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Abstract: This paper’s novel focus is predicting the leaf nitrogen content of rice during growing and
maturing. A multispectral image processing-based prediction model of the Radial Basis Function
Neural Network (RBFNN) model was proposed. Moreover, this paper depicted three primary points
as the following: First, collect images of rice leaves (RL) from a controlled condition experimental
laboratory and new shoot leaves in different stages in the visible light spectrum, and apply digital
image processing technology to extract the color characteristics of RL and the morphological charac-
teristics of the new shoot leaves. Secondly, the RBFNN model, the General Regression Model (GRL),
and the General Regression Method (GRM) model were constructed based on the extracted image
feature parameters and the nitrogen content of rice leaves. Third, the RBFNN is optimized by and
Partial Least-Squares Regression (RBFNN-PLSR) model. Finally, the validation results show that
the nitrogen content prediction models at growing and mature stages that the mean absolute error
(MAE), the Mean Absolute Percentage Error (MAPE), and the Root Mean Square Error (RMSE) of
the RFBNN model during the rice-growing stage and the mature stage are 0.6418 (%), 0.5399 (%),
0.0652 (%), and 0.3540 (%), 0.1566 (%), 0.0214 (%) respectively, the predicted value of the model fits
well with the actual value. Finally, the model may be used to give the best foundation for achieving
exact fertilization control by continuously monitoring the nitrogen nutrition status of rice. In addition,
at the growing stage, the RBFNN model shows better results compared to both GRL and GRM, in
which MAE is reduced by 0.2233% and 0.2785%, respectively.

Keywords: image processing; predication; artificial neural network; rice leaves

1. Introduction

With the increasing proportion of the rice industry in Malaysia industries and its
important position in world food security, improving the output and quality of rice has
become an important issue [1–6]. Nitrogen (N) is an essential element for the growth and
development of rice, which directly affects the rice leaves and has a decisive effect on the
yield and quality of rice [7–11]. Most cultivated crops have accelerated leaf senescence,
decreased chlorophyll content, and decreased crop yields due to nitrogen deficiency [12,13].

Furthermore, the N deficiency significantly hinders crop growth. Thus, noticing and
solving the problem on time helps in preventing crop losses; it is also helpful to know what
causes N deficiency in plants and avoid that correspondingly, and early problem detection
facilitates a successful outcome. Plants with N deficiency are thin, pale, subject to chlorosis,
and produce poor fruits. By knowing how to control N deficiency in plants with organic
and chemical methods, farmers can save yields. Remote sensing assists agriculturalists in
identifying the problem early [14,15].
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Moreover, it is important for chlorophyll production, which is essential if plants
are photosynthesized to acquire their nutrition. Furthermore, it is also a component of
amino acids, DNA, membrane proteins, enzymes, the majority of coenzymes, auxins,
and cytokinins, making it essential for the growth of cells in plants; this is why nitrogen
deficiencies, reduced growth, and reduced yields are crucial to prevent and control. In-
stead, the optimal nitrogen fastening and N supply enable healthy development and full
capability for crop production. A significant issue with N insufficiency is the low protein
content of grains such as rice, wheat, and corn [16]. Furthermore, pertinent research has
demonstrated that the optimal fertilization amount of rice may be estimated using the
nutritional detection of the nitrogen content of rice and that accurate fertilization of rice
can subsequently be achieved [17–20]. However, utilizing conventional chemical analysis
and diagnosis techniques has the drawbacks of being time-consuming, labor-intensive,
damaging to plants, and slow diagnosis, and it is difficult to implement fertilization rec-
ommendations quickly and effectively. The implementation of new technologies and
methods for crop nutrition diagnostics has increasingly come into the focus of research in
recent years due to the rapid growth of information technology [21,22]. To optimize the
administration of nitrogen fertilizer, numerous researchers have recently developed various
detecting algorithms for the nutritional state of plants. A new technology for measuring
plant physiological condition was proposed by several researchers [11,23], employing leaf
and leaf scale sun-induced chlorophyll fluorescence to calculate the nitrogen content and
photosynthetic nitrogen usage efficiency of wheat leaves. It is essential to efficiently acquire
data on the nutrients found in leaf nitrogen in order to provide accurate fertilization advice
and improve the development of modern agriculture. Chemical technologies are used in
traditional nutrient information detection, but they are labor-intensive, expensive, and
easily pollute the environment, making them unsuitable for the development needs of
contemporary precision agriculture. Because variations in the amount of nitrogen fertilizer
may alter the physiology and morphology of crop leaves, which in turn may alter the
properties of the crop’s spectrum reflectance [24]. Furthermore, much progress has been
made in researching the characteristics of spectral changes and nitrogen content at home
and abroad. The main results include the research on the sensitive bands of plant nitrogen
content, mainly in the near-infrared waveband [25,26], red light waveband, and green light
waveband [27], Visible light band [28].

In order to predict the leaf nitrogen concentration of maize plants, a number of
authors [12,13,29–32] suggested a method using machine learning technology and multi-
spectral imaging. This study offers a theoretical scientific foundation for identifying and
diagnosing plant growth status. Another researcher [12,33] used the drone’s camera to
capture multispectral photos and developed a new technique to calculate the nitrogen
content of RL by running spectral analysis algorithms on the photographs. The sensitive
level of nitrogen was created based on the original spectral reflectance of rice leaves, which
is more sensitive to changes in nitrogen. Digital image processing technology and machine
vision in the visible light spectrum have been widely used in crop production, but they
suffer from complicated operations, high costs, small scope of application, and unfavorable
options [13].

In order to explore a low-cost and highly popular method for detecting leaf nitrogen
content in rice, this paper applies digital image processing technology to construct predic-
tion models of rice leaf color characteristic parameters, leaf area, and leaf nitrogen content
in different stages under natural light [22], and the multi-scale retinex (MSR) algorithm
eliminates the impact of illumination [26]. The rapid detection of nitrogen content in rice
leaves can provide a theoretical basis for precise fertilizer management in orchards [24].

This paper uses novelty to improve the grid technique to measure the area of rice
leaves. The neural network consists of the input layer, which is generally historical load
data for predicting nitrogen content; the hidden layer is between the input and output
layers and cannot be observed outside the system. The output unit realizes the output of
the system processing results to predict the required data. Furthermore, the rice leaf field
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is measured by the number of pixels. If the number of pixels of the measured leaf and
the actual area of the pixel is known, the leaf area can be obtained using the proportional
relationship. Finally, the proposed model was validated in comparison to GRL and GRM,
which were used to build the model.

2. Materials and Methods
2.1. Data Collection

Figure 1 shows the rice’s vegetative and reproductive growth stages. This paper
focuses on Basmati-370 rice which has a special aroma and flavor, along with the fine
quality long grain. In addition, a fertilizer called urea (which contains 46% nitrogen) should
be used on crops as needed. When used and maintained correctly, it is a fertilizer for
flooded soils that is reasonably inexpensive, has a high nitrogen analysis, and is effective.
It can be administered to rice 3–4 weeks after transplanting and again 7–8 weeks later.
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surface damage and had healthy physiological conditions were selected as samples. After 
the sample collection is completed, 10 leaves are randomly selected each time and placed 
on the calibration board, as shown in Figure 2. 

Figure 1. Rice plant growth stages.

The experiment was carried out at University Puta Malaysia, UPM, which is situated
between 3◦02′ North latitude and 101◦42′ East longitude and an altitude is 31 m above sea
level (Figure 2). The high temperature, humidity, and sufficient rainfall characterize its
tropical climate. Thus, the tropical climate challenged the plant’s implementation, which
featured high humidity and significant rains, adequate sunshine, and low winds. The
rice was planted from July to November 2020 in the test University Putra Malaysia, and
random selection was used to choose the test sample from fields with moderate growth,
a comparable quantity of buckets, and no disease or insect pests. In the experiment,
90 samples of two-stage (Stem elongation stage and Flowering stage) rice were gathered.
For each type of leaf, 45 samples in the center of the outer perimeter that was flat, had no
surface damage and had healthy physiological conditions were selected as samples. After
the sample collection is completed, 10 leaves are randomly selected each time and placed
on the calibration board, as shown in Figure 2.
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Figure 2. The original image of the rice leaves. (a) Stem elongation stage, (b) Flowering stage.

2.2. Image Processing

RBFNN model used rice leaf area, leaf color parameters, and leaf nitrogen content in
different stages to predict the nitrogen content. The number of pixels on and inside the
boundary of the target area of a single paper image, as well as the pixels extracted from the
segmented leaf image.

For the measurement of the pixel area value, the total number of pixels occupied by
the complete segmented image is taken, and the actual area of the complete segmented
image can be obtained as

A =
m

∑
i=1

n

∑
j=1

f (x, y) (1)

where m and n are the sizes of the segmented complete target area.
The mean value of all the pixels in the G channel of the rice leaf image in stages of

growing and maturing is extracted by

A =
x1 + x2 + . . . xn fn

f1 + f2 + . . . + fn
(2)

where A is the mean value of pixels in the G channel; xn is the value of the G channel; fn is
the number of pixels in the interval.

The K actual value and the pixel value scaling ratio, as defined in Equation (3),

K =
A
L

(3)

where L is the pixel value of the calibration board in the pixel coordinate system.
The actual value of the feature size of the target as,

F = K ∗M (4)

where M is the known size of the calibration board and K is the feature size of the target
item to be measured in the same image.

The calibration coefficient pixel area can be obtained as,

KC =
S1

S2
(5)

where S1 is the area of a square in the calibration RL; S2 is the number of pixels occupied
by a single square in the calibration board in the image, that is, the pixel area.
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Whereas the performance evaluation on the RBFNN model was constructed to predict
the nitrogen content as

Per f ormance Parameters =



MAE = 1
S

S
∑

i=1
|yi − yl |

RMSE =

√
1
S

S
∑

i=1
(yi − yl)

2

MAPE = 1
S

S
∑

i=1

|yi−yl |
yl

(6)

where S is the sample size, yi is the actual value of leaf nitrogen content, and yi is the models’
predicted value; and three performance indicators of the mean absolute error (MAE), the
mean absolute percentage error (MAPE), and the root mean square error (RMSE). In order
to further verify the estimation accuracy of the artificial neural network model by validating
used the model and using error rates as,

E =
sn2 − sn1

sn1
× 100% (7)

where E denotes the error rate; sn1 is the actual measured value of the nitrogen content of
rice leaves, g/kg; sn2 predicts the value of the nitrogen content of rice leaves, g/kg. The
sample data are often not a simple linear relationship in actual data analysis, and there may
be a nonlinear relationship.

2.3. Method

In order to make linearly inseparable data linearly separable, this study uses radial
basis kernel function (RBF) combined with Partial Least-Squares Regression (PLSR) [34], to
build a nonlinear model to improve the accuracy of the prediction model. The nonlinear
kernel function used is the Gaussian function commonly used in the radial basis func-
tion [26], representing a real-valued function whose value depends only on the distance
from the origin. It is a commonly used nonlinear kernel function in regression algorithms,
as seen in Equation (8),

k
(
x, x′

)
= exp

(
−‖x− x′‖2

2
2σ2

)
(8)

where: ‖x− x′‖2
2 is the squared Euclidean distance between the feature vectors; σ is a

free parameter. Continuously optimizing the threshold and weighting value can effec-
tively improve the accuracy and validity of the RBF neural network. When optimizing the
RBF neural network using the PLSR algorithm, first determine the number of iterations,
population size, crossover probability, and mutation probability, and perform popula-
tion initialization. The weighted value and threshold output obtained by initialization is
compared with the training value to determine the individual fitness [35] as in Equation (9),

F = k

[
n

∑
i=1

abs(yi − oi)

]
(9)

where F is absolute error; i is the current node number, n is the number of output nodes, yi
is the original output data of the i-th section, and oi is the network prediction data of the
i-th section.

This research mainly selects the roulette method that uses the fitness ratio as the
selection method; that is, the smaller the fitness value, the higher the selection probability.
Finally, the network structure is established according to the population initialization,
and crossover operations and mutation operations are performed. Therefore, the main
process is to design an RBFNN-PLSR model as the prediction model of leaf nitrogen content
as follows:
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First, the rice leaf image should have the noise removed using adaptive filtering, after
which the leaf area should be retrieved from the image using segmentation, and finally, the
extracted leaves should be processed morphologically.

Second, the edge of the graph paper is extracted based on an improved canny algo-
rithm, the closed operation fills the discontinuity, and then the hole is removed by the area
filling. The grid image of the calibration plate is segmented based on the RGB color feature
information.

Finally, the connected component is extracted and marked to the predicted value of the
RBFNN model predicted leaf nitrogen content (g/kg), compared to the genotype-restricted
likelihood method (GRL) and General regression method (GRM). Figure 3, RBFNN-PLS
model demonstrates how latent variables are determined by processing spectra.
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3. Results and Discussion

The Kinect RGB-D camera from Microsoft® Company (Redmond, WA, USA) is used
to take color and depth pictures of plants. In the building’s monitoring system for plants to
take pictures, a laptop computer is attached to a tripod-mounted Kinect camera. A 12 V
Li-On battery powers the Kinect camera. The Kinect camera could capture images with a
resolution of 640 × 480 pixels for depth and 1280 × 960 pixels for color. The resolutions
of the RGB and depth images from Kinect are set to 640 × 480 pixels in order to align the
color image with the depth image. To capture the optimal image, the Kinect camera and
tripod are positioned 100 cm away from the plants in a horizontal direction, at a height of
130 cm, and at a 30◦ downward angle.

Once the model and the scenario have been described, the main results and analysis
are presented in this section. Table 1 shows the selected rice varieties studied below. A
total of 90 samples were collected at two different stages from each rice variety, 45 samples
for the growing and mature stages. The collected sample was divided into two groups,
as 35 samples were used for the training process and 10 samples for testing. Figure 2
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shows the training sample of mean and variance of the overall color of the rice leaf changes
dynamically in different stages.

Table 1. Rice varieties.

No. Accession No. Origin Local Name

1 Acc3369 Sarawak Mansau
2 Acc6891 Sarawak Biris
3 Acc6893 Sarawak Padi Wangi
4 Acc7155 Sarawak Chelom I
5 Acc7156 Sarawak Chendana
6 Acc5080 Peninsular Malaysia Chempa (Padi Huma)
7 Acc5101 Peninsular Malaysia Siong Pelandok
8 Acc5103 Peninsular Malaysia Anak Cina (H)
9 Acc5105 Peninsular Malaysia Bongkok

10 Acc6009 Peninsular Malaysia Mayang Lega
11 Acc9936 Sabah Janda Muda
12 Acc9953 Sabah Padi Purak
13 Acc9954 Sabah Padi Mansud
14 Acc9956 Sabah Padi Beruang
15 Acc9958 Sabah Padi Tiga Bulan

Figure 4 shows that the mean change of the two stages is consistent with the changing
trend of leaf nitrogen content; the variance of the rice-growing stage is slightly smaller than
that of the mature stage. The variance at the mature stage is slightly smaller than in the
rice-growing stage. The leaf color of the mature stage is the most uneven, and the leaf color
of the mature stage is the best.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 4. Distribution interval of pixel points in different stages in the G channel. 

 
Figure 5. Training model during rice growing stage. 

Figure 4. Distribution interval of pixel points in different stages in the G channel.

RBFNN model was established and compared GRL and GRM models for leaf area
parameters, leaf color parameters, and leaf nitrogen content during the rice-growing stage
and the mature stage of RL, as shown in Figures 5 and 6. The GRM model and GRL have a
poor fit between the predicted results of nitrogen content and the actual value of nitrogen
content, and the RFBNN has a high degree of fit between the predicted value of nitrogen
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content in RL and the actual value of nitrogen content. In the growing and mature stages,
most of RL’s nitrogen content fluctuates between 9~11 g/kg and 15~19 g/kg, respectively.
The prediction accuracy of the artificial neural network model is higher than that of the
GRL and GRM model in both Figures 3 and 4, and it shows that the RBFNN model is much
more reliable, and it fits well with the actual blade, and it is more accurate than GRM model
and GRL.
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Table 2 shows the comparison of these three models based on the MAE, MAPE, and
RMSE (Equation (6)) in which the RFBNN model shows better results during the rice-
growing and mature stages are 0.6418%, 0.5399%, 0.0652%, and 0.3540%, 0.1566%, 0.0214%,
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respectively. In addition, at the growing stage, the RBFNN model shows better results com-
pared to both GRL and GRM, in which MAE is reduced by 0.2233% and 0.2785%, respectively.

Table 2. Comparison of the performance of prediction models.

Model
Type

Growing Stage Mature Stage

MAE (%) MAPE (%) RMSE (%) MAE (%) MAPE (%) RMSE (%)

RBFNN 0.6418 0.5399 0.0652 0.3540 0.1566 0.0214
GRL 0.8651 1.0545 0.0881 0.7944 0.7399 0.0474
GRM 0.9203 1.2395 0.0953 1.0141 1.2272 0.0607

In order to further verify results, 10 samples were used to test the accuracy of the
RBFNN model of the leaf color parameters and leaf area of the RL growing stage; moreover,
and the leaf nitrogen content of the RL was verified. The verification results showed that
the error rate of the predicted nitrogen content of the RL and the measured nitrogen content
was between −9.950% and 9.322% during the growing stage. The correlation coefficients
for the actual and predicted value of the RL growing and mature stages are 0.6442 and
0.7217. The linear regression of the actual and predicted value of the RL growing and
mature stages are shown in Figures 7 and 8, respectively. The R-square and RMSE for the
linear fitting of the actual and predicted value in the rice growing stage are 0.8328 and
0.2497, which means the linear fitting is good. However, the slope of the fitting line is
0.5635, which means the accuracy of this method can be improved in future work. The
R-square and RMSE for the linear fitting of the actual and predicted value in the mature
stage are 0.5208 and 0.777, which is worse than that of the rice growing stage. The slope of
the fitting line for the mature stage is 0.749. The model’s predicted value is consistent with
the test result, which verifies the reliability of the artificial neural network model.
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4. Conclusions

This paper presented a model called RBFNN-PLSR to predict the Nitrogen content of
rice leaves using multispectral images. The RBFNN-PLSR model forecasted that, given the
same amount of data, the average relative error percentage of the total nitrogen content in
the leaf would be lower, and the prediction accuracy would be greater. Further investigation
is essential because the PLSR algorithm was used for optimization. The proposed model
can reasonably estimate the nitrogen content in the leaf and provide a scientific basis for
developing efficient fertilization management and information-based precision agriculture.
The limitation related to preprocessing transformations which affects the model’s prediction
performance. Future work will investigate the remaining fertilization components, such
as phosphorus in rice, which can affect health. Finally, this model may also be used to
continuously monitor the nitrogen nutrition status of rice, which will provide the best basis
for performing precise fertilization control.

Author Contributions: Y.W. processed the data and wrote the paper. S.J.A.-J. collected the data.
D.A.-J. help program the algorithm. H.B. suggested using a hybrid radial basis function neural
network and partial least-squares regression to process the data. All authors have read and agreed to
the published version of the manuscript.
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