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Polygenic risk score prediction of multiple 
sclerosis in individuals of South Asian ancestry

Joshua R. Breedon,1 Charles R. Marshall,1,2 Gavin Giovannoni,1,2,3 David A. van Heel,3 

Genes & Health Research Team Ruth Dobson1,2* and Benjamin M. Jacobs1,2,*

* These authors contributed equally to this work.

Polygenic risk scores aggregate an individual’s burden of risk alleles to estimate the overall genetic risk for a specific trait or disease. 
Polygenic risk scores derived from genome-wide association studies of European populations perform poorly for other ancestral 
groups. Given the potential for future clinical utility, underperformance of polygenic risk scores in South Asian populations has the 
potential to reinforce health inequalities. To determine whether European-derived polygenic risk scores underperform at multiple scler
osis prediction in a South Asian-ancestry population compared with a European-ancestry cohort, we used data from two longitudinal 
genetic cohort studies: Genes & Health (2015–present), a study of ∼50 000 British–Bangladeshi and British–Pakistani individuals, and 
UK Biobank (2006–present), which is comprised of ∼500 000 predominantly White British individuals. We compared individuals with 
and without multiple sclerosis in both studies (Genes & Health: NCases = 42, NControl = 40 490; UK Biobank: NCases = 2091, NControl =  
374 866). Polygenic risk scores were calculated using clumping and thresholding with risk allele effect sizes obtained from the largest 
multiple sclerosis genome-wide association study to date. Scores were calculated with and without the major histocompatibility com
plex region, the most influential locus in determining multiple sclerosis risk. Polygenic risk score prediction was evaluated using 
Nagelkerke’s pseudo-R2 metric adjusted for case ascertainment, age, sex and the first four genetic principal components. We found 
that, as expected, European-derived polygenic risk scores perform poorly in the Genes & Health cohort, explaining 1.1% (including 
the major histocompatibility complex) and 1.5% (excluding the major histocompatibility complex) of disease risk. In contrast, multiple 
sclerosis polygenic risk scores explained 4.8% (including the major histocompatibility complex) and 2.8% (excluding the major histo
compatibility complex) of disease risk in European-ancestry UK Biobank participants. These findings suggest that polygenic risk score 
prediction of multiple sclerosis based on European genome-wide association study results is less accurate in a South Asian population. 
Genetic studies of ancestrally diverse populations are required to ensure that polygenic risk scores can be useful across ancestries.
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OR = odds ratio; PCA = principal component analysis; PRS = polygenic risk score(s); SNOMED = Systematized Nomenclature of 
Medicine; SNP = single nucleotide polymorphism; TOPMed = Trans-Omics for Precision Medicine Program; UCSF = University of 
California San Francisco; UKB = UK Biobank

Graphical Abstract

Introduction
An individual’s risk of developing multiple sclerosis is influ
enced by common variation across the genome.1,2 Multiple 
sclerosis is a typical complex disease in which the genetic 
contribution to risk is governed by a large number of sus
ceptibility alleles with individually weak effects. Variation 
within the major histocompatibility complex (MHC) has 
the greatest impact on individual risk [odds ratio (OR) as
sociated with DRB1*1501 3.1 and 6.2 for heterozygous 
and homozygous carriage, respectively].2,3 Genome-wide 
association studies (GWAS) of multiple sclerosis suscepti
bility have demonstrated at least 200 risk alleles outside 
the MHC locus, each with a small incremental effect (OR 
per allele ≤1.3).2 There is no convincing evidence for 
monogenic forms of multiple sclerosis in the general 
population.4

Predicting who is likely to develop multiple sclerosis in 
the future has potential utility for research studies. 
Accurate disease prediction could facilitate the design of 
trials for candidate preventive strategies, such as an 
Epstein–Barr virus (EBV) vaccine or a vitamin D supple
mentation trial. As multiple sclerosis is a relatively rare dis
ease, such trials will only have the power to demonstrate a 
risk reduction if the trial population is sufficiently enriched 
with people at high risk of multiple sclerosis, effectively 

increasing the proportion likely to develop the disease.5

Furthermore, identifying those at highest risk of disease 
may allow treatment during the ‘prodromal’ period, prior 
to overt clinical manifestations.6

Polygenic risk scores (PRS) summarize an individual’s 
cumulative burden of genetic risk alleles to approximate 
their overall disease risk. Most PRS are calculated by 
weighting the individual’s burden of risk alleles by the esti
mated effect of each allele on risk—these estimates are 
usually obtained from GWAS. In two large cohort 
studies—UK Biobank (UKB) and University of California 
San Francisco (UCSF) Expression, Proteomics, Imaging, 
Clinical (EPIC)—PRS have been empirically demonstrated 
to distinguish multiple sclerosis cases from controls at a 
population level.7-9

PRS perform poorly in non-European ancestral groups, a 
phenomenon largely due to differences in linkage disequilib
rium (LD) and allele frequencies between populations.10-12 It 
is now clear that multiple sclerosis affects individuals of all 
ethnic backgrounds and that, broadly speaking, the genetic 
architecture of multiple sclerosis susceptibility overlaps con
siderably between ancestral groups.13-22 We therefore 
sought to evaluate the performance of multiple sclerosis 
PRS in ∼50 000 individuals of South Asian ancestry from 
the Genes & Health (G&H) cohort to determine the applic
ability of PRS in this population.
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Methods
Cohort description and phenotype 
definition
We used data from the July 2021 data freeze of G&H, a lon
gitudinal genetic cohort study of ∼50 000 British– 
Bangladeshi and British–Pakistani individuals.23 Genotypes 
and clinical data for 44 396 participants were included in 
this study. After exclusion of principal component analysis 
(PCA) outliers (n = 206), samples with >10% missing geno
types (n = 3452) and samples without corresponding pheno
type/covariate data (n = 206), 40 532 individuals were 
retained for analysis. Of this final cohort, 42 individuals 
had a coded diagnosis of multiple sclerosis and 40 490 did 
not (Fig. 1). Cases were defined using linked electronic health 
records from primary care, hospital episode statistics (HES) 
data and local hospital recording of admissions and out
patient encounters. Healthcare data were harmonized across 
International Classification of Diseases Revision 10 (ICD10) 
codes, Systematized Nomenclature of Medicine (SNOMED) 
description IDs and SNOMED concept IDs into a consistent 
three-digit ICD10 coding system. Individuals with at least 
one multiple sclerosis diagnostic code (ICD10 code G35) in 
their records were considered cases, and those without 
were considered non-multiple sclerosis controls. Details of 
phenotype definitions can be found in Supplementary File 1. 
An online version of this file is continuously updated and can 
be viewed here.

Genotype data and target data quality 
control
Genomic DNA was obtained from saliva samples using 
Oragene-600 kits. Individuals were genotyped using the 

Illumina Global Screening Array chip (version 3) with extra 
multi-disease content.

Genotypes were imputed using the multi-ancestral 
Trans-Omics for Precision Medicine Program 
(TOPMed)-R2 panel. Variant quality control was performed 
to remove low-quality variants using the following filters: 
call rate >90%, imputation quality INFO >0.7, minor allele 
frequency (MAF) >0.01, no deviation from Hardy– 
Weinberg equilibrium (HWE) at P < 1−10 and genotype 
missingness <10%. Sex chromosomes and mitochondrial 
variants were excluded. Individual quality control was per
formed to remove PCA outliers and individuals with high 
missingness. Full details of genotype data quality control 
can be found in the Supplementary Methods.

Polygenic risk score calculation
PRS were derived using PRSice-2, which uses a 
clumping-and-thresholding approach.9 We used external 
weights from the discovery-stage International Multiple 
Sclerosis Genetics Consortium (IMSGC) 2019 GWAS 
meta-analysis (cases: 14 802, controls: 26 703).2 We used 
LD-based clumping to determine independent signals using 
European samples from the 1000 Genomes Project (n =  
503).1 We harmonized single nucleotide polymorphisms 
(SNPs) between the multiple sclerosis GWAS and the 
G&H cohort imputed genotype data. LiftOver was used to 
convert the coordinates to hg38. We excluded SNPs with in
compatible alleles and restricted to non-palindromic, bialle
lic SNPs.

We generated 224 different (but overlapping) PRS by 
varying the clumping R2 and P-value threshold for variant 
selection. Many of the SNPs incorporated in these PRS over
lap, and so while these PRS are distinct, they are correlated 
with each other. Specifically, we used clumping R2 thresh
olds of 0.001, 0.01, 0.05, 0.1, 0.2, 0.4 and 0.6 and P-value 
thresholds of 1 × 10−8, 5 × 10−8, 1 × 10−7, 5 × 10−7, 1 ×  
10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 ×  
10−3, 5 × 10−3, 0.01, 0.05, 0.1 and 0.5. For each combin
ation of threshold P-value and clumping R2 value, we de
rived PRS both including and excluding the MHC region 
(chromosome 6: 25 000 000–35 000 000 in hg38). In order 
to isolate the contribution of the MHC, we generated a fur
ther 112 scores including just the MHC region. Overall, we 
generated 336 PRS (112 with MHC, 112 without and 112 
just MHC). A null model was generated using the covariates 
alone [age, sex and genetic principal components (PCs) 1–4]. 
PRS were calculated using the sum of the weighted allelic 
burden for each individual, i.e. for the jth SNP and the ith in
dividual, where G is the genotype dosage and β is the effect 
size of the SNP:

PRSi = ΣGij × βj (1) 

Missing genotypes were centred so as to contribute a mean of 
0 to the overall score. Discriminative performance was eval
uated using Nagelkerke’s pseudo-R2 metric adjusted for case 

Figure 1 Flow diagram of individual quality control in 
G&H. From an initial 44 396 individuals with genotype data, 40 532 
individuals were retained for analysis comprising 42 multiple 
sclerosis cases and 40 490 controls
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ascertainment (assuming a population prevalence of 0.002) 
and corresponding P-values, with adjustment for age, sex 
and the first four genetic principal components. The PRS 
with the lowest model fit P-value was considered the ‘opti
mal score’, and the statistical significance of this score was 
evaluated using the P-value for the model fit.24

Logistic regression was used to determine the OR of mul
tiple sclerosis in each quartile of PRS (compared to the lowest 
quartile as reference). In all regression models, age, sex and 
genetic PCs 1–4 were included as covariates. To determine 
the area under the curve (AUC) discrimination statistics of 
each PRS and to determine the calibration, we used the fitted 
probabilities of the logistic models including the PRS as a 
covariate. We compared the performance of each PRS with 
null models comprising only age, sex and PCs 1–4.

UK Biobank replication
To compare the performance of the multiple sclerosis PRS 
across ancestries, we repeated the analysis using UKB, a lon
gitudinal cohort study of predominantly White British adults 
aged >40.25 We used largely similar methods for SNP and in
dividual quality control. We restricted the analysis to indivi
duals of genetically European ancestry (UKB field ID 22006) 
determined using principal components. We excluded one of 
each pair of highly related individuals (kinship coefficient >  
0.0884). We generated and tested a variety of PRS using the 
same methods as in G&H.

To formally compare PRS performance between the two 
cohorts controlling for sample size bias, we randomly sub- 
sampled the UKB cohort to have the same number of cases 
and controls in our G&H analyses (42 cases, 40 490 con
trols). For each iteration, we determined the optimal PRS 
and the estimated Nagelkerke’s pseudo-R2. We calculated 
an empirical P-value for the hypothesis that the liability ex
plained by the PRS was lower in the South Asian-ancestry 
(SAS) cohort:

P =
NUKB < GH + 1

Niter + 1
(2) 

where Niter is the total number of iterations (1000) and NUKB 

< GH is the number of iterations in which the observed 
Nagelkerke’s pseudo-R2 in the UKB sub-sample was lower 
than the observed value in G&H. As a comparator, we 

also evaluated the performance of multiple sclerosis PRS in 
the whole cohort (without splitting into training and test 
sets), comprising 2091 multiple sclerosis cases and 374 866 
controls. For analyses in UKB, we used the same clumping 
R2 values that were optimal in G&H.

Power calculations
We performed post hoc power calculations to determine our 
statistical power to detect a difference in multiple sclerosis 
PRS between cases and controls in G&H. To do so, we simu
lated a normally distributed PRS in 42 cases and 40 490 con
trols. We varied the difference in the mean of the case and 
control distributions from 0 to 3 standard deviations. We 
performed 1000 bootstrap iterations for each scenario and 
evaluated the power as the proportion of iterations yielding 
a Wald test P-value of <0.05. These simulations showed 
that, given this number of cases and controls, we would 
have 91% power to detect a difference of 0.5 standard devia
tions in the PRS. For context, in UKB participants of 
European ancestry, the difference in mean PRS between cases 
and controls is ∼0.7 standard deviations for the MHC PRS 
and 0.5 standard deviations for the non-MHC PRS.

Statistical analysis and computing
Analysis of G&H data was conducted within the dedicated 
Google Cloud Trusted Research Environment. Target data 
QC was performed using PLINK version >2.26 PRS were cal
culated using PRSice version 2.3.5.24 Statistical analysis was 
performed using R version 4.2.0. Analysis of UKB data was 
conducted using the Apocrita High Performance Cluster 
based at Queen Mary University of London.27

Ethical approval
This research was conducted under an approved application 
to use the G&H resource (‘Brain consortium’ application). 
G&H was approved by the London South East NRES 
Committee of the Health Research Authority (14/LO/1240). 
Replication in UKB was performed under approved applica
tion 43101. This research was undertaken under UKB’s exist
ing ethical approval (REC approval 11/NW/0382; North 
West Multi-centre Research Ethics Committee).

Results
Following quality control, we analysed data from 40 532 
individuals of South Asian ancestry in the G&H cohort, 
comprising 42 multiple sclerosis cases and 40 490 
controls (Table 1). Demographics of included participants 
are shown in Table 1.

PRS derived from European-ancestry (EUR) multiple 
sclerosis GWAS were associated with multiple sclerosis in 
the G&H cohort of British South Asian individuals 
(Nmultiple sclerosis = 42, Ncontrol = 40 490) (Fig. 2A and B). 
The optimal PRS containing the MHC region (PRSMHC) 

Table 1 Genes & Health cohort characteristics

Control  
(N = 40 490)

Case  
(N = 42)

Sex, n (%)
Female 22 493 (55.6) 30 (71.4)
Male 17 997 (44.4) 12 (28.6)

Age at recruitment, mean (SD) 41.2 (14.2) 41.0 (0.8)
Genetic ancestry, n (%)

British–Bangladeshi 22 900 (56.6) 11 (26.2)
British–Pakistani 17 590 (43.4) 31 (73.8)
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explained ∼1.1% of the liability to multiple sclerosis in this 
cohort (adjusted Nagelkerke’s pseudo-R2 0.011, P = 0.033, 
NSNP = 1356, clumping R2 0.05, threshold P-value 0.001). 
The optimal PRS excluding the MHC region (PRSNon-MHC) 
performed similarly, explaining ∼1.5% of the liability to 
multiple sclerosis (adjusted Nagelkerke’s pseudo-R2 0.015, 
P = 0.015, NSNP = 1965, clumping R2 0.4, threshold 
P-value 0.001). The difference in performance of the 
PRSNon-MHC and PRSMHC was not statistically significant 

(likelihood ratio P-value = 1). PRS using variants only lying 
within the MHC did not correlate with multiple sclerosis dis
ease status (P = 0.19).

The predicted risk of multiple sclerosis based on PRS was 
reasonably well-calibrated to absolute risk (Fig. 2C). 
Individuals in the top 25% of PRSMHC were nominally 
more likely to have multiple sclerosis than those in the lowest 
25% (OR 2.72, 95% CI 0.99–7.50), although our statistical 
confidence in this result is tempered by the small number of 

Figure 2 Multiple sclerosis PRS performance in the G&H cohort of South Asian-ancestry individuals. (A and B) Density plots 
showing the distribution of PRS for PRS with (A) and without (B) the MHC locus in multiple sclerosis cases and controls. (C) Odds ratio quartile 
plots for individual PRS scores. ORs were calculated relative to the lower quartile. (D) Receiver operating characteristic (ROC) curves for 
the MHC PRS model, non-MHC model and the null model, with corresponding AUC scores. (E and F) Calibration plots showing the absolute 
multiple sclerosis disease probabilities (prevalence) for each PRS quartile versus mean fitted probabilities within each quartile from the PRS 
models. Plots shown for MHC PRS model, non-MHC PRS model, null model and the observed multiple sclerosis risk in each quartile. Odds ratios 
and AUC values are derived from multivariable logistic regression models
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cases leading to wide confidence intervals which just cross 
the null. We observed a similar effect for the PRSNon-MHC 

(OR 1.96, 95% CI 0.74–5.24), again with wide confidence 
intervals crossing the null. Both the PRSMHC and 
PRSNon-MHC demonstrated reasonable discrimination be
tween cases and controls at a population level (AUCMHC 

0.70, AUCnon-MHC 0.71), but it is important to note that 
age, sex and genetic principal components alone account 
for much of this discriminative power (AUCnull 0.664) 
(Fig. 2D). In models without any covariates, the PRSMHC 

and PRSNon-MHC have weaker discriminative ability 
(AUCMHC 0.63, AUCnon-MHC 0.60) but still perform better 
than chance.

For the PRSMHC, in the lowest quartile, 5/10 133 partici
pants had multiple sclerosis (0.05%), as opposed to 15/10  
133 in the highest quartile (0.15%). For the PRSNon-MHC, 
6/10 133 (0.06%) and 12/10 133 (0.12%) had multiple 
sclerosis in the lowest and highest quartiles, respectively 
(Fig. 2E and F).

In order to directly compare the performance of the PRS in 
this cohort with a European-ancestry cohort, we then ap
plied the same methods to UKB (Fig. 3). Using the entire co
hort of unrelated EUR-ancestry individuals in UKB (Nmultiple 

sclerosis = 2091, NControl = 374 866), both the PRSMHC and 
PRSNon-MHC performed better than in G&H, explaining 
4.4% and 2.3% of liability, respectively (PRSMHC: adjusted 
Nagelkerke’s pseudo-R2 = 0.044, P = 2 × 10−211, NSNP =  
235454, clumping R2 0.4, threshold P-value 0.5; 
PRSNon-MHC: adjusted Nagelkerke’s pseudo-R2 = 0.023, 
P = 1.9 × 10−104, NSNP = 42759, clumping R2 0.6, threshold 
P-value 0.05).

To mitigate the effects of sample size, we randomly 
sampled 1000 sets of 42 multiple sclerosis cases and 

40 490 controls of European ancestry. We used the optimal 
clumping R2 thresholds derived from G&H (0.05 and 0.4 for 
the PRSMHC and PRSNon-MHC, respectively). For each iter
ation, we compared the liability explained in UKB with the 
observed values in G&H (1.1% for PRSMHC and 1.5% for 
PRSNon-MHC), thus obtaining empirical estimates for the 
sampling distribution and model fit in UKB.

Using this permutation-based approach, both the PRSMHC 

and PRSNon-MHC remained strongly associated with multiple 
sclerosis disease status. In the UKB population, the perform
ance of the PRSMHC was substantially greater than that of 
the PRSNon-MHC, reflecting the large portion of heritability 
accounted for by this locus. The PRSMHC explained more 
liability to multiple sclerosis in European-ancestry UKB par
ticipants than in G&H (UKB adjusted R2 4.3%, 95% CI 
1.5–8.5%; G&H adjusted R2 1.1%, P = 0.01). The differ
ence in the performance of the PRSNon-MHC was less pro
nounced but also suggestive of weaker performance in the 
South Asian cohort (UKB adjusted R2 3.2%, 95% CI 0.9– 
6.9%; G&H adjusted R2 1.5%, P = 0.10), although the 
confidence intervals span the G&H estimate, and so we 
cannot reject the possibility that the performance of the 
PRSNon-MHC is similar in both cohorts.

Discussion
PRS derived from European GWAS perform poorly in 
non-European populations across a range of traits and disor
ders.10,12 We report evidence to suggest that this drop-off in 
PRS performance also applies to multiple sclerosis prediction 
in a large cohort of South Asian ancestry. We demonstrate 
that although the European-derived PRS performs relatively 

Figure 3 Estimates of PRS performance in EUR UKB participants and SAS G&H participants. Each point represents the estimated 
liability explained by the optimal PRS, with 95% confidence intervals for the sub-samples of UKB. The vertical lines indicate the performance of 
each score in G&H. PRS containing the MHC are coloured in purple, and those without coloured in orange. Estimates reflect Nagelkerke’s 
pseudo-R2 statistic adjusted for disease prevalence, which is derived from multivariable logistic regression models. ‘UKB all’ refers to scores 
calculated in all EUR-ancestry UKB participants. To control for effects of sample size, we resampled subsets of UKB to have equivalent case and 
control numbers to G&H (42 cases, 40 490 controls). ‘UKB subset’ refers to estimates derived from 1000 replicates of this random sampling 
procedure, with empirical 95% confidence intervals
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poorly in this setting, it does still have some predictive 
power, consistent with significant overlap in the genetic 
architecture of multiple sclerosis risk between popula
tions.13-22

The lower predictive power of multiple sclerosis PRS we 
report in an ancestrally South Asian cohort is likely driven 
by differences in the minor allele frequency of variants and 
LD structures between European and South Asian popula
tions, rather than due to differences in causal variants.28 If 
variants included in the PRS are not causal themselves but 
tag causal variants in Europeans, it does not follow that 
they will tag the causal variant in other populations, dimin
ishing the accuracy of the score. Previous genetic analyses of 
multiple sclerosis risk in non-European populations—in
cluding small studies of South Asian populations—argue 
that, broadly speaking, the genetic architecture of multiple 
sclerosis risk between populations is highly corre
lated.14,16,17,29 Our finding that a European multiple scler
osis PRS has some accuracy in a South Asian cohort, but 
less so than in Europeans, is entirely consistent with this 
view.

It is notable that the inclusion of the MHC locus did not 
improve the PRS in the South Asian cohort. This result could 
be due to limited statistical power, different causal human 
leukocyte antigen (HLA) alleles and/or poor tagging of cau
sal HLA alleles by the European GWAS variants. It is import
ant to note that available data suggest that the major HLA 
risk alleles in Europeans have similar effects in South 
Asians, and so in our view, it is primarily differences in LD 
(in addition to the limited case numbers) that drive this unex
pected result in the cohort, as well as the statistical impreci
sion of the effect estimates due to the small number of cases 
in G&H. Larger studies are required to clarify whether this is 
merely a power issue.

These results should be interpreted with some degree of 
caution given the relatively small number of multiple scler
osis cases in the G&H cohort (and the resulting wide confi
dence intervals), the potential inaccuracies of using 
electronic health records to ascertain cases (including the 
possibility of missed cases) and the lack of an external valid
ation cohort. Due to the number of multiple sclerosis cases in 
G&H, we fitted and evaluated the PRS on the same dataset, 
which increases the risk of overfitting and therefore may pro
duce an inflated estimate of how well the PRS models disease 
risk in the population. Furthermore, while we aim to com
pare PRS performance in UKB and G&H, it is important 
to note that these cohorts were genotyped on different chips 
and imputed with different panels (TOPMed versus 
Haplotype Reference Consortium).25,30 Therefore, although 
we use the same external reference panel to perform LD 
clumping, the SNPs included in the PRS for any given set 
of clumping-and-thresholding parameters are not identical 
between cohorts. The mean age in the G&H cohort is also 
less than that in UKB, raising the possibility of individuals 
in the G&H control group going on to develop multiple 
sclerosis in the future. We aimed to mitigate the effect of sam
ple size by sampling the UKB dataset to an equivalent size.

Given the potential uses of a multiple sclerosis PRS in 
both clinical care and trial design, the limited cross-ancestry 
transferability of European-derived PRS is concerning 
and may reinforce pre-existing health inequalities between 
different ethnic and ancestral groups. Although advances in 
statistical methods for applying PRS across populations are 
likely to enhance transferability,11,31 there is an unmet need 
for ancestrally diverse GWAS of multiple sclerosis risk to en
sure that genetics can play a useful role in risk stratification.
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