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ABSTRACT 32 

Although dynamic resistance training (DRT) and isometric handgrip training (IHT) may 33 

decrease blood pressure (BP) in hypertensives, the effects of these types of training have 34 

not been directly compared, and a possible additive effect of combining IHT to DRT 35 

(combined resistance training - CRT), has not been investigated. Thus, this study 36 

compared the effects of DRT, IHT and CRT on BP, systemic hemodynamics, vascular 37 

function, and cardiovascular autonomic modulation. Sixty-two middle-aged men with 38 

treated hypertension were randomly allocated among four groups: DRT (8 exercises, 50% 39 

of 1RM, 3 sets until moderate fatigue), IHT (30% of MCV, 4 sets of 2 min), CRT (DRT 40 

+ IHT) and control (CON – stretching). In all groups, the interventions were administered 41 

3 times/week for 10 weeks. Pre- and post-interventions, BP, systemic hemodynamics, 42 

vascular function and cardiovascular autonomic modulation were assessed. ANOVAs and 43 

ANCOVAs adjusted for pre-intervention values were employed for analysis. Systolic BP 44 

decreased similarly with DRT and CRT (125±11 vs. 119±12 and 128±12 vs 119±12 45 

mmHg, respectively; all P<0.05), while peak blood flow during reactive hyperaemia (a 46 

marker of microvascular function) increased similarly in these groups (774±377 vs. 47 

1067±461 and 654±321 vs. 954±464 mL/min, respectively, all P<0.05). DRT and CRT 48 

did not change systemic hemodynamics, flow-mediated dilation, and cardiovascular 49 

autonomic modulation. Additionally, none of the variables were changed by IHT. In 50 

conclusion, DRT, but not IHT, improved BP and microvascular function in treated 51 

hypertensive men. CRT did not have any additional effect in comparison with DRT alone.  52 

 53 

Keywords: hypertension; strength training; vascular function; autonomic modulation; 54 

hemodynamics 55 

 56 

57 
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INTRODUCTION 58 

 Hypertension is one of the major modifiable risk factors for cardiovascular 59 

disease1, causing around 8 million deaths per year, mainly due to stroke, myocardial 60 

infarction and sudden death2. Blood pressure (BP) control among individuals with 61 

hypertension remains sub-optimal (i.e., 43.5%)3, and complementary non-62 

pharmacological interventions, such as exercise training, are recommended to improve 63 

BP control3,4. Recently, resistance training has been considered for hypertension 64 

treatment with dynamic resistance training (DRT) recommended by both the American 65 

and European guidelines3,4, while isometric handgrip training (IHT) is advised only by 66 

the American guidelines3. 67 

 Meta-analytic data demonstrated that DRT reduces systolic/diastolic blood 68 

pressures (SBP/DBP) by -6.11 (95%CI: -10.23 to -1.99) / -2.75 (95%CI: -4.27 to -1.22) 69 

mmHg in treated hypertensives5. Such effects may be related to vascular adaptations 70 

induced by training since studies have reported improved resistance vessel function in 71 

healthy6 and pre-hypertensive7 individuals after DRT, which still needs to be evidenced 72 

in hypertensives. Concerning IHT, a recent meta-analysis8 indicated that it decreases 73 

SBP/DBP by -6.00 (95%CI: -7.75 to -4.26 / -2.75 (95%CI: -3;78 to -1.72) mmHg, which 74 

might be related to the training effects improving  cardiac vagal modulation and 75 

vasomotor sympathetic modulation9.  76 

Current literature has suggested IHT in hypertension management based on  its 77 

potential of higher adherence given its short duration (11 min per session) and execution 78 

with portable device10. However, its use as a stand-alone exercise therapy has drawbacks. 79 

Differently from DRT that promotes generalized musculoskeletal and metabolic 80 

benefits11, IHT has musculoskeletal effects confined to the small muscle mass exercised 81 
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and only minor impact on overall health. Given that, IHT is recommended in addition, 82 

and not in place of conventional exercise modes, such as DRT10. However, by the best of 83 

our knowledge, no previous study investigated the possible additive effect of associating 84 

IHT to DRT on BP control. 85 

Based on this background, it is possible to hypothesise that the addition of IHT to 86 

DRT, in a combined resistance training (CRT), besides improving general health status, 87 

may also induce a greater BP decrease in hypertensives as such protocol would combine 88 

the DRT vascular effects6,7 and the IHT autonomic effects9. 89 

Therefore, the current clinical trial was designed to assess and compare the effects 90 

of DRT alone, IHT alone and CRT on BP, systemic hemodynamics, markers of vascular 91 

function, and cardiovascular autonomic modulation in treated hypertensives. The 92 

hypotheses were: i) DRT alone would decrease BP and improve vascular function; ii) 93 

IHT alone would equally decrease BP compared with DRT and would improve 94 

cardiovascular autonomic modulation; and iii) CRT would induce a greater BP-lowering 95 

effect than both DRT and IHT, promoting both vascular and autonomic improvements.  96 

 97 

METHODS 98 

 99 

Subjects 100 

This study was registered at the Brazilian Clinical Trials [(RBR-4fgknb) at 101 

http://www.ensaiosclinicos.gov.br, and all procedures were approved by the Ethics 102 

Committee of the School of Physical Education and Sport, University of São Paulo 103 

(process 2.870.688). All participants were informed of the benefits and risks of the 104 

about:blank


5 
 

investigation prior providing written consent before enrolment. Experimental procedures 105 

were performed at the School of Physical Education and Sport of University of São Paulo. 106 

Preliminary medical evaluation was performed at the Hospital das Clínicas of the Medical 107 

School of the University of São Paulo. 108 

Middle-aged (30 to 65 years old) hypertensive men were recruited from 109 

advertisements posted at the University of Sao Paulo’s media. The study was conducted 110 

with men to avoid the influence of menstrual cycle and menopause status on BP and its 111 

mechanisms12.  112 

The inclusion criteria were: i) be receiving anti-hypertensive pharmacological 113 

treatment with drugs and doses maintained for at least the last 4 months; and ii) not be 114 

physically active (i.e. not accumulating more than 150 min per week of leisure physical 115 

activity, not performing exercise training more than 2 times per week, and had not 116 

performed resistance training in the previous 6 months). The exclusion criteria were: i) 117 

taking drugs that directly act on cardiac autonomic modulation (i.e. nondihydropyridine 118 

calcium channel blockers or beta-adrenergic receptor antagonists); ii) presence of 119 

secondary hypertension; iii) presence of hypertension-induced target organ damage; iv) 120 

presence of other cardiovascular disease despite hypertension; v) presence of symptoms 121 

or electrocardiographic alterations during a graded maximal exercise test; vi) body mass 122 

index ≥ 35 kg/m2; vii) presence of diabetic complications or insulin use; viii) presence of 123 

musculoskeletal problems that impair resistance training execution; and ix) SBP/DBP ≥ 124 

160/105 mmHg that are the maximal BP values recommended for beginning exercise by 125 

the Brazilian Hypertension Guidelines13. 126 

  Inclusion and exclusion criteria were checked through preliminary procedures. In 127 

an initial visit, the participants answered an anamnesis, fulfilled a questionnaire, and 128 
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underwent anthropometric and BP evaluations. The anamnesis involved questions about 129 

health history, regular medication use, and physical activity routines. The International 130 

Physical Activity Questionnaire was completed14. Weight and height were measured 131 

(Welmy® W300A, São Paulo, Brazil) and body mass index calculated. Auscultatory BP 132 

was measured in triplicate on both arms with the participants in the seated position for at 133 

least 5 min. This BP evaluation was repeated in another visit and the six values obtained 134 

for each arm were averaged with the highest value between the arms being considered as 135 

the BP level of each participant. In another visit, medical evaluations were conducted, 136 

including clinical examination and collection of urine and blood samples to exclude 137 

secondary hypertension and target-organ lesion. For that, the basic laboratorial evaluation 138 

recommended by the Brazilian Hypertension Guidelines13 were followed and included 139 

the analyses of plasma potassium, uric acid, and creatinine; fasting plasma glycose, 140 

triglycerides, and total, HDL- and LDL-cholesterol concentrations; conventional urine 141 

analyses; and the estimation of glomerular filtration rate. Finally, a graded maximal 142 

exercise test was performed on a cycle ergometer (Lode Medical Technology, Corival, 143 

Groningen, Netherlands) with electrocardiogram (Welch Allyn, Cardioperfect ST2001 144 

model, Netherlands) evaluated by a physician.  145 

The participants who fulfilled the study criteria underwent two familiarization 146 

sessions to the exercises employed in the study as already done in previous research15. In 147 

these sessions, they executed 2 sets of 20 repetitions with the lowest workload allowed 148 

by each equipment (Edge Line, Movement Fitness, Sao Paulo, Brazil) in 8 dynamic 149 

resistance exercises (bench press, leg press, lat pull down, left leg extension, right leg 150 

extension, arms curl, left leg curl and right leg curl) followed by the execution of 4 sets 151 

of 2 min isometric handgrip exercise at 5% of maximal voluntary contraction (MVC). On 152 

another day, they did 1 repetition maximum (1RM) tests in all aforementioned exercises 153 
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following standardized protocol16 as already done in previous studies17,18. Afterwards, 154 

participants performed a standardized evaluation of handgrip MVC with left and right 155 

hands19. 156 

  157 

Procedures 158 

 This study was a four-parallel-arm randomized controlled trial designed to 159 

evaluate and compare the effects of DRT, IHT and CRT. The pre-specified primary 160 

outcome was BP, and the secondary outcomes were muscle strength, systemic 161 

hemodynamics, vascular function, and cardiovascular autonomic modulation.  162 

The participants were randomly allocated among four groups: DRT, IHT, CRT 163 

and control (CON), with a 1:1:1:1 allocation ratio. Randomization was performed after 164 

the pre-intervention evaluations by an independent researcher (i.e. not involved directly 165 

in the recruitment and data collection) using the block method through sealed envelopes 166 

(i.e. sorting among the four options in each envelop). In all four groups, the intervention 167 

period lasted 10 weeks and the intervention sessions were conducted 3 times per week. 168 

Each session was individually supervised by an exercise specialist and conducted at the 169 

institution’s gym facility. The outcomes were assessed in experimental sessions 170 

conducted pre- and post-interventions, with the post-evaluations being conducted after a 171 

minimal interval of 48h in relation to the last intervention session. 172 

 Prior to the experimental sessions, the participants received the following 173 

instructions: i) not to ingest vitaminic supplements in the previous 72h; ii) not to perform 174 

exercise in the previous 48h; iii) not to consume alcoholic beverages in the previous 24h; 175 

iv) not to smoke in the previous 8h; v) to keep their usual daily activities and sleep habits 176 

in the previous day; vi) to use their regular medications as usual; and vii) to come to the 177 



8 
 

session after fasting for at least 8h. The experimental sessions started between 07:00-178 

07:30 a.m. and the laboratory temperature was maintained between 20-22°C. 179 

During the experimental sessions, assessments started after 10 min of seated rest. 180 

Firstly, continuous signals of electrocardiogram, photoplethysmographic BP and 181 

respiration were recorded for 10 min for cardiovascular autonomic modulation 182 

evaluation. Then, auscultatory BP, cardiac output (CO) and heart rate (HR) were 183 

measured in triplicate for systemic hemodynamic evaluation. Afterwards, for vascular 184 

evaluation, the participants moved to the supine position, and after a 10-min interval, 185 

images and doppler flow signals of the brachial artery were recorded initially for 1 min 186 

without any stimulus (baseline) and then for 3 min after 5 min of forearm vascular 187 

occlusion (post-occlusion).  188 

Interventions 189 

 The DRT group executed the 8 dynamic resistance exercises previously 190 

mentioned on specialized equipment (Edge Line, Movement Fitness, Sao Paulo, Brazil). 191 

In each exercise, the participants executed 3 sets of repetitions until moderate fatigue 192 

(defined by a visual reduction on movement velocity) and kept a 90-s interval between 193 

sets and exercises. The intensity was initially set at 50% of 1RM and was increased by 2-194 

5% and 5-10% for upper- and lower-limb exercises, respectively, when the participants 195 

could perform more than 15 repetitions without moderate fatigue in two consecutive sets 196 

20. This DRT protocol followed the hypertension guidelines3,4. 197 

 The IHT group executed the isometric handgrip exercise on a specific device 198 

(ZonaPlus, Zona Health, Boise, Idaho, USA). In each session, the participants executed 199 

4 sets of 2-min isometric contractions at 30% of MVC, alternating the hands (i.e. 2 sets 200 

per hand) and maintaining a 60-s interval between the sets. MVC was measured at the 201 
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beginning of each training session. After each session, the device provided a score 202 

quantifying the performance of the handgrip squeeze, and values ≥ 80 indicated effective 203 

training. This IHT protocol followed hypertension guidelines3. 204 

 The CRT group executed, in each training session, the same protocol as the DRT 205 

group followed by the same protocol performed by the IHT group. 206 

 The CON group executed 30-min stretching sessions. In each session, the 207 

participants executed 20 to 25 exercises and in each exercise, they executed 2 to 3 208 

attempts keeping the highest degree of stretching without pain for 20-30 s. This active 209 

control intervention was proposed for this study to assure a similar interaction of the 210 

participants with the research team and to multiple BP measurements, since it is known 211 

that adaptation to these factors that would happen in the training groups (DRT, IHT and 212 

CRT) can decrease BP. 213 

 Adherence to each intervention was calculated as the percentage of the 30 offered 214 

sessions actually performed by each participant (i.e. sessions performed / 30 x 100). 215 

 216 

Measurements 217 

  Auscultatory BP was measured by a trained evaluator using a calibrated aneroid 218 

sphygmomanometer (Mikatos, Missouri, Sao Paulo, Brazil). Measurements were done on 219 

the dominant arm employing an adequate cuff size. SBP and DBP were respectively 220 

defined as phases I and V of Korotkoff sounds. Mean BP (MBP) was calculated as: MBP 221 

= DBP + [1/3 x (SBP – DBP)]21,22. 222 

For systemic hemodynamic evaluation, CO was assessed by the indirect Fick 223 

method through CO2 rebreathing technique23 using a gas analyser (Medical Graphics 224 
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Corporation, CPX/Ultima, Minnesota, USA) and a bag containing hypercapnic gas (8-225 

10% CO2). Firstly, the participants spontaneously breathed the ambient air for the 226 

measurement of CO2 production and the estimation of CO2 arterial content from end-tidal 227 

CO2 pressure. Then, via a two-way valve, participants started to inhale the hypercapnic 228 

gas until CO2 achieved an equilibrium and CO2 venous content could be estimated. Then, 229 

CO was calculated as: CO = VCO2 / (CO2 venous content – CO2 arterial content). 230 

Systemic vascular resistance (SVR) was calculated from: SVR = MBP / CO. Stroke 231 

volume (SV) was calculated from: SV = CO / HR.  232 

Vascular function evaluation was assessed through a linear array probe attached 233 

to a high-resolution ultrasound machine (General Eletric Medical Systems, LOGIQ 7, 234 

California, USA) following guidelines24,25. Assessments were performed at the brachial 235 

artery of the dominant arm, ~5 cm proximal to the antecubital fossa, and using an 236 

insonation angle of 60°. Firstly, vascular images and doppler flow signal were 237 

continuously recorded for 1 min as baseline. From these records, arterial diameter was 238 

automatically detected, and blood flow velocity was quantified (Quipu, Cardiovascular 239 

Suite, Pisa, Italy).  Blood flow (BF) was calculated as: BF = arterial cross-sectional area 240 

x blood flow velocity. Vascular conductance (VC) was calculated as: VC = BF / MBP. 241 

For vascular function assessment, a vascular occlusion period was initiated immediately 242 

after the baseline assessment using a cuff positioned at the forearm that was inflated to 243 

250 mmHg for 5 min. When the cuff pressure was released, recordings of vascular images 244 

and doppler signals were taken for 3 min. Microvascular function (i.e. resistance vessels 245 

function) was assessed by the peak BF (i.e. highest absolute value) achieved during the 246 

reactive hyperaemia following cuff deflation25. Arterial endothelial function was assessed 247 

by flow-mediated dilation (FMD)24 calculated by arterial diameter change from the 248 

baseline to the post-occlusion period as: FMD (%) = [(peak arterial diameter – baseline 249 
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arterial diameter) / baseline diameter] x 100. The stimulus underlying FMD was evaluated 250 

by peak shear rate calculated at the post-occlusion period as: peak shear rate = 4 x peak 251 

BF velocity / arterial diameter. 252 

Cardiovascular autonomic modulation evaluation followed the respective Task 253 

Force guidelines26. Briefly, HR was continuously measured through three-lead 254 

electrocardiogram (EMG System of Brazil, EMG 030110/00B), Sao Paulo, Brazil), beat-255 

by-beat BP was monitored using finger photoplethysmography (Finapress Measurement 256 

System, Finometer, Arnhem, Netherland) and respiratory movements were measured via 257 

elastic thoracic belt (Pneumotrace 2, UFI, Morro Bay, USA). These signals were 258 

continuously acquired and recorded through a data acquisition system (Dataq 259 

Instruments, DI-720, Akron, Ohio, USA) with a sampling rate of 500Hz. Temporal 260 

sequences of R-R intervals, SBP and respiration were generated and analysed at the 261 

frequency domain through the autoregressive model using the Heart Scope II Software 262 

(A.M.P.S. LLC, Version 1.3.0.3, New York, USA). Cardiac sympathovagal balance was 263 

defined by the ratio between the low- and high-frequency bands of R-R interval variability 264 

(LF/HFR-R). Sympathetic vasomotor modulation was defined by the low-frequency band 265 

of SBP variability (LFSBP). Baroreflex sensitivity (BRS) was evaluated by the transfer 266 

function method27.  267 

 268 

Statistical analysis  269 

 The minimal sample size estimated for this study was 60 participants (i.e. 15 per 270 

study arm). This number was calculated for the primary outcome (SBP), considering an 271 

effect size (d) of -0.4128, a statistical power of 0.90, an alpha value of 0.05 and a 272 

correlation among repeated measures of 0.6829.  273 
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Data normality was checked by Shapiro-Wilks test and outliers identified through 274 

box plots. Non-normal data was transformed by natural logarithm to meet assumptions of 275 

the subsequent inferential analysis.  The efficacy of interventions on the study’s 276 

outcomes were analysed by two-way mixed ANOVAs considering group as a between 277 

factor (DRT vs. IHT vs. CRT vs. CON) and time (pre- vs. post-intervention) as a within 278 

factor. When significant main effects or interactions were observed, pairwise 279 

comparisons were done by Newman-Keuls post-hoc tests. Additionally, changes (∆ = 280 

post-intervention – pre-intervention) adjusted for pre-intervention values were compared 281 

between the groups by ANCOVAs, and Bonferroni post-hoc tests were applied for 282 

pairwise comparisons when a significant effect was observed.   283 

Data is presented as mean ± standard deviation, and significance level was set at 284 

P value < 0.05 for all analyses.  285 

 286 

RESULTS 287 

Data recruitment took place from September 2018 to November 2021. Due to 288 

coronavirus 2019 disease, the study´s procedures were interrupted or restrained from 289 

March 2020 to September 2020 and from March 2021 to June 2021.  290 

The clinical trial flowchart is shown in Figure 1. Two hundred and nineteen 291 

participants were contacted, 106 performed the initial visit, 96 provided written consent 292 

and 70 were randomly allocated into the study’s groups. The clinical trial ended after the 293 

assignment of 70 participants considering the minimal sample size required (i.e. 60 294 

participants) and a dropout rate of 15.0% 30. Indeed, there were 8 (11.4%) dropouts during 295 

the intervention period and 62 participants concluded the entire experimental protocol. 296 

Due to technical issues, data for the autonomic modulation evaluation was missed for two 297 
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participants (DRT: n=1 and CON: n=1). As the study was designed to evaluate and 298 

compare the efficacy of DRT, IHT and CRT, only data from the subjects who finished 299 

the experimental protocol were analysed. Groups characteristics were similar at the 300 

beginning of the study as shown in Table 1.  301 

Adherences to the intervention sessions were high and similar among the groups 302 

(DRT: 89±7%; IHT: 90±9%; CRT: 90±7%; CON: 88±9, p = 0.917). During the 303 

interventions, participants from CRT executed dynamic and isometric exercises with 304 

similar intensities and volumes as DRT and IHT, respectively (data not shown). 305 

None of the interventions changed isometric handgrip MVC of the left nor the 306 

right arm (left: +1±6, +3±5, +2±9, and -1±4; and right: +1±6, +3±4, +2±5, and -1±6 kg 307 

for DRT, IHT, CRT and CON, respectively, all p > 0.05). On the other hand, DRT and 308 

CRT significantly increased 1RM strength (all pgroup x time <0.05) in all exercises (bench 309 

press: +11±11 and +11±10 kg; leg press: +33±24 and +32±26 kg; lat pull down: +12±9 310 

and +11±7 kg; left leg extension: +10±11 and +11±10 kg;  right leg extension: +10±12 311 

and +11±10 kg; arms curl: +12±8 and +7±12 kg; left leg curl: +8±5 and +7±4 kg; and 312 

right leg curl: +8±4 and +6±5 kg for DRT and CRT, respectively), while no change was 313 

observed for the IHT and the CON groups (bench press: -1±4 and +3±7 kg; leg press: -314 

4±16 and +5±17 kg; lat pull down: 0±4 and +1±10 kg; left leg extension: -3±9 and +2±8 315 

kg; right leg extension: -4±10 and +1±7 kg; arms curl: -2±3 and -1±5 kg; left leg curl: 316 

0±4 and 0±3 kg; and right leg curl: 0±4 and 1±4 kg for IHT and CON, respectively). 317 

SBP decreased significantly from pre- to post-intervention after the DRT and the 318 

CRT and did not change after the IHT and the CON (pgroup x time = 0.003, Table 2). 319 

Additionally, SBP changes adjusted to pre-intervention values observed with DRT and 320 

CRT were significantly different from CON (p = 0.002, Figure 2). DBP did not change 321 
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significantly in any group (p > 0.05, Table 2) and changes in DBP adjusted for pre-322 

intervention values were similar among the groups (p = 0.096, Figure 2).  323 

 SVR, CO, SV and HR did not change significantly in any group (all p > 0.05, 324 

Table 2) and changes in these variables adjusted for pre-intervention values were similar 325 

among the groups (all p >0.05, Figure 2).  326 

Baseline BF and VC as well as FMD did not change significantly in any group 327 

(all p > 0.05, Table 3) and changes in these variables adjusted for pre-intervention values 328 

were similar among the groups (all p >0.05, Figure 3). There was significant main effect 329 

of time for peak shear rate (ptime = 0.011), demonstrating that peak shear rate increased 330 

significantly and similarly from pre- to post-intervention in all groups, including CON. 331 

Accordingly, changes in peak shear rate adjusted for pre-intervention values were similar 332 

between the groups (p = 0.083). On the other hand, peak BF increased significantly from 333 

pre- to post-intervention after DRT and CRT and did not change after IHT and CON 334 

(pgroup x time = 0.007). Additionally, peak BF changes adjusted to pre-intervention values 335 

observed with DRT and CRT were significantly different from CON (p = 0.008).  336 

Regarding autonomic modulation responses, there were no significant main 337 

effects nor interactions (group vs. time) for LF/HFR-R, nor LFSBP (all p > 0.05, Table 3).  338 

Accordingly, changes between the groups adjusted for pre-intervention values were 339 

similar for these variables (all p >0.05, Figure 3). There was a significant main effect of 340 

time for BRS (ptime = 0.046), showing that BRS increased significantly and similarly from 341 

pre- to post-intervention in all groups, including CON. Accordingly, changes in BRS 342 

adjusted for pre-intervention values were similar among the groups (p = 0.306).  343 

 344 

DISCUSSION 345 
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 The current study has two main findings. First, DRT, but not IHT, decreased BP 346 

and improved microvascular function in treated hypertensive men. Second, the addition 347 

of IHT to DRT, in the CRT, did not promote any additive effect in comparison to DRT 348 

alone on either BP, systemic hemodynamics, vascular function or autonomic modulation. 349 

 DRT produced a net reduction (i.e. DRT vs CON, Figure 2) of -8.4 [95%CI: -15.9 350 

to -0.8] mmHg in SBP, which is in accordance with the study hypothesis and within the 351 

range of reduction reported in a previous meta-analysis  for SBP in treated hypertensives 352 

after DRT (-6.1; 95%CI: -10.2 to -2.0 mmHg)5. Moreover, the BP-reduction observed is 353 

comparable to the net effect reported for aerobic training (-8.3; 95%CI: -10.7 to -6.0 354 

mmHg)31, and for the main anti-hypertensive drug classes used in monotherapy (-8.8; 355 

95%IC: -9.6 to -8.0 mmHg)32. This BP-lowering effect induced by DRT might have 356 

clinical relevance given that a 5 mmHg decrease in SBP has been shown to reduce the 357 

risk of major cardiovascular events by about 9%33. Indeed, 75% (n=12) of the participants 358 

in the DRT group presented this clinically meaningful reduction in SBP (Supplementary 359 

Figure 1). 360 

The BP-lowering effect induced by DRT was accompanied by an increase in peak 361 

BF during hyperaemia, which reflects an improvement in microvascular function25. As 362 

BP is mainly regulated by resistance vessels, such improvement in microvascular function 363 

may be responsible, at least in part, for the reduction in SBP induced by DRT. By our 364 

knowledge, this is the first study to demonstrate that DRT improves microvascular 365 

function in treated hypertensives. This adaptation was probably triggered by mechanism 366 

deflagrated during each exercise execution. Along this line, skeletal muscle activity 367 

produces vasodilatory factors (e.g., adenosine, CO2, lactate/H+, and K+)34, but during the 368 

concentric phase of dynamic resistance exercise, blood flow is restricted35. However, 369 

during the rest periods between the exercise repetitions and sets, blood flow increases, 370 
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producing shear stress  and vasodilation, which reveals ischemia/reperfusion cycles36 that 371 

may chronically improve microvascular function37.  Additionally, such microvascular 372 

function improvement after DRT might have clinical relevance once microvascular 373 

dysfunction is typical in hypertension7, and an attenuated reactive hyperaemia is 374 

associated with higher risk of major cardiovascular events38. On the other hand, DRT did 375 

not improve arterial endothelial function evaluated by FMD. Likewise, a previous study6 376 

with healthy individuals with preserved endothelial function also found unchanged FMD 377 

and increased peak BF after DRT. Thus, the absence of FMD changes after DRT in the 378 

current study might be related, at least in part, to the apparently preserved baseline FMD 379 

presented by the participants; which might be due to the fact that almost all the sample 380 

was taking angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors 381 

that already improve FMD39. 382 

Contrary to the study’s hypothesis, IHT did not reduce SBP nor DBP. Indeed, 383 

although meta-analytic data indicates that IHT reduces BP in general population8, a recent 384 

evidence-based Consensus Document40 concluded that such hypotensive effect is greater 385 

in normotensive than hypertensive individuals; suggesting that target population may 386 

explain, at least in part, this current result. Therefore, as the BP-lowering is clinically 387 

important in hypertension, more research is required to actually elucidate whether IHT 388 

can decrease BP in this specific population, i.e. treated hypertensives. 389 

The present results also do not support an effect of IHT on cardiovascular 390 

autonomic modulation. Although, prior data9 reported improvements in cardiovascular 391 

autonomic markers after IHT in hypertensives, a meta-analysis41 published during this 392 

study execution concluded that IHT does not modify cardiac autonomic modulation in 393 

hypertensives. Therefore, the current results support that IHT does not improve 394 

cardiovascular autonomic control in treated hypertensives. 395 
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CRT produced a net reduction (i.e. DRT vs CON, Figure 2) of -10.7 [95%CI: -396 

18.3 to -3.0] mmHg in SBP, with 60% (n=9) of the participants of this group presenting 397 

a clinically meaningful (> 5 mmHg) reduction in SBP (Supplementary Figure 1). In 398 

addition, CRT increased peak BF during reactive hyperaemia. These responses, however, 399 

were similar to DRT, demonstrating that CRT effects were driven by DRT and IHT had 400 

no additive effect. Interestingly, a previous meta-analysis31 also reported no additive 401 

effect of the combination between DRT and aerobic exercise training in BP reduction. 402 

Therefore, obtaining an additive BP-lowering effect through the addition of different 403 

exercise modes seems to be challenging.  404 

The current study has important clinical implications. The findings support DRT 405 

as a valuable additional non-pharmacological intervention for hypertension management 406 

since it reduced BP and improved microvascular function even in hypertensive patients 407 

already taking pharmacologic treatment. On the other hand, the results raise caution 408 

regarding the replace of conventional exercise modes by IHT for hypertension 409 

management given the observed lack of efficacy. Lastly, the present results do not also 410 

support the association of IHT to DRT given the absence of additive effects in comparison 411 

to DRT alone. 412 

It is important to mention the limitations of the current study. Participants were 413 

non-active middle-aged men without cardiovascular disease. Thus, caution is needed 414 

when extrapolating the current results to individuals with other characteristics, such as 415 

elderly, women and patients with cardiovascular disease. Few participants (n=6, 9% of 416 

final sample) had been infected by SARS-CoV-2 before the study enrolment, but none of 417 

them had to be hospitalized, and their prevalence was similar among the study’s groups. 418 

As in many clinical trials, although adequately powered for the primary outcome (SBP: 419 

β = 0.921), analysis for secondary outcomes can be underpowered. Finally, the results 420 
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regarding the comparisons among the training protocols (DRT, IHT and CRT) are 421 

restricted to the specific protocols employed in the present study. It is possible to 422 

speculate that the divergent responses between DRT and IHT might be explained, at least 423 

in part, by the different amount of muscle mass involved in each protocol, since DRT 424 

enrolled a whole-body training and the vascular adaptations induced by training are 425 

greater in regions directly mobilized during the exercise sessions37,42. Nevertheless, the 426 

protocols employed in the present study were designed based on the recommendations of 427 

the hypertension guidelines3,4,13 but the employment of other protocols might reveal 428 

different results. 429 

In conclusion, DRT, but not IHT, reduced BP and improved microvascular 430 

function in treated hypertensive men. The addition of IHT to DRT, in a CRT protocol, 431 

did not produce additive effects when compared to DRT alone.  432 
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FIGURE CAPTIONS 598 

FIGURE 1 Flow diagram of the current trial. N, number of participants; BMI, body mass 599 
index; COVID-19, coronavirus disease 2019; HIV, human immunodeficiency virus; BP, 600 
blood pressure; EXP, experimental session; MI, myocardial infarction; DRT, dynamic 601 
resistance training; IHT, isometric handgrip training; CRT, combined resistance training; 602 
CON, control. 603 

 604 

FIGURE 2 Between-groups comparisons of changes (post-intervention – pre-605 

intervention) adjusted for pre-intervention values for the following variables: systolic 606 
blood pressure (SBP – panel a), diastolic blood pressure (DBP – panel b), systemic 607 
vascular resistance (SVR – panel c), cardiac output (CO – panel d), stroke volume (SV – 608 
panel f) and heart rate (HR – panel g). DRT, dynamic resistance training; IHT, isometric 609 

handgrip training; CRT, combined resistance training; CON, control. Analysis: One-way 610 
ANCOVA adjusted for pre-intervention values.  611 

 612 

FIGURE 3 Between-groups comparisons of changes (post-intervention – pre-613 

intervention) adjusted for pre-intervention values for the following variables: ratio 614 
between low- and high-frequency bands of R-R interval variability (LF/HFR-R – panel a), 615 
low-frequency band of systolic blood pressure variability (LFSBP – panel b), baroreflex 616 

sensitivity (BRS – panel c), baseline vascular conductance (VC – panel d), baseline blood 617 
flow (BF – panel e), peak blood flow (panel f), peak shear rate (panel g) and flow-618 

mediated dilation (FMD - panel h). DRT, dynamic resistance training; IHT, isometric 619 
handgrip training; CRT, combined resistance training; CON, control; nl, natural 620 

logarithm. Analysis: One-way ANCOVA adjusted for pre-intervention values. 621 
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Table 1. Sample characteristics obtained at preliminary procedures 624 

 DRT IHT CRT CON P  

N 16 15 15 16  

Age (years old) 54±7 55±7 50±11 52±10 0.457 

COVID-19 without hospitalization – n (%)  2 (13) 1 (7) 2 (13) 1 (6) 0.862 

Physical activity levels (minutes / week) 41±43 57±55 35±41 57±50 0.476 

Anthropometric       

Height (m) 1.75±0.06 1.74±0.08 1.77±0.09 1.76±0.06 0.617 

Weight (kg) 91±12 86±15 91±18 88±11 0.642 

BMI (kg/m2) 29.8±3.5 28.1±3.5 28.8±4.0 28.4±3.5 0.591 

Blood pressure      

SBP (mmHg) 130±12 131±13 134±12 127±10 0.505 

DBP (mmHg) 88±9 88±7 88±8 85±7 0.621 

Pharmacological treatment 

Anti-hypertensive treatment duration 

(months) 

118±91 105±87 95±78 114±80 0.883 

Anti-hypertensive monotherapy – n (%) 9 (56) 8 (53) 6 (40) 9 (56) 0.810 

Anti-hypertensive polytherapy – n (%) 7 (44) 7 (47) 9 (60) 7 (44) 0.810 

ARB – n (%) 12 (75) 11 (73) 11 (73) 10 (63) 0.894 

ACEi – n (%) 2 (13) 1 (7) 4 (27) 4 (25) 0.440 

CCB – n (%) 5 (31) 5 (33) 7 (47) 5 (31) 0.812 

DIU – n (%) 6 (38) 6 (40) 5 (33) 4 (25) 0.854 

Statins – n (%) 1 (6) 3 (20) 3 (20) 1 (6) 0.510 

Data: mean±standard deviation or number (percentage). DRT, dynamic resistance training; IHT, isometric 625 
handgrip training; CRT, combined resistance training; C, control; COVID-19, coronavirus disease 2019; 626 
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ARB, angiotensin 627 
receptor blocker; ACEi, angiotensin-converting enzyme inhibitor; CCB, calcium channel blocker; DIU, 628 
diuretic. Physical activity levels were evaluated by the International Physical Activity Questionnaire. 629 
Analysis = One-way ANOVA for continuous data and Fisher’s exact test for categorial data.  630 

 631 
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Table 2. Blood pressure and systemic hemodynamics parameters measured pre- and post-interventions in 633 
the 4 experimental groups: dynamic resistance training (DRT); isometric handgrip training (IRT); combined 634 
resistance training (CRT) and control (CON). 635 

 DRT IHT CTR CON  

SBP (mmHg) P group = 0.511 

PRE 125±11 128±13 128±12 127±14 P time = 0.000 

POST 119±12* 125±14 119±12* 129±16 P group x time = 0.003 

      

DBP (mmHg) P group = 0.764 

PRE 85±10 87±8 87±6 86±9 P time = 0.642 

POST 84±10 86±10 84±8 89±10 P group x time = 0.091 

      

CO (L/min) P group = 0.107 

PRE 5.6±1.0 5.0±0.9 5.1±1.0 4.8±0.8 P time = 0.158 

POST 5.2±1.0 5.3±1.1 4.7±0.9 4.6±0.6 P group x time = 0.201 

      

SVR (U) P group = 0.133 

PRE 18±4 21±4 21±4 21±4 P time = 0.449 

POST 19±5 20±5 21±4 23±3 P group x time = 0.306 

      

SV (mL) P group = 0.995 

PRE 82±17 77±15 81±24 83±17 P time = 0.101 

POST 76±17 83±16 76±16 77±15 P group x time = 0.066 

      

HR (bpm) P group = 0.060 

PRE 69±11 66±11 65±13 60±7 P time = 0.908 

POST 70±7 65±9 64±12 61±6 P group x time = 0.379 

Data: mean ± standard deviation. SBP, systolic blood pressure; DBP, diastolic blood pressure; CO, cardiac 636 
output; SVR, systemic vascular resistance; SV, stroke volume; HR, heart rate. Analysis: Two-way mixed 637 
ANOVA. *Significantly different from pre-intervention (P<0.05). 638 

  639 
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Table 3. Vascular function and cardiovascular autonomic modulation parameters measured pre- and post- 641 
interventions in the 4 experimental groups: dynamic resistance training (DRT); isometric handgrip training 642 
(IRT); combined resistance training (CRT) and control (CON). 643 

 DRT IHT CTR CON  

VASCULAR FUNCTION  

Baseline VC (mL.min-1.mmHg-1) P group = 0.489 

PRE 1.16±0.70 1.09±0.64 0.93±0.46 0.98±0.60 P time = 0.137 

POST 1.34±0.63 1.19±0.73 1.10±0.50 1.03±0.55 P group x time = 

0.940 

      

Baseline BF (mL/min) P group = 0.614 

PRE 110±59 107±55 90±40 96±57 P time = 0.205 

POST 121±50 114±70 105±51 102±53 P group x time = 

0.968 

      

Peak BF (mL/min)     P group = 0.161 

PRE 774±377 581±298 654±321 828±358 P time = 0.000 

POST 1067±461* 714±336 954±464* 786±223 P group x time = 

0.007 

      

Peak shear rate (s-1)     P group = 0.161 

PRE 723±289 564±206 656±253 849±412 P time = 0.011 

POST 819±309* 688±266* 788±353* 851±314* P group x time = 

0.510 

      

FMD (%)     P group = 0.711 

PRE 6.0±3.3 6.6±4.2 5.6±2.6 6.2±4.0 P time = 0.588 

POST 6.6±2.9 7.1±4.2 6.2±2.2 5.5±2.7 P group x time = 

0.642 

      

CARDIOVASCULAR AUTONOMIC MODULATION 

nl LF/HFR-R      P group = 0.110 

PRE 0.76±0.86 0.33±0.83 0.06±1.03 0.38±0.82 P time = 0.065 

POST 0.45±1.05 0.48±0.51 -0.30±1.02 0.05±1.12 P group x time = 

0.320 

      

nl LFSBP (ms2)     P group = 0.310 

PRE 1.97±1.08 1.70±1.27 1.63±1.05 1.52±1.01 P time = 0.692 

POST 2.10±1.00 1.55±1.03 1.22±1.38 1.69±1.00 P group x time = 

0.596 

      

nl BRS 

(mmHg/bpm) 

    P group = 0.124 

PRE 1.41±0.55 1.54±0.51 1.92±0.47 1.76±0.58 P time = 0.046 

POST 1.56±0.48* 1.90±0.45* 1.91±0.56* 1.79±0.76* P group x time = 

0.161 

Data: mean±standard deviation. DRT = dynamic resistance training; IRT = isometric handgrip training; 644 
CRT = combined resistance training; CON = control; BF = blood flow; VC = vascular conductance; FMD 645 
= flow-mediated dilation; nl = natural logarithm; LF/HFR-R = ratio between low- and high-frequency bands 646 
of R-R interval variability; LFSBP = low-frequency band of systolic blood pressure variability; BRS = 647 
baroreflex sensitivity. Analysis: Two-way mixed ANOVA. *Significantly different from pre-intervention 648 
(P<0.05). 649 
  650 
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