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Abstract. The online platform has evolved into an unparalleled storehouse of 

information. People use various social question-and-answer websites such as 

Quora, Form-spring, Stack-Overflow, Twitter, and Beepl to ask questions, clarify 

doubts, and share ideas and expertise with others. An increase in inappropriate 

and insincere comments by users without a genuine motive is a major issue with 

such Q & A websites. Individuals tend to share harmful and toxic content in-

tended to make a statement rather than look for helpful answers. In the world of 

NLP, BERT has been a game-changer. It has dominated performance bench-

marks and thereby pushed the limits of researchers' ability to experiment and 

produce similar models. This resulted in improvements in language models by 

introducing lighter models while maintaining efficiency and performance. This 

study aims to utilize pre-trained state-of-the-art language models and understand 

whether posted questions are sincere or insincere with limited computation. To 

overcome the high computation problem of NLP, the BERT, XLNet, 

StructBERT, and DeBERTa models are trained on three samples of data. The 

metrics proved that even with limited resources, recent transformer-based models 

outscore previous studies with remarkable results. Amongst the four, DeBERTa 

stands out with the highest balanced accuracy, macro,and weighted f1-score of 

80%, 0.83 and 0.96, respectively. 

1 Background 
1.1 Introduction 

The effort aims to develop an efficient system for classifying insincere questions on the 

Quora dataset. The questions are classified using the CRISP-DM (Cross-industry pro-

cedure for data mining) approach, which aids in the planning, organisation, and execu-

tion of data analysis initiatives.  

 

1.2 Business Understanding 

     Business understanding the Internet and social media are excellent tools for ex-

changing information quickly. To gain input on their questions, people nowadays use 

community forums like Quora. Some people abuse such platforms to promote hostility 

or even false information by posing personal opinions as inquiries instead of genuine 

ones. Questions aimed at a certain community, gender, or race decrease the standard of 

content on Quora and are unsafe for the on-lookers who are truly seeking information. 
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As a result, it is critical to recognise these false queries before they reach a wider audi-

ence and restrict them for a better tomorrow. 

 

1.3 Data Understanding  

In this research we will use the Quora-insincere-questions classification provided by 

Kaggle (Dataset, 2019). The dataset consists of a train set and a test set, respectively. 

The train set consists of 1.3M rows with required labels corresponding to each row. The 

training data includes different questions asked by users in English and are not guaran-

teed to be perfect. Hence, there is a certain amount of noise in the dataset. Questions 

are marked as 0 (Sincere) and 1 (Insincere). The columns available in the dataset are: -  

• qid - unique identifier for the question  

• question_text - question text posted in Quora 33 

 • target - a question labelled as 1 for “insincere” and 0 for “sincere”  

 

1.3.1 Exploratory Data Analysis  

The training set consists of 1306122 unique values, whereas the test set has 375806. 

The dataset size may lead to higher processing time or memory issues. Based on target 

variable distribution, it's observed that the data is highly imbalanced with 1.2M belong-

ing to sincere questions and just a small proportion of 80k belonging to target class 1 

for insincere questions. The same needs to be handled properly before building a model 

to avoid biases towards the majority class. Data needs to be pre-processed before train-

ing a model upon it. There is no missing data found, thus removing the need for missing 

data imputation. 

 

3.4 Data Pre-Processing 

    Data pre-processing is the modification, or encoding, of data before it is used for 

analysis. It is a data mining technique performed to ensure an improvement in perfor-

mance. In other words, it is the process in which the raw data is transformed or format-

ted so that it becomes easier for a machine to parse. To train the model efficiently the 

textual queries will be pre-processed as follows: -  

I. Remove special characters, numeric characters, punctuation, and duplicate records 

The question text column in the dataset can contain smileys, numeric or roman literals, 

punctuations, or special characters as in "?". Such characters are to be removed with 

the help of lambda expressions by utilising regex to filter the format.  

II. The distinct contraction terms are enlarged with the use of python libraries such as 

expanding contractions using a pre-defined contractions dictionary map, such as replac-

ing "couldn't" with "could not". 

III. Remove all unwanted spaces from the text. 

IV. Truncation of sequence length. Bert's maximum sequence length is 512, but for 

efficient memory usage, those can be truncated to a shorter length before being encoded 

by the tokenizer for use. After pre-processing, the cleaned question texts are tokenized 

and turned into vectors to suit the pre-trained transformer-based model's needed input 

format. To preserve the syntactical meaning of the questions, stemming or lemmatiza-

tion will be avoided. This is done to ensure that the precious information of the data is 

restored. 
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 1.4 Tokenization, Truncation & Padding 

        Tokenization is one of the main steps in breaking down a text into smaller chunks 

of words called tokens. The tokens are then converted into vectors of numbers. The 

build tensor is then fed to the model along with any additional input required to make 

the model work seamlessly. The splitting of text is done by a tool called a tokenizer. 

One can either construct their tokenizer class or can directly use the existing AutoTo-

kenizer class. It is advised to use the associated pretrained tokenizer while using a pre-

trained model. This ensures that the tokens are built the same way as done for the pre-

training corpus and will use the same vocab during model pre-training. The pre-training 

vocab can be downloaded from the AutoTokenizer class. When the batch sequences are 

of different lengths, padding is used to maintain the length of the sequence. Similarly, 

when the length is longer than needed, truncation is used to shorten the length. Both are 

performed by specifying the value in the max_seq_length parameter.  

 

1.5 Modelling  

In this study the performance of the four state-of-art models viz. BERT, XLNet, 

StructBERT and DEBERTa on the dataset. All the mentioned models will be trained 

using python and its libraries in TPU (Tensor Processing Unit) or GPUs (Graphical 

Processing Unit). TPU is a powerful custom-built processor and provides a better per-

formance against GPUs. To restrict memory issues model can be evaluated on a smaller 

batch size. Truncating the max length of the sequence will also help to utilize the 

memory efficiently. Based on model performance epochs and hyper tuning can be de-

cided. The evaluation metrics of each model will be recorded for the outcome. The 

models to be used are briefly discussed in the following sections: 

 

1.5.1 BERT 

 BERT (Devlin et al., 2018a; b) is a transformer-based machine learning framework 

for NLP that was pre-trained using only a plain text corpus by the Google AI team. The 

two variations of the original English-languages BERT model proposed are: 

BERTBASE consisting of 12 encoders with 12 bidirectional self-attention heads; and 

BERTLARGE consisting of 24 encoders with 16 bidirectional self-attention heads.  

 

1.5.2 XLNet 

      The author of the research (Yang et al., 2019) presented XLNet, a generalised auto-

regressive pre-training technique that incorporates the best aspects of Transformer-XL 

and auto-encoding while resolving their respective limitations. It enhances the pre-

training architecture by integrating the segment recurrence mechanism and relative en-

coding scheme of TransformerXL. In terms of size, the XLNET base model is like 

BERT, with 12 layers, 768 hidden vector sizes, and 12 attention heads. On 20 tasks, it 

outperformed BERT, and on 18 NLP tasks, it reached SOTA results.  

 

1.5.3 StructBERT  

The author identified some scope of improvement in BERT and RoBERTa and ex-

tended it to build a new model, StructBERT in (Wang et al., 2019). The model proposes 
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a new type of contextual representation that adds language structures into BERT pre-

training with two novel linearization strategies. It enhances the BERT masking strate-

gies by using sequential order at the word and sentence levels, which compels one to 

reconstruct the correct order of words and sentences as in Fig 1.4. The architecture uses 

a multilayer bi-directional transformer network, as explained in (Vaswani et al., 2017). 

It improved the SOTA on the GLUE benchmark to 89.0, the F1 score on SQuAD v1.1 

question answering to 93.0, and the SNLI accuracy to 91.7.  

 

1.5.4 DeBERTa  

   The model DeBERTa in (He et al., 2020) proposes a new architecture with disentan-

gled attention and an enhanced mask decoder. In addition to BERT, disentangled atten-

tion accounts for position-to-content self-attention as well. It has two separate vectors 

representing content and position and self-attention is calculated between all possible 

pairs. The enhanced mask encoder provides both absolute and relative position infor-

mation. And to enhance the generalization, a scale-invariant fine-tuning regularisation 

algorithm has been used. The model trained on half of the data used in RoBERTa 

achieved an improvement of +0.9% on MNLI, +2.3% on SQuAD V2.0, and +3.6% on 

RACE.  

 

1.6 Evaluation 

   Model evaluation is an important part of the machine learning model development 

process. There are multiple ways to evaluate a model performance out of the four com-

mon metrics used are: I. Accuracy – This is the percentage of all the correct predictions 

made from the total number of predictions. This is the widely used most common metric 

to validate a model. However, for an imbalanced dataset, it's not a good indicator of the 

model's behaviour as it tends to incline towards the majority classes present in the da-

taset. Hence, even if the model accuracy is high, it is highly possible that the model 

may fail to generalize the pattern and will not perform better in an unseen dataset. Bal-

anced accuracy is the mean of specificity and sensitivity.  

Eq 1.1  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 
 

 

II. Precision – This is the percentage of all the correct positives out of total predicted 

positives. In other words, it checks how much a model is able to generalize the behav-

iour in terms of quality. It is preferred where false negative has less impact such as 

YouTube ad recommendation. 

Eq 1.2 
TP

TP+FP
 

 

III. Recall – This is the percentage of predicted positives out of the total number of 

actual positives present in a dataset. In other words, it checks how much a model failed 

or missed to identify the correct class in terms of quantity. It is preferred where false 

negative are equally important such as clinical analysis  
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Eq 1.3  
TP

TP+FN
 

 

IV. F1-Score – This is the harmonic mean of both precision and recall. In other words, 

it identifies the performance by determining the actual positives predicted correctly and 

the model did not even misclassify positive to negative. Thus, the higher the F1 score 

better 39 the model. As the dataset is highly imbalanced, F1-Score will be used as a 

primary model evaluation metric. The Macro F1 Score is the arithmetic mean of the F1 

score for each class label. A Weighted F1 Score is the sum of each class's F1 Score with 

respect to each class’s weight. 

Eq 1.4  
2

1
precision

+
1

recall

= 
2 * precision * recall

precision+recall
 

 

2.0 Analysis  

2.1 Data Preparation  

    The dataset is downloaded from Kaggle and loaded into the GPU-enabled Google 

Colaboratory. The implementation is done using Python libraries. The dataset contains 

3 variables: a unique question id, actual question text, and a binary target variable indi-

cating the sincerity of a question. The qid is used to uniquely identify a row and is not 

needed for our analysis, so the column is dropped. Thus, now the data contains one 

independent variable (the actual question posted by the user) and the target variable 

(sincere or insincere). There is no missing value found, and hence, missing value iden-

tification and imputation are not needed. The platform provided a respective dataset for 

training and testing. The training dataset is used for data analysis and data pre-pro-

cessing, while the test set is used to validate the model's performance on unseen data. 

 

2.2 Data Analysis  

2.2.1 Word Cloud  

    Words like "work," "help," "book," "best," and so on are frequently used in standard 

questions. They are mostly neutral and indicate someone looking for advice or similar 

things. Insincere questions contain words like "atheist," "Trump," "Muslim," "black," 

etc. The difference is obvious. Instead of the generic advice topics (like relationships, 

work, education, etc.), the most frequently used words are all very political (for exam-

ple, the frequent use of Donald Trump's name). This also shows why a simple sentiment 

analysis of words is not sufficient in this case.  

 

2.2.2 N-Grams  

Word clouds are a great tool to get a first impression of the word frequencies, but with-

out looking at the actual values as well, they might be misleading. The N-grams method 

is used to find the most frequently used words and phrases in each question type. N-

grams can be defined as continuous sequences of items in a text that help perform sen-
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timent analysis on a word. A single word such as "bad" will be identified as discrimi-

native. But when it gets combined with another token like "not bad," the label of sin-

cerity changes to 44 positive.  

 

2.2.3 Sentiment Analysis 

    Sentiment analysis helps us understand the mood and context behind the sentence. 

TextBlob, an NLP Python library, uses nltk to return the subjectivity and polarity of a 

sentence. Polarity can be defined as the orientation of the sentence. It has a range of [-

1,1], with -1 denoting negative sentiment and 1 denoting positive feeling. Subjectivity 

refers to the semantic descriptors that aid in the fine-grained analysis of emoticons, 

exclamation marks, emojis, and so on. It has a range of [0,1]. The degree of opinion 

and factual data in a text is measured by subjectivity. The subjectivity value towards 1 

conveys that the text contains opinion rather than factual data. The package calculates 

it by looking into the intensity of each word in a sentence based on a lexiconbased 

approach. The polarity and subjectivity of 0 indicate that text isn't the best.  

Results higlighting polarity distribution in the insincere set shows that there is a ten-

dency towards polarity within the insincere group. The distribution turns towards (-1). 

The mean polarity and subjectivity come out to be 0.03 and 0.36, respectively. When 

using the sentiment scores approach (from nltk.sentiment.vader), a concentration to-

wards the negative values is found, and the mean was quite low at -0.099. 

 

2.2.4 Feature Extraction 

      Meta-features are created as a part of feature extraction and their distribution be-

tween the classes are studied. The list of features constructed is as follows: - I. Number 

of words in the text II. Number of characters in the text III. Number of unique words in 

the text IV. Number of special characters in the text V. Number of stop words VI. 

Number of upper-case words VII. Mean, Max, Min length of the words. The spread of 

the extracted features among sincere and insincere classes is analysed with the help of 

box plot. It is observed that Insincere questions have a larger word count, unique word 

count, and special character count than sincere questions (apart from a few sincere out-

liers). The outliers in the boxplot shown in Fig 4.6 state question_length of sincere text 

is approximately 800. Insincere can be spam questions, ads, and so on. Based on the 

number of special symbols, insincere can be latex math formulas or questions contain-

ing icons or emojis and non-English characters. It is also observed that the sincere que-

ries are longer than disingenuous questions, with a maximum length of 134.  

 

2.3 Data Cleaning  

Due to the self-attention mechanism, the models trained on huge corpus text data 

can adapt and learn features and generalize the behaviour of data on their own. Hence, 

the feature engineering steps are skipped and proceeded with the data cleaning process. 

The subsection includes different data cleaning steps performed before model training. 

Post data cleaning the values are stored in a new column named “cleaned_text”.  

 

2.3.1 Expansion of Contractions 
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 Contractions are the shorthand form of text by dropping letters and replacing them 

with apostrophes, such as "shouldn't" or "don't". To ensure text standardization and 

dimensionality, the contracted words present in question_text are expanded using the 

Python Contractions 48 Library. The library is installed and imported, and the question 

text is passed as an argument to the fix function. 

 

2.3.2 Punctuations and Special Characters Removal  

      The question text in the dataset contains various emoticons, punctuation, emojis, 

symbols, and so on. These special characters are removed using regular expressions 

(regex). Lambda expressions with the tqdm progress_apply function are used on the 

question_text column to apply a regex filter to each text. 

 

 2.3.3 Removal of numbers and spaces 

       The question_text in the dataset contains numeric data. The numeric expressions 

are filtered out using lambda expressions and are removed from the text. After expand-

ing the contractions and removing characters, extra spaces are found in the question 

text. All the leading, trailing, and double spaces resulting due to removal of punctuation 

are trimmed. Finally, the data is checked for the presence of any duplicate records and 

clean data along with the target variables is retained in a new CSV file for implemen-

tation. 

 

2.4 Data Sampling 

      The platform provided different datasets for training and testing samples. And each 

set is large, with millions of records. To achieve better model performance and state-

of-the-art results with efficient resources in hand and limited computational power, the 

models are trained by considering different fractions of data samples per iteration. The 

random sample of items is taken from the original dataset by using the sample () func-

tion of the Pandas DataFrame class. The function takes frac as an argument to return 

5%, 10%, and 50% of random samples per iteration while keeping the target variable 

imbalance consistent.  

 

2.5 Data Split  

    The extracted fraction of the dataset is again split into train and validation sets in the 

ratio of 80:20 using the train test split function from the sklearn library in Python. Mod-

els are trained on a training set and tested on a validation set. The testing set is used to 

predict the target outcome. Due to its expensive computational nature, K-fold cross-

validation is avoided.  

 

2.6 Hyperparameter Tuning 

     The libraries provide a list of hyperparameters to be tuned as per the dataset and task 

requirement. In this study, from an entire list, only a selected set of hyperparameters is 

used. The value is determined after multiple iterations and thorough consideration. The 

reason for selecting each hyperparameter and the final value is chosen for implementa-

tion is explained below: -  
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• Epoch - The transformer models are pre-trained on a large set of data, and finetuning 

the model with 2, 3, or 4 epochs yields outstanding results. When fine-tuning with 

100k+ data, researchers found that training with greater epochs does not improve the 

outcomes considerably. Models are initially trained for seven epochs; however, it is 

discovered that after the fourth epoch, the models tend to overfit. As a result, epoch = 

4 is used to train our models.  

• Learning Rate - For text classification tasks, a learning rate of 1e-5 or 2e-5 is chosen 

to avoid model overshooting from local minima.  

• Dropout - After studying the literature on text classification, the dropout value is de-

termined. The models are trained with a dropout of 0.1 at the start. The models are 

found to perform well in the training data. The dropout value has been increased from 

0.1 to 0.3 to improve performance. When the model with 0.1 dropout and 4 epochs is 

implemented, it is discovered that it generalised better. As a result, 0.1 is chosen as the 

dropout value for all models.  

• Train Batch Size - The desirable batch size is determined since a smaller value result 

in a lengthier time for training and a highervalue result in non-convergence to global 

minima and memory issues. Hence, with 4 epochs, a train batch size of 32 is chosen to 

obtain a proper trade-off between model training duration and memory performance. 

 

2.7 Implementation  

    The PyTorch Transformer, built on top of the HuggingFace (HuggingFace Trans-

formers, 2022) and SimpleTransformer (Classification Models - Simple Transformers, 

2022) libraries, provides an easy-to-use framework for pre-trained language modelling 

for a variety of NLP workloads. The Transformers provide APIs for easily downloading 

and using pre-trained models on a given text, as well as fine-tuning them on our own 

datasets, whereas the SimpleTransformers' ClassificationModel class is used for binary 

class text categorization. TensorFlow 2.0+ and PyTorch 1.1.0+ are both required for 

the implementation. The model's name and type are supplied as input parameters for 

each model trained. The implementation details of BERT, XLNet, DeBERTa, and 

StructBERT with tweaked hyperparameters are detailed in the subsections below. 

 

 2.7.1 Model Training  

     The pre-processed data saved in the CSV file is loaded in Google Colab. The differ-

ent models are trained for three samples of data. The base models are trained with de-

fault arguments while the finetune models are trained with tuned hyperparameters. The 

implementation steps remain the same for all 4 models. The Python logging module is 

used to log model execution details, to help us to track any exception raised during 

training. The two different ways of implementation tried are HuggingFace PyTorch 

Transformer and Simple transformer. All the steps mentioned below are implemented 

for each dataset sample, i.e., 5%, 10%, and 50%. The 51 final trained model is saved, 

and the model is evaluated on the validation data loader while labels are predicted on 

an unseen test dataset 

 

2.7.2 PyTorch Transformer 
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     The model dependencies are installed, and the PyTorch and Tensor Flow versions 

are validated for smooth execution. This method is used to note the performance of the 

pre-trained models with passed arguments. For the StructBert model the Alice Mind 

code repository is cloned to download weights, configuration, and pre-trained model 

checkpoint to be used for the binary classification tasks. All the steps outlined below 

remains the same. The steps followed included:  I. Tokenization: At the beginning and 

end of each sentence, the special tokens [CLS] and [SEP] are added. One represents the 

class of input and the other is used to separate the two sentences in the same input. The 

output label of classification is decided by the last hidden state of the [CLS] token. The 

sentences are then tokenized with the tokenize function, and each tokenized text is con-

verted to token ids using pre-trained tokenizers as mentioned in Table 4.3. These tokens 

act as vectors for the embedding layer. II. Padding: The models expect all the input to 

be of the same length. To ensure the same, the maximum sequence length is initialized 

to 128 and the input ids are padded accordingly with the pad_sequences function. If a 

sentence is long, it’s truncated, and if it is short, it is padded with 0. III. Attention mask: 

An attention mask is created with a mask of 1s for each token, followed by 0s for pad-

ding. These masks act as indices to determine which token the model needs to attend. 

IV. Data Loader: The input ids and the attention mask are split into training and vali-

dation sets, respectively. The respective training and validation inputs/masks are con-

verted into torch tensors, the required data type for our model. The batch size is initial-

ized to 32, and an iterator is created of our data with the torch DataLoader. This helps 

save memory during training because, unlike a for loop, with an iterator, the entire da-

taset does not need to be loaded into memory. V. Optimization and Training: The pre-

trained model with a single linear classification layer is loaded and num_labels = 2 is 

passed as an argument. For optimization, a weight_decay_rate of 0.01 is passed along 

with a learning rate of 2e-5 to the AdamW optimizer with an epsilon of 1e-8. Binary 

Cross entropy with a dropout of 0.3 is the default selected loss function. Model argu-

ments contained all the hyperparameter information for our training loop. The weight 

decay rate is applicable to all layers except all bias and layer norm layers in the AdamW 

optimizer. Finally, the model is trained for 2 or 4 epochs and the metrics are recorded 

 

2.7.3 Simple Transformer 

     The SimpleTransformers library has two task-specific classification models. In this 

study, the ClassificationModel class is used to train the base and fine-tuned model by 

modifying the default set of arguments. The class provides extensive options for con-

figuration to update the default model argument as per the use case. The configuration 

is passed as a Python dictionary to the ModelArgs class. In all Simple Transformer 

models, CUDA is enabled by default but can be disabled by passing a Boolean to the 

use_cuda parameter. The steps performed are detailed below. I. Initialization: The Clas-

sificationModel class is created by passing the model_type and model_name as men-

tioned in Table 4.4. The model type must be one of the supported models, and the 

model’s name assists in obtaining the precise architecture and trained weights for use. 

The model code is used to specify the model type.- 

o To utilize the available GPU, use_cuda = True  

o To override the default arguments with the arguments passed as-  
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▪ num_train_epochs = 4, the number of epochs the model will run for  

▪ train_batch_size = 32, the training batch size ▪ max_seq_length = 128, the maximum 

sequence length for the model to support  

▪ learning_rate = 1e-5 or 2e-5, the learning rate for training 

▪ output_dir = output/, the directory to save model checkpoints and results  

▪ overwrite_output_dir = True. If True, it will overwrite the output folder to store the 

latest model result. Due to multiple trials and to save memory space it is assigned a 

Boolean true in this study.  

o For the rest, default arguments are used, and the parameters are not provided.  

II. Split: The dataset sample is split in the ratio of 80:20 into training and evaluation 

data. III. Training: The initialised model is used to call the train_model () function, 

which instructs the model to train on the training dataset.  

 

2.7.4 Evaluation of Model Performance  

     The classifiers are built using the training dataset and assessed using the perfor-

mance evaluation matrix. The models are trained on three fractions of the dataset sam-

ple. This is a two-step procedure. In the first step, the best value in the training states 

across all models will be picked based on performance measures. In the second step, 

the performance of the models is compared to find the best model. For both the class 

labels, the confusion matrix and classification report are utilized to extract various 

measures such as accuracy, true positive, false positive, true negative, false negative, 

sensitivity or recall, precision, f1-score, Area Under Curve (AUC), Area Under Preci-

sion recall Curve (AUPRC), and Mathews Correlation Coefficient (MCC). The class 

labels "insincere" (1) and "sincere" (0) are classed as "Yes" and "No," respectively.  

 

3.0 Results and Discussion 

3.1 Model Evaluation  

       Following model training, each model is evaluated on a validation set. As the data 

is highly imbalanced, accuracy will not be the correct metric to understand the model's 

performance. Hence, F1-score is used for the same. The macro averaged f1-score is 

noted as it provides the average arithmetic mean of each class. The MCC is also a reli-

able statistical rate to understand the obtained prediction. It returns a high score if the 

prediction is good in all four quadrants of the confusion matrix. The results in all matrix 

categories are proportional to the size of the dataset belonging to each class. Balanced 

Accuracy is calculated as it will give the arithmetic average of sensitivity and specific-

ity. 5.3 Experiment 1 - Transfer Learning with Original Hyper-Param Settings The first 

set of experiments is performed with default settings, without modifying the values of 

any hyperparameter. Initially, the models are trained and evaluated on 5% of the data, 

and the percentage is increased in subsequent iterations. The dataset contains 52177 

training and 13045 validation records. Keeping the imbalance ratio consistent, the test 

set contains 12240 sincere and 805 insincere records. Each model is trained and vali-

dated, resulting in four executions in this experiment. Table 1.1 shows the standard 

value of the hyperparameter used in this specific execution. Table 1.2 depicts the per-

formance metrics recorded from the validation set. 
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Table 1.1 Exp 1: Hyper-parameters - Values  

Table 1.2 Model Results- Default Settings  

 

 

 

 

 

 

 

 

3.2 Experiment 2 - Transfer Learning with Modified Learning Rate (LR)  

After performing the first set of experiments with the default model argument settings, 

the second set of experiments is done by changing the learning rate. The training batch 

size is kept at 32, the eval batch size at 8, the maximum sequence length is 128 and the 

number of training epochs is 4. The number of GPUs assigned is 1. With a 5% data 

sample, the distribution of data across the train and validation set remains the same as 

in experiment 1. In each iteration, the value of the learning rate is changed, and metrics 

are noted. Each model is tried with 3 different values, resulting in a total of 12 execu-

tions in exp-2. Table 1.3 shows the standard value of the hyperparameter used in this 

specific execution. Table 1.4 depicts the performance metrics recorded from the vali-

dation set for different learning rates used. Table 5.4 shows that BERT and DeBERTa 

produced better results with an LR of 2e-5. And XLNET and StructBERT produced it 

with an LR of 1e-5. Thus, the best-performing learning rate is chosen for the final set 

of evaluations with higher samples of data.  
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Table 1.3 Exp. 2: Hyper-parameters – Values 

Table 1.4 LR vs Model Results  

 

3.3 Experiment 3 - Transfer Learning with Modified Epochs 

After performing the second set of experiments with the different learning rates, the 

third set of experiments is done by changing the training epochs. The training batch 

size is kept at 32, the eval batch size at 8, and the maximum sequence length is 128. 

The number of GPUs assigned is 1. With a 5% data sample, the distribution of data 

across the train and validation set remains the same as in experiment 1. In each iteration, 

the value of the epoch is changed, and metrics are noted. Each model is tried with 4 

different values, resulting in a total of 16 executions in exp-3.  

 

3.4 Experiment 4 - Transfer Learning with Modified Data Samples 

    After performing the third set of experiments with different epochs, the fourth and 

final set of experiments are done by changing the size of the dataset. The training batch 

size is kept at 32, the eval batch size at 8, and the maximum sequence length is 128. 

The number of GPUs assigned is 1. With a different percentage of data samples, the 

distribution of data across the train and validation set is highlighted in Table 5.8. In 



13 

each iteration, the finetuned model performance on 5%, 10%, and 50% of the data with 

the best-chosen learning rate is noted. Each model is tried with 3 samples, resulting in 

a total of 12 executions in exp-4.  

 

Table 1.5 Data Size vs Model Results  

It is evident from Table 1.5 that there is only a slight to negligible increase in the model 

performance with the increase in the size of the data. It is observed that the model pro-

duced a macro f1 in the range of 0.74 - 0.82 with just 5% data. The model tends to 

generalize the pattern with 10% of the data within half the computational time of the 

entire dataset. Hence, results obtained from 10% of the data are considered for further 

analysis and discussion. In the following sub-section, the confusion matrix generated 

from each model with 5% and 10% data is explained 

 

3.5.1 Confusion matrix - BERT  

    Taking sincere as positive class and insincere as a negative class the confusion matrix 

obtained with a learning rate 2e-5 and data of 5% and 10 %. With 5% data, the true 

positive of 12065 and the true negative of 456 depicts that the model can correctly 

predict most of the question. 340 records are predicted as insincere while they were 

observed to be sincere. Whereas 184 records are observed to be insincere but predicted 

as sincere. With 10% data, the true positive of 24089 and the true negative of 1093 

depicts that the model can correctly predict most of the question. 409 records are pre-

dicted as insincere while they were observed to be sincere. Whereas 498 records are 

observed to be insincere but predicted as sincere. 

 

3.5.2 Confusion matrix - XLNET  

     With 5% data, the true positive of 12030 and the true negative of 484 depicts that 

the model can correctly predict most of the question. 219 records are 64 predicted as 

insincere while they were observed to be sincere. Whereas 312 records are observed to 

be insincere but predicted as sincere. With 10% data, the true positive of 24034 and the 
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true negative of 1070 depicts that the model can correctly predict most of the questions. 

440 records are predicted as insincere while they were observed to be sincere. Whereas 

545 records are observed to be insincere but predicted as sincere. 

 

3.5.3 Confusion matrix - DeBERTa  

    With 5% data, the true positive of 12058 and the true negative of 483 illustrate that 

the model can correctly predict most of the questions. 191 records are predicted as in-

sincere while they were observed to be sincere. Whereas 313 records are observed to 

be insincere but predicted to be sincere. With 10% data, the true positive of 24135 and 

the true negative of 1098 illustrate that the model can correctly predict most of the 

questions. 363 records are predicted as insincere while they were observed to be sin-

cere. Whereas 493 65 records are observed to be insincere but predicted to be sincere. 

  

3.5.4 Confusion matrix - StructBERT  

    With 5% data, the true positive of 12107and the true negative of 323 illustrate that 

the model can correctly predict most of the questions. 149 records are predicted as in-

sincere while they were observed to be sincere. Whereas 466 records are observed to 

be insincere but predicted to be sincere. With 10% data, the true positive of 24213 and 

the true negative of 645 illustrate that the model can correctly predict most of the ques-

tions. 298 records are predicted as insincere while they were observed to be sincere. 

Whereas 973 records are observed to be insincere but predicted to be sincere.  

 

3.6 Comparison of Model’s Performance 

    Model validation resulted in the generation of models with identical values of eval-

uation metrics to those of trained results. It is observed that the models did not record 

any significant differences between the two. This demonstrates that almost all the tested 

models performed well when tested in the eval dataset and the predicted-on test set. 

The total number of data points supported for evaluation and prediction is 26089 and 

15000, respectively. When looking at the findings of all four models, it's clear that they 

can achieve state-of-the-art outcomes with only 5% of the data. The high rate of false 

positives is due to the imbalance in the dataset. When the dataset size is increased, the 

model's performance improves slightly. With 50 percentage data, there is just a minor 

rise in the F1 score and the macro average F1 score. Some of the assessment metrics 

discovered in question classification are compared between the classifiers to select the 

best or most resilient model among the proposed models. DeBERTa produced a macro 

f1-score of 0.83 with a 10% data sample, followed by BERT with a core of 0.82.  

     The MCC value of less than 0.5 clearly showed that the base models acted as random 

classifiers. The MCC shifting towards 0.7 in finetuned models showed that the model 

could understand the question text and generalize the class labels. It is observed that 

most finetuned models record similar values across all metrics. Based on the table, the 

balanced accuracy level is highest for DeBERTa and BERT with 80%. The StructBERT 

yielded the lowest balanced accuracy of all, with 70%. Even after multiple iterations 

with different learning rates, an increase in the F1 score is not observed. Due to the 

StructBERT model sizebeing equivalent to 1.25 GB, execution needed more space. Due 

to the limitation of computational size, the model is not validated for higher epochs. 
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For insincere labels, BERT and DeBERTa have the lowest false positive rate. The two 

models predicted the greatest precision for both class labels and macro and weighted 

averages. The average sensitivity for DeBERTa is given as 0.81 and for BERT as 0.80. 

The model DeBERTa resulted in an MCC of 0.66 and an AUPRC of 0.74 compared to 

BERT with 0.66 and 0.71, respectively. Thus, comparing all the performance measures, 

DeBERTa is chosen as the champion model over the rest.  

 

4.0 Conclusion  

     The various types of questions posted on online social media platforms are not al-

ways intended to extend support or guidance. There are times when people use such 

platforms to promote hate or spread rumours to create restlessness among groups of 

people. This degrades the platform's quality, which in turn leads to a decline in its us-

age. Thus, the classification of destructive content before mass reading is equally es-

sential and challenging. In the past, research was done using machine and deep learning 

models to restrain such content from posting. However, the models are highly depend-

ent on feature engineering and the ratio of class labels in the dataset. 

   Starting with the most basic BERT model and progressing to the most esoteric 3 Bert-

based transformer models, XLNET, DeBERTa, and StructBERT, the study shows how 

these models compete with one other. The basic model is BERTbase, which is one of 

the most stable models built on a big corpus of data. To classify the cleaned text and 

determine the outcome, all four models are applied. The entire implementation is done 

in Python programming language and the models are built in the Colab and Kaggle 

consoles using GPU and TPU for faster computation. 72 The dataset is taken from 

Kaggle and processed to form cleaned text. The lexicon and tokenizer for each of these 

models are used to train the model with the default argument on the cleaned dataset. 

Both PyTorch and Simple Transformer are used to demonstrate the implementation, as 

well as how to alter the standard parameter settings.  

   Multiple iterations are run, and the hyperparameters are chosen after a comprehensive 

examination. The preferred learning rate is determined by the metrics, and fine-tuned 

models with changed hyperparameters are trained on three separate dataset samples of 

5%, 10%, and 50% of the total dataset. The class label imbalance ratio is guaranteed to 

be consistent across dataset samples. Model development, evaluation, and prediction 

are done in training, validation, and test sets, respectively, to maintain quality. As label 

imbalance is so crucial, the major assessment metric is a mix of f1 score, MCC, and 

balanced accuracy. To determine the best classifier, the outcomes of pre-trained and 

fine-tuned models are compared. DeBERTa and BERT surpassed all other models 

trained in this study. The results also outscored logistic regression or other deep learn-

ing models noted in the previous studies. 

   The objective of generating state-of-the-art results on a noisy dataset without using 

any class balancing approaches and with low computational capacity is met since all 

the models stated delivered outstanding results with only 10% of the data. When com-

paring DeBERTa with BERT, the former exceeded with a slightly higher F1-score, in-

dicating that the study's research aim is justified. It also demonstrates that combining 

transfer learning with attention mechanisms can improve existing performance. 

 



16 

REFERENCES 

1. Classification Models - Simple Transformers, https://simpletransformers.ai/docs/classifica-

tion-models/ last accessed 2022/03/08.  

2. HuggingFace Transformers, https://huggingface.co/docs/transformers/index last accessed 

2021/03/08.  

3. Quora Insincere Questions Classification | Kaggle, https://www.kaggle.com/c/quora-insin-

cere-questions-classification/data last accessed 2021/11/02.  

4. Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K.: BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding. NAACL HLT 2019 - 2019 Conference 

of the North American Chapter of the Association for Computational Linguistics: Human 

Language Technologies - Proceedings of the Conference, [online] 1, pp.4171–4186 (2018a).  

5. Devlin, J., Chang, M.-W., Lee, K. and Toutanova,: K.BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding. NAACL HLT 2019 - 2019 Conference 

of the North American Chapter of the Association for Computational Linguistics: Human 

Language Technologies - Proceedings of the Conference, [online] 1, pp.4171–4186 (2018b).  

6. He, P., Liu, X., Gao, J. and Chen, W.: DeBERTa: Decoding-enhanced BERT with Disen-

tangled Attention. In: ICLR 2021 Conference Paper3690 (2020).   

7. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and 

Polosukhin, I.:Attention is All you Need. In: I. Guyon, U. V Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan and R. Garnett, eds., Advances in Neural Information 

Processing Systems (2017).  

8. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. and Le, Q. V.: (2019) XLNet: 

Generalized Autoregressive Pretraining for Language Understanding. Advances in Neural 

Information Processing Systems, (2019.  

 

https://simpletransformers.ai/docs/classification-models/
https://simpletransformers.ai/docs/classification-models/
https://huggingface.co/docs/transformers/index%20last%20accessed%202021/03/08
https://huggingface.co/docs/transformers/index%20last%20accessed%202021/03/08

