept is validated.
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2.2. Step 1—Development of Safety Model

The first step of the methodology includes the development of a suitable safety
model representing the system operation. In general, various safety analysis methods
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can be employed for this purpose including Fault Tree Analysis, Hazard and Operabil-
ity studies, Bayesian Network [22], Boolean-Driven Markovian Processes [23]. Other
methods/software tools could be also used, such as Hip-HOPs [24], COMPASS [25] or
MADe [26–28] for automatically deriving the Fault Tree or Dynamic Fault Trees. This
study employs the Combinatorial Approach to Safety Analysis (CASA) method, which
is presented in [29–31]. The CASA method advantage is that it captures more accurately
the dynamic and software-intensive character of cyber-physical systems compared to the
classical Fault Tree Analysis [29]. On the other side, CASA results in a very extensive
depiction of the system top-event and is labour-intensive. The other safety methods have
several limitations. The Hazard and Operability studies do not relate the various indepen-
dent hazardous events together, whilst there is no clear guidance for the development of
Bayesian Networks. Methods such as Boolean-Driven Markovian Processes, Hip-HOPs,
COMPASS, or MADe do not capture properly the software-intensive character of cyber-
physical systems. Therefore, the use of fault trees developed by employing the CASA
method is considered as advantageous for the safety analysis in diesel-electric power plants
(DEP) system as reported in [30].

2.3. Step 2—Selection of the Monitored Parameters and Reliability Data

The following criteria are employed for selecting measured parameters for their
integration with/inclusion to the developed automated safety monitoring system:

• Measured parameters that sufficiently and effectively depict/represent the actual
system health based on the pertinent literature.

• Measured parameters that represent the system configuration and power demand,
e.g., operating DG set(s).

• Measured parameters monitored by the existing ship alarm and monitoring system.
• Measured parameters from the ship plant critical components, as identified from

previous safety analyses or accident investigation data.

In addition to the required measured parameters, a number of failure rates is also
required based on their availability and the relevant databases. These failure rates are
used in conjunction with the sensor measurements to estimate the components failure rate.
The databases, such as OREDA [32], are selected based on their relevance to the system,
availability, their trustworthiness, and publication date. The proposed blackout monitoring
system also incorporates the maintenance inspection intervals and the actual inspection
implemented for the components.

2.4. Step 3—Estimation of Failure Rates Using Sensors Measurements

For the components, the safety metrics of which are monitored using sensor measure-
ments, Health Indexes (HIi) are estimated to depict the performance and health status of
the ith component [33–36]. The HIi is estimated according to the following equation:

HIi =


0, i f |Fi−Falarm |

|Falarm−Fnorm | > 1

1, i f Fi−Fnorm
Falarm−Fnorm

< 0
|Fi−Falarm |
|Falarm−Fnorm | , elsewhere

(1)

where Fi represents a feature of for the system ith component, Falarm is the feature value
when the component fails (this can be the Fi value of an activated component failure alarm),
and Fnorm denotes the feature value under normal conditions (without faults). Features
are variables indicative of the components health status [37]. The considered features (Fi)
can be the component temperature and/or the pressure, a parameter estimated based on
vibration analysis, or a combination of physical parameters, which can be considered as
a reliable representation of component health status. Fi can be estimated based on the
physical parameters monitored for a system component in real-time or at periodic times. In
real applications, the calculation of HI must be updated each time a significant difference
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exists between the initial feature value and the observed average value calculated over a
specific time window. This time window depends on each component failure mode related
to specific Fi. Preferably, Fi is a physical parameter monitored by the existing alarm and
monitoring system.

According to Equation (1), the ith component is fully functional when HIi=1; it fails
when HIi = 0; whilst intermediate values of HIi indicate degrading performance conditions
of the ith component. In case Fi exceeds the alarm limit Falarm, it is also considered that the
component is faulty and in case Fi is far away from both Falarm and Fnorm not on the side of
Falarm, the component is considered as healthy. The Fnorm is defined the normal value of
the Fi that is observed during operation. Usually, this information can be retrieved from
operation and maintenance manuals. Under real conditions, the Fnorm can vary depending
on the desired output from a system, e.g., the engine load will affect the normal exhaust
gas temperature; however, it is considered as static herein.

Based on the estimation of the components HIi, in absence of any other information,
it is assumed that the components failure rates (retrieved from used database) (λi) can be
updated, according to the following equation:

λi,m = λ
HIi
i (2)

The index m depicts the failure rate estimated based on sensors measurements. The
working assumption behind Equation (2) is that the closer the feature is to the alarm or
failure threshold, the higher is the probability that failure will occur in the next time period.
It is also expected that the relationship between time and HIi is exponential, as lower values
of the component health index correspond to much lower component remaining useful
life [38,39]. This can be viewed as rather a conservative approximation for the component
fault growth trend. By using the HIi as the exponent in Equation (2), smoothness and
exponential relationship in transition between normal and failure condition is ensured.
In addition, the boundary conditions are satisfied, as elaborated in the next sentences.
When HIi equals to 1, the λi,m equals to the initial component failure rate (λi), which is the
only available information at the beginning about the failure rate. The ith component is
considered faulty when Fi reaches rm limit is reached (HIi = 0), which provides a failure
rate according to sensor measurements equal to 1 h−1.

2.5. Step 4—Integration of Sensor Measurements Estimation and Database Data

For integrating the component failure rate with the health status estimated from
the measured data, the following equation is used to calculate the actual failure rate of
the ith component, employing the weight (w) assigned by the user or expert to different
information sources as proposed in [36]:

λi,A = 10[w log λi,m+(1−w) log λi,] (3)

The logic behind Equation (3) is that the expert/user can have different trust levels in
the information available from the various measurements (sensors) and historical databases.
Full reliance on the measured parameters is denoted with w = 1, whereas w = 0 denotes not
reliance on the measured parameters. The parameter w in this study is common to all the
components, but it can be also become component specific; hence, it is denoted as wi.

2.6. Step 5—Dynamic Analysis

The warning levels are determined using reference pTE, where pTE denotes the proba-
bility of the top event. In this study, the reference pTE (pTE

REF) is the geometrical mean for
the orange level. The other warning levels are considered to have probability one or two
levels higher or lower than the reference level. The use of logarithmic scale is employed, as
the relationships in Equations (2) and (3) are exponential. This is also in line with maritime
regulations, which recommend the separation of intolerable, tolerable and negligible risk



Energies 2021, 14, 6598 6 of 19

based on logarithmic scale [40]. In this respect, the warning levels described in Table 1
were developed. The reference pTE can be set based on statistics or using expert opinion.

Table 1. Warning levels.

Warning Levels Range

Red [pTE
REF × 5, pTE

REF × 50]
Orange [pTE

REF × 0.2, pTE
REF × 5]

Yellow [pTE
REF × 0.02, pTE

REF × 0.5]
Green [pTE

REF × 0.002, pTE
REF × 0.05]

Based on Table 1, the system levels, requiring intervention can be defined. The
intervention is proposed to take place in the red or orange levels. The identification of safety
enhancement actions during operations is supported by employing appropriate importance
metrics. The importance metrics can be used to identify the most important potential
failures and, therefore, to prioritise the rectification actions. The use of Birnbaum IB

j (t)
and Fussel−Vesely IFV

j (t) importance metrics is employed herein, as these are extensively
employed for importance analyses, and they are associated with a clear physical meaning.
High values of the Birnbaum importance metric indicate components that significantly
affect the Fault Tree top event probability. Therefore, these components degradation
must be carefully monitored. IB

j (t) can be also used to assess the top event sensitivity to
some operating parameters such as number of operating DG sets or DG sets load. The
Fussel−Vesely importance metric can be used to identify the components whose failure
most probably will occur and will lead to the blackout. Higher value of IFV

j (t) for a
component, compared to other components, means that the top event will more likely
occur from this component failure than from others.

The Birnbaum importance measure is estimated according to the following equation:

IB
j (t) =

∂PTE

∂pi,A
≈ ∆PTE(pi,A)

∆pi,A
≈ PTE(pi,A)− PTE(pi,A = 0)

pi,A
(4)

where pi,A is probability of the basic event calculated by using λi,A.
This study also adopted an alternative version of the Birnbaum importance metric that

accounts for the plant operating parameters, such as engine load or number of connected
DG sets. This metric is used to identify if a reconfiguration of the power plant is required
to reduce the top event probability. Such reconfiguration may include the starting up of an
additional DG set. This metric is calculated according to the following equation:

IB,OP
j (t) =

∆PTE(OP)
∆OP

≈ PTE(OP initial)− PTE(OP f inal)
Small change in OP parameters

(5)

The following measures are considered small changes in the operating parameters
values (∆OP): reducing the number of operating DG by 1 unit, slightly increasing the DG
set load, reducing the number of connected electrical power consumers.

An averaged over time IBt
j metric is used to estimate the importance of each basic

event in the Fault Tree based on the IB
j (t) values at different time steps and is estimated as

follows:

IBt
j =

1
crmax

cr=crmax

∑
cr=1

IB
j (t) (6)

where cr denotes an importance estimation number for the identified components, whereas
crmax denotes the maximum number of implemented importance estimations. IBt

j in this

way is an averaged value of IB
j (t) and depicts the averaged criticality of a component.
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The Fussel−Vesely importance measure is estimated by using the following equation:

IFV
j (t) =

∂PTE/PTE

∂pi,A/pi,A
=

pi,A

PTE
∂PTE

∂pi,A
≈ pi,A

PTE

∆PTE
(

pAgg
i

)
pi,A

≈ PTE(pi,A)− PTE(pi,A = 0)
PTE (7)

An averaged over time IFVt
j metric is used to estimate the importance of each basic

event based on the IFV
j (t) values at different time steps; this is estimated by the following

equation:

IFVt
j =

1
crmax

cr=crmax

∑
cr=1

IFV
j (t) (8)

The use of IFVt
j has similar purpose with IBt

j .
The importance measures indicate which components’ failures/operating parameters

must be monitored and controlled. Based on that, recommendations for the system safety
enhancement can be provided. Examples of such recommendations include the switching
over to a healthier DG set (allowing for performing maintenance and repair actions to the
degraded DG set), increasing the number of operating DG sets, or reducing the propulsion
motors load (speed).

2.7. Step 6—Simulation in Virtual Environment

In this step, the relevant adjustments are implemented to the safety model developed
in step 1 to allow for the dynamic estimation of pTE in a virtual environment. These
adjustments are not implemented to the safety model structure, but to the basic nodes of
the safety model and are delineated in Table 2. Some of the developed Fault Tree basic
events from step 1 are transformed into the suitable Markovian process. This makes the
developed Fault Tree similar to the Boolean-logic Driven Markovian Process (BDMP) [23].
The use of Markovian process has been considered as necessary to depict some dynamic
features of the investigated system, which are not available in the Fault Tree. The required
input for this step of the analysis includes the plant operational data, such as components
in operation, components maintenance intervals and testing intervals (Ti), maintenance
rates (µi), components failure rates (λi), beta factor of the Weibull distribution (βi), and
the probability of failure on demand for the software components (PFDi). ∆t denotes the
predicted time horizon at each time t.

The use of these equations constitutes an improvement to the CASA calculations, as
they allow for estimating the selected safety metrics time variations, compared to the static
predictions of the previously presented approaches [29,30].

For the simulation purposes only, it was assumed that the Fi is calculated according to
the following equation:

Fi =Fnorm
i + Fdeg

i (t− tm
i ) + noise (9)

where Fnorm
i is the normal feature value, whilst Fdeg

i is degradation parameter, tm
i is the

time of the last maintenance for the component i. A noise term is introduced in the analysis
to account for the sensor’s measurement uncertainty. However, the actual fault growth
curve can differ significantly from the proposed curve and depends on the component
operating conditions. These assumptions are used only for the simulation purposes.

The Fdeg
i was assumed to be equivalent to the half of the inverse of the maintenance

inspection interval. This assumption was made based on the observation that the preventa-
tive maintenance scheme in maintenance manuals quite often is implemented every half of
the component useful life.
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Table 2. Calculation of the basic events probabilities according to CASA and the in the performed simulations.

System Components Original Fault Tree Probability [30] Modified Fault Tree Probability Estimation
(Used for Simulation)

Operating components

Software, hardware, communication and sensors
failures following exponential distribution for failure

rate [41]
pOC

i,j = λit pOC
i,j = λi∆t

Other components with preventative maintenance
following Weibull distribution for failure rate pOC

i,j = Tβi−1
i λ

β j

i t pOC
i,j = β jλ

β j

i tβi−1
i ∆t

Parts with preventive maintenance where a single
component failure out of r identical will lead to event

occurence (based on [41])
pOC

i,j =
r
∑
1

(
r
1

) (
Tβi−1

i λ
β j

i

)r(
1− Tβi−1

i λ
βi
i

)1−r
t

Replaced with OR gates connecting components
failures. Each component failure rate is modelled by

pOC
i,j = β jλ

β j

i tβi−1
i ∆t

Parts with preventive maintenance where all the r
identical components must fail for event occurrence

(based on [41])

pOC
i,j =[(

Tβi−1
i λ

βi
i

)r
+ rTβi−1

i λ
βi
i

(
λi

λi+µi

)r−1
+
(

λi
λi+µi

)r
]

t

Replaced with AND gates connecting components
failures. Each component state is modelled as a

Markov process, whereas each component failure rate

is estimated by pOC
i,j = β jλ

β j

i tβi−1
i ∆t

Safety systems

Tested standby equipment failure on demand (except
for software failures) [41] pSS

i,j = 1 + (e−λi Ti−1)
λi Ti

pSS
i,j = 1 + (e−λi Ti−1)

λi Ti

For safety system/functions with continuous
monitoring failure on demand [41] pSS

i,j = λi
λi+µi

(
1− e−(λi+µi)Ti

)
Modelled as Markov process

Safety functions with periodical testing failure on
demand [41] pSS

i,j = 1 + (e−λi Ti−1)
λi Ti

pSS
i,j = 1 + (e−λi Ti−1)

λi Ti

For software failures in safety functions [41] pSS
i,j = PFDi pSS

i,j = PFDi

Unavailability due to periodical maintenance of
standby equipment where r components are standby

(based on [41])
pSS

i,j =

( 1
Ti

1
Ti
+µi

)r
Replaced with AND gate connecting components

failures. Each component failure rate is estimated by
Equation (8) and each component state is modelled as

a Markov process.
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3. Investigated System Description

The investigated cruise ship diesel-electric power plant (DEP) includes 6 DGs, 3 azipods,
2 Power Management Systems (PMS) and 3 switchboards and multitude of other compo-
nents as shown in Figure 2. Design data for this system was retrieved from the operating
and maintenance manuals of the system components, the associated system drawings and
studies published in the pertinent literature [42–48].
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The instantaneous electric power demand affects the use (switching on/off) of the DG
sets, whereas the DGs switchover is also implemented based on the DG sets accumulated
running hours. The investigated system is capable of implementing fast load reduction
of the propulsion electrical motors, and it also includes preferential tripping functions
(fast load reduction) by tripping the electric motors driving the air conditioning system
compressors. The engines of each DG set can be loaded till 90% of its nominal power.
The ship electric load is evenly shared in proportion to the nominal power output of the
DG sets among the operating DG sets. Prewarning alarms can allow a DG set to switch
over to a healthy DG set, for example, in cases of lubricating oil low-pressure alarm, high
exhaust gas temperature alarm and high cooling water temperature alarm are present.
More detailed information about the investigated system can be found in [30].

The analysis and simulations require reliability and maintenance interval data for
the components of the investigated power plant. However, this data sets were already
presented in [30], and for reasons of brevity, are not provided herein.

Case Studies Description

The selected case studies are presented in Table 3. The analysis employed different w
values to assess the impact of sensors measurements on the model results. The analysis
focuses on the Probability of Blackout (PoB), denoted by pTE. In addition to PoB, other met-
rics, such as the probability of sudden loss of a DG set (PoDGloss) is estimated, considering
the basic events of the same Fault Tree model for estimation of PoB. The dynamic impor-
tance analysis is implemented for the case study 2 with w = 0.5 every 24 h to demonstrate
the dynamic analysis results. The time horizon of 24 h was selected, as there have been
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some computational limitations identified in the implementation of importance analysis
on smaller time steps. The PoB reference is set to 2.7 10−4 in line with published accident
statistics and used in [30], whilst the PoDGloss is set to 0.1, so that the red zone geometric
mean probability is equal to 1.

Table 3. Investigated case studies description.

Case Study No. w Analysis Conducted

1 0 Estimation of PoB every 0.5 h for 168 h (7 days, 1 week)
with horizon prediction (∆t) of 24 h

2 0.5
Estimation of PoB every 0.5 h for 168 h (7 days, 1 week)

with horizon prediction (∆t) of 24 h and importance
analysis every 24 h

3 1 Estimation of PoB every 0.5 h for 168 h (7 days, 1 week)
with horizon prediction (∆t) of 24 h

4. Results
4.1. Step 1—The Developed Safety Model

The model has been developed for blackout monitoring system simulation in Mat-
lab/Simulink environment by modelling all the relevant components, such as the major
DEP subsystems: DG sets, Propulsion Motors (PM), Engine Room (ER) components, Bow
Thrusters (BTs), Switchboards (SW). The basic event probability for each component as well
as the components operating status are used in the Fault Tree calculations. The employed
Fault Tree structure is not presented, as it is too extensive; detailed information about the
developed Fault Tree model can be found in [30]. This Fault Tree calculates the safety metrics
in a static manner. However, considering the implementation of the adjustments described in
step 6, the developed model is capable of calculating the time variations of the selected safety
metrics. This developed FT model interface in Simulink is provided in Figure 3.
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4.2. Step 2—Selection of the Monitored Parameters

The features Fi that were selected for the health monitoring of several components
of the investigated system along with these components maintenance intervals (used to
estimate Fdeg

i ) are provided in Table 4. These selected parameters are available in the
existing ship alarm and monitoring system, and are typically employed for monitoring the
safety critical components of the investigated power plant, as reported in [30].

Table 4. Selected features for the identified critical components of the investigated cruise ship power plant system.

a/a Component Fi
Normal/Alarm

Value MI * (hours)

1 Engine Thrust bearings Temperature 80/100 ◦C 18,000

2 Engine Main bearings Temperature 80/100 ◦C 18,000

3 DG engine high temperature cooling water pump Pressure at engine inlet 4/2 bar 10,000

4 DG set engine low temperature cooling water pump Pressure at engine inlet 3.6/2 bar 10,000

5 Engine low temperature cooling water pump Pressure 3.6/2 bar 10,000

6 Cylinders Exhaust gas Temperature at exhaust gas port 450/490 ◦C 6000

7 Turbocharger (TC) Temperature at turbine inlet 450/490 ◦C 12,000

8 Engine lubricating oil cooler Temperature at engine inlet 70/80 ◦C 10,000

9 Lubricating oil pump Pressure at engine inlet 4/3 bar 5000

* MI: Maintenance interval.

Other parameters that are used as input to the FT model are: DG sets operating status,
DG sets load, engine room operating status (whether in use or not; the ship has two engine
rooms), number of operating DG sets in each engine room, hotel electric power demand,
propulsion motors operating status and load, bow thrusters’ status and load, whether a
DG set is starting, whether a propulsion motor is starting.

4.3. Steps 3−6—Simulation Results

Figure 4a illustrates the simulation results for the time variations of the power plant
blackout probability and the probability of the sudden loss of one DG set for the three
investigated case studies along with the numbers of the power plant main components (DG
sets, azipods, bow thrusters) operating and the electric power demand time variation which
are used as input. Therefore, the first two upper subplots of Figure 4a depict the output,
whilst the two lower subplots depict the input. The inclusion of input and output is used
to facilitate the identification of correlations between the input and output. Furthermore,
to facilitate the results analysis, the same results are presented in Figure 4b, excluding the
time periods in which one DG set operates.

As it can be observed from Figure 4a, the PoB is in red warning level for the time
periods cases when only one DG set operates. At these time periods, the propulsion motors
(azipods) do not operate, which indicates that the vessel is in the harbour mode. Therefore,
it is deduced that the PoB significantly increases in harbour mode, which is aligned with
findings of our previous study [30]. In this respect, the proposed system is developed
to provide alarms for the cases where the warning zone is reached and the cruise ship
operates in any mode.
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The PoB is also exceeded for short time periods when the propulsion motors (azipods)
do not operate and the ship operates in its manoeuvring mode using its bow thrusters;
the electric power demand is relatively low, whilst three DG sets operate. This can be
attributed to the fact that power reduction functions for the bow thrusters are not available,
and hence, this safety barrier cannot be considered in this ship operating mode. It can be
inferred that the power reduction functions have a critical role for reducing the PoB, and
hence, in ensuring the ship safety, which is in alignment with findings from our previous
study [30]. Thus, a potential way to improve the ship safety would be by including the
power reduction functions for the bow thrusters, provided that the cruise manoeuvring
operation is not jeopardised.

The probability of sudden loss of a DG set (PoDGloss) in the system is also presented
in Figure 4. It is observed that the PoDGloss time variation follows the same pattern with
the time variation of the connected (operating) DG sets number. This can be attributed to
the fact that the more DG sets are connected to the system, the higher the probability that
one of them will fail. However, the PoB seems to only slightly correlate to the PoDGloss,
which indicates that other parameters are more critical for the PoB than the connected DG
sets number, except for the time periods when only one DG set is connected. This indicate
that the impact of this incidence (DG failure) is lower. These parameters are identified in
the following paragraphs. The PoDGloss are generally in yellow region, which indicate
that from this perspective, no intervention is required by the crew.

The three performed case studies employed different values of the weights (0, 0.5 and
1) to exclude, partly use, or only use the measured parameters for the calculation of the PoB
time variations. It is deduced from the results of Figure 4 that differentiation of the PoB
time variations are derived for these three case studies. This indicates that the incorporation
of sensor measurements by the proposed blackout monitoring system influences the PoB
results. This comparison is used to demonstrate the impact from incorporating the sensors’
measurements additionally on the components failure rates estimations. More importantly,
the dynamic measurement of parameters (through sensors), such the number of connected
components, their loading conditions, and others significantly influence the risk metrics
estimation.

The derived importance measures for the selected components are provided in Table 5
and Figures 5 and 6. These figures illustrate the importance measures calculated every
24 h, and consequently, the variation of these importance metrics in intermediate time
steps is not provided. However, the provision of lines facilitates the results visualisation.
The importance metrics in Table 5 are in alignment with the results reported in [30], and
demonstrate that not only physical failures but also failures in software functions are
categorised as critical for system safety. Additionally, the derived results demonstrate the
importance of other hazardous events, e.g., arc in switchboards. Based on the preceding
considerations, the system operator must pay attention to measured parameters variation
and the degradation of the identified critical components and failures, as small changes in
these parameters can have significant influence on the power plant PoB.

Table 5. Importance measures results.

Component or Software Function Failure IBt
i [−] Type of Failure

Power Management System failure to reduce load of
propulsion motors 0.0047 Software

Arc protection software failure 1.21 × 10−9 Software
Arc in switchboards N1 and N2 0.0072 Physical

DG 1 water cooler failure 0.0004 Physical
DG 1 Engine lubricating oil cooler 0.0004 Physical
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It is deduced from Figure 5 that the importance metric for each DG set varies with
time. It must be noted that for the cases where a DG set is not connected to the ship electric
grid (does not operate), its importance metric equals to 0. The importance metrics variation
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depends on the usage of the DG sets and operating loads, the system configuration and
the components degradation. DG2, DG5 and DG6 exhibit a relatively low value of the
importance metric IFV

i (t) at t = 96 h, as three DG sets operate at relatively low load;
thus, it is unlikely that a failure in one of these operating DG sets will result in blackout.
Therefore, it can be inferred that it would be possible to operate at this time period with
only two DG sets at a higher load, which is expected to improve the energy efficiency of
the investigated power plant, with only slightly affecting the plant safety (in terms of the
PoB). The considerable values of the importance metric IB

i (t) for DG1, DG5 and DG6 at
t = 144 h demonstrated a higher sensitivity of these operating DG sets to failures. This
indicates situations where the crew must be alerted for potential failures or degradation of
the operating DG sets’ health status, as explained in the next paragraph.

Figure 6 provides the importance metrics IFV
i (t) for different components of DG1.

These importance metrics time variations are related to the identified critical components
operational characteristics, failure rates and degradation patterns. The most critical compo-
nents for the DG1 operations were found to be the pumps for the lubricating oil as well as
the cooling water of high and low temperature. These components require attention from
the crew for DG1.

4.4. Discussion

From the results analysis of the preceding section, it has been demonstrated that
the investigated power plant parameters, such as, the number of the operating DG sets
connected to the ship electric grid, the power plant components’ health status, the DGs’
operating conditions (load), affect the system safety. To address the power plant safety
issues during operation requires to account for all these parameters, which complicates the
decision-making process for assuring the system safety. However, with an assistance from
proper tools for analysing pertinent information, these parameters effects can be quantified
and used to estimate the safety metrics for the investigated power plant, allowing for the
identification and treatment of potentially hazardous conditions more effectively. With the
development of autonomous systems in the maritime industry and the replacing of human
operations by smart systems, such monitoring tools are essential for ensuring the systems
safety. In the context of fully autonomous ships, the presence of advanced and intelligent
safety monitoring systems is prerequisite.

The proposed concept for the development of the presented blackout monitoring
system satisfies several criteria for automating the power plant safety monitoring and
management [12]. It provides high-level functional alarms for the investigated cruise ship
power plant based on the prevailing system operating conditions. It also allows for the
classification of the alarms/failures to reflect their importance on the investigated power
plant safety. Furthermore, it allows the operator to assess indirectly the impact of different
failures on the ship functions and to select the components that need to be maintained
or disconnected from the ship electric grid. Therefore, it can be inferred that this concept
facilitates the effective safety management for the power plants of cruise ships.

Nonetheless, the proposed monitoring system has some limitations. A future study
could focus on diagnostics development and use of the shipboard measurements to develop
diagnostics toolboxes. Prognostics algorithms could be also incorporated in the blackout
monitoring system. Future study could also investigate the impact of different maintenance
and inspection intervals on the power plant safety. Methods for diagnosing the sensor
failures and measurements uncertainty could also further enhance the propose monitoring
system functionality. However, the presented concept constitutes the first essential step to
the development of a fully automated blackout monitoring system.
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5. Conclusions

This study proposed a novel blackout monitoring system for the power plant of a
cruise ship. This system integrates a Fault Tree model developed through CASA method
with sensor measurements and reliability data for the system components. The system
calculated the time variations of the investigated plant safety metrics, in specific the
probability of blackout and the probability to loss a DG set. Real operational data were
used for performing simulations to validate the proposed concept.

The main findings of this study can be summarised as follows.

• Specific operational parameters as DG load and number of connected DG sets need
be used as input into the safety monitoring system, as these influence the system’s
probability of failure.

• An operation with a single DG set increases the PoB to the red warning level.
• The PoB during start of DG sets also reaches the red level.
• Failures in operating components can increase the PoB also above the desired threshold,

however their criticality is varying in time dependent on the system other parameters.

This study demonstrated the usefulness and advantages of the proposed monitor-
ing system considering that the power plant safety metrics depend on a diverse set of
parameters varying in time. The concept as presented in this study is an effort towards the
development of the proposed system, which is expected to benefit the cruise ship industry
as well as other shipping sectors employing complex power plants and propulsion systems.
It is also anticipated to be an essential tool for monitoring and management the dynamic
safety metrics and risk for the case of autonomous ship systems.
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Abbreviations/Nomenclature List

Greek symbols
Symbol Explanation
βi Weibull shape factor [-]
λi,A Aggregated failure rate for component estimated using sensor measurements and

reliability data
λB Blackout failure rate [h−1]
λi Failure rate for component [h−1]
λi,m Failure rate for component estimated using sensor measurements [h−1]
µi Repair rate for component [h−1]
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English symbols
Symbol Explanation
Fi Feature [variable units]
Fnorm

i Normal feature value [variable units]
Fdeg

i Feature degradation slope [variable units/h]
HIi Health index for component i
IB
i Birnbaum’s importance measure [-]

IBt
i An averaged over time IB

i metric [-]
IFV
i Fussell-Vesely importance measure [-]

IFVt
i An averaged over time IFV

i metric [-]
MCR Maximum Continuous Rating power [kW]
ns Number of simulations [-]
nt Number of criticality assessments implemented [-]
OP Operational parameters [depending on parameter]
OT Operational time [h]
pi,A Aggregated probability [-]
pOC

i,j Probability of failure for operating component [-]
pSS

i,j Probability of failure of safety system [-]
pSSS

i,j Probability of specific system states [-]
PFDi The probability of failure on demand [-]
pp Probability of top event in specific system configuration [-]
pTE Probability of top event [-]
pTE

REF Reference probability of top event [-]
r Number of identical components
t Time [h]
tm
i Time of last maintenance [h]

Ti Inspection or maintenance interval [h]
w Weight depicting which information is selected. w = 1, sensors are used to estimate

failure rate, w = 0 failure rate from database is used.
Subscripts
Symbol Explanation
cr Importance measure estimation number in dynamic simulation
i Component
j Basic event in Fault Tree
m Failure rate estimated based on measurements
Abbreviation Explanation
BDMP Boolean logic Driven Markovian Process
BT Bow Thruster
CASA Combinatorial Approach to Safety Analysis
DEP Diesel-electric Propulsion
DG Diesel Generator
ER Engine Room
HT High Temperature
LT Low Temperature
MI Maintenance Interval
PM Propulsion Motors
PMS Power Management System
PoB Probability of Blackout
PoDGloss The probability of sudden loss of a DG set
TC Turbocharger
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