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Abstract: Construction of an intelligent Health Indicator (HI) that can accurately describe the 

degradation process is a prerequisite to accelerating the development of an automatic remaining useful 

life (RUL) prediction model for rotating machinery such as bearings. This research aims to develop an 

intelligent model that can predict the remaining useful life of bearings without physical human 

intervention. The intelligent HI model, named Multi-Scale-Multi-Head Attention with Automatic 

Encoder-Decoder (MSMHA-AED), is constructed based on an unsupervised neural network model and 

can extract multi-scale coded features of bearings from raw vibration signals. The model is fitted with 

an ensemble health indicator designed to fuse the metrics of healthy and damaged coded features of 

bearings to create a more reliable health indicator for RUL prediction. The intelligent HI model is 

subsequently used to develop three neural network-based prognostic models to examine the reliability 

of the proposed health indicator in RUL predictions. Using the prognostic model, the magnitude of 

degradation in the bearings is estimated by measuring the similarity between the coded features of 

healthy and unknown damaged bearings using three measurement methods. It was found that the 

similarity measured by the Wasserstein distance method offers more suitable results for damage 

quantification due to its unique capability of measuring health indicators in more monotonic condition. 

It is also found that the proposed model is less prone to giving false alarms even when used to detect 

degradation for the first time. All performance indicators of the proposed approach show better and more 

robust metrics than the state-of-art methods. 

Keyword: Health Indicator; Prognosis; Remaining useful life prediction; Automatic Encoder-Decoder 

Nomenclature 

HI Health indicator 

RUL Remaining useful lifetime  
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AED Auto encoder-decoder 

DCN Deep convolutional neural network  

MSMHA 
Multi-scale convolutional revolution neural network with multi-head 

attention 

MSCNN Multi-scale convolutional neural network  

CNN Convolutional neural network 

BILSTM Bidirectional long short-term memory 

CNN-BILSTM Convolutional neural network-bidirectional long short-term memory 

GAN Generative Adversarial Network 

DLN Deep Learning Network 

healthD  Dataset, consisting of vibration signals healthX  

healthX  The health signal in a health condition within a domain healthX  

healthX  Healthy domain  

healthZ  Coded features generated by the encoder  

,enc encf   Encoder and the parameters of the encoder 

ˆ
healthX  The generated signal  

decf , dec  Decoder and the parameters of the decoder 

damageX  The damage signal in damage condition within a unknown domain damageX  

damageX  Unknown domain 

(Q,K,V)Multihead  Multi-head attention module, K for Key, Q for Query, V for Value 

, ,Q K V  The inputs of the multi-head attention  

softmax( )  A activation function 

RMSE  Root mean squared errors 

MSE Mean squared errors 

ADAM An optimizer of parameters derived from adaptive moment estimation 

ReLU A kind of activation function  

DAQ Data Acquisition system 
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1. Introduction  

Rotating machinery has been widely used in aerospace, energy, and manufacturing industries as 

power drive components for process and system. Understanding the evolution of damages in rotatory 

machinery is crucial in ensuring that equipment or system’s operation and maintenance (O&M) are 

proactively managed to reduce downtime. This is an essential requirement to ensuring that equipment 

or system continuously remains in good working condition and it is able to remove any potential 

occurrence of damages to property and personnel caused by unexpected failures (Rinaldi et al., 2021) 

(Shields et al., 2021). These damages generally arise from progressive components degradation or 

failure that occurs during the operating lifecycle of the machinery. Although degradation in any 

machinery components is considered as unacceptable, they still exist because most of the components 

experience fatigue due the cyclic nature of their operations. Fatigue is a fundamental driver of failure 

that ultimately impairs the operational efficiency of a machinery production and output (Farhan et al., 

2022). The resulting impact of failures from these impairments is an expensive maintenance and 

operational cost of the equipment, especially the bearings (Wanget al 2022).  

Structural Health Monitoring (SHM) and condition-based maintenance offer a path that ensures 

the rotating machinery does not experience major failure as a result of a gradual or rapid damage 

accumulation, thereby preventing accidents and improving reliability (Zhao et al. 

2021)(Malekimoghadamet al. 2021). Consequently, developing automatic and robust monitoring and 

prognostic techniques is significant to delivering a reliable and effective maintenance approach for the 

bearings. This is because of the impact that such techniques could have on cost reduction for 
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maintenance and in accelerating the uptake of rotating machinery technologies (Wang et al. 

2020)(Nejad et al., 2014).  

As important mechanical components that transmit rotation, bearings are vital in mechanical 

equipment and systems. Development of maintenance strategies based on prognostic health 

management method could richly enhance the lifecycle cost savings of the machinery. Generally, in 

condition-based maintenance the prognostic approach in bearings maintenance management relies on 

effective damage diagnosis and accurate remaining useful lifetime (RUL) prediction. This is because 

RUL is the core of the decision-making process in bearing maintenance (Zhai & Ye, 2017). Hence, 

accurate RUL prediction of components arising from defects can help maintenance engineers plan 

suitable maintenance strategies in advance and reduce maintenance costs that guarantee the machine ’s 

reliability and safety (Nuñez and Borsato 2018, Wei et al. 2019).  

There are two broad classification of RUL prediction models that are widely in use, namely the 

physic-based model and data-driven model (Liet al. 2018; Wang et al. 2020). The physic-based model 

needs significant prior knowledge and experiences due to certain limitations which have already been 

identified. For this reason, the focus of modern RUL studies has been gradually moving from physics-

based towards a data-driven model (Singletonet al. 2015). Application of a data-driven model to 

conduct health prognosis of engineering system has been gaining considerable popularity due to its 

importance in facilitating the development of an intelligent prognostic management system. Several 

data-driven prognosis methods have been used in studies on RUL prediction of bearings (Fan et al., 

2019). Outcomes of these studies, if combined with rational decision-making systems, can be used to 

develop an intelligent system for RUL prediction (Shafiee & Animah, 2022). Therefore, one of the 
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motivations of this study is to develop intelligent and automatic decision-making models for real-time 

and virtual management of the rotating machinery (Zhao et al. 2019).  

In the studies on data-driven RUL prediction models for the bearings, traditional processes of 

RUL prediction are followed (Lei et al., 2018). The health and degradation indicators in these processes 

are manually constructed using complex signal processing techniques (Zhouet al. 2016). The 

procedure for constructing the RUL prediction model consists of data acquisition and pre-processing, 

extraction and construction of health or degradation indicators, and RUL estimation and health 

prognosis. For example, Yang et al. (2022) calculated the degradation indicator of a rolling bearing 

based on an improved independent component analysis and Mahalanobis distance to predict its RUL, 

which is examined by experiments to prove its accuracy and reliability. Li et al., (2017) used a general 

mathematical morphology particle theory to construct a degradation indicator that can represent the 

degradation process of bearings. Panet al.,(2010) estimated the degradation process of bearings by 

combining the lifting wavelet packet decomposition and fuzzy c-mean to construct the health indicator 

for bearings’ RUL prediction. Rai and Upadhyay (2017) applied empirical mode decomposition (EMD) 

and k-medoids clustering to assess the degradation performance of the bearings and obtained a 

degradation indicator for RUL prediction. Wang and Shen (2016) introduced an equivalent cyclic 

energy indicator as the degradation indicator for the bearing’s RUL estimation. All the aforementioned 

studies share a common feature of being limited by the system’s experiences when setting suitable 

parameters for extracting optimal features. These parameters are required in constructing the health 

and degradation indicators. While the health indicator is the core of the data-driven based RUL 

prediction model, the quality of a manually constructed health and degradation indicator is easily 
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affected by both environment and users’ experiences. This could be problematic to its reliability and 

with huge consequence on accuracies of the eventual RUL prediction (Wang et al. 2021; Chen et al. 

2020). Thus, it is necessary to develop an accurate, effective, and reliable method for obtaining the 

health and degradation indicator to reduce the O&M cost of a machinery.  

Neural Network (NN) based models such as Deep Learning Networks (DLN) and Convolutional 

Neural Networks (CNN), have emerged as credible alternatives to traditional methods and they are 

widely used in the areas of image processing, pattern recognition and data prediction. Techniques 

developed based on these models have been applied to fault diagnosis and prognosis due to their strong 

capability in automatically extracting damage or fault features (Zhiyi et al. 2020; Zhao et al. 2021; Li 

et al. 2019; Ismail et al. 2020; Xu et al. 2021). However, the DLN technique still faces some challenges 

and limitations in prognostic applications, especially in producing a robust health and degradation 

indicator, including the following: 

(1) The construction of a health indicator (HI) for the bearings still relies on prior knowledge by 

using either a linear or nonlinear label in which the total degradation data is used to label the RUL to 

obtain the HI. However, in the real industrial application, there is near absence of or just limited fatigue 

dataset available for training a DLN model. Also, there is insufficient life-cycle dataset of the bearings 

available in the public domain.  

(2) The possibility to successfully collect training and test data from the same sensors is remote. 

This is because it is very difficult for the data obtained from numerical simulations of the operating 

conditions to be the same as the data distribution from real equipment operations. For example, a 

simple unsupervised learning-based prognostic approach, which lacks the capability to capture multi-
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scale information, does not work in a typical known operating environment. Thus, designing and 

building a robust and reliable HI model is a prerequisite to developing an automated intelligent RUL 

prediction for the bearing maintenance. 

Therefore, in dealing with the above challenges, this study is inspired by the possibility to achieve 

a remarkable prognosis using deep neural networks with a rational decision-making model that reduces 

human interface in RUL prediction. Consequently, this study has developed a high-performance 

encoder-decoder, named “Multi-Scale Revolution Convolutional Neural Network with Multi-Head 

Attention Automatic Encoder-Decoder (MSMHA-AED)”, to reconstruct a HI for intelligent bearings 

RUL prediction. This robust auto-encoder-decoder offers an unsupervised learning framework where 

the training data relies only on the healthy condition data. In contrast to existing supervised learning 

approaches, no labelling of degraded data is required. In this study, health indicators are constructed 

by measuring the similarity between coded features of healthy and unknown damaged condition of 

bearings. The main motivation for adopting this approach is to achieve rapid improvement in the 

quality of the coded features and guarantees the reliability of health indicators. Consequently, a feature 

fusion method is proposed to fuse the multiple health indicators produced by MSMHA-AED with the 

aim of improving its ability to predict monotonicity in the health indicators. The MSMHA-AED model 

is trained by only using the normal (healthy) data, an important capability that minimizes prognostic 

latency and false positive results. Following optimization of the MSMHA-AED model parameter, 

Wasserstein distance is added to the proposed model to improve its stability and reliability in 

determining the first prediction point (FPT). The health indicator of the bearing works by invoking the 

MSMHA-AED model-based approach to use the Wasserstein distance to measure the similarity 
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between the test coded features and the baseline coded features. In the RUL prediction, the reliability 

of the RUL prognosticator developed by three models including CNN, BILSTM and CNN-BILSTM 

are examined. The health indicator constructed by the proposed approach are used as the input features 

to train the predictor. Consequently, the main contributions of this research are summarized below.  

1) After considering the multiscale information present in typical multi-scale resolution features, 

this research developed an unsupervised approach based on DLN/CNN, named MSMHA-AED to 

intelligently extract features for the purpose of recording the health state of a bearing in the coded 

features. In the model, self-attention mechanism is added to enhance the quality of the coded features, 

the aim of which is to improve the reliability and accuracy of the constructed health indicators.  

2) The research investigated the influence of three similarity functions on the reliability of health 

indicator construction for intelligent RUL prediction of a rotating engineering system. It is found that 

using Wasserstein distance to measure the similarity offers more reliable results than other 

measurements techniques. Hence, a novel construction approach for an automatic health indicator has 

been proposed by combining the excellent capability of MSMHA-AED with the similarity indicating 

capability of Wasserstein distance.  

3) This study uses an accelerated bearing failure experimental data to examine the performance 

of the proposed health indicator construction method. The superiority of the health indicator is 

compared with state-of-art methods. The reliability of the application of this health indicator in 

predicting the RUL of bearings is examined by three neural network models. The whole prognostic 

processes, which consist of the HI construction and RUL prediction, are fully integrated into the 

intelligent system framework without any need for human experience or interference as opposed to the 
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current practice that relies on various degree of human interface. In addition, A novel prognosticator 

developed based on Bayesian Neural Network is used to predict the RUL with uncertainty. This can 

provide more information and establish confidence level for reliable maintenance decision-making.  

Following an introduction in Section 1, the rest of the paper is organized as follows. Section 2 

reviews the related works while Section 3 presents details of the proposed method. Section 4 presents 

and discusses both quantitative and qualitative experimental results as part of the validation process. 

Section 5 concludes the outcome of the research.  

2. Related Works 

Several researchers have used DLN-based methods to construct health and degradation indicator. 

Cheng et al., (2021) used a CNN to extract degradation indicator from raw signals with a complete 

ensemble empirical mode-based label. Guo et al., (2018) adopted a CNN with linear labels to supervise 

the network and construct the health indicator. As a similarity work, Guo et al., (2017) used a Recurrent 

Neural Network (RNN) with kurtosis-based nonlinear labels to construct the degradation indicator for 

bearing RUL prediction.  Zhao et al., (2021) used Guo’s study as a basis for utilizing the advantages 

of CNN capabilities for feature extraction to construct health indicator for a bearing RUL estimation. 

Chen et al., (2020) studied different types of RNNs to extract degradation features only using a prior 

experience to construct the HI. However, in all the above studies the HI was constructed by 

implementing supervised NN learning models in which the processes of feature extraction incorporate 

prior knowledge. Outcomes of these studies do not qualify them to be called a fully automated and 

intelligent HI because the prior knowledge is manually obtained from a labelled dataset.  
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Some researchers have attempted to expand the knowledge frontiers of this subject by 

investigating the construction of HI based on unsupervised learning. Peng et al., (2019) combined 

particle filter and Deep Belief Network (DBN) to establish the HI of bearings and predicted their RUL. 

Dai et al., (2020) used Generative Adversarial Network (GAN) to achieve a bearing monitoring 

without any manual supervision. Dai et al., (2020) used a multi-scale network with an attention 

mechanism to extract features and predicted RUL. Suhet et al. (2022) designed a novel GAN with a 

U-net architecture to deal with the prediction of bearing RUL. In order to enhance the performance of 

convolutional networks and make them more powerful in performing system prognosis, Guo et al. 

(2022) introduced a multi-scale feature extraction process in an auto encoder-decoder to achieve the 

development of an unsupervised HI. This study pointed that the feature fusion of the decoder had a 

significant effect on the performance of the prognostic model.  

Although a supervised DLN model can be quickly adapted to fit degradation indicators, the 

labeling process is time-consuming and labor-intensive. This approach is almost unsuitable for 

industrial-scale application because it is difficult to supervise and label all data in a practical 

engineering application. Notwithstanding, the unsupervised DLN models are dedicated to learning and 

establishing the response patterns of the bearing in the healthy state. Consequently, it is still possible 

to construct a HI by comparing the similarity between the baseline and test coded features data in 

which the challenges of these methods are the robustness of an unsupervised DLN model and the 

performance of the chosen similarity function.  
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3. Baseline Method  

The assumption of this method is that the similarity between the healthy and damaged data raises 

with increase in damage magnitude. The similarity between the raw healthy and damaged vibration 

signals can quantify the HI. However, some unclear factors, such as unstable rotational speed and noise 

in the signals, often lead to less robustness of the constructed HI. Thus, in this study, a Neural Network 

(NN) based Auto Encoder-Decoder (AED) is designed as a communication tool for the HI construction 

of the rolling bearing. The framework of this baseline model (D. Chen et al., 2021), shown in Figure 

1, is intended to describe the task of this study.  

 

Figure 1 The DCN-AED architecture 

As shown in Figure 1, The dataset healthD  consists of vibration signals healthX , which denotes a 

health condition within the domain healthX . The training data ( 1{ }i N

health health iX x  ) sampled from X  

are sent into the encoder encf  to obtain the coded features ( | )health enc health encZ f X   , where 

1{ }i N

health health iZ z   , and ( | )i

i enc health encz f x   . The coded features are fed into the decoder, decf  , to 

reconstruct the 1
ˆ ˆ{ } ( | ) ( | )i N i

health health i dec health dec dec health decX x f Z f z    . The mean Squared error (MSE) 

is used as a loss function to minimize the distance between the X   and X̂   for parameters 

optimization. In the model training process, the coded features healthZ  are extracted by the encoder 

encf , which consists of a series of convolutional kernels, batch normalization and ReLU activation 
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from the input healthX . The coded features healthZ  are resized by the decoder decf  that consists of sets 

of deconvolutions, batch normalization and leaky ReLU activation to rebuild the ˆ
healthX  . The 

parameters of the DCN-AED model are optimized by gradient descent optimizer based on the Mean 

Squared Error (MSE) function as 
2

1

1ˆ ˆ( , ) ( )
N

health health health health

i

L X X X X
N 

  . In view of an optimized 

DCN-AED model, the parameters of encoder are enc and the parameters of decoder are dec . The HI 

is the similarity between the coded features healthZ  and the damage coded features 1{ }i N

damage damage iZ z  , 

where ( | )N N

i damage enc i damage encz f x   , 1{ }
damage

i N

damage iX x    is obtained from the unknown vibration 

signals in the domain damageX  . The similarity is calculated by the distance function, 

Distance( , )health damageSimilarity Z Z . Where Distance( ) is a function used to calculate the difference 

between the two inputs, which can be a function for any distance.  

4. Proposed Method for HI  

4.1 Convolutional Encoder  

Convolutional encoder is used to encode the spatial patterns of raw signals. More specifically, the 

vibration features are directly collected from the sensor placed on a bearing, as 1D tensor 𝑋𝑡,0 ∈

ℜ
𝑛×1×1

, which is fed into convolutional layers. 𝑋𝑡,𝑙−1 ∈ ℜ
𝑛𝑙−1×1×𝑑𝑙−1is the advanced feature in the 

( 1)thl   layer, which is an output of ( )thl  and it is given by Equation 1:  

, , 1( )t l l t l

lX f W X b    (1) 

where    is the convolutional operation, ( )f    is the activation function, 1l l lk d dlW  
   which 

includes ld convolutional kernels with size 1l lk d  . ld

lb  is the bias of the output 1, l ln dt lX
 

 , 
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The activation function is denoted by ReLU.  

4.2 Self-attention mechanism for multi-scale revolution features 

Motivated by the work of Zhang et al. (2019), this study adopted the multi-scale revolution 

features to improve the performance of the reconstruction model. Thus, the process requires the 

application of self-attention modules to generate weighted coded features based on the deep features 

respectively from the encoder and decoder. The process for coded features relies on the given advanced 

features 
,t lX  from the 

thl  encoder 
i

encf and the last advanced features ,ˆ t lX from 1thl  decoder 
1i

decf 
 

to update the weighted features ( , , )Multihead Q K V , where Q is the features in the decoder 
1i

decf 
, K 

and V are the features in encoder 
i

encf . Figure 2 illustrates the deep multi-scale revolution features 

modeling procedure. The weighted coded features in each self-attention module are used for the 

construction of health indicator. 

4.3 The MSMHA-AED model 

An ‘end to end’ multi-scale CNN network embedded in the Multi-Head Attention Mechanism is 

described in this section. The development of the MSMHA-AED algorithm consists of four steps. The 

first step is the development of the multi-scale resolution extractors, which are constructed using 

different depths of convolutional layers. The second step deals with the development of the spatial 

information collection modules in which advanced features are encoded using the designed module 

and based on self-attention mechanism. A key function of this step is to enable it to consider the 

correlation between the encoded and decoded features using the multi-head attention mechanism. The 
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third step is the application of advanced features processor of the health data after encoding. In this 

step, the Multi-Head Attention-based modules are called to invoke the baseline coded features, which 

are transmitted to the convolutional decoder for processing. The residual between the reconstructed 

and real signals is used to construct the loss function. The last step is to measure the similarity between 

the healthy and damaged attention of weighted coded features.  

 

Figure 2: The framework of MSMHA-AED for HI construction 

Figure 2 presents the framework of MSMHA-AED. In order to enhance the performance of the 

HI, the number of convolution filters in the down sampling process is increased from 16 to 512. while 

each down sampling process is used to reduce the length of the advanced sequence by half. As shown 

in Figure 2, The process assumes that the feature corresponding to each round of the up-sampling is 

i

upZ , and the resampling feature connected to the down-sampling is 
i

downZ . By considering 
i

upZ as the 

Key K  , Value V  , and resampling 
i

downZ   as the Query Q  , the attention features can be obtained 

through the Multi-Head Attention mechanism, and the attention features of each layer will be regarded 
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as the coded features of different scales. The head attention is computed as 

TQK
Attention(Q,K,V) softmax( )V

d
 ,where d is the dimension of the Q, K and V. The training loss 

function adopts the mean Squared errors (MSE), and the optimizer adopts the ADAM gradient search 

method, while a maximum of 500 epochs are used in the training phase.  

4.4 Ensemble Healthy Indicator  

The main function of the HI is to evaluate the degradation of the bearings. The degradation of the 

bearing may lead to a higher vibration induced by fatigue or manual creaks of a bearing, which means 

that the current state will have distinct dynamic response in the normal state. In this study, a robust 

encoder-decoder is proposed as a component of MSMHA-AED to characterize the metric of bearing 

degradation by using the similarity between the encoded information of the existing state (possibly a 

damaged condition) and the healthy state. In Figure 2, using self-attention mechanism is proposed to 

obtain the weighted coded features. The procedure assumes that there are k times down-samplings in 

the encoder and k-1 coded features within the attention. These coded features with attention weights 

are used to construct the health indicators, giving the total MSMHA-AED the ability to the construct 

k-1 health indicators. The constructed k-1 health indicators are developed to have different 

characteristic scales. Therefore, a fusion method is proposed to fuse the k-1 health indicators to achieve 

the desired robustness.  

The pseudo-code of the construction method for the proposed health indicator is given as follows: 

The code consists of three parts: modelling, similarity measurement and multi-scale indicators fusion.  

Algorithm 1: Multi-Scale revolution Convolutional Neural Network with Multi-Head 
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Attention Automatic Encoder-Decoder for HI construction  

1. Obtain parameters   including weights and bias of the MSMHA-AED model G   

 Input: ,0 1 1t nX    and initial parameters    

 Output: ̂  - the estimation of the MSMHA-AED model  

 While i Epochs  (i.e. number of epochs) do 

  Repeat 

  
 

   Update parameter in model G  via Adam 

Descent 

  Until convergence of   

 End 

End  

2. Estimate the Similarity function between coded-features of baseline ˆ
base

X   and current 

ˆ
current

Y  

 
Input: 1 1{ , } n

base currentX X   , G , Similarity defined by distance funcion.  

 
Output: 

k

lD   

 
Estimation the coded features: 

, ˆˆ ( | )d l

base baseX G X  and 
, ˆˆ ( | )d l

current currentY G X  

 Estimate the Similarity between coded features with different multi-scale features 

, ,

1

1 ˆ ˆSimilarity( , )
l

k d i d i

l base current

i

D X Y
l 

   as HI under each scale k 

End 

3. Multiple health indicators fusion  

 
Input: , [1, ]k

iD i n , i represents the ith sample, total times of sample is n.  

 
Output: HIi  

 For 1: 1i n   

 
   

1min( , )HI
k

i i iD D where 
1k k

i iD D   

   
1 1 1max( , ) [max( , ) min( , )] / 1HI

k k k

i i i i i i iD D D D D D k    where 
1k k

i iD D   

 End 

End 
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4.5 Prognosticator Training   

The combination of the Convolutional Neural Network and Bi-directional LSTM network (CNN-

BILSTM) model, as the predictor for instance (The predictor could be any neural model to map the 

relationship between the health indicator and RUL labels), is used to estimate the RUL of the bearings, 

which takes the RUL estimation as a regression problem. The complexity of the CNN-BILSTM 

network for RUL estimation is lower than existing methods because the network only maps the features 

between the constructed health indicators that have been constructed by MSMHA-AED and RUL 

labels rather than by directly mapping the actual signals and the RUL labels. The HI constructed via 

the proposed MSMHA-AED method is the input features of the CNN-BILSTM, and their 

corresponding RUL is labeled to supervise the network in the training process. The procedure for 

training the CNN-BILSTM model for regression in the RUL prediction with MSMHA-AED-based 

health indicator is summarized in Algorithm 2. Furthermore, a novel prognosticator is developed based 

on a fusion of CNN-BILSTM with Bayesian Neural Network. The prognosticator is fitted with 

uncertainty quantification capability. The parameters of the novel prognosticator are optimized via 

gradient descend in which the variational inference is used to approximate the prior and posterior 

distribution of the model parameters. Kullback–Leibler (KL) divergence is adopted in the construction 

of the loss function.  

Algorithm 2: RUL prediction of the bearings based on CNN-BILSTM model with MSMHA-

AED -based health indicators  

1. The CNN-BILSTM Network Training for Prognosis H  as the RUL Predictor 

 
Input:  ,

N
XTrain YTrain , Initial parameters  , XTrain is the HI constructed by MSMHA-

AED 
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Output: ̂ -CNN-BILSTM Network parameters  

 While i Epochs  (i.e. number of epochs) do  

  Repeat 

   
  Update parameter in model H  via Adam 

Descent 

  Until convergence of   

 End 

End 

2. RUL estimation based on CNN-BILSTM Predictor  

 
Input:  

N
X , G  and H  

 Output: ŷ  

 for  n = 1:N do 

  
Estimation the coded features: ˆˆ ( | )current currentX G X , 

Estimate the Similarity between coded features to get the multiple indicators 
k

lD  and the 

ensemble health indicator HI to be the ,nXTest n N  

  
Estimate RUL: ˆ( | )n ny H XTest  

 End 

End 

The whole process of simulating the RUL including HI construction and RUL estimation for the 

bearing prognosis is shown in Figure 3.  
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Figure 3: The framework of the proposed bearing prognostic approach using the 

MSMHA-AED model  

As shown in Figure 3, the proposed approach uses a data acquisition system to obtain the raw 

vibration signals from the bearing key components, such as bearings, for structural health monitoring. 

The proposed MSMHA-AED model is used to record the coded features of the bearing in different 

health states. The similarity is calculated by the distance function, which measures and compares the 

distance between the coded healthy features and the current state coded features. This is used to 

construct the health indicator for monitoring the bearing degradation process. Multiple HIs are 

constructed using a high-dimension features matrixes to feed into a neural network to train the 

predictor for RUL prediction. The proposed approach, from the beginning of health indicator 

construction to the RUL estimation, is conducted without any manual interface involved.  

5. Experimental verification and discussion 

5.1 Experimental Details 

The accelerated degradation bearing vibration rig from Xi’an Jiaotong University (XJTU) (P. 



 

20 

 

Wang, et al., 2020), is used to examine the performance of the proposed approach. In the XJTU bearing 

dataset, 15 rolling element bearings were acquired by conducting several accelerated degradation 

experiments in three working conditions. Details of XJTU dataset are shown in Table 1 and Figure 3.  

Table: 1 Details of the XJTU scenario 2 for examining the performance of HI construction 

methods 

Operating condition 
dataset 

(Bearing lifetime) 

C1: 35Hz/12kN 
Bearing1_1 Bearing1_2 Bearing1_3 Bearing1_4 Bearing1_5 

(2h 3min) (2h 41min) (2h 38min) (2h 2min) (52 min) 

C2: 37.5Hz/11kN 
Bearing2_1 Bearing2_2 Bearing2_3 Bearing2_4 Bearing2_5 

(8h 11min) (2h 41min) (8h 83min) (42min) (5h 59 min) 

C3: 40Hz/10kN 

Bearing3_1 Bearing3_2 Bearing3_3 Bearing3_4 Bearing3_5 

(42h 18min) 
(41h 

36min) 
(6h 11min) (25h 15min) (1h 52 min) 

The reliability of the designed MSMHA-AED model with three different similarity functions to 

construct HI is examined based on the datasets. The datasets for these bearings, which have the same 

fatigue characteristics but obtained under different operation conditions, are used to examine the 

reliability and effectiveness of the proposed RUL prediction method.  

 

     

(a) Normal (b) Inner race (c) Cage (d) Ball (e) Outer race 

Figure 3: The experiment platform 
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5.2 Evaluation metrics for estimation of HI and RUL 

In this research, monotonicity function (including Signum Formula and Spearman’s rank 

correlation coefficient) is used to evaluate the quality of the constructed HI. The higher the 

monotonicity score, the better the quality of the HI for RUL prediction. The RMSE function is used to 

evaluate the quality of the RUL prediction. The Signum Formula for monotonicity is calculated using 

Equation (2).  

1

No. of positive diff( ) No. of negative diff( )1
( )

1

j j
m

i i

i

j

x x
Monotonicity x

m n





  (2) 

Where n is the number of measurement points, in this case n  equals to the length of sampling times 

for each bearing. m  is the number of machines monitored, in this case m =1. 
j

ix  is the ith feature 

measured on jth machine diff( ) ( ) ( 1)j j j

i i ix x t x t   , which means the difference between the feature 

j

ix .  

The Equation of the Spearman’s rank correlation coefficient monotonicity is:  

1

1
( ) ( ( ), ( ))

m

i j j

j

Monotonicity x corr rank x rank t
m 

   (3) 

Where M is the number of the monitored systems, in this case equals to 1, the jt  is the time vector 

corresponding to the jx  , ( )rank   is the rank function, ( )corr    is the Spearman’s rank correlation 

coefficient function. To define the hybrid monotonicity as ( ) / 2Mon Signum Spearman  .  

RMSE: RMSE is an evaluation metric in the field of prognostics and health management. The 

RMSE value is calculated by: 

2

1

1 N

i

i

RMSE error
N 

   (4) 
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5.3 The HI construction procedure 

The baseline model, which comprises of the auto encoder-decoder and DCN, is used to examine 

the reliability of HI constructed based on different similarities.  

 

(a) Bearing 1-1 

 

(b) Bearing 1-2 

 

(c) Bearing 1-3 

 

(d) Bearing 1-4 

 

(e) Bearing 1-5 

 

(f) Bearing 2-1 

 

(g) Bearing 2-2 

 

(h) Bearing 2-3 

 

(i) Bearing 2-4 
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(j) Bearing 2-5 (k) Bearing 3-1 (l) Bearing 3-2 

 

(m) Bearing 3-3 

 

(n) Bearing 3-4 

 

(o) Bearing 3-5 

Figure 4: Examination of the distance function in the construction of the health indicator  

In Figure 4, four types of distance calculation functions are used to measure the similarity between 

the healthy and defective bearings. The quantified HI of bearing1_1 for instance, in relation to the 

Squared Elucidation Distance to the constructed HI, shows different curve from other three functions. 

This indicates that using distance functions to measure the similarity between the healthy and damaged 

bearing is the most effective method to construct the HI. It is interesting to note that (as shown in sub-

Figure Bearing 1-5) before the first prediction time (FPT) was recorded, the health indicators 

constructed based on Squared Elucidation Distance and Wasserstein Distance are nearly closed to zero 

but the other two are slightly higher than zero. A bearing begins to transition into degradation state 

when its health indicator is consistently greater than zero, thus the health indicator constructed using 

the Squared Elucidation Distance and Wasserstein Distance is more suitable in determining the FPT. 

More evidence to prove the performance of the similarity measurement is presented in Table 2.  

Table 2 The FPT of the bearings 

       Method 

 

Bearing 

Absolute Distance 

(mins) 

Elucidation 

Distance(mins) 

Squared 

Elucidation 

Distance(mins) 

Wasserstein 

Distance(mins) 

Bearing 1-1 65 33 69 66 

Bearing 1-2 34 36 54 41 
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Bearing 1-3 2 2 96 65 

Bearing 1-4 2 2 78 10 

Bearing 1-5 2 30 35 31 

Bearing 2-1 390 390 398 390 

Bearing 2-2 2 41 70 47 

Bearing 2-3 110 114 281 260 

Bearing 2-4 2 2 27 27 

Bearing 2-5 2 2 160 130 

Bearing 3-1 2056 2056 2113 2059 

Bearing 3-2 2 2 1774 147 

Bearing 3-3 2 2 295 294 

Bearing 3-4 2 2 1238 1217 

Bearing 3-5 2 2 12 8 

Bearings 1-3 to 1-5, 2-2 to 2-5 and 3-2 to 3-5, whose health indicators were constructed based on 

Squared Elucidation Distance and Wasserstein Distance are more stable than others in terms of 

attaining the FPT without false alarm. The FPT determined by the health indicators that were 

constructed based on the Squared Elucidation Distance is regarded as the effective tool for identifying 

the initial degradation point of bearing.  

The HI construction method proposed in this study consists of the MSMHA-AED and the multi-

scale HI fusion algorithms. The reliability of the proposed HI construction method is examined, and 

the results are presented in Figure 5.  
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(a) Bearing 1-1  (b) Bearing 1-2 

 

(c) Bearing 1-3 

 

(d) Bearing 1-4 
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Figure 5: Comparison of the MSMHA-AED based on HI constructed with different similarity 

functions. 

In Figure 5, ‘Scale=k’ represents the health indicator measured based on the similarity of coded 

features extracted from the kth multi-head attention mechanism module. The ‘Fusion’ in the procedure 

represents the proposed ensemble health indicator. Using the health indicator of bearing 3-5 for 

instance, it is found that the magnitude of the degradation is overestimated by the superficial coded 

features. This is because deeper coded features are much clearer than which are obtained from shallow 

layers. It should be noted that bearings 3-5 have already entered the degradation phase within a short 

period after its operation and the bearing life cycle from 0 to 30 is highlighted for further discussion. 

The similarity measured by the squared Elucidation distance is least sensitive when quantifying the 

performance degradation of the bearing. The similarities measured based on other three distance 

metrics show similar trends when estimating the fatigue. The quantified value of structural damage of 

the bearing decreases with increase in the k but reflected the same trend. It is worth noting that the 

degradation magnitude estimated by the proposed ensemble health indicator becomes larger over time. 

This is important for RUL prediction because it is more difficult to predict the RUL of the bearing if 

its health indicator fluctuates irregularly. Thus, e monotonicity of a health indicator is important in 
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predicting the RUL. The monotonicity of three bearings’ health indicators is examined to show the 

reliability and effectiveness of the proposed ensemble health indicator.  

Table 3 The monotonicity of different health indicators examined over bearings  

        Method 

 

 

Scale or Fusion  

Absolute  

(1_3/2_4/3_1) 

Elucidation 

(1_3/2_4/3_1) 

Squared Elucidation 

(1_3/2_4/3_1)  

Wasserstein  

(1_3/2_4/3_1) 

Scale = 1 
Signum:  

Spearman:   

0.50/0.78/0.62 

0.98/0.99/0.95 

0.55/0.78/0.62 

0.97/0.99/0.95 

0.55/0.78/0.52 

0.97/0.99/0.95 

0.50/0.78/0.65 

0.97/0.99/0.95 

Scale = 2 
Signum:  

Spearman 

0.55/0.78/0.59 

0.98/0.99/0.95 

0.55/0.78/0.62 

0.97/0.99/0.95 

0.55/0.78/0.40 

0.97/0.99/0.94 

0.55/0.78/0.59 

0.97/0.99/0.95 

Scale = 3 
Signum:  

Spearman 

0.50/0.78/0.59 

0.96/0.99/0.95 

0.50/0.56/0.62 

0.97/0.98/0.95 

0.65/0.78/0.33 

0.96/0.99/0.94 

0.50/0.78/0.59 

0.97/0.95/0.95 

Scale = 4 
Signum:  

Spearman 

0.50/0.56/0.52 

0.96/0.95/0.95 

0.50/0.56/0.52 

0.96/0.95/0.95 

0.45/0.78/0.40 

0.96/0.99/0.93 

0.50/0.56/0.52 

0.96/0.99/0.95 

Scale = 5 
Signum:  

Spearman 

0.45/0.56/0.56 

0.96/0.98/0.95 

0.50/0.56/0.56 

0.96/0.98/0.94 

0.50/1.00/0.30 

0.96/1.00/0.94 

0.45/0.56/0.56 

0.96/0.98/0.95 

Scale = 6 
Signum:  

Spearman 

0.50/0.78/0.52 

0.96/0.96/0.95 

0.50/0.78/0.52 

0.96/0.96/0.95 

0.50/0.78/0.33 

0.96/0.99/0.93 

0.50/0.78/0.52 

0.96/0.96/0.94 

Fusion 
Signum:  

Spearman 

0.70/1.00/0.71 

0.99/1.00/0.96 

0.60/1.00/0.71 

0.98/1.00/0.96 

0.55/1.00/0.56 

0.98/1.00/0.96 

0.70/1.00/0.72 

0.99/1.00/0.96 

The effectiveness of the four distance functions in measuring the similarity of the coded features 

used to construct the health indicators is presented in Table 3. The ensemble health indicator obtained 

using the proposed multiple indicators fusion algorithm are significantly better in terms of 

monotonicity. Although the degradation measured by Wasserstein distance is similar to that of the 

absolute distance-based measurement in terms of monotonicity, however, as can be seen from the 

analysis in Table 2, the use of health indicators constructed based on absolute value distances is 

susceptible to noise leading to false positives in the detection of FPT. In summary, the analysis shows 

that the degradation indicator constructed based on the Wasserstein distance has advantages in terms 

of both monotonicity and determination of FPT.  
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Thus, the Wasserstein distance is used to measure the similarity for health indicator construction 

in this study. To highlight the efficiency and effectiveness of the proposed method (MSMHA-AED 

model with Wasserstein distance) in establishing health indicator, a comparison of the proposed 

method with state-of art HI construction methods is conducted. Noise in the signals can have a 

detrimental effect on the estimation of health indicator and a causal moving mean filter with a lag 

window of 3 steps is applied to each health indicator to alleviate the effects. Five data-driven based 

state-of-art methods for HI construction are chosen for comparison to determine the performance of 

the proposed method. The comparison focused on monotonicity, trendability and prognosability of the 

hybrid model quantified HIs metrics. The examined construction methods of the six health indicators 

are presented in Figure 6 and the corresponding magnitudes of the predicted metrics are presented in 

Table 4. Results show the similarity between the proposed approach and the state-of-the-art methods, 

demonstrating consistency and reliability. This comparison further reaffirms that the proposed 

approach can deliver a high-quality health Indicator needed for constructing a better RUL model.  

 

(a) Bearing1-1 

 

(b) Bearing 1-3 
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(c) Bearing 2-4 

 

(d) Bearing 3-5 

Figure 6：Comparison of the health indicators 

The HI constructed based on traditional statistics has fluctuated with temporal variation. These 

fluctuations will cause interference in the selection of the starting point of the prediction and have 

effects on whether the equipment reaches the degraded state or not. 

Table 4: The Comparison of different HI construction methods 

Methods Description Monotonicity Trendability Prognosability 

1 CNN (Guo, Lei, et al., 2017) 0.6273 0.7649 0.9290 

2 ES-AE (Lin & Tao, 2019) 0.6635 0.7400 0.9335 

3 MSCNN-AED (Guo et al., 2022) 0.7442 0.7417 0.9446 

4 DCN-AED (F. Xu et al., 2020) 0.7327 0.7532 0.9479 

5 WDSC (Ni et al., 2022) 0.7604 0.7616 0.9501 

6 Proposed Method 0.9049 0.8287 0.9515 

The hybrid model monotonicity, prognosability and trendability are used to examine the quality 

of the constructed health indicator. As presented in the Table 4, the proposed method has the highest 

monotonicity metric. This is because the coded features produced using the module are cleaner than 

those in raw vibration signals since the convolutional filters in the encoder will filter the noise in raw 

signals. The proposed method also offers other significant advantages (improved reliability, low false 

alarms etc.) compared to the state-of- HI construction methods. 
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5.4 Remaining Useful Life Estimation  

To demonstrate the reliability and effectiveness of the proposed prediction method, 15 bearings 

are used to examine the reliability of the proposed health indicator construction method in RUL 

prediction. The training and testing datasets are independent of each other.  

 
(a) Bearing 1-1 

 
(b) Bearing 1-2 

 
(c) Bearing 1-3 

 
(d) Bearing 1-4 

 
(e) Bearing 1-5 

 
(f) Bearing 2-1 

 
(g) Bearing 2-2 

 
(h) Bearing 2-3 

 
(i) Bearing 2-4 

 
(j) Bearing 2-5 

 
(k) Bearing 3-1 

 
(l) Bearing 3-2 
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(m) Bearing 3-3 

 
(n) Bearing 3-4 

 
(o) Bearing 3-5 

Figure 7：The RUL estimation of ten bearings based on 3 types of recurrent neural networks 

As shown in Figure 7, taking bearing 1-1 as an example, this study compares the performance of 

three DLN based predictors in estimating the RUL. It is shown that the prediction of RUL using only 

CNN has the largest error while the BILSTM network has the smallest error. By observing the features 

in Figure 6 (i), the CNN-BILSTM model performs better than the BILSTM in mapping the relationship 

between the health indicators and the remaining useful lifetime. The prediction error is smaller than 

errors from other models. This examination demonstrates the advantage of CNN-LSTM-based 

predictor in RUL estimation applications. 

Bearings 1-3, 2-5 and 3-5 are respectively examined to further prove the effectiveness of the 

proposed health indicator construction methodology in RUL prediction. In this examination, the 

predictor used to estimate the RUL of bearing 1-3 is trained with bearings 1-1, 1-2 and 1-5. The 

predictor used for bearings 2-5 is trained with bearings 2-1 to 2-4 data; the predictor for bearings 3-5 

is trained with bearings 3-1 to 3-4 datasets.   

 

(a) Bearing1-3 

 

(b) Bearing2-5 

 

(c) Bearing 3-5 

Figure 8 The RUL predicition of three bearings  



 

33 

 

From observation of the plots in Figure 8 (a) to (c), it is clearly very difficult to accurately predict 

the RUL of bearings using only CNN predictor. This is because CNN has a weak capability to 

effectively process the time series. However, the weakness in using CNN can be overcome by using 

BILSTM model which predicts the remaining lifetime in a more accurate manner.. Although the 

accuracy of the estimated RUL values is debatable, it is still possible to capture trends in performance 

degradation using the CNN model. Consequently, using a combination of CNN-BILSTM model 

presents the best performance among the three prognosticators. The model combines the feature 

extraction capability of CNN with the time series processing ability of BILSTM. Thus, the CNN-

BILSTM can estimate the degradation trend and also predict the exact remaining lifetime.  

The prognostic performance of the proposed RUL prediction is examined forbearing 3-2. The 

results of three RUL prediction methods are compared to demonstrate the superiority of the proposed 

method. The RUL results used in the comparison are obtained from health indicators constructed using 

the other three state-of-art methods, which are neural network-based models. The values of the final 

estimation by four methods are presented in Table 5. 

Table 5: The prognostic performance 

Predictor CNN-BILSTM BILSTM CNN 

Health 

indicator 

The 

Proposed 
DCN-AED 

MSCNN-

AED 
WDSC 

The 

Proposed 

DCN-

AED 

MSCNN-

AED 
WDSC 

The 

Proposed 

DCN-

AED 

MSCNN-

AED 
WDSC 

RMSE 0.0301 0.0596 0.0650 0.1121 0.0847 0.1713 0.1842 0.1971 0.3578 0.3696 0.3764 0.3616 

The superiority of the proposed health indicator is presented in Table 5. When CNN-BILSTM is 

used as the prognosticator, the RMSE of the deviation of the predicted RUL from true RUL is only 

0.0301. The prediction results based on the proposed health indicator have the relatively lowest RMSEs. 

This is because the proposed health indicator provides a more accurate picture of trends in the bearing 
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degradation process. As for the selection of the prognosticator for real industrial world application, a 

simple BILSTM model is still unable to meet the accuracy requirements for predicting the remaining 

life of an unknown bearing from the known data of multiple bearings. This confirms that the model 

requires the addition of a convolution module for feature extraction. 

5.5 Remaining Useful Life Estimation with Uncertainty Quantification  

A novel RUL prognosticator is developed by combining CNN-BILSTM with Bayesian Neural 

Network to consider uncertainty in the RUL prediction. Figure 9 presents the results of the predicted 

RUL with uncertainty (Figure 9a) and the uncertainty analysis (Figure 9b).  

 

(a) RUL prediction 
 

(b) Uncertainty analysis 

Figure 9 RUL prediction with uncertainty analysis 

As shown in Figure 9, the mean values of predicted RUL using the proposed CNN-BILSTM with 

Bayesian Neural Network are close to the true value of the examined bearing. The prediction was 

carried out by analyzing every estimated RUL point with uncertainty as a means of assessing the 

overall uncertainty quantification capability of the prognosticator. Similarly, this approach is critical 

in establishing the reliability of the RUL prediction. From these results, it is noted that RUL estimation 
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with lowest uncertainty will be used in the next decision-making process for bearing maintenance. In 

Figure 9(b), the real RUL = 100% implies the result is out of the fiducial interval of the RUL prediction 

by the prognosticator. This means that the RUL prediction result at this point is outside of the 

confidence interval, suggesting that a maintenance expert would have to require more information 

from the developed prognosticator. In contrast, as shown in Figure (b) for RUL = 6.5618%, the true 

RUL result is in the middle of the fiducial interval of the RUL prediction by the prognosticator. This 

confirms the reliability of the RUL prediction result and the confidence level of its application for 

maintenance decision-making.  

6. Conclusions 

In this study, a novel prognostic framework for prediction of RUL of a bearing is proposed. The 

study developed a multi-scale auto encoder-decoder consisting of convolutional neural network and 

multi-head attention mechanism, which is used to filter the less useful information from the raw 

vibration signals. Based on the coded features of the proposed auto-encoder-decoder, the health 

indicator is constructed by measuring the similarity between the healthy and damaged conditions. The 

multi-scale health indicators are fused to with the ensemble health indicator using a fusion algorithm 

developed in the study proposed. The convolutional network with bidirectional long short-term 

memory (BiLSTM) is used to map the relationship between the health indicators and the remaining 

use lifetime. The reliability and superiority of the proposed method is examined using an accelerated 

bearing degradation dataset. The effectiveness of four distance measurements in constructing the 

health indicators is examined. It is found that the health indicators constructed based on Wasserstein 
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distance is able to avoid false alarm when condition detection for the first prediction time and has a 

stronger monotonicity. The proposed method demonstrated higher monotonicity scores compared with 

other health indicators developed based on state-of-art construction methods. The reliability of the 

proposed health indicators for remaining life prediction was also examined. The health indicators 

constructed based on the proposed method produced results that are closer to the true values during 

prediction of the remaining life of bearings, with a root mean square error of only 0.03. A novel CNN-

BiLSTM with Bayesian Neural Network model is developed to consider the uncertainty in RUL 

prediction. The reliability of the RUL prediction can be quantified through the uncertainty analysis, 

which is helpful in providing more reliable information and establishing confidence in maintenance 

decision-making.  
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