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A Skill Acquisition Perspective on the Impact 
of Exergaming Technology on Foundational 
Movement Skill Development in Children 3–12 
Years: A Systematic Review and Meta-analysis
Luca Oppici1, Frederike Marie Stell2, Till Utesch3, Carl T. Woods4, Lawrence Foweather5 and James R. Rudd1,6*   

Abstract 

Background: Sedentary, digital screen time in children represents a major concern due to its detrimental effect on 
children’s development. Nowadays, however, advances in technology allow children to actively interact with a digital 
screen using their whole body (e.g., exergaming), providing potential for movement learning. Exergaming technology 
may prove valuable in supporting children’s development of foundational movement skills (FMS). 

Objective: To examine the impact of exergaming technology on the development of FMS in children 3–12 years 
through a skill acquisition lens.

Methods: Systematic review and meta-analysis were conducted following the PRISMA guidelines. Web of Science, 
PubMed, PsycINFO and SPORTDiscus databases were searched between 2007 and 2022. Studies were eligible if they 
conducted an exergaming intervention to improve FMS in typically developing children aged three to twelve with a 
control group, using a baseline and post-intervention assessment design. FMS outcomes were pooled with a random 
effects model.

Results: Nine trials (4 RCTs, 2 cluster RCTs and 3 non-randomized trials) of varying methodological quality (2 had 
low, 6 had some concerns, and 1 had a high risk of bias) were included, with a total of 783 participants. FMS outcome 
measures across studies comprised object control skills, locomotor skills, coordination, agility, balance and balance-
related skills. The meta-analysis included showed a small positive effect in favor of the exergaming intervention 
(r = 0.24 [95% confidence interval: 0.11–0.36]).

Conclusion: Our results indicate that screen-based technology that requires an active engagement of the child can 
promote the development of FMS. Considering that FMS are the foundation of a child’s physical, mental, health and 
academic development, this finding could lead to a reshaping of the perception of digital screen-based technology 
and the role this should play in children’s lives. We speculate that the observed benefits most likely depend upon the 
quality of information–movement coupling specificity and the motor learning strategies built into the exergame and/
or the intervention design. We do not believe this is dependent on the type of FMS being performed or the amount 
of practice. We recommend therefore that future research should examine how practitioners (school teachers, 
coaches and parents) can facilitate the interaction between a child and exergaming technology.
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Key Points

• Screen-based technology is typically considered neg-
ative for children, as it promotes sedentary behavior. 
Contrarily, screen-based technology that requires 
a whole-body active engagement of the user may 
encourage the development of foundational move-
ment skills (FMS).

• Our meta-analysis showed a small effect (r = 0.24) 
of practicing exergaming technology for developing 
FMS in children age 3–12.

• Practitioners (teachers and coaches) can use this 
technology to supplement their lessons (e.g., in 
home-based practice). We provide guidelines for an 
effective implementation and development of such 
technology.

Introduction
Children are the fastest growing users of digital technol-
ogy [1, 2], with those up to the age of 8 years being esti-
mated to use on average digital screens for approximately 
25% of their waking hours [3]. Typically, children engage 
in screen time in a sedentary manner, passively digest-
ing digital information with minimal body movement 
when watching digital media or playing digital games 
(e.g., pressing buttons). It has been widely shown that 
children’s digital screen time while sedentary is a cause 
of concern for global health, as passive screen use in chil-
dren is associated with negative consequences for their 
physical, mental and social development [4–9]. These 
findings have led to recommendations by academics and 
governments to limit children’s use of screen time tech-
nologies. For example, it is suggested that children under 
the age of five should have no more than 60 min exposure 
a day; however, concerns have been raised that two out of 
three children are currently not meeting these guidelines 
[3]. Indeed, the COVID-19 pandemic has highlighted 
how difficult this target is to achieve, as screen-based 
technology was primarily used for conducting home-
based school lessons to facilitate social distancing [10].

A skill acquisition perspective views children’s screen 
time based on how children interact with screen-based 
technology. This results in a shift away from the current 
perspective of seeing screen time as being bad per se, 
instead moving toward a perspective of investigating the 
interactive relationship between the user (child) and the 
screen. Advances in technology allow children to actively 

interact with a digital screen using their body (not only 
by pressing a button), providing potential for movement 
learning. In this systematic review, we explore—from a 
skill acquisition perspective—how practicing whole- or 
part-body movement in response to a variety of stimuli 
from a screen (immersive and interactive technology) can 
influence the development of Foundational movement 
skills (FMS). These technologies offer new opportunities 
for digital engagement, potentially even facilitating chil-
dren’s FMS development rather than diminishing it. We 
believe that considering the issue of screen time use in 
children from a skill acquisition perspective may further 
advance our understanding, helping academics and gov-
ernments to find new ways to tackle this global problem.

Foundational movement skills are defined as goal-
directed movement patterns that directly and indirectly 
impact an individual’s capability to be physically active 
and can be developed to enhance physical activity partic-
ipation and promote health across the lifespan [11]. Sup-
porting FMS is a worthy developmental and educational 
aim as FMS represent a critical aspect of children’s devel-
opment, and it enhances a child’s capacity to participate 
meaningfully in play, games and activities, and is a key 
enabler of children’s physical activity throughout the life 
course [12, 13]. The development of FMS is also associ-
ated with positive trajectories of academic achievement, 
mental health and quality of life [14]. Traditionally, FMS 
are largely developed in physical education (PE) classes, 
such as catching and throwing, and support a child’s abil-
ity to perform in a variety of contexts (e.g., at the play-
ground with their friends) and sports (e.g., cricket and 
basketball). To support the acquisition of FMS, the prin-
ciple of specificity of practice [15] is of paramount impor-
tance and commonplace in PE teaching. The principle of 
specificity means the coupling between information and 
movement is critical, in the sense that children should 
learn to regulate their movement on information spe-
cific to intended scenarios [16]. For example, for improv-
ing tennis striking skills, a child should practice hitting 
a moving tennis ball with a tennis racquet.  Through 
interaction with a wide range of activities that involve 
throwing and catching—e.g., basketball, rugby, cricket, 
baseball—children progressively become more attuned 
to specifying information that guides continued explora-
tion of their surrounding; over time, this will lead to the 
development of FMS [17, 18]. Consequently, a variety of 
throwing and catching skills, for example, enables chil-
dren to confidently function, and perform successfully, 



Page 3 of 15Oppici et al. Sports Medicine - Open           (2022) 8:148  

across multiple sporting and physical activity environ-
ments [19]. In fact, children with high levels of object 
control skills (e.g., throwing, catching, kicking) are often 
more active throughout childhood, in addition to being 
more physically active in late adolescence and beyond 
[12, 14, 20].

As noted, interactive and immersive screen time tech-
nology has the potential to contribute to the development 
of FMS in children. Interactive and immersive technolo-
gies, such as exergaming (e.g., Wii, Nintendo, Kyoto, 
Japan; Xbox Kinect, Microsoft, Redmond, WA), were cre-
ated to increase users’ movement activities, engagement 
and enjoyment in screen time activities. Exergaming has 
the potential to create an interactive environment where 
children explore and adapt to a wide range of movement 
activities—from athletics to bowling, tennis and basket-
ball (among others). As opposed to the traditional digital 
pressing of buttons on a controller, children interact with 
exergames using movement of their body while holding 
a controller, whereby the movement/manipulation of the 
controller in space translates to the movement seen on 
screen. For example, while standing, a child swings their 
arm to perform a forehand in a tennis exergame. This 
exergame–child interaction involves a continuous cou-
pling of information and action (e.g., to detect forehand 
opportunities for beating the opponent and actualizing 
this opportunity), which is the hallmark of FMS develop-
ment from a contemporary motor learning perspective 
[21]. Importantly, there is potential for higher specificity 
of information–movement coupling (perceiving the com-
ing tennis ball and moving the whole body to hit it) than 
pressing a button for intercepting the ball. Put simply, 
interactive technology has the potential to simulate activ-
ities performed in PE (and more generally in sport and 
play scenarios) and thus aid in the development of FMS. 
Alongside this, exergames include immersive features, 
such as creating personalized avatars, setting task diffi-
culties and offering haptic feedback during movement – 
each of which supports the development of autonomous 
learning [22, 23]. Exergaming, therefore, has many fea-
tures which could support the development of FMS [24]. 
Potentially, exergaming may be particularly beneficial for 
children with low FMS or low perception of FMS, who 
may find it difficult to participate in “real” activities but 
may feel more at ease and in a safer environment when 
participating in exergaming activities.

The COVID-19 outbreak highlighted that screen time 
technologies can be a key aspect of education when 
needing to facilitate social distancing [10], and it is there-
fore timely to explore the effectiveness of these technolo-
gies in supporting the development of children’s FMS. 
The aim of this systematic review is to explore the effec-
tiveness of interactive technologies, such as exergames, 

for the development of FMS in typically developing chil-
dren aged 3–12  years. Given the fast evolution of this 
technology and the associated quick turnover of applica-
tions, we decided to include studies published from 2007 
(the year in which immersive technology was launched in 
the market) to the present (2022). Digital technology has 
frequently been viewed as promoting sedentary behavior 
in children and this review will seek to find out whether 
it can, to the contrary, actually promote the development 
of FMS, thus leading to a reshaping of the perception and 
role of digital screen-based technology in our society.

It is important to highlight that a systematic review 
with a similar question has recently been published [25]. 
However, we consider it necessary to conduct a new sys-
tematic review to further elucidate how interactive tech-
nology influences FMS development in children and can 
thus provide directions for future research. While the 
participants’ age is the same as for Liu et  al., this sys-
tematic review focuses exclusively on FMS development 
(Liu et al. [25], combined physical fitness and FMS); pro-
vides a conceptualization of FMS and the related poten-
tial effect of exergaming on FMS grounded on theories 
of movement learning (Liu et al. [25], did not provide a 
theoretical consideration on how exergaming may benefit 
FMS); considers balance and postural-related skill as FMS 
aligning with current views on FMS (REF) (Liu et al. [25], 
considered balance only as physical ability); expands the 
search keywords, resulting in a higher number of stud-
ies included, relative to Liu et al. [25]; synthesizes current 
evidence using meta-analytic procedure (Liu et  al. [25], 
provided a narrative synthesis which is prone to bias); 
and discusses results and implications on how the design 
of user-exergaming interaction shapes the effectiveness 
of an exergaming interaction (Liu et  al. [25], discussed 
results only from a dose–response perspective). In short, 
this systematic review improves Liu et al.’s [25] review on 
theoretical and methodological aspects.

Methods
The guidelines proposed by the 2020 Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA 2020) were followed [26].

Eligibility Criteria
PICOS statement: in 3-to-12-year-old typically develop-
ing children, does interactive and immersive technology 
develop FMS relative to no practice, free play or standard 
practice (traditional PE lessons)?

The inclusion criteria were: (a) peer-reviewed articles 
published as full-text in English from January 2007 to 
February 2022, (b) participants were typically develop-
ing children with mean age of the sample ranging from 
three to twelve years, (c) an intervention with immersive 
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and interactive technology was compared to a control 
group (no practice, free play or standard practice), using 
an experimental (RCT or cluster RCT) or quasi-experi-
mental design, and (d) the measured outcome comprised 
an FMS outcome (stability, locomotor and object control 
skills).

Information Sources and Search Strategy
Four databases were searched to identify studies: Web 
of Science, PubMed, PsycINFO and SPORTDiscus. The 
search was last performed on the February 2, 2022. Fur-
thermore, the references of the studies included in the 
review were screened for identifying extra studies.

The search strategy comprised the following syn-
tax: (Digital OR Technolog* OR Media OR Smartphone 
OR Tablet OR "Video Gam*" OR "Virtual Reality" OR 
"Augmented Reality" OR "Mobile App*" OR Exergam* 
OR eHealth OR Playstation OR Nintendo OR Wii OR 

Xbox OR Kinect OR Oculus OR Wearable* OR "Mobile 
Device*" OR "Electronic Device*" OR eSports OR "e 
Sports" OR "Fitbit" OR "Apple Watch" OR "Pokémon Go") 
AND (Child* OR Infant*) AND (Learn* OR Acqui* OR 
Develop* OR Train* OR Teach* OR Adapt*) AND (Move-
ment OR “Motor Skill*” OR Coordination OR “Motor 
Competence”). According to the eligibility criteria, limit-
ers “publication date” (from 1st of January 2007 to pre-
sent) and “language” (English) were applied to the search 
strategy.

Selection Process
The records identified through database searching were 
exported into Endnote X9 software (Clarivate, Philadel-
phia, USA), and duplicates were automatically removed. 
Then, two authors (LO and FS) manually screened the 
records excluding studies based on titles and abstracts, 
assessed the eligibility of the remaining full-text articles 

Fig. 1 Flow diagram of the search and study selection process
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and included the studies that met the inclusion criteria 
(Fig.  1). The two authors independently carried out the 
selection process, they cross-checked their results after 
each step (i.e., title/abstract and full-text screening) 
and resolved any discrepancy in a closed meeting, and 
if consensus was not reached, a third author (JR) was 
consulted.

Data Collection Process and Data Items
Two authors (LO and FS) manually extracted the data of 
interest from the included studies and compiled the data 
in a table format (Table 1). They worked independently, 
they cross-checked their results and resolved any dis-
crepancy in a closed meeting, and if consensus was not 
reached, a third author (JR) was consulted.

For each study, the following data were extracted: (a) 
study information (authors, publication date, country 
and study design), (b) study sample (sample size, age and 
sex), (c) the setting in which the experiment took place, 
(d) the mode of intervention (i.e., technological device or 
game used), (e) the content of the intervention and who 
delivered it, (f ) the duration of the intervention and (g) 
FMS measures and outcomes.

Outcome data for the synthesis of results were directly 
obtained from the included studies, and when data were 
not fully reported, the corresponding author was con-
tacted (with 100% response rate) to obtain the necessary 
outcome and effect measure.

Study Risk of Bias Assessment
The methodological quality of the reviewed studies was 
evaluated using established risk of bias tools [27]. The 
risk of bias was assessed using the RoB 2 tool in rand-
omized controlled trials (RCT), an extension of the RoB 
2 was used for cluster-randomized trials (RoB 2 Cluster), 
and the ROBINS-I tool was used for non-randomized tri-
als [28, 29] (tools available at https:// www. risko fbias. info/ 
welco me). The RoB 2 tool comprises five bias domains: 
randomization process, deviations from the intended 
interventions, missing outcome data, measurement of 
the outcome and selection of the reported results. The 
RoB 2 Cluster comprises these same domains with the 
addition of a bias domain related to identification or 
recruitment of participants into clusters. The ROBINS-I 
tool comprises seven bias domains: confounding, selec-
tion of participants into the study, classification of inter-
ventions, deviations from the intended interventions, 
missing data, measurement of outcomes and selection of 
the reported results. All tools contain signaling questions 
to help assess the potential bias in each domain. In RoB 
2 and RoB 2 Cluster tools, there are three possible out-
comes in each domain—low, some concerns, and high—
while there are five possible outcomes in the ROBINS-I 

tool—low, moderate, serious, critical and no information. 
To evaluate and synthesize the studies included in the 
review parsimoniously, we decided to adjust the rating of 
ROBINS-I tool to the rating of the RoB 2 tool. As such, 
low risk remained unchanged, moderate and no informa-
tion were classified as some concerns, serious and critical 
were classified as high risk. An overall outcome, corre-
sponding to the highest risk across domains (also known 
as worst score counts) was calculated for each study (i.e., 
if the risk was some concerns in one domain only, the 
overall risk was some concerns). The results of the risk of 
bias assessment are presented using the traffic light sys-
tem: green (low), yellow (some concerns) and red (high). 
Two authors (LO and FS) independently assessed the risk 
of bias, they cross-checked their results and resolved any 
discrepancy in a closed meeting, and if consensus was 
not reached, a third author (JR) was consulted.

Synthesis Methods
A meta-analytic integration of the results was performed 
to synthesize the existing literature on the examined 
hypothesis. For each outcome, the standardized mean 
difference between experimental and control conditions 
was used as the effect measure. As such, quantitative 
FMS outcome measures were extracted from the single 
studies.

A random effects (RE) model was chosen in order to 
run a meta-analytic integration of existing results cor-
recting for multiple samples. In order to integrate exist-
ing effects from the literature, all effect sizes derived from 
the single studies were transformed into Pearson corre-
lation coefficients. Within the meta-regression, r-to-z 
transformation escalc (calculate effect sizes and outcome 
measures) function in R was used to transform Pear-
son correlation coefficients into z values. A τ2 restricted 
maximum-likelihood estimator was conducted. Results 
were finally transformed back to Pearson correlation 
coefficients  for better interpretation. All analyses were 
conducted in R (R Core Team, 2021) with the primary 
packages robumeta [31] and metafor [32]. Results of the 
meta-analytic integration were presented using a forest 
plot.

Results
Study Selection
The search identified 3569 articles, which reduced to 
2498 after duplicates were removed. Twenty-nine articles 
were left after title and abstract screening and were read 
in full, of which nine articles met the inclusion criteria 
and were included in this review (Fig. 1).

https://www.riskofbias.info/welcome
https://www.riskofbias.info/welcome
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Study Characteristics
The characteristics of the included studies are shown in 
Table  1. The included studies involved 783 participants, 
with sample sizes ranging from 29 to 261 participants 
(mean = 87, SD = 69.6, median = 65). The children’s age 
ranged from 3 to 12 years (median = 8), and the percent-
age of girls and boys was balanced across the studies 
(girls, median = 47%). All studies recruited healthy and 
normally developing participants (i.e., without any psy-
cho-intellectual-physical disability). Mombarg et  al. [33] 
recruited participants with poor balance ability, but with-
out physical or intellectual disability. Two studies sam-
pled populations with low socioeconomic status [34, 35].

Four studies adopted a RCT [33, 36–38], two adopted 
a cluster-randomized trial [39, 40], and three studies 
adopted a quasi-experimental design (without randomi-
zation) [34, 35, 41]. All studies employed a baseline and 
post-intervention assessment design, and Vernadakis 
et al. [38] also included a retention test at a one-month 
time point. Intervention groups were compared with 
control groups practicing different activities across stud-
ies. The control groups did not engage in any structured 
practice [33, 34, 36–38], practiced the regular PE cur-
riculum [35, 39, 40] or practiced activities similar to the 
intervention group but without a technological device 
[38–41].

Interventions took place in a school-based setting, each 
carried out at different time points within the school rou-
tine: during school time [34, 41], replacing PE classes [35, 
38–40], after school [36] or during lunch break [33, 37]. 
The intervention was supervised by a PE teacher [39–
41], motor skill instructor [38], physical therapist [33], 
research assistant [36] or a combination of PE teacher 
and research assistants [34, 35]. Johnson et  al. [37] 
did not specify whether and how the intervention was 
supervised. While in all studies supervision was limited 
to assisting and motivating children in their game play, 
Vernadakis et  al. [38] used a motor skill instructor for 
providing specific instructions on how to improve skills. 
The intervention length differed between one single ses-
sion and 40 sessions, and the exposure to the technology 
intervention ranged from a total of 40 min [41] to 800–
900 min [34, 40].

All interventions used exergaming as interactive tech-
nology. Commercially available exergame stations (e.g., 
Xbox Kinect and Nintendo Wii) and the provided sport 
games (e.g., tennis and baseball) were used in all but 
one study, which used a custom-built exergame station 
and “goalkeeping” game [41]. In all studies, participants 
played a variety of activities available from the exergam-
ing games, and in some studies, participants rotated 
across different exergaming stations [34, 35, 39]. Only 
Vernadakis et al. [38] implemented a specific and detailed 

list of game activities with planned progression of tasks 
for improving FMS.

FMS outcome measures comprised object control 
skills [34, 36–38, 41], locomotor skills [34], coordina-
tion, agility [41], balance and balance-related skills [33, 
39, 40]. Object control skills were assessed using the Test 
of Gross Motor Development 2nd edition (TGMD-2) 
[42] in Barnett et al. [36] and Vernadakis et al. [38], and 
using the Test of Gross Motor Development 3rd edition 
(TGMD-3) [42] in Johnson et  al. [37]. Locomotor skills 
were assessed with the TGMD-2 in Gao et al. [34]. Fur-
ther, Johnson et  al. [37] developed two validated addi-
tional skill tests, the golf swing and the putt stroke. Ye 
et  al. [35] assessed object control skills using a custom-
made test. Hsiao and Chen [41] measured hand coor-
dination using a custom-made motor competence test. 
Balance and balance-related skills were assessed using 
the Movement Assessment Battery for Children 2nd edi-
tion (M-ABC-2) [43], the Bruininks-Oseretsky Test of 
Motor Proficiency 2nd edition (BOT-2) [44], and HUR 
BT4 platform [45] in Mombarg et  al. [33] and Sheehan 
and Katz [39, 40, 46].

Risk of Bias in Studies
The risk of bias for the reviewed studies is presented in 
Fig. 2. One study had a low risk of bias [37], six studies 
had some concerns [33, 36, 38–41], and two studies had 
a high risk of bias [34, 35]. Most studies presented con-
cerns at the selection process (bias arising from the ran-
domization process or bias due to confounding: Domain 
1). The randomization procedure was poorly reported 
in the two cluster-randomized trials [39, 40], and some 
confounding variables were not considered in non-rand-
omized controlled trials [34, 35, 41]. Furthermore, most 
studies did not report information on blinding of asses-
sors (bias in measurement of the outcome: Domain 4 in 
RCTs and Domain 6 in non-randomized trials). Lastly, 
two non-randomized trials [34, 35] poorly reported how 
they handled missing data, which represented a high risk 
of bias (bias due to missing data: Domain 5).

Synthesis of Results
In order to answer the quantitative research question and 
summarize the existing evidence within the literature, a 
meta-analytic integration was performed. The random 
effects model with multiple sample correction provides 
evidence toward a small effect of r = 0.24 (95% confidence 
interval 0.11; 0.36) for all studies indicating that a small 
beneficial effect currently exists in the literature. Results 
are summarized and presented in Fig. 3.
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Discussion
The aim of this systematic review was to synthesize 
the evidence on the effectiveness of interventions with 
immersive and interactive screen-based technology on 
developing FMS in typically developing children aged 
three to 12. Nine intervention studies (four RCTs, two 

cluster-randomized trials and three non-randomized tri-
als) were included in the review. All interventions, except 
for Barnett et  al. [36], took place in a school setting and 
all used commercially available exergames for the tech-
nological intervention, except for a custom-made exer-
game in Hsiao and Chen [41]. Overall, the meta-analysis 

Fig. 2 Results of risk of bias assessment for the included studies. RCTs (A) were evaluated using the RoB 2 tool, cluster RCTs (B) with the RoB 2 
Cluster and non-randomized trials (C) with the ROBINS-I tool
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revealed small statistically significant intervention effects 
for FMS development. Due to a low sample size, it was not 
possible to run a moderator analysis for the type of FMS 
(object control, locomotor or stability skills). The result of 
this meta-analysis differs from that of Liu et al. [25] which, 
without conducting a meta-analysis, concluded that evi-
dence on the effectiveness of active technology (as they 
called it) on FMS is inconclusive. Further, contrary to Liu 
et  al. [25], we included balance skill as FMS, as current 
understanding in the movement science considers balance 
and postural stability to be the foundation for motor learn-
ing and control [47, 48].

The benefits of exergames were slightly heterogeneous 
across studies. The analysis showed that in some of the 
studies the benefit was null, or in some instances nega-
tive (see confidence intervals in Fig. 3), and a close look at 
the analysis suggests that the positive effect was primarily 
driven by the studies on balance skills [33, 39, 40] and the 
Vernadakis et al. [38] study. We interpreted these results 
in the light of how the games were designed and imple-
mented with respect to the skill under examination (as 
opposed to limiting the analysis to dose–response rela-
tionship, as in Liu et al. [25]). Except for balance, no other 
trend was detected regarding differential effects across 
FMS, and we speculate that the benefits of practicing 
with exergames did not depend on the type of FMS per se 

but on the specificity of information–movement coupling 
and the implementation of motor learning strategies. 
Specificity of information–movement coupling refers to 
how the information presented in an exergame (e.g., a fly-
ing ball) and the movement coupled with that informa-
tion (e.g., a catching or hitting movement) are specific 
to the behavior targeted in the task (object interception, 
e.g., catching a ball thrown by another person or hitting a 
forehand in tennis) [49]. Common strategies for promot-
ing motor learning are instruction, augmented feedback 
and manipulation of task difficulty [50, 51].

Commercially available balance-related exergames, 
such as Wii Fit Plus and snowboard simulators, are 
designed for improving balance and contain motor learn-
ing strategies and a high specificity of information–
movement coupling. When interacting with the software, 
children stand on a platform and continuously control 
their balance using augmented visual feedback displayed 
on a monitor about their center of gravity in relation to 
the task environment. Augmented feedback is key for 
promoting motor learning, as it guides a learner in their 
search for stable and effective movement solutions [52], 
and such a strategy is typically employed for teaching or 
re-teaching, balance (e.g., Mansfield et al. [53]). Further, 
the platform and software design provide a high specific-
ity of information (about a child’s center of gravity) and 

Fig. 3 Forest plot showing the differences between the exergaming intervention and control group expressed as correlation coefficient with 95% 
confidence interval



Page 13 of 15Oppici et al. Sports Medicine - Open           (2022) 8:148  

movement coupling (a child’s movement and displace-
ment of center of gravity are accurately reflected in the 
visual display). It is likely that this coupling facilitates two 
key processes of movement learning: first, attunement 
of perception to task-relevant information (e.g., center 
of gravity in relation to one’s own base of support) and 
secondly, calibration of action (perceptual information 
is calibrated into movement units) [54]. Why high task 
specificity is important here is that it promotes trans-
fer to the “real-world” context of skill performance [55]. 
Furthermore, the game software typically contains other 
important skill acquisition principles such as options to 
change difficulty, different scenarios and challenges, and 
avatar development all of which can support a child’s 
improvement of their balance and keep a child motivated 
to continue in the game.

Commercially available exergames that include object 
control and locomotor activities typically have a low 
specificity of information–movement coupling and do 
not contain skill-specific motor learning strategies. The 
sensor technology embedded in exergames has limita-
tions in tracking movement accurately, especially in 
whole-body dynamic movements, and the link between 
a user’s movement and information on the screen is quite 
approximate and thus far from a skill employed in the 
“real world.” For example, a child can play a tennis game 
just by moving their wrist, and these movements will be 
represented as full arm swing on the display. This low 
coupling specificity will likely transfer poorly to playing 
tennis at the local park. We speculate that this low speci-
ficity in commercially available exergames, which is due 
to the inaccuracy of the tracking system, means that they 
do not promote the development of object control and 
locomotor skills. This also explains why the effect size 
found in this review is smaller than those observed in a 
previous meta-analysis for FMS interventions that took 
place in the “real world” [56]. Vernadakis et al. [38], how-
ever, demonstrate that if current  exergame technology 
is supplemented with motor learning principles, imple-
mented instruction and augmented feedback tailored 
to each individual child (guiding them to improve their 
movement) with children modulating the task difficulty 
of the chosen game, then these strategies will lead to FMS 
improvement similar to those seen in PE lessons.

The need for exergames to be principled in motor 
learning theories for promoting the development of 
FMS is further supported in the literature [57]. McGann 
et  al. [58] compared commercial exergame technol-
ogy with a purpose-built exergame that was designed 
to improve children’s FMS (locomotor skills) utilizing 
a principled approach to skill acquisition (assessment, 
rules, challenge, feedback and instruction). Significant 
improvement in all FMS was observed when compared 

to commercial-based technology [58]. While it was not 
possible to include this study in our systematic review, 
as it did not have a control group, its results highlight 
the potential of screen-based exergames to improve 
movement skills, and indeed, these may surpass what is 
possible in PE alone. This should not be seen as a recom-
mendation for exergaming to replace PE but rather that 
a screen-based technology that can benefit children’s 
educational and health outcomes, and is complementary 
to PE, could have an impact in improving FMS globally, 
reducing the amount of harmful sedentary-based screen 
time [12, 59].

Future research should seek to improve the sensitivity 
and accuracy of exergaming sensor technology as well 
as the representative design of the game so that it mir-
rors “real-world” performance contexts. Exergames that 
are developed in this manner will result in specifying 
information that is highly representative to real-world 
context and therefore increase the likelihood that FMS 
developed in the game transfer to a multitude of physi-
cal activity environments in the real world. This pro-
vides new insights that FMS improvements are not 
simply determined by the type of FMS practiced or the 
total amount of practice but are also due to the quality 
of the specifying information to which the user couples. 
Further, physical educators should be trained to support 
children’s FMS development using a principled approach 
to skill acquisition. In future, recommendations for chil-
dren’s screen time may include consideration of the type 
of screen time that children are engaging in, rather than 
giving a blanket recommendation to limit its amount, 
which is in our opinion unlikely to be realistic in today’s 
techno-proliferation.

This review has a number of strengths: (1) a com-
prehensive search strategy across multiple databases 
to detect the full range of relevant studies, (2) exten-
sive study detail extracted with broad inclusion criteria 
and (3) alignment with the PRISMA Statement which 
provides transparency and rigor on the conducted 
meta-analysis procedure. There were also a number of 
limitations. Studies were required to be published in Eng-
lish, which may have excluded studies published in other 
languages; the meta-analysis included a generally modest 
number of heterogeneous studies, which may reduce the 
precision of the effect size estimate and may not provide 
the full picture on exergaming effectiveness; inability to 
conduct a moderator analysis on the type of activities 
control groups performed and on the different types of 
FMS due to low sample size, and consequently difficul-
ties in comparing the effect of different studies. This last 
point is of particular relevance, as exergaming may have 
a differential effect on different FMS. For instance, a 
close look at Fig. 3 may suggest that exergaming is mostly 
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beneficial for balance and postural skills, i.e., Mombarg 
et  al. [33], and Sheehan and Katz [39, 40] showed an 
enhanced improvement in balance skills with the exer-
gaming intervention relative to control. Future research 
is required to further examine this issue, as well as to 
explore whether exergaming is more beneficial for chil-
dren with low FMS as was the case in the Mombarg et al. 
[33] study.

Conclusion
Our review showed a small benefit of using exergames for 
improving FMS in children. The benefits are likely to be 
dependent on exergame design with respect to the target 
FMS and the strategies implemented during an interven-
tion. Exergames are designed for encouraging children to 
exercise; however, they improve FMS only where activi-
ties are specifically designed for improving FMS. Existing 
balance games (e.g., Wii Fit Plus) contain elements for 
improving balance, but other games do not currently con-
tain elements for improving FMS, such as object control 
skills. In view of this, it is recommended that interven-
tions should  incorporate skill acquisition principles and 
theories of motor learning to help improve FMS and that 
games should be designed specifically to improve FMS. It 
would be interesting to examine how recent develop-
ment in gaming technology (e.g., headset virtual reality) 
may facilitate the implementation of the discussed motor 
learning principles. Ultimately, this study provides new 
insights that can shift the current view on screen-based 
technology, suggesting that such technology can be ben-
eficial for promoting children’s FMS development, and 
practitioners are encouraged to explore its implementa-
tion in their practice.
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