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Abstract

The Internet of Things (IoT) refers to a world-wide network of interconnected

physical things using standardized communication protocols. Recent develop-

ment of Internet Protocol (IP) stacks for resource-constrained devices unveils

a possibility for the future IoT based on the stable and scalable IP technol-

ogy much like today’s Internet of computers. One important question remains:

how can data and events (denoted as services) introduced by a variety of IP

networked things be exchanged and aggregated efficiently in various application

domains. Because the true value of IoT lies in the interaction of several services

from physical things, answers to this question are essential to support a rapid

creation of new IoT smart and ubiquitous applications. The problem is known

as service composition. This article explains the practicability of the future

full-IP IoT with realtime Web protocols to formally state the problem of service

composition for IP smart objects, provides literature review, and discusses its

research challenges.
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1. Introduction

The Internet of Things (IoT) is the next major evolution of the Internet

where heterogeneous devices and machines are being connected to the Internet,

to each other, and to people. With more than 10 billion microcontrollers be-

ing shipped each year [1], each of which can potentially be connected through

the Internet, a huge variety of intelligent and networked devices are becoming6

available, from digitally-enhanced objects, to motion sensors, health-monitoring

devices, electric meters, and even to street lights. These devices are referred to

as smart objects characterized by sensing, processing, and networking capabili-

ties.

The Internet Protocol (IP), meanwhile, has proven itself a long-lived, sta-

ble, and highly-scalable communication technology supporting a wide range of12

applications, devices, and underlying communication technologies. Recent ad-

vancement in IoT technologies such as low-power wireless communication links

(e.g., IEEE 802.15.4), light-weight IP networking stacks (e.g., uIP), and new

routing protocols (e.g., IPv6 Routing Protocol for Low-power and Lossy net-

works - RPL) allows smart objects, regardless of their limited computing and

communication capabilities, to be part of the global network, the Internet. Such18

IP networks of smart objects are able to merge with the conventional Internet

of computers and bare a great deal of opportunities. We call the future of this

IP-based ecosystem as full-IP IoT.

In the full-IP IoT, making smart object services (data and events) available

and accessible to different end-user applications, using open and standardized

protocols is still a challenging task. The question is not only how to make smart24

objects be able to communicate over the Internet, but also how their services can

be composed to create new and creative applications. The answer to the former

part of the question is being approached by some realtime Web protocols spe-

cially designed for IP smart objects and compliant to open Web standards such

as Devices Profile for Web Services (DPWS) [2] and Constrained Application

Protocol (CoAP) [3]. Services from such smart objects can be directly accessed30
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on the Web and can interact with a plethora of existing conventional Web ser-

vices to form a new generation of ubiquitous applications. For the latter part of

the question, it can be realized as service composition problem, one of the core

principles of Service-Oriented Computing (SOC) [4]. Advanced functionalities

can then be created by combining a set of atomic services in the form of com-

posite services 1. These composite services can be used in different scenarios to36

meet various user requirements. The true value of the IoT and new opportuni-

ties to create a smarter world will become apparent when data and events from

an increasing number of smart objects can be easily and dynamically composed

to create novel applications.

Service composition has been extensively studied in the context of Web ser-

vices and business processes [5]. A number of standards have been developed42

and are being used in real-world deployments to support the service composi-

tion. However, the characteristics of IoT systems, such as resource-constraints

and data/event-driven devices render some of the techniques devised for tradi-

tional Web service composition inadequate. Therefore, new composition models

with respect to new requirements of IoT systems are expected. In this article,

we consider IP smart objects as the core components of the future full-IP IoT48

to introduce the problem of service composition and new research challenges.

This article is structured as follows. Section 2 provides the background of IP

protocols for smart objects and how they shape the future of full-IP IoT. Service

composition problem along with its requirements and some use cases are intro-

duced in Section 3. Section 4 surveys early-stage service composition solutions

on various types of smart objects. Section 5 discusses research challenges. Some54

concluding remarks are drawn in Section 6.

1The terms of atomic and composite are used in service composition to refer to participating
services and the output service of a composition process
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2. Full-IP IoT and Smart Object Services

Since its debut more than a decade ago [6], the IoT has gained attention not

only from the research community but also from end-users, businesses, and even

lawmakers. Numerous research efforts have been undertaken to identify efficient

solutions in various problem domains such as enabling technologies (e.g., iden-60

tification, sensing, and communication) and middleware solutions [7]. Several

IoT platforms have been released to tackle technical problems inherent in the

development of new IoT products and systems. The business world, inspired

by considerable results from research and development activities, has started

introducing novel and appealing commercial products in a variety of applica-

tion domains such as home automation, industrial management, logistics, smart66

cities, environment control/surveillance, and healthcare. IoT has become an

importing computing paradigm in the next Internet, and is known with several

names such as Machine to Machine/Object to Object Communication, the In-

ternet of Everything, Industrial Internet, Programmable World, Web of Things,

and Cloudy Things. We, in this section, streamline the interpretations of the

IoT around smart objects, which can be found common in all IoT approaches.72

2.1. Smart Objects: Cornerstones of IoT

According to [8], A smart object is an item equipped with a form of sensor

or actuator, a tiny microprocessor, memory, a communication module, and a

power source. This definition covers different types of things in IoT (see Fig-

ure 2) including embedded systems (embedded in mechanical/electrical systems

with communication modules), mobile phones, Radio Frequency Identification78

(RFID) tags/readers, and Wireless Sensor Networks (WSNs) sensor nodes. The

sensor or actuator gives a smart object the ability of interacting with the phys-

ical world, and the microprocessor enables it to process the data captured from

its environment. The memory is used to store the operating system, drivers,

and software components. The communication module allows smart objects

to communicate data to the outside world and receive input from other smart84

objects. The power source supplies electric power to smart objects.
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Sensor nodes are typical smart objects while embedded systems exist in a

huge number of devices/machines such as traffic lights, washing machine con-

troller, and medical equipment. When the host mechanical/electrical systems in-

clude communication modules, embedded systems become a considerable source

of smart objects. Mobile phones equipped with microphone, camera, and sen-90

sors make up another large proportion of smart objects. RFID tags are mainly

used to identify objects or to track their location without providing any indi-

cation about the physical condition of the objects [9]. They only work in the

presence of the readers which actually send the information stored in the tags

to a software system. In that sense, RFID tag/reader pairs can be classified as

a smart object since they have the ability to interact, process, and communi-96

cate data. The IoT, therefore, can be defined as a loosely coupled, decentralized

system of smart objects, which are autonomous physical objects characterized by

sensing, processing, and networking capabilities [8, 10, 11].

2.2. Internet Protocol for Smart Objects

To support the large number of emerging applications for smart objects, the

underlying networking technology must be inherently scalable, interoperable,102

and have a solid standardization base to support future innovation as the appli-

cation space grows. IP has become widely used these days as a standard commu-

nication technology supporting a large range of applications, services, devices,

and other networking technologies. Many standardization bodies such as Inter-

net Engineering Task Force (IETF), European Telecommunications Standards

Institute (ETSI), and Internet Protocol for Smart Objects Alliance (IPSO), as108

well as many researchers and practitioners have been working to advocate the

future IoT with IP networked smart objects. IP has a long-term support to

Internet applications for decades such as email, the Web, Internet telephony,

video streaming, and many collaborative tools. IP runs over almost any under-

lying communication technology, ranging from high-speed wired Ethernet links

to low-power IEEE 802.15.4 radios. For long-haul communication, IP data is114

readily transported through encrypted channels over the global Internet.
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Figure 1: IP and 6LoWPAN protocol stack in reference to layers of the TCP/IP networking
model.

Internet Protocol version 6 (IPv6), standardized by the IETF, is expected to

accommodate the huge number of Internet-connected smart objects. IETF and

other standardization bodies are making great efforts to reduce the footprint

of IPv6 for resource-constrained devices. For example, by adding an adapta-

tion layer to the IPv6 protocol, IPv6 over Low-power Wireless Personal Area120

Networks (6LoWPAN) [12] enables the use of IPv6 in Low-power and Lossy

Networks (LLNs), such as those based on IEEE 802.15.4. In addition, RPL [13]

routing protocol is used for smart object internetworking over LLNs. These are

key areas of IP networking protocols to seamlessly integrate smart objects into

the Internet.

Figure 1 shows a comparison between typical networking stacks of regu-126

lar IP networks and 6LoWPANs following 4-layer TCP/IP model (RFC 1122):

Link, Internet, Transport, and Applications. The key difference lies at 6LoW-

PAN adaptation layer, which adds a specific layer and IPv6 header compression

before forwarding to regular IPv6 destination. This technology gives the effi-

cient extension of IPv6 into the 6LoWPAN domain, thus enabling end-to-end

IP networking features for a wide range of IoT applications. In order to connect132

6LoWPAN networks to other IP networks, 6LoWPAN Edge Routers (6EdRs)
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Figure 2: IP smart object services are the cornerstones of future IoT by using advances in IP
technology for low-power and resource-constrained devices

are usually deployed at the edge of 6LoWPAN to perform two essential tasks:

adaptation between 6LoWPAN and regular IPv6 networks and routing the IP

traffic in and out of the 6LoWPAN. This transformation is transparent, efficient

and stateless in both directions.

Figure 2 shows the formation of IP smart objects by the adoption of feasible138

IP stacks. These IP smart objects will be the cornerstones of the next IoT,

full-IP IoT, and could eliminate the need for protocol translation gateway such

as in [14]. Protocol gateways are complex to design, manage, and deploy; their

network fragmentation leads to non-efficient networks because of the inconsis-

tent routing, QoS, transport, and network recovery. End-to-end IP architecture

is considered suitable and efficient for scalable networks of large numbers of144

communicating devices such as the IoT.

2.3. Realtime Web Protocol and Smart Object Services

How will the smart objects interact in the future IoT applications? There

are currently several candidate realtime Web protocols for IoT communication

including Message Queue Telemetry Transport (MQTT) [15], Extensible Mes-

saging and Presence Protocol (XMPP - RFC 3920), DPWS, and CoAP. Notably,150

DPWS and CoAP aim to bring functionalities of smart objects (data and events)

to the Web in the form of services. By following Web design principles, these

services can acquire open Web standards to enable them to understand the Web

languages and protocols, denoted as smart object services.
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DPWS is an application standard for bringing Web services to smart objects

by adopting the concepts of the W3C Web Service [16] and SOAP-over-UDP156

binding 2. DPWS is lightweight and can comply with many of the requirements

of event-driven and pervasive IoT applications such as dynamic discovery and

event notification. The Web Services for Devices initiative 3 provides and main-

tains the open source implementations of DPWS. To date, many experiments

have been carried out to evaluate DPWS in (even) highly resource-constrained

devices such as sensor nodes. The results show reasonable ROM footprints162

[17]. Other technical issues of DPWS have also been put under research such

as encoding and compression [18], the integration with IPv6 infrastructure and

6LoWPAN [19, 20], the scalability of service deployment [21], and the first se-

curity implementation has been included in the latest release of DPWS stacks.

CoAP is developed by the IETF working group on Constrained RESTful

Environments (CoRE) following REST architectural style [22]. It comprises a168

minimal subset of REST along with mechanisms of resource discovery, subscrip-

tion/notification, and security measures for resource-constrained objects. It is

similar to the Hypertext Transfer Protocol (HTTP) and can be easily translated

to HTTP for a transparent integration with the Web, while also meeting the

smart object requirements such as multicast support, very low overhead, and

publish/subscribe model. The CoAP protocol provides a technique for discover-174

ing and advertising resource descriptions via CoAP endpoints using CoRE Link

Format (RFC 6690) of discoverable resources. Its request/response interaction

model between application endpoints is based on key concepts of the Web such

as Uniform Resource Identifiers (URIs) and Internet media types.

In a nutshell, the aforementioned technologies with enhancements in com-

plexity and overhead enable IP protocols feasible for smart objects. Further-180

more, by using realtime Web protocols, smart object will become available on

the Internet in the form of Web services (or Web APIs), just like today’s millions

2http://schemas.xmlsoap.org/ws/2004/09/soap-over-udp
3http://www.ws4d.org/
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of Web services. This is a vivid picture of the future full-IP ecosystem where

conventional Web services can thrive along with smart object services to create

a new generation of truly smart and ubiquitous applications. These new Web

services of smart objects will be existed in three forms:186

• Static Services: These are services to provide specific information from

smart objects such as current temperature or status of a washing machine

at home, and services to carry out specific tasks such as switching a TV

on or setting the light level in living room.

• Event Services: When smart objects are carrying out tasks, there are many

situations where events occur such as a coffee maker finishes its task or a192

printer runs out of ink. They are event services that happen unexpectedly

and require applications to wait for their occurrences. The mechanism

here is applications subscribe to an event; when it happens, notifications

will be sent to its subscribers to handle.

• Periodic Services: These services appear in application such as monitoring

environment by periodically pushing sensed data to the network. For198

example, a service to send the current temperature or CO2 level in a

forest to data center every 5 minutes. It requires applications to process

these services properly.

3. Service Composition for Smart Objects

With IP support and efficient realtime Web protocols for smart objects, it

is one step away from the arrival of IoT applications: how to aggregate smart204

object services to create novel applications. A successful deployment of smart

object services will create a unique opportunity for developers to build a new

generation of IoT application as easily as to work with today’s Web applications.

Traditional software composition focused on defining languages, techniques, and

models for building systems out of reusable software components [23]. As soft-

ware components evolved into services [24], the notion of composition remained210
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as one of the core principles of SOC [4]. Service composition aims to reuse sev-

eral existing component services (or atomic services) by joining them in creative

ways. The idea, when applied to IoT, promises to bring in an acceleration for

the creation of IoT applications.

3.1. Use Cases

Service composition in the full-IP IoT, can bring new solutions to solve the216

integration issues that have existed in many classical IoT scenarios. A smart

home is equipped with different types of IP appliances: battery-operated tem-

perature sensor, battery-operated motion sensor (using Passive Infrared sensor),

TV, lamps, air conditioner, security camera, alarm, electronic door lock, etc.

They create a (ad hoc) home network in which these appliances can communi-

cate to each other to carry out automated tasks.222

For example, when an owner arrives home, the door lock can identify him

and open the doors, signal the light on, and communicate with other appliances

to prepare a home-arrival composite service. Similarly, a new-day service can

brew his coffee when he is waking up, update his social page, switch the TV on

for his favorite news channel, and check the charge in his electrical vehicle and

may suggest him to use a public transport in case there’s a technical problem228

with his vehicle. New-day service can also notify the system in his office when

he is about to leave his house to prepare his working session for the day.

This type of scenario orchestrate different types of smart objects to achieve

common goals. This can only be fulfilled by an appropriate service composi-

tion model based on open standardized protocols. Furthermore, in the future

IoT, novel applications will make use of composite services to fulfil complex re-234

quirements of inter-domain applications. In the above example, the automation

system in a house is providing certain services; the next level of composite ser-

vice would be the one offered by city administrators making use of the services

offered by automation systems in multiple households and other public spaces.
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3.2. Problem Statement

The problem we address in this article concerns composite services in full-IP240

IoT by aggregating existing smart object services (based on Web protocols) in

a meaningful way that cannot be achieved otherwise.

Problem. Given a set of smart object services as the union of three sets of

three service types: static services, event services, and periodic services, a set

of requirements R, and a set of cost functions C, find a composite service by

aggregating selected services in an appropriate order to meet the requirements R246

and minimize the cost C.

Service composition allows the aggregation of smart object services to meet

complex requirements from various application domains. It can be used to create

innovative applications in an efficient manner. A robust service composition

mechanism also makes it possible to support applications in a dynamic network

environment. This is the key to foster the development of IoT applications.252

Figure 3 illustrates the future Internet application domain supported by

service composition of conventional Web services from computer networks and

smart object services. Two types of services involve a composition process:

atomic service and composite service. The former are constituents of the target,

more complex, and more powerful composite services. The latter can also be an

atomic service participating in other composition processes.258

3.3. Requirements

3.3.1. Resource Constraint

Although advances in miniaturization technology enable chip manufacturers

to produce powerful small devices, smart objects are still resource-constrained

with limited wireless communication bandwidth and low processing capabilities.

There is a large number of electronic devices with 8-bit/16-bit microcontrollers264

and hundreds or thousands byes of memory. It makes heavyweight W3C Web

Service modeling languages, protocols, and frameworks such as Simple Object

Access Protocol (SOAP) [25], Web Services Description Language (WSDL) [26],
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Web Services Business Process Execution Language (WS-BPEL) [27], and Busi-

ness Process Model and Notation (BPMN) [28] inapplicable. DPWS is the only

technology thus far effectively lessens the SOAP messages and incorporates the270

discovery and the eventing mechanisms for smart objects. DPWS hints the use

of WS-BPEL for describing composite services by workflows. However, there

is still no WS-BPEL lightweight version to support DPWS messages and the

discovery/eventing. A new design for a compact WS-BPEL language following

the specification of DPWS (including discovery and eventing) is one possible

solution to support service composition in DPWS applications.276

When service composition becomes prevalent with plenty of composite ser-

vices being used in multiple applications, multiple concurrent requests to a smart

object become a new challenge. Smart objects with limited resources can only

support a limited number of simultaneous incoming requests. This can cause

on-going transactions freezing or block new coming requests. Therefore it is

RFID, WSN, Embedded, ... Computers

IoT Services

Application
Application

Application

Application

Application

Application

Application
Application

Application

Application

Network of 
Computers

Internet Network of 
Smart Objects
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Figure 3: Future Internet application domain is an full-IP ecosystem of smart objects and
conventional Web services.
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a critical requirement of service composition in IoT to effectively consume the282

limited resources.

3.3.2. Low-power and Lossy Communication Link

Many of smart objects are parts of LLNs consisting of constrained nodes

(with limited processing power, memory, and sometimes energy when they are

battery-operated or energy scavenging). The nodes are interconnected by lossy

links, typically supporting only low data rates that are usually unstable with288

relatively low packet delivery rates. This characteristic requires service compo-

sition in IoT to be aware of the lossy and low data rate nature of the link.

3.3.3. Power Efficiency

A smart object is driven by electronics, and electronics need power. Today,

the most common power source is a battery, but there are several other possi-

bilities for power, such as solar cells, piezoelectricity, radio-transmitted energy,294

and other forms of power scavenging. Power scavenging is a technique in which

devices harvest power from the physical environment. Solar cells represent the

most common form of power scavenging. They harvest their power from the

ambient and direct light hitting the smart object. Piezoelectricity is another

source for power scavenging. Many smart objects are battery operated such as

sensor nodes and mobile phones. Mobile phone battery is a critical issue now as300

more and more background services are using the limited battery power. With

sensor nodes, energy consumption is more critical to ensure the operation of

nodes for a long time.

For battery-powered smart objects, the batteries typically cannot be recharged.

For solar-powered smart objects, and those powered by power scavenging, en-

ergy is difficult to be stored for extended periods of time. For this reason, both306

the hardware and the software of the smart object must be designed to meet

stringent power requirements. To achieve this, low-power radio hardware is not

sufficient. Existing low-power radio transceivers use too much power to provide

long node lifetimes on batteries. Radio duty cycling mechanisms (e.g., Con-
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tikiMAC) have been developed to deal with the problem in the object scope.

It is based on the principles behind low-power listening but with better power312

efficiency to reduce power consumption and maintain good network conditions.

Therefore, service composition should minimize the energy consumption for ex-

change messages during its life cycle.

3.3.4. Data/Event-driven Services

In the Web services and business processes, the service model follows a

process- (or operation-) oriented paradigm, whereas IoT applications imple-318

ment a data- and event-driven model. DPWS has an event mechanism allowing

clients to subscribe state changes (events) in smart objects; CoAP also provides

subscription/notification model. One crucial requirement is in the way service

composition in IoT deals with this new type of services. With DPWS, compo-

sition involves the execution of reactive and always-on atomic services. With

CoAP, composition is concerned with the matching data of input from proactive324

events to another event’s output data where the execution of services cannot

be applied. These results in the ineffective use of the workflow-based languages

such as WS-BPEL. Similar issue happens in mashups as static unions of REST-

ful services and use synchronous request/response transmissions of HTTP. To

support this characteristic, either with DPWS or CoAP, it is required to meet

the data- and event-driven characteristics for service composition.330

3.3.5. Asynchrony

In smart object architectures, data processing and response generation may

not happen immediately. This would require long-lived connections. Especially

in dynamic and mobile device scenarios, asynchronous short duration transmis-

sions are required to overcome this problem. This is a common feature of real-

time Web protocols for smart objects. CoAP, unlike other REST architecture336

HTTP deals with these interchanges asynchronously over a datagram-oriented

transport such as User Datagram Protocol (UDP). This is done logically us-

ing a layer of messages that supports optional reliability. DPWS makes use

14



of WS-Addressing to overcome this problem. WS-Addressing includes message

IDs in every request to assign responses to the correlated request. Therefore

composition process is required to cope with this characteristic.342

3.3.6. Discovery

There is a need to discover available services to carry out service composition.

Web services are usually discovered by querying registries using interfaces such

as Universal Description Discovery and Integration (UDDI). While it can be

a convenient way to discover services, its centralized nature can lead to many

issues such as fault tolerance, performance, and scalability. One way to deal348

with such issues would be to envisage, similarly to network management, a

broadcast discovery protocol.

In DPWS, WS-Discovery mechanism 4 using multicasting does not require

any central service registry. When an application tries to locate a device in a

network, it sends a UDP multicast message (using the SOAP-over-UDP binding)

carrying a SOAP envelope containing a WS-Discovery Probe message with the354

search criteria, e.g., the name of the device. All the devices in the network

(local subnet) that match the search criteria will respond with a unicast WS-

Discovery Probe Match message (also using the SOAP-over-UDP binding). To

achieve resource discovery, CoAP servers provide a resource description available

via a well-known URI such as /.well-known/core (RFC 5785). This description

is then accessed with a GET request on the URI.360

However, broadcasting at the global level could waste network bandwidth

and increase the latency of the communication. Therefore, composition meth-

ods are required to minimize the message exchanges during discovery phase.

Appropriate global discovery mechanisms are also required.

3.3.7. Management Requirements

Verification: Composition correctness is required to check if certain proper-366

ties of the produced composite service hold, such as the fact that it is guaranteed

4http://schemas.xmlsoap.org/ws/2005/04/discovery/
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to produce a certain set of outputs given a certain set of inputs and under a

certain set of conditions.

Execution Monitoring : Service composition regardless of its underlying tech-

nology should support the concept of a client making requests by invoking meth-

ods. Many smart object services are time-consuming therefore it is required that372

composite services be monitored and reported when they finish.

3.3.8. QoS Awareness

QoS-aware approaches take into account not only functional characteristics

of services but also non-functional ones, dealing with quality aspects such as

response time, price, availability and so on. Considering QoS aspects when

deciding which services to include in a service composition schema is important378

when functional requirements are satisfied by more than one service. As a

result, composite services produced by QoS-aware approaches not only offer the

capabilities requested by the user but also guarantee the best possible quality.

4. A Review of IoT Service Composition

This section provides a review of early-stage studies on service composition

in IoT classified by smart objects technologies (RFID, WSN, and others) and384

composition approaches (SOC composition and Mashup).

4.1. Smart Objects Technologies

Since the original idea of the IoT stemmed from RFID and WSN technologies

[7], service composition in RFID and WSN are considered early-stage studies in

the field. When IoT extended to cover many other networked objects, service

composition also evolved. In this sub-section, we review the service composition390

research in RFID systems, WSNs, and other types of smart objects.

4.1.1. RFID Systems

RFID was first introduced to overcome the limitations of the barcode tech-

nology and primarily focused on tagging objects by attaching identifiers to them
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[29]. While the original idea was to tag items for retail and logistics, the ap-

plication of RFID tags to any object allowed the development of numerous396

disruptive services. Since the application of RFID technology became preva-

lent, the need to aggregate RFID data/event and enterprise services has been

considered to link logistics to other parts of the enterprise operations such as

supply chain management, production, and customer relationship management.

Systems such as Electronic Product Code Information System (EPCIS) 5 and

SAP Auto-ID Infrastructure 6 were designed to meet this requirement.402

The work in [30] focuses on designing a system to support the collabora-

tive scenario of program committee meetings using presence-aware technology,

RFID, and Web service. RFID tags are used to detect persons in the meeting

room. When a person (carrying the RFID tag) enters the room, RFID reader

detects and sends data to a Presence Manager Service, a service to determine

the list of persons present in the room. This service is apparently implemented408

by W3C Web Service with WSDL description file. The system also supports

core services to be leveraged and combined to form more powerful services and

applications. The composition process is based on workflow approach with the

use of WS-BPEL and service registry. Xingyi et al. [31] introduce a two-phase

model for RFID data composition directly working on the RFID primitive data.

The first phase is to process primitive events generated by RFID readers to414

produce predefined basic events (service abstraction). This phase aims at data

filtering to reduce the data redundancy dramatically. The second phase is to

union these basic events into several temporal complex events (semantic data

composition).

In [32], authors provide a preliminary design for using semantics for service

composition in the Border Control domain. The idea is applied to a shipment420

monitoring application, an open and multimodal end-to-end tracking and trac-

ing system on SAP Auto-ID infrastructure. The work [33] presents a logistics

5http://www.gs1.org/epcis
6https://help.sap.com/aii
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service platform being able to discover, combine services and track the goods

status automatically. It is based on the RFID middleware to abstract RFID

events to services and uses semantic Web standards to carry out service com-

position.426

The work in [34] provides an early approach in bringing RFID data into the

Web and then applying Web 2.0 mashup for composing these services. Guinard

et al. in a number of studies [35, 36, 37, 38] show an effort to integrate RFID

objects into the Web through RESTful APIs. Thereafter, it supports a low-cost

RFID/EPC system by using cloud service and open Web standards for the com-

munication between tagged objects and the EPCIS. Illustrated systems feature432

mashups by using RESTful APIs representing RFID collected data following

Web 2.0 standards with the support of mashup editors such as Clickscript7.

4.1.2. Wireless Sensor Networks

WSN is considered as another pillar of the IoT as the emergence of small scale

sensor nodes has made profound impact on the way we can interact and manage

our surroundings. In WSNs, the resources are constrained and communication438

among nodes is error-prone and unreliable. Such a dynamic environment re-

quires a continuous adaptation of the composition of services.

Movahedi and Defude [39] introduce an abstract composition model for

WSNs structured in three levels. The concrete service level relies on compo-

nents of WSNs such as different types of sensors, dynamic nodes, and gateways.

The gateways offer the interconnection between WSNs and upper layers by Web444

APIs using SensorML 8 repositories. Abstract block level abstracts the concrete

services and stores them in a repository in this level. Application designed as an

orchestrator of abstract blocks is called an abstract graph and stored in another

repository. The prototype uses composition standards such as WS-BPEL and

BPMN.

Toure et al. [40] present MASCO, a movement-assisted service composition450

7http://clickscript.ch/
8http://www.opengeospatial.org/standards/sensorml
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optimization method, to deal with the mobility and the availability of sensor

nodes for optimizing service composition in dynamic networks such as WSNs.

Authors assume that services are widely distributed in a dynamic network of

self-organized multi-hop sensor nodes. The method is to select a short execution

path by reducing the number of hop-counts of the services. This is accomplished

using a node repositioning algorithm. The work excludes details on composition456

process in terms of communication protocols and Web service standards that

should be used for real implementation.

In [41], the authors propose a service composition design in WSNs that al-

lows composing efficient services when there are persistent service queries. The

aim is to minimize the service composition cost when a service is required for a

longer period of time with the high possibility of service interruptions, e.g., due462

to sleep mode of sensor nodes. The work consists of a service-oriented query

routing protocol, a greedy algorithm to optimize the service requests, and a dy-

namic programming algorithm to help minimizing the service composition cost.

Several algorithmic proofs and solutions are provided along with some simula-

tion results; however no detail of simulation or implementation are discussed.

In [42], the authors present a graph-based formulation for modeling sensor468

services for analysis and based on it, formulate the service composition problem

in WSNs as NP-complete. Two heuristic methods are presented to solve the

service composition problem. In top-down method the high-level specifications

of a composite service are defined first and then after a series of steps, prim-

itive services are composed and then can be used as the input to the desired

composite service. In bottom-up method, a subset of the already composed474

primitive services is used by a composite service. Top-down method provides

cost-efficiency whereas bottom-up method provides robustness. The proposed

solutions are only implemented in NS-2 simulator using Ad hoc On-demand

Distance Vector (AODV) routing (RFC 3561) and IEEE 802.11.

In [43], authors present a distributed composition service to automate the

re-organization process that can occur due to the inherit limitation of a WSN.480

Their main goals are to design and implement an API and to provide an ac-
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ceptable level of network functions under abnormal conditions. The proposed

composition method uses three servers for i) lookup service, ii) adaptation ser-

vice and iii) composition service. These services allow service discovery, its

adaptability to tackle the network changes and the service execution. After

detecting an event, a group of sensors sends a composition request to the com-486

position server. In reply, the sensors receive the group information, such as the

group leader, its members as well as their own IDs to communicate with each

other. The adaptation server helps in group reconfiguration when a sensor fails.

The main drawback of their solution is the total dependency on composition

server.

Authors in [44] provide a composition method based on logical programming492

through backward chaining for chaining services. They model services as state-

ments, whose truth depend on their predicates, and set certain statements true

when these predicates are satisfied. These statements are further used by other

services as predicates. The method is used for automated inference in WSNs.

4.1.3. Miscellaneous Smart Objects

Most of IoT systems consider the heterogeneity of smart object for service498

composition. These smart objects vary in hardware, software, and communi-

cation protocols but share some common characteristics such as they are all

able to run the same operating system. Beside smart objects, there are also

many approaches taking into account always-on services hosted in conventional

computer networks such as enterprise services and Web services for their service

composition models.504

Authors in [45] propose two types of mashup for service composition on em-

bedded systems: physical-virtual and physical-physical mashups. EnergyVisual-

izer is a physical-virtual mashup that offers a Graphical User Interface (GUI) on

the Web to monitor the power consumption and to control different home appli-

ances. EnergyVisualizer is built by using the self-defined RESTful Plogg APIs

and Google Web Toolkit APIs. Ambient Meter on a SunSPOT is a physical-510

physical mashup that polls a predetermined URL using GET method to get the
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energy consumption of all the devices in a room from a smart gateway.

The work in [46] also provides service composition on embedded systems but

in service-oriented approach by integrating real-world services (running on smart

embedded systems) with business services. The proposed architecture consists

of Discovery, Query, Selection, and On-Demand Provisioning. The composition516

is based on selection of appropriate services.

With similar purpose, [47] discussed the problem of integrating sensor ser-

vices with traditional information systems and tried to solve it using the con-

cepts of service orchestration and choreography undertaking the scalability and

dynamicity issues of IoT in order to extend the existing (adaptable) service

composition mechanisms. The orchestration process works at device level to522

integrate the obtained services from several sensors or smart devices while the

choreography module is used to invoke several other (Internet) services to extend

the cooperation between virtual and physical worlds.

The DPWS technology was used as a part of a service composition platform

developed within ITEA2 DiYSE project [48]. It focused on the presentation

layer of IoT to enable the creation of new user-generated composite applica-528

tions. After that, Han et al. [49, 50] are among the first to explore the service

composition explicitly over the DPWS. Authors present a semantic context-

aware service composition model for DPWS devices. The model is the main

component of a building automation system. A context-based description lan-

guage and ontology are proposed to support the dynamic composition of smart

device services offered by SOAP based DPWS services.534

The authors in [51], [52] extend DPWS standard to specify the service in-

terfaces of the smart objects for service provisioning in future service-oriented

Internet by using W3C Web Service technology. Additionally, a verification

technique is proposed to check the viability of the composition of things. It

is argued that the behavior of the heterogeneous things is critical during their

composition in future Internet and the services should be invoked in the correct540

order to avoid violation of the behavior of things. To detect invalid mashup

invocation at runtime, a mediation platform is used to allow things to receive
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mashup request compatible to their current behaviors. A motivating example

of a mashup of things with two services is presented. Finite state machines

are used to represent the relationships between the messages in these services.

WSDL is used for service description while SOAP for transporting messages.546

The work lacks any real-world implementation of the proposed solutions.

In [53] a context-based service composition method is proposed along with

a test application. Two types of context metrics are considered during service

composition, one is computational context and the second is service quality

context. In the beginning the service selection is divided into two sub-parts,

first using computational context appropriate services are selected, then ser-552

vice quality context is used to provide the best available service for the service

composition process. Web Ontology Language (OWL) [54] is used to construct

context ontologies consisting of three categories, user, computing environment,

and physical environment. A hierarchical ontology design model is followed to

reduce the scope of the context information. A device monitoring service is

discussed as a test without any implementation.558

In [55] the authors present a distributed, scalable trust management pro-

tocol for IoT to compose services. The protocol takes social relationships into

the account. The system architecture lacks a centralized trusted authority. The

trust of the node is built when it interacts with other nodes. Each node uses

the trust evaluation protocol independently to assess the other nodes it commu-

nicates with. This trust assessment is also shared with the other neighboring564

nodes as recommendations. The trust model has three trust properties, honesty,

cooperativeness and community interest. The numerical results are presented

as well as a simple description of the application composition with and without

the use of the trust management protocol.

4.2. Service Composition Approaches in IoT

There are currently two common approaches for service composition that are570

based on two different service models: service-oriented middleware and RESTful

APIs.
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4.2.1. Service-Oriented Middleware and Composition

Service-oriented middleware that supports the service-oriented interaction

pattern through the provision of proper functionalities for deploying, publish-

ing/discovering and accessing services at runtime, is the main service abstraction576

model to support service composition for smart objects [56]. In this abstraction

model, to create a composite service, a description language is normally used

to describe its component services and the interaction between these services

in the form of a workflow. Workflows can be nested, so it is possible to call a

workflow from inside another. The creation of complex processes can be rep-

resented as a sequence of coordinated actions performed by single components.582

This paradigm is supported by W3C Web Service technology with many open

standards such as SOAP, WSDL, WS-BPEL, and BPMN.

Since service composition has been intensively investigated in the Web ser-

vices and business processes, it is promising to use their results in the IoT

environment. However, the problem cannot be tackled by simply extending ex-

isting approaches; it requires a paradigm shift from reliable and reactive Web588

services to dynamic and event-driven smart object services that demand for a

more resource-aware event-driven composition process. Dar et al. [47] under-

takes the scalability and dynamicity issues of very-large scale IoT systems to

propose an orchestration/choreography for composing services of smart objects

and business services. Graph-based modeling framework [42] formulates the pro-

cess of sensor service composition to deal with the dynamicity of WSNs. Han594

et al. [50] propose a context-aware service composition to dynamically adapt

the composite process to the changes in several types of context in a building

environment.

4.2.2. RESTful APIs and Mashup

Web resources identified by Universal Resource Identifiers (URIs) are con-

sidered as the core of modern Web architecture. They are accessed by clients600

in a synchronous request/response fashion using Hypertext Transfer Protocol

(HTTP) methods such as GET, PUT, POST, and DELETE. Resource state
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is kept only by the server, which allows caching, proxying, and redirection of

requests and responses. Web resources may contain links to other resources

creating a distributed Web between Internet endpoints, resulting in a highly

scalable and flexible architecture. These are the fundamental concepts of the606

Web, i.e., Representational State Transfer (REST) [22].

REST has emerged as a predominant Web design model with more than ten

thousand RESTful APIs (services) at the time of this article 9 to facilitate a

similar number of mashups that are weaving today’s Web. Mashups can be seen

as composition applied at the User Interface (UI)/Presentation layer [57], where

a fully integrated UI is built out of reusable widgets applied to different data612

sources. Mashups do not emphasize on the reusability of the composition, but

only the ease with which it can be built [58]. Composite services in this context

(mashups) therefore are meant to be primarily used as stand-alone services.

Similarly, the RESTful service abstraction advocated by many researchers

and professionals is an essential step to provision mashups in IoT systems.

Guinard et al. in several studies [59, 45, 35, 36, 37, 38] present a continuous ef-618

fort to integrate smart objects of different forms ranging from RFID, to WSNs,

to embedded systems, to the Web by representing their data and events us-

ing RESTful APIs. Based on that, authors develop two approaches for mashup:

Physical-Virtual and Physical-Physical in a number of applications. Many other

studies [60], [61], [62] also find their ways to explore this trend over sensor nodes

and embedded devices.624

RESTful abstraction of smart device data and events has many advan-

tages: lightweight, uniform identification, Web integration, and open standards.

Mashup is a preliminary form of RESTful service composition, in the future IoT,

more comprehensive models for composition are expected to cover many exist-

ing as well as new issues from smart object services to efficiently compose their

services.630

9http://www.programmableweb.com
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4.3. Comparison

We summarize service composition models in regard to composition require-

ments presented in Section 3 (see Table 1). It appears that early studies on

composition in RFID systems and WSNs do not take into account defining

requirements related to IoT such as resource constraint, power efficiency, and

data/event-driven. Recent efforts with DPWS such as [50, 52] start considering636

these requirements. In terms of application protocols, composition with CoAP

is still a missing piece of the service composition puzzle.

4.4. IoT Application Platforms

Many IoT platforms have been developed to support the development of IoT

application. As shown in the Table 2, these platforms mainly aim at integrating

smart objects of different types into the Web through RESTful APIs or cloud642

services. These platforms provide mid-point services to encapsulate underlying

heterogeneous smart objects into Web interfaces that can further integrate into

modern Web infrastructures such as cloud and platform-as-a-service (PaaS).

These approaches expose some difficulties to scale IoT systems since each plat-

form has to handle routing discrepancy and protocol translation.

As we can observe from these platforms, RESTful APIs make service com-648

position possible in the form of mashups; even though, there are only few of

them being provided such as [63] and [64]. Beside providing the connectivity of

smart objects to the Web, how multiple smart objects can interact is still miss-

ing in these platforms. Service composition models, therefore, are still missing

not only in literature but also in practical.
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Table 1: Comparison of state-of-the-art service composition models in IoT

Study Target Objects
Resource Lossy Power Data/Event

Asynchrony Discovery Management
QoS

Constraint Link Efficiency -driven Awareness

Kerer 2004 [30] RFID X X

Xingyi 2008 [31] RFID X X

Paliwal 2004 [32] RFID X X

Fagui 2008 [33] RFID X X

Vermeulen 2007 [34] RFID X X X

Guinard 2010, 2011
RFID X X X

[35, 36, 37, 38]

VITRO [39] WSN X X

MASCO [40] WSN X X

Persistent Queries [41] WSN X X

Graph-based [42] WSN X X

Distributed [43] WSN X X

Semantic Streams [44] WSN X X

Guinard 2009 [45] Embedded X X X X

Guinard2010 [46] Embedded X X X

Dar 2011 [47] IP enabled X X

Han 2012, 2014 [49], [50] DPWS X X X X X X

Cubo 2012, 2013 [51], [52] DPWS X X X X

Li 2012 [53] Not specified X X

Bao 2012 [55] Not specified X X
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Table 2: IoT application platforms

Platform Target Objects Service Modeling Service Composition Applications

Axeda [65] IP networked Cloud N/A Cloud-based platform

BUGswarm [66] IP networked RESTful APIs, Cloud N/A Cloud-based platform

Carriots [67] Web-enabled RESTful APIs N/A IoT platform

Etherios [68] Embedded Android M2M device N/A Platform-as-a-service (PaaS)

EVRYTHNG [63] Web-enabled RESTful APIs Web 2.0 mashup Personalize/Track/Socialize

GroveStreams [69] Web-enabled RESTful APIs N/A
In-cloud real-time

big data analytics for IoT

Nimbits [70] WSN RESTful APIs N/A In-cloud data processing

Open.Sen.se [71] (Note specified) RESTful APIs
Web 2.0 mashup Data storage

(perspective) Visualization

Paraimpu [72] Web-eanbled RESTful APIs Web 2.0 mashup Social Web of Things

NanoService [73]
Mobile phone Nano Service Platform

N/A Embedded Web applications
Embedded RESTful APIs

SensorCloud [74]

MicroStrain WSN SensorCloud

N/A Cloud Sensor Data Storage
Android, iOS OpenData APIs

NI CompactRIO
Web-enabled

ThingSpeak [75] WSN RESTful APIs N/A
Sensor logging

Location tracking
Social network of things

ThingWorx [64] (Not specified)
RESTful APIs

Web 2.0 mashup
Cloud services

Sockets, MQTT, AlwaysOn Social services

Xively (Pachube) [76] (Note specified)
RESTful APIs

N/A
IoT Public Cloud

Sockets, MQTT Platform as a Service (PaaS)

Yaler [77]
Embedded RESTful APIs

N/A
Relay infrastructure for

(Arduino, BeagleBone SSH Service Web access of devices
Netduino, Raspberry Pi)

N/A = Not Applicable
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5. Research Challenges654

Since smart object services have many different characteristics compared to

conventional Web services, service composition problem in the next full-IP IoT

has many challenges that invoke the need of redesigning composition models to

fully realize the its potential. We hereby discuss these challenges.

5.1. RESTful Service Composition

Apart from DPWS, which is compliant to W3C Web Service, a majority660

of the current IoT application platforms (see Figure 2) use RESTful APIs to

abstract smart object services in order to seamlessly integrate them into current

Web infrastructure. Besides, Web 2.0 applications have moved away from SOAP

services toward more cohesive collections of RESTful services (RESTful APIs)

[78]. CoAP was designed according to the REST architecture, and thus exhibits

functionality similar to that of the HTTP protocol.666

We foresee that the RESTful service composition will play an important

role, particularly in the context of smart objects in which identifying an atomic

service modeling takes the center stage for the composition. RESTful composite

services should be reusable and interactive rather than non-recursive and read-

only mashups. It is required to devise novel languages and techniques helping

to more effectively build composite RESTful services.672

Service composition with RESTful services, however, cannot directly inherit

the concepts of SOC since REST is based on resources (with HTTP methods)

and the hyperlink between them rather than operations that can be logically

described by description languages such as WS-BPEL and BPMN.

5.2. Composite Service Interface Description

It is necessary for composite services to have interfaces that describe what678

they can do. Web service composition models use description languages such as

WS-BPEL and BPMN to describe service operations defined by parameter in-

puts and value outputs. In the context of IoT, interface description is a challenge
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due to the lack of the support to IoT characteristics such as data/event-driven,

resource constraint, and asynchrony.

Another issue is with REST architecture. RESTful services comply with the684

uniform interface principle, where resources are manipulated using the GET,

PUT, DELETE, and POST methods. A composite service should not only be

able to invoke its component services, but it also should be able to handle these

requests. Also, the underlying discovery mechanism will define in which way

a composite service should be described. To summarize, the following issues

should be considered when designing a description language:690

• REST support

• Data/event-driven support

• Asynchrony support

• Discovery compatibility

5.3. Recursiveness

Composite services can play the role of atomic services and can be recursively696

composed with other services to create other composite services. Such recursive

composition of services is one of the most important features of SOC, allowing

to rapidly build new application based on the existing services. As the amount

services (and their compositions) grows, the easier it becomes to implement new

applications.

To achieve the recursiveness of composition problem in IoT, the life cycle of702

atomic services needs to be reproduced in composite services such as: descrip-

tion, execution, and verification.

5.4. Semantic Composition

Semantics technology has been used widely to automate and improve many

aspects of the service composition [79]. Meanwhile, semantics are penetrating

into the Web world as an increasing number of Web resources are marked up708
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with semantic annotations10. When smart objects find their way into the Web,

the potential of the semantics technology cannot be ignored. It opens up an

opportunity to support more intelligent composition processes but also brings

in challenges such as semantic modeling of smart objects. Currently, approaches

in fundamental issues of semantics in IoT are at an early stage. SPITFIRE [80]

is a system trying to give semantic annotations for smart objects through a714

centralized service (server). This exposes many restrictions as the third-party

services would be able to filter the information from the original smart object

services, and again play a role of protocol translation gateways.

A more intuitive way of making objects semantically expressive should strictly

follow the semantic Web guidelines and standards whereby smart objects them-

selves represent their services semantically. This can be done, in case of RESTful720

APIs, by adding media type of application/rdf+xml that notify clients to pro-

cess semantic data from smart objects and content is represented in Resource

Description Language linking to an appropriate ontology.

5.5. Context-awareness

Context-awareness is important and generally defined in ubiquitous comput-

ing, where it is considered the key to the effort of bringing computation into726

daily lives [81]. The major task in context-aware is to acquire and use the knowl-

edge about the state of users and devices including surroundings, situation, and

(to a less extent) location information in order to provide the most appropriate

services. Service composition in IoT are related to a particular person, place,

time, or event, therefore, it is a challenge to any service composition solution to

be aware of the changes in context of the device, the user, and the surrounding732

environment. As suggested in [50], a context-aware description language can

be used to describe composite services, and semantics technology can provide

the intelligence for the composite services to adapt themselves according to the

changes in context of different entities.

10http://lod-cloud.net/
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5.6. Hybrid Composition

Future Internet has many different stakeholders using IP as the commu-738

nication media. With IP support, smart objects become an integral part of

the Internet where their services can be treated in the same way as other ser-

vices offered by today’s Internet. Service composition then can be done with

the participation of not only smart object services but also from many other

sources to create an Internet of services. This is a new form of the heteroge-

neous services, combining things and services all together under service-oriented744

paradigm. The fulfillment of this vision is a challenge where new standards, lan-

guages, frameworks for service composition are required to consider the various

types of service sources.

5.7. Privacy and Security

Composition languages such as WS-BPEL do not provide any security con-

cepts that user could leverage. All security aspects are left to the WS-BPEL750

engine or, in other words, to the WS-BPEL engine wrapper. Similar issue

would happen in IoT environment when developing composition technique and

language. Security and privacy in IoT render even more complications than in

classic Internet environment. Smart objects in the IoT often have a relationship

to real persons, who could be owner(s), manufacturer(s), user(s), administra-

tor(s), or many other functions. A product might be owned by a manufacturer756

first and subsequently by a user who bought the product. The owner, user or

administrator of an object might change over time. Ownership and identity

relationships in the IoT have an impact on other identity related processes like,

e.g., authentication, authorization. The owner of a thing might be challenged

for authentication or be asked for authorization policies. Similarly with com-

posite services, if such relationships are taken into account, it would be very762

challenging to identify the relationship between services and providers.
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6. Conclusion

Service composition in IoT promotes the idea of assembling smart object

services in novel and creative ways into composite services that can be used in

multiple IoT application domains to augment the power of the IoT. As inspired

from the composition concept of reusable components in software engineering,768

IP technology for smart objects, and the legacy of W3C Web Service compo-

sition methods, we foresee service composition will be a key to stimulate the

development of future IoT applications to build a smarter world. Especially with

the inevitable arrival of the full-IP IoT, we are facing new composition issues to

support the creation of a new generation of IoT applications. By the analysis

of the service composition problem and its challenges along with a review of its774

early-stage studies, we hope to serve as the start for upcoming research in the

field and identify some possible approaches to these challenges.
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