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In machining processes, chatter vibrations are always regarded as one of the major 

limitations for production quality and efficiency. Accurate and timely monitoring of 

chatter is helpful to maintain stable machining operations. At present, most chatter 

monitoring methods are based on the energy level at specified chatter frequencies or 

frequency bands. However, the spectral features of chatter could change during 

machining operations due to complexity and time-varying dynamics of the physical 

machining process. The purpose of this paper is to investigate the time-varying chatter 

features in turning of thin-walled tubular workpieces from the perspective of entropy. 

The airborne acoustics was selected as the source of information for machining 

condition monitoring. First, corresponding to the distinguishing surface topographies 

relevant to machining conditions, the features of the sound signal emitted during 

turning of the thin-walled cylindrical workpieces were extracted using the spectral 

analysis and wavelet packet transform, respectively. It was shown that the dominant 

vibration frequency as well as the energy distribution could shift with the transition of 

the machining status. After that, two relative entropy indicators based on the spectrum 

and the wavelet packet energy were constructed to identify chattering events in turning 

of the thin-walled tubes. The experimental results demonstrate that the proposed 

indicators could accurately reflect the transition of machining conditions with high 

sensitivity and robustness in comparison with the traditional FFT-based methods. The 

achievement of this study lays the foundations of the online chatter monitoring and 

control technique for turning of the thin-walled tubular workpieces. 
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Introduction 
During cutting of flexible parts like thin-

walled flanges or long slender shafts, 

machining chatter vibrations are prone to 

occurrence due to the insufficient stiffness of 

machine tool-workpiece systems or the 

unreasonable setting of cutting parameters [1, 

2]. Chatter is a self-excited vibration between 

the tool and the workpiece in machining 

processes, leading to poor surface quality and 

low production efficiency. Therefore, it is of 

great significance to monitor the machining 

condition for identifying the occurrence of 



chatter accurately and quickly, thereby 

ensuring the stability of the process. 

The procedure for chatter detection mainly 

includes three aspects: signal acquisition, 

feature extraction, and state recognition [3]. 

The widely used sources of information on 

chatter are the process variables affected by 

the material removal progression. The most 

frequently measured signals are force [4], 

vibration [5-7], acoustics [8,9], current or 

power [10,11]. Compared to other signals, 

cutting forces were regarded as more suitable 

for chatter detection, because this physical 

variable can directly characterize the 

dynamic interaction between the tool and the 

workpiece. Cardi et al [4] proposed the phase 

difference between the cutting force and the 

workpiece velocity to identify the onset of 

chatter in turning operations. Lu et al [5] 

developed a comprehensive indicator for 

chatter monitoring when turning a long 

slender shaft, which integrates the time 

domain variance and spectral features of 

acceleration signals. Li et al [7] developed a 

novel three-axis wireless on-rotor 

acceleration sensing system for monitoring 

the turning process. Delio et al [8] adopted 

airborne acoustics to detect milling chatter 

and proved that a microphone could provide 

proper and consistent signals for reliable 

chatter detection and control in comparison 

with dynamometers, displacement sensors, 

and accelerometers. In addition, Lamraoui et 

al [10] used current signals to monitor chatter 

during milling operations, in which the 

original signal was processed by data mining 

techniques to amplify and extract chatter 

features.  

In terms of signal processing for chatter 

detection, the methods were largely divided 

into two scopes including the time domain 

analysis and the time-frequency domain 

analysis [1-3]. Ye et al [12] proposed 

vibration waveform irregular coefficients 

according to the ratio of the standard 

deviation to the mean to predict the early 

machining chatter. Time-frequency analysis 

methods were also widely used in the feature 

extraction of chatter vibrations, which consist 

of the short-time Fourier transform [13], 

wavelet transform [14,15], and empirical 

mode decomposition [16]. Liu et al [15] 

introduced the normalized spectral entropy 

and logarithmic spectral distance using cross-

wavelet transform for grinding chatter 

identification. The results showed that the 

proposed indicators could perform self-

adaptive monitoring for chatter. With the 

development of artificial intelligence, several 

classification models based on machining 

learning have also been applied for chatter 

recognition, such as the neural network 

models [17], support vector machine models 

[18], hidden Markov models [19]. 

In summary, a number of productive 

outcomes have been achieved in the area of 

machining chatter monitoring. However, the 

issue of turning of the challenging thin-

walled tubular workpieces has rarely been 

involved. Compared with solid structures, the 

dynamic characteristics of thin-walled 

workpieces seem to be more sensitive to the 

removal of material during cutting [20-22]. In 

addition, the thin-walled tubular workpiece 

subjected to external forces generally 

vibrates in combination of the beam and shell 

modes [23]. These differences make the 

response of the vibratory thin-walled tubular 

structure time-varying and complex, leading 

to a difficulty in judging the machining 

condition accurately.  

In this paper, we introduce the relative 

entropy to deal with the complexity of 

machining vibrations when turning a thin-

walled tubular workpiece so as to 

characterize the changing condition of the 

process. Two relative entropy indicators for 

condition monitoring are proposed using the 

wavelet packet energy and the FFT spectrum 

of vibration signals generated in cutting 



operations. Finally, machining trials of thin-

walled tubes were conducted to verify the 

effectiveness of the developed entropy 

indicators for chatter detection. 

1. Relative entropy 
The relative entropy is an asymmetric 

measure of the difference between two 

probability distributions, which can be used 

to measure similarity between two random 

distributions. The greater the relative entropy 

value, the larger the difference between the 

two random distributions; on the contrary, the 

smaller the value, the closer the two random 

distributions; if and only if two random 

distributions are exactly the same, the relative 

entropy value equals zero. 

If ( )P x  and ( )Q x  are two probability 

distributions on a random variable x , where

( )P x is the true distribution, and ( )Q x is the 

ideal distribution or fitted distribution, then in 

the case of discrete and continuous random 

variables, the relative entropy of ( )P x  with 

respect to ( )Q x is defined respectively as: 
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1.1 Relative wavelet packet energy 

entropy 
As an extension of the wavelet transform, the 

wavelet packet transform (WPT) can 

decompose the signal in both the low 

frequency band and the high frequency band 

with better time-frequency local analysis. A 

schematic diagram of the wavelet packet 

decomposition is shown in Fig.1. 

 

Fig. 1. Schematic diagram of wavelet packet 

decomposition 

In the WPT method for m-level 

decomposition, the original signal can be 

divided into 2m frequency bands. Because the 

sequence of each frequency band after 

wavelet packet decomposition is not strictly 

arranged according to node numbers, after 

reordering the frequency range at level m and 

band i is 

 [( 1)2 , 2 ]m mi f i f   ， 1,2,...2mi   (3) 

where f is the Nyquist frequency of the signal. 

The wavelet packet coefficient corresponding 

to the frequency band is defined as 

 ,{ , 1, 2,... }i

m i jx c j K  ， 1,2,...2mi   (4) 

where K is the total number of discrete points 

of the signal wavelet packet transformation in 

this frequency band. Thus, the energy of node 

i at level m has 
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The total energy E of all frequency bands can 

be expressed as 
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The ratio of each frequency band energy ,m iE

to the total energy E is defined as the 

proportion of energy, which is expressed as 

 ,m i

i

E
p

E
  (7) 

The measured signal ( )lx t is decomposed into 

m levels, and the proportion of energy in each 

frequency band can be calculated. The signal 

energy probability distribution is 

 1 2 2
, , , m

l l l

lP p p p . Meanwhile, the energy 

probability distribution of the signal 

generated during stable cutting is taken as the 

reference distribution  1 2 2
, , m

r r r

rP p p p . 

According to Eq. (1), the relative entropy of 

wavelet packet energy is defined as 
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where l

ip is the energy ratio of the ith band at 

the lth time segment, and r

ip  is the energy 

proportion of the ith band for the reference 

distribution. 

1.2 Relative spectral entropy 

The measured signal ( )lx t with the length of 

2L is transformed using FFT to obtain its 

spectrum. The number of spectral lines is L. 

After normalizing the amplitude 

corresponding to each line to calculate the 

proportion of amplitude, we can obtain the 

spectral probability distribution

 1 2, , ,l l l

l LA a a a  . Furthermore, the 

spectral probability distribution of the stable 

cutting signal is also regarded as the reference 

distribution  1 2, ,r r r

r LA a a a . 

According to Eq. (1), the relative entropy of 

FFT spectrum is defined as 

 
1

( ) log
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where l

ia is the proportion of the amplitude of 

the ith spectral line at the lth time segment, 

and r

ia  is the proportion of amplitude with 

respect to the ith spectral line for the 

reference distribution. 

2. Experimental setup and modal 

measurement 

2.1 Experimental setup 
In order to verify the effectiveness of the 

relative entropy for chatter identification in 

machining of thin-walled tubular workpieces, 

experimental tests were carried out on a 

CA6140 lathe, as shown in Fig. 2. Two 

typical thin-walled tubes with different 

geometric dimensions were chosen and 

presented for comparison. During machining 

the thin-walled cylinder was fixed at one end 

and free at the other end, and the feed 

direction of the tool was from the chuck side 

to the free end. The clamping length by the 

three-jaw chuck was 40mm. The type of the 

tool holder was SDNCN25*25M11 and the 

corresponding tool insert was DCMT11T304. 

The workpiece material was AISI 1040. An 

accelerometer was attached to the back of the 

tool and a sound pressure sensor supported by 

a bracket was placed next to the lathe. The 

sample rate of the DAQ was 10.24 kHz. The 

main cutting parameters for the experiments 

are summarized in Table 1. 
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Fig. 2. Experimental layout for machining tests 

Table 1. Main cutting parameters in the 

experiments 

Tube A B 

Length 

(mm) 
195 160 

Wall thickness 

(mm) 
1.5 1.3 

Inner diameter 

(mm) 
111 130 

Spindle rotation 

speed (rpm) 
740 583 

Depth of cut 

(mm) 
0.8 0.6 

Feed rate 

(mm/rev) 
0.1 0.1 

2.2 Modal measurements 

The modal measurements were conducted 

before the cutting tests. Compared with the 

rigidity of the tool, the cantilevered tube was 

regarded as the only compliant component in 

the machining system. Fig.3 presents the 

frequency response functions (FRFs) of the 

two workpieces. It can be seen that for Tube 

A there are two peaks at 577Hz and 1113Hz 

in the spectrum, which correspond to the first 

two eigen-frequencies of the thin-walled 

workpiece; for Tube B, the first three natural 

frequencies are 601.3Hz, 976.3Hz, and 1363 

Hz, respectively. 

 

577Hz 601.3Hz

1363Hz

976.3Hz

1113Hz

 

Fig. 3. Measured FRFs of the two workpieces 

3. Results and discussion 

3.1 Preliminary analysis of the signals 
Fig. 4 shows the comparison of the airborne 

acoustics and acceleration generated during 

cutting. It can be seen that when chatter 

occurred, the amplitude of the acoustic signal 

varied more significantly than that of the 

acceleration signal. Moreover, as shown in 

Fig. 5, the time-frequency spectrum of the 

acceleration was obviously complex in the 

high-frequency band (red dotted box), 

indicating that the accelerometer was more 

sensitive to the high-frequency vibration. 



(a) (b)

 

Fig. 4. Comparison of the sound and acceleration signals in the time domain. (a) Tube A. (b) Tube B.

(a) (b)

 

Fig. 5. Comparison of the time-frequency analysis of the acceleration (a) and the sound (b) for Tube A 

This complexity in spectrum could distract 

the identification of chatter frequency. When 

compared with accelerometers, the sound 

sensors also have the advantages of easy 

installation and remote non-contact 

measurement. Thus, the acoustic signal was 

selected for processing and analysis in the 

subsequent sections. 

Observing the acoustic waveform and its 

spectrum, we can see that at the beginning of 

cutting the amplitude of sound was small and 

the cutting process was stable; after a moment 

the amplitude began to increase and fluctuate, 

indicating the process became unstable. This 

transition is because the compliance of the 

thin-walled workpiece near its free end is 

higher than that near its clamped side. When 

chatter happened, the high-frequency 

components dominated in the spectrum. The 

dominant vibration frequency could be 

decreased gradually as the cutting progressed, 

as shown in Fig. 5(b).  

3.2 Chatter feature extraction 
According to the machined patterns as well as 

the surface roughness measurements of Tube 

A, three different zones were divided, 

including the stable cutting, slight chatter, 

and severe chatter zones, as shown in Fig. 

6(a). Correspondingly, the sound waveform 



as well as its spectrum along the cutting path 

exhibited different features, as seen in Fig. 6.   
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Fig. 6. Machined surface quality and signal features 

along the cutting path of Tube A. (a) Surface 

textures. (b) Sound signals. (c) Spectra of the sound.  

In order to determine the distribution of the 

spectrum and the wavelet packet energy in 

different machining conditions, the 

segmented data from each condition were 

processed for comparison. The 

corresponding cutting positions along the 

axis of the workpiece were at S1 (3.7-4.9mm), 

S2 (49.3-50.6mm), and S3 (98.7-99.9mm), 

respectively. For the wavelet packet energy 

calculation, the level of wavelet packet 

transform was set to be 5, and the interval of 

the frequency band was 160 Hz. The signal 

processing results are presented and 

compared in Figs.7-9. 

At the stable cutting area S1, the analysis 

results through FFT and WPT are shown in 

Fig. 7. It is seen that the dominant frequency 

with the largest amplitude in the spectrum 

was 36.88 Hz, which was about three times 

of the spindle rotational frequency. 

Meanwhile, the energy distribution was 

concentrated at the wavelet packet node 1 

with the frequency range of 0-160 Hz.

(a) (b) (c)
36.88Hz

617.6Hz

 

Fig. 7. Sound waveform (a), spectral analysis (b), and wavelet packet energy distribution (c) at S1  

At the slight chatter area S2, the signal 

processing results using FFT and WPT are 

shown in Fig. 8. As seen in Fig. 8(b), the 

dominant frequency with the largest 

amplitude in the spectrum was around 664.5 

Hz, which is a little higher than the first 

natural frequency of the workpiece shown in 

Fig.3. Besides, there were other frequency 

components such as the harmonics of the 

dominant chatter frequency and the rotational 



frequency. Fig. 8(c) shows that the 

corresponding energy distribution was 

concentrated at the wavelet packet nodes 4 

and 5 with the frequency range of 480-800 Hz. 

(a) (b) (c)

36.88Hz

664.5Hz

1292Hz

 

Fig. 8. Sound waveform (a), spectral analysis (b), and wavelet packet energy distribution (c) at S2  

At the severe chatter area S3, the analysis 

results are shown in Fig. 9. It is interesting to 

note that the dominant chatter frequency 

jumped from 664.5 Hz to around 1069 Hz 

accompanied by its harmonics, which is close 

to the second natural frequency of the 

workpiece shown in Fig.3. Apparently, the 

chatter detection methods based on scanning 

for chatter frequencies in a specified band, 

such as references [14-16], could be 

unreliable due to the spectral shift. Besides, 

the harmonics of the dominant chatter 

frequency and the rotational frequency also 

occurred. Fig. 9(c) shows that the energy 

distribution was concentrated at nodes of 7-8 

corresponding to the frequency range of 960-

1280 Hz and at node 14 with the frequency 

range of 2080-2140Hz. 

(a) (b) (c)

36.88Hz

1069Hz 2138Hz

 

Fig. 9. Sound waveform (a), spectral analysis (b), and wavelet packet energy distribution (c) at S3  

It is concluded that the dominant vibration 

frequency as well as the energy distribution 

shifted with the transition of the machining 

status during machining of Tube A, leaving 

distinct chatter marks on the machined 

surface. The physical mechanism behind 

these phenomena could be that the moving 

contact point between the cutting tool and the 



workpiece in operation leads to time-varying 

and position-dependent dynamics of the 

machining system, which critically 

determines the chatter stability of machining 

processes [24-26].  

For turning of Tube B, the surface quality and 

the signal processing results are shown in Fig. 

10, in which the chatter patterns are similar 

with the results in [27,28]. In comparison 

with Tube A case, it is seen that only one kind 

of chatter patterns left on the machined 

surface and the chatter frequency shift 

phenomenon did not happen in this case. The 

reason probably is that under this chattering 

condition the machined tube could always 

vibrate in its solo weakest mode which held 

the minimum of the real part of the 

receptance FRF. 
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Fig. 10. Machined surface quality and signal 

features along the cutting path of Tube B. (a) 

Surface textures. (b) Sound signals. (c) Spectra of 

the sound. 

3.3 Relative entropy results 
In this section, the proposed two entropy 

indicators, including the relative entropy of 

the wavelet packet energy and the spectrum, 

were tested for detection of the time-varying 

chattering status as depicted above. One 

block of data acquired in the initial period of 

stable cutting was taken as the benchmark. 

The difference between the target probability 

distribution and the reference distribution 

was then calculated to characterize the 

fluctuations of cutting conditions in the 

subsequent time. For signal processing, the 

overlap processing technique was used to 

speed up the calculation. The number of 

samples in the sliding frame for processing 

was 1280, and the overlap ratio was set to 

50%.  

The relative entropy with respect to the 

cutting position along the length of the 

workpiece was compared with the traditional 

time-frequency analysis result, as shown in 

Figs. 11 and 12, where the colorbars facing 

the right axes display the amplitude of the 

chattering frequency component. It is readily 

seen that during the stable cutting the relative 

entropy was low, whereas the value was 

increased significantly when chatter 

happened. Especially, at the location where 

the dominant vibration frequency shifted, the 

corresponding relative entropy showed jumps 

sensitively at the onset of chatter. In addition, 

the proposed relative entropy indicators 

could trigger an earlier alarm for chatter 

monitoring when compared with the 

traditional power spectrum (see the enlarged 

portions in Figs. 11 and 12). 



 

Fig. 11. Comparison of the relative entropy method 

and the FFT-based method for chatter detection of 

Tube A  

As shown in Fig.11 regarding Tube A, at the 

stage of the slight chatter development, the 

relative entropy indicators using both the 

wavelet packet energy and the spectrum of 

the sound signal nearly remained constant. At 

the stage of the severe chatter, however, the 

two indicators showed evident fluctuations. 

The similar scenario can be found in Fig.12 

regarding Tube B. This indicates that the 

dynamic behaviors of the machining system 

underwent strong time variation in the period 

of the severe chatter vibration.  

 

Fig. 12. Comparison of the relative entropy method 

and the FFT-based method for chatter detection of 

Tube B 

Overall, the proposed relative entropy 

indicators could allow the event of machining 

condition transition to be identified 

accurately in turning of the thin-walled 

tubular workpieces. Comparatively, the 

relative entropy of the wavelet packet energy 

showed higher sensitivity and robustness to 

the chatter shift events. 

4. Conclusion 
This paper presents an experimental 

investigation on the vibration features from 

the perspective of entropy when turning a 

thin-walled tubular workpiece. Airborne 

sound was chosen as the source of 

information by means of the advantages of 

global sensing measurement and easy 

installation of the sound sensors. Considering 

that the relative entropy can measure the 

similarity between the target distribution and 

the reference distribution, two relative 

entropy indicators based on the wavelet 

packet transform and Fourier transform were 

developed for machining condition 

monitoring. The experimental results show 

that the dominant vibration frequency as well 

as the energy distribution could shift with the 

transition of the machining status during 

turning of the thin-wall tubes, resulting in 

distinguishing topographies on the machined 

surface. It is demonstrated that the proposed 

relative entropy of spectrum and wavelet 

packet energy could detect the event of 

transition of machining conditions with 

higher sensitivity and accuracy in 

comparison with the traditional FFT-based 

method for chatter monitoring. This 

investigation lays the foundations of the 

online chatter control technique for turning of 

the thin-walled cylindrical components.  
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