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Analysis of factors affecting the severity of marine accidents using a 

data-driven Bayesian network 

Yuhao Cao, Xinjian Wang, Shiqi Fan, Huanxin Wang, Zaili Yang, Zhengjiang Liu, Jin 

Wang, Runjie Shi 

Abstract 

A data-driven Bayesian network model (BN) is used to analyze the relationship between the 

severity of marine accidents and relevant Accident Influential Factors (AIFs). Firstly, based on the 

marine accident investigation reports involving 1,294 ships from 2000 to 2019, the severity grades 

of marine accidents are classified, and a database of factors affecting the severity of marine accidents 

is established. Secondly, a Tree Augmented Naive Bayesian algorithm (TAN) is used to establish a 

data-driven BN model, and the established database of AIFs is analyzed by data training and 

machine learning to reveal the influence of related factors on the severity of the accident and the 

mechanism of action. Finally, the sensitivity analysis and verification of the model are conducted. 

Through the analysis of the Most Probable Explanation (MPE), it explains the possible 

configurations in different scenarios and identifies the related potential risks. This study finds that 

"accident type" and "ship type" are the two most important AIFs of three accident severity grades, 

"capsizing/sinking", "hull/machinery damage" and "collision" that are most likely to lead to very 

serious accidents. Further, the possibility of fishing boats or other small ships leading to "very 

serious accidents" is also higher than that of other types of ships. The results of this study can help 

analyze and predict marine accidents and ensure the safe navigation of ships and hence benefit such 

maritime stakeholders as safety authorities and ship owners. 
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1. Introduction 

Identifying and exploring the influential factors of marine accidents and incidents have always 

been one of the key research directions in the shipping industry (Rawson and Brito, 2022). The 

growth of international trade makes the number of ships increased and maritime traffic density 

higher, which results in a higher chance for a ship involved in a marine accident (e.g. collision), 

particularly in restrict waters. According to the 2021 Transport Industry Development Statistics 

Bulletin published by the Ministry of Transport, China in May 2022, there were 129 ship accidents 

in China in 2021, resulting in 153 deaths and missing persons (MoT, 2022). Meanwhile, the 

European Maritime Safety Agency (EMSA) reported in its annual accident statistics published in 

December 2021 that there were 22,532 marine accidents between 2014 and 2020, resulting in 8,015 

ships suffering from loss or damage of varying degrees and 6,921 injuries (EMSA, 2021). In 

addition, Allianz Global Enterprise & Special Risks (AGESR) reported in its annual report in 2022 

that there were about 3, 000 marine accidents in 2021 (AGCS, 2022). 

As the development of computing methods and their applications in the study of accident 

mechanism, the investigation and research of marine accidents have achieved certain development. 

At present, according to the marine accident investigation reports of specific waters, some 
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researchers obtained corresponding research results based on the causes and results of marine 

accidents, by using different mathematical and statistical methods (Acharya et al., 2017; Ceylan et 

al., 2021; Fan et al., 2020a; Kaptan et al., 2021; Navas de Maya and Kurt, 2020). According to 

existing studies, factors influencing the occurrence of marine accidents are usually divided into three 

categories: human factors, ship factors and environmental factors (Kaptan et al., 2021). However, 

according to the accident mechanism, human factors can be further classified into human and 

organizational factors (Hänninen et al., 2014; Wu et al., 2021; Zaccone and Martelli, 2020). It is 

found that although ships are equipped with many navigational aids equipment, human factors still 

have a critical impact on the probability and result of marine accidents, including the physical and 

mental state of sailors, theoretical knowledge level, communication and sense of responsibility 

(Coraddu et al., 2020). However, the determination of human factors is affected by certain 

subjectivity. When analyzing the result of accident severity, in addition to human factors, it is 

necessary to combine with other objective parameters for quantitative research (Wang et al., 2022). 

At the same time, some studies have found that there is a certain relationship between the severity 

of accidents and the ship's own parameters. For example, the severity of accidents caused by 

different ship types is specific, but often such results lack verification based on data analysis (Cakir 

et al., 2021a; Cakir et al., 2021b; Navas de Maya and Kurt, 2020). In addition, environmental factors 

and accident types, as important components in the process of accident occurrence, also have a 

certain impact on the severity of accidents (Xing et al., 2020). In general, there are still some 

limitations in previous studies on marine accidents. For example, previous studies focused more one 

frequency analysis or discussion of a specific type of accident, and few applications of data-driven 

methods in the research on the severity of marine accidents. Therefore, based on the database of 7 

widely applied marine investigation agencies worldwide, this study collects the marine accident 

investigation reports of 1,294 ships and establishes the database of factors affecting the severity of 

accidents. Combined with the expert knowledge, the risk factors affecting the severity of marine 

accidents are screened, and the TAN-BN model is established by a data-driven method. Then the 

data training and processing are carried out, the sensitivity and effectiveness of the model are 

analyzed, and the factors affecting the accident severity are comprehensively analyzed for accident 

prevention. 

The main research contents of this study are organized as follows. The second section mainly 

introduces the relevant factors affecting the marine accidents in the relevant literature and discusses 

the applications of BN in the investigation of marine accidents. The third section extracts relevant 

factors affecting the occurrence of marine accidents based on the marine accident investigation 

reports involving 1,294 ships from 2000 to 2019, establishes an influential factors database of 

marine accident, classifies the degree of accident severity, and introduces the naive Bayes algorithm 

in a BN model. At the same time, the method of model sensitivity analysis and the process of model 

verification are proposed. In the fourth section, the data after the model training and processing is 

analyzed and discussed, and the relevant influential factors with strong correlation to the severity of 

the accidents are studied, and the implications are drawn and revealed. Finally, the fifth section 

summarizes this study. 

2 Literature review 

2.1 Maritime accident related studies 

With the continuous development of marine accident investigation technology and research, 
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the analysis and judgment of the influential factors of accidents have also made significant progress. 

Galieriková (2019) pointed out that human factors are characterized by unpredictability, diversity 

and complexity, which can be preliminarily divided into three aspects: knowledge, rules and skills. 

On this basis, relevant researchers have made a more detailed classification of human factors. 

Among them, Fan et al. (2020b) analyzed that effective information, clear order and good safety 

culture were the most effective human factors to prevent accidents by using Technique for 

Preference by Similarity to Ideal Solution (TOPSIS). Fan et al. (2020a) also pointed out that 

different human factors are also associated with different types of marine accidents. For example, 

the occurrence of collision accidents is more likely to be caused by the lack of supervision of 

navigational officers, and the unsound safety management system is more likely to cause man 

overboard. At the same time, Chauvin et al. (2013) analyzed collision accidents and concluded that 

unsafe behaviors of navigational officers, such as mis-operation and violation of regulations, should 

also be taken into account in the human factors. Among them, the frequency of incorrect decisions 

and inappropriate operation instructions reached 25.6% and 16%, respectively. This also shows that 

individual crew members play a very important role on the occurrence of accidents. Coraddu et al. 

(2020) and Zhang et al. (2020) proposed the human factors of marine accidents, such as sailors' 

physical and psychological state, educational background, drill and training, which further enriched 

the current research. 

Ship factor is also one of the important variables affecting marine accidents. Due to the unsafe 

nature of fishing ships and the characteristics of accident susceptibility, Jin (2014) found that 

stability is a key factor determining the severity of fishing ship accidents through the study of 

relevant accident data in the east coastal areas of the United States. When a ship loses stability, the 

possibility of total loss reaches 66.8%. Meanwhile, Navas de Maya and Kurt (2020) studied the 

accidents of bulk carriers, and analyzed the similarities and differences of different accidents of this 

type of ship. In the study of Cakir et al. (2021a), tugboat was mainly analyzed, and more than half 

of the accidents were hull damage, mechanical failure and collision. In the study of passenger ships, 

Yip et al. (Yip et al., 2015) and Rahman (2017) revealed that most passenger ship accidents are 

caused by non-standard operation and hull structure problems, and the severity of accidents 

(especially casualties) was related to the behavior of crew members. In addition, some researchers 

also conducted further research on the causes of marine accidents of autonomous cargo ships (Zhang 

et al., 2020), Ro-Pax ships (Wu et al., 2021), cruise ship (Talley et al., 2008) and tugboats (Cakir et 

al., 2021a) from different perspectives. Puisa et al. (2018) and Yang et al. (2018) analyzed the impact 

of onboard equipment, operating procedures and Port State Control (PSC) inspection on the severity 

of the accidents, respectively, and explored the correlation between the severity of the accidents and 

other ship factors. 

Environmental factors belong to another category of the main factors affecting marine 

accidents. In the annual report issued by AGESR, it is noteworthy that extreme weather and complex 

fairway conditions were always the important factors affecting the safe navigation of ships (AGCS, 

2022). By analyzing the M/V Sea Prince accident near South Korea, Cho (Cho, 2007) elaborated 

the harm caused by typhoons to the safe navigation of ships. In the situation of poor visibility during 

navigation, Bye and Aalberg (2018) found that low visibility would lead to ship navigation 

equipment failure, thus increasing the possibility of accidents. Weng and Yang (2015) and Chen et 

al. (2019) found from the investigation of casualties of marine accidents that the probability of 

serious accidents in waters far from ports or coastal areas is significantly higher than others, 
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especially at the boundary of multi-country waters, and the possibility and severity of accidents will 

be higher. In addition, some researchers have analyzed and studied the accidents occurring in many 

specific sea areas around the world, such as the Yangtze River (Zhang et al., 2013), polar seas (Xue 

et al., 2021) and the Chinese coastal areas (Liu et al., 2021), provided a guarantee for the safe 

navigation of ships in different navigation areas. At the same time, Deng et al. (2021) analyzed the 

coupling effect of multiple factors according to the characteristics of different accidents, and found 

that, except for fire or explosion accidents, environmental factors have obvious influence on other 

types of accidents, and with the increase of the proportion of environmental factors involved, the 

severity of related accidents will increase accordingly. 

Although the above studies have analyzed the influential factors of marine accidents from 

different perspectives, there are still some limitations in the data processing process. On the one 

hand, due to the complexity of multi-factor data processing, and the uncertainty and relevance of 

the relationship between factors, most studies only analyze single or few influential factors, and the 

existing studies fail at large to take into account the diversity and comprehensiveness of influential 

factors. On the other hand, there is no previous studies in the field that use seven databases to address 

accident data deficiencies. This study pioneers the contraction of the most comprehensive maritime 

accident database to analyse the parameters to a very detailed level by reducing uncertainty in data.  

2.2 BN modelling applied to maritime accident analysis 

In the maritime safety research, relevant researchers use a variety of methods to analyze marine 

accidents, and the classical analysis techniques include an ordered logistic regression model (Chen 

et al., 2019; Wang et al., 2021; Weng and Yang, 2015), System Theoretical Accident Model (STAMP) 

(Ceylan et al., 2021; Tang et al., 2019), Event Tree Analysis (ETA) (Galieriková, 2019; Navas de 

Maya and Kurt, 2020; Talley et al., 2008; Xue et al., 2021) and Bayesian networks (BN) (Fan et al., 

2020a; Hänninen, 2014; Hänninen et al., 2014; Wang and Yang, 2018; Wu et al., 2021). BN has the 

advantages of learning and inference algorithms, it mainly extracts random variables involved in a 

study, and then draws a directed graph according to whether they are independent, which is used to 

describe the dependence relationship between the variables and express the conditional probability 

of events. In the process of marine accident analysis and research, BN can combine historical data 

and expert knowledge to establish a network structure, infer accident causes and predict accident 

results, so as to improve marine safety management and make the correct decision (Hänninen et al., 

2014). 

When studying the influence of human factors on marine accidents, Fan et al. (2020a) 

established a two-level risk influential factor database which containing 25 variables and used a BN 

structure to conduct parameters learning. In the study of ship navigation risks in the Arctic region, 

Li et al. (2021) and Baksh et al. (2018) selected 24 and 36 basic factor nodes to establish a risk 

inference network respectively, solved the problem of ship collision prediction in the ice area. 

Aiming at the safe navigation of ships in inland waterways, Zhang et al. (2013) and Zhao et al. 

(2021) extracted the relevant factors affecting the marine accidents in inland waterways. After 

establishing the corresponding database of key influential factors, a BN network was used to process 

the data. It was found that passenger ships, tugs and oil tankers in inland waterways are more likely 

to have serious accidents, and grounding is the most difficult accident to deal with. Deng et al. (2021) 

and Liu et al. (2021) analyzed accident investigation reports in coastal areas and reasoned through 

BN. It was found that small bulk cargo ships in coastal areas were more likely to have collision 

accidents, while severe weather conditions and high traffic density would aggravate the severity of 
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accidents. 

Based on the advantage of data-driven, BN has a good application in marine accident analysis. 

Li and Tang (2019) used BN to determine the impact of hull structure changes on the grounding of 

LNG ships. In addition, Jiang et al. (2020) used a BN structure to conduct simulation demonstration, 

and the results showed that the severity of ship collision accidents and hijacking events would 

greatly increase. In addition, the study also found that container ships and ships sailing close to 

offshore are relatively safer, which was also same as the results of Liang et al. (2022) and Dinis et 

al. (2020). Wu et al. (2021) analyzed the fire issue in the process of transporting electric vehicles on 

Ro-Pax ships by using BN combined with the maximum expectation algorithm, and found that the 

charging state and high external temperature would greatly increase the probability of accidents. 

Tang et al. (2019) used BN combined with a random forest technology to predict the factors causing 

different grades of collision accident in the Jiangsu section of the Yangtze River. Afenyo et al. (2017) 

focused on the analysis of the collision accidents in the ice area, established the event tree of iceberg 

collision by using BN, and proposed that the allocation of resources and investment was the key 

factor to prevent accidents, and the structure of BN also well reflected the conditional probability 

of various variables. It helps to make adjustments according to their prediction results, which is also 

corresponding to the results of Hänninen and Kujala (2014). In addition, Zhao et al. (2021) aiming 

to analyse the safety of maritime autonomous sea ship (MASS) via a BN model based on accident 

data in Yangtze river revealed that the intelligent development of ships will effectively reduce the 

collision and grounding accidents, but at the same time, fire or extreme weather can cause more 

serious consequences to MASS, which reminds the relevant stakeholders on the new safety 

problems when promoting the development of MASS in inland waters. Guo et al. (2023) developed 

a new dynamic BN model to analyse the risk evolution of ship pilotage operations, stimulating the 

BN applications in maritime accidents from both static and dynamic perspectives.  

An extensive literature analysis has shown that the current research of severity of marine 

accidents is mostly for the verification and discussion of a single index, lack of database support, 

and fail to comprehensively analyze the coupling effect of multiple influential factors, and there are 

few applications of BN in the severity analysis of marine accidents. Combined with the above 

analysis, it can be found that BN has been widely used in the field of marine accident analysis, and 

the advantages of its learning and inference function can make it process more data and enhance the 

reliability and stability of the results. Therefore, this study aims to extract the accident risk 

influential factors from a large number of marine accident investigation reports, establish a 

comprehensive accident influential factors database, combine it with the expert knowledge for the 

classification and interpretation of the related factors, use a TAN-BN model to learn and train the 

database, analyze the factors affecting the accident severity, and enrich the study of marine accident 

severity.  

3. Methodology 

3.1 Research data  

After the occurrence of a marine accident, the marine investigation agency obtains the basic 

information of the ship and the navigation data before and after the accident through various ways, 

(e.g., interviewing the surviving crew and passengers, checking the log and engine log records, and 

extracting the data of the voyage data recorder on board) to form the marine accident investigation 

report. Considering the integrity, reliability and openness of data, the Australian Transport Safety 
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Board (ATSB), Federal Bureau of Investigation Marine Accident Investigation Unit (BSU), China 

Maritime Safety Administration (China MSA), National Safety Transportation Board (NTSB), 

Canadian Transportation Safety Board (TSB), Marine Accident Investigation Branch (MAIB) and 

Japan Transportation Safety Board (JTSB), are used as the main data sources in this study. 

The analysis of the marine accident investigation reports find that the details of accident 

records is different, and some data are inaccurate and/or incomplete. Therefore, accident records 

with incomplete data need to be eliminated, such as those that do not list the consequences of the 

accidents. After filtering the accident records, 2,513 accident records were obtained initially. Since 

the ships or crew may be involved in multiple countries, the accident investigation is conducted in 

the form of joint investigation, and each country concerned publishes investigation reports after the 

accident investigation, therefore this study further screens accident investigation reports and 

eliminates duplicate accident investigation reports. Finally, the database established in this study 

includes 1,294 marine accident investigation reports from 2000 to 2019. Fig. 1 shows the source 

distribution of marine accident investigation reports. 

 

Fig. 1. Source distribution of water traffic accident reports. 

 

At present, the International Maritime Organization (IMO) classifies the severity of marine 

accidents according to the degree of damage to the ship, casualties and environmental pollution 

(IMO, 2000). In addition, some countries have also classified the severity of accidents into different 

grades. For example, China classifies marine accidents into especially major accidents, serious 

accidents, major accidents and general accidents according to the damage consequences (MoT, 

2014). According to the different severity classes of accidents, the UK divides them into three 

categories: especially serious marine accidents, major marine accidents and marine incidents 

(National, 2005). Through comparative analysis, IMO and most national marine investigation 

agencies have similar classification principles of marine accident severity. At the same time, 

considering that the database used in this study comes from the accident investigation reports of 

various countries, in order to ensure the consistency in the analysis process, this study classifies the 

severity of marine accidents into three categories according to the IMO classification standards. The 

specific grades and explanations are shown in Table 1 Severity grade of marine accidents. 
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Table 1 Severity grade of marine accidents. 

No Grade of severity Notation definition 

1 Less serious casualties and marine incidents 𝑆1 
There are no injuries, environmental 

pollution or minor hull damage. 

2 Serious casualties 𝑆2 
There are injuries, oil spills, or damage to 

the hull. 

3 Very serious casualties 𝑆3 

There are death or disappearance of 

persons, major oil spills or loss of ship in 

an accident. 

 

3.2 Data pre-processing (Identification of AIFs) 

Investigation reports are classified according to the established accident severity grades (i.e., 

Table 1). Based on the relevant literature (Wang et al., 2021; Wang and Yang, 2018), this study 

extracts human, ship and environmental factors as the first-level indexes of AIFs database. Through 

further analysis, it is concluded that the main body causing the existence of human factors is the 

crew involved in the accident. For example, the physical and mental state of the crew, the theoretical 

knowledge level and communication ability, the work experience and the standardization of 

operation all have an impact on the safe navigation of the ships. According to the analysis of ship 

factors, it can be found that the seaworthiness, safety feature and parameters of a ship are the second-

level indexes that affect the severity of an accident. Among them, ship parameters include ship type, 

ship age, engine power and tonnage, and whether it is a flag of convenience. Ship seaworthiness 

includes the ship's certificate and personnel. Ship safety feature mainly refers to the PSC/FSC 

inspection before the accident. Environmental factors mainly consider the channel conditions and 

natural factors in the water area where the ship sailing. According to relevant researches (Deng et 

al., 2021; Xing et al., 2020) channel conditions include the location of the water area, water depth, 

channel width and navigable density, while natural conditions refer to wind, waves, currents and 

visibility (Wang et al., 2021; Wang et al., 2022). 

In the process of data processing, this study will directly apply the existing unified 

classification, for example, the definition and classification of "accident type" and "ship type" 

appear in the accident report of MAIB and TSB, and this classification standard has also been widely 

used in the industry (Fan et al., 2020b). However, a careful review of all accident investigation 

reports reveals that the classification of accident influential factors by various marine investigation 

agencies is not completely consistent, and some information needs to be integrated and standardized. 

Among the human, ship and management factors, since the marine accident investigation report did 

not provide a unified definition of the state of AIFs "Physical & Psychological state", "education 

background", "Communication problem", "Operational Error" and "Violation Operation", 

"Seaworthiness", "Safety management system" and "Company Safety culture". Therefore, the 

relevant literature (Coraddu et al., 2020; Zhang and Thai, 2016) and expert knowledge were used to 

determine the specific status levels of the above factors. For AIFs with continuity characteristics, 

they can be divided into several independent subsets according to the classification standard of 

literature (Wang et al., 2021), such as "Time at sea", "Time in present rank ", etc. By discretizing, 

the continuous eigenvalues can be transformed into hierarchical state values, which is convenient 

for subsequent data processing and probability calculation. 

After determining the third-level influential factor indexes by text analysis and expert judgment, 

this study establishes a database of influential factors of marine accident including 35 third-level 

AIFs. Meanwhile, in order to facilitate the data learning and probability calculation of BN in the 
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next step, possible states of each AIF are assigned in this study, as shown in Table 2 Database of 

influential factors of severity of marine accidents. 
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Table 2 Database of influential factors of severity of marine accidents. 

No. Level I Level II Level III Notation Value/definition Corresponding values 

1 

Accident 

Accident type Accident type 𝑅1 
collision, stranding/grounding, fire/explosion, contact, 

capsize/sinking, hull/machinery damage, other 
1,2,3,4,5,6,7 

2 

Date and time 

Month 𝑅2 
January, February, March, April, May, June, July, 

August, September, October, November, December 
1,2,3,4,5,6,7,8,9,10,11,12 

3 Time 𝑅3 
0000-0400, 0400-0800, 0800-1200, 1200-1600, 1600-

2000, 2000-2400 
1,2,3,4,5,6 

4 

human crew 

Physical & Psychological state 𝑅4 poor, good 1,2 

5 Education background 𝑅5 poor, good 1,2 

6 Time at sea 𝑅6 < 5 years, 5 <= time < 10 years, >= 10 years 1,2,3 

7 Time in present rank 𝑅7 < 1 year, 1 <= time < 5 years, >= 5 years 1,2,3 

8 Communication problem 𝑅8 yes, no 1,2 

9 Operational error 𝑅9 yes, no, unknown 1,2,3 

10 Violation operation 𝑅10 yes, no, unknown 1,2,3 

11 

Ship 

Ship 

particulars 

Type 𝑅11 

bulk carrier, container ship, oil tanker, passenger ship 

(including cruise and ro-ro passenger ship), chemical 

tanker, general cargo ship, fishing ship, yacht and sailing 

ship, tug and port traffic boat, others 

1,2,3,4,5,6,7,8,9,10 

12 Age 𝑅12 0-10 years, 10-20 years, 20-30 years, >= 30 years 1,2,3,4 

13 Gross tonnage 𝑅13 < 500 t, 500-3000 t, >= 3000t 1,2,3 

14 Engine power 𝑅14 < 750 KW, 750-3000 KW, >= 3000KW 1,2,3 

15 Flag state 𝑅15 Flag of convenience, Not flag of convenience 1,2 

16 

Voyage data 

Ship's certificates 𝑅16 complete and valid, incomplete or invalid 1,2 

17 Ship manning 𝑅17 adequate, inadequate 1,2 

18 Seafarers' certificates 𝑅18 complete and valid, incomplete or invalid 1,2 

19 Seaworthiness 𝑅19 yes, no 1,2 

20 PSC/FSC inspection 𝑅20 unsure, sure 1,2 

21 
Environm

ent 

External 

environment 
Location  𝑅21 Inland waters, Port, Coastal waters, Open Sea 1,2,3,4 
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22 Visibility 𝑅22 

very poor - Vis < 0.5 nm, Poor - 0.5 <= Vis < 2 nm, 

Moderate - 2 <= Vis < 5 nm, Good and very good - 

Vis >= 5 nm 

1,2,3,4 

23 Wind force 𝑅23 0-5, 6-7, 8-9, 10-12 1,2,3,4 

24 Sea state 𝑅24 0-3, 4-5, 6-7, 8-9 1,2,3,4 

25 Current speed 𝑅25 < 2 kn, 2-4 kn, >=4 kn 1,2,3 

26 

Navigational/

geographical 

condition 

Traffic density 𝑅26 low, high  1,2 

27 Fairway width/ship length 𝑅27 w/l < 1, 1<= w/l < 2, w/l >= 2 1,2,3 

28 Depth-draft ratio (h/d) 𝑅28 h/d < 1.2, 1.2 <= h/d < 1.5, 1.5 <= h/d < 3, h/d >= 3 1,2,3,4 

29 

Managem

ent 

Administratio

n 

Regulation 𝑅29 inadequate, adequate 1,2 

30 Supervision 𝑅30 inadequate, adequate 1,2 

31 

Company 

Safety management system 𝑅31 defective, non-defective 1,2 

32 Rectification of problems 𝑅32 unresponsive, responsive 1,2 

33 Company safety culture 𝑅33 poor, good 1,2 

34 
ship 

Training 𝑅34 inadequate, adequate 1,2 

35 Drill 𝑅35 off schedule, stick to the schedule 1,2 
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3.3 TAN-BN modelling 

A BN is mainly composed of a directed acyclic graph (DAG) and associated probability 

distribution tables (Hänninen, 2014). Among them, nodes and directed edges form the DAG. Nodes 

represent random variables, which are usually labeled with variable names, and different state values 

can be determined according to their discretization or continuity. The directed edges between nodes 

represent the direct dependencies between connected variables, thus determining the statistical 

correlations between nodes and the conditional probability table (CPT). In this study, a large amount 

of statistical information is used to construct a complete CPT, which makes BN have good stochastic 

modeling ability and the ability to deal with nonlinear relations, and realizes the reasoning function 

under incomplete, imprecise and uncertain information. 

There are many data-driven Bayesian methods, such as naive Bayesian network, Augmented 

Naive Bayesian network and Tree Augmented Naive Bayesian network (TAN). TAN improves naive 

Bayesian networks by structural extension, which preserves the learning ability of BN and avoids 

the complexity of studying Bayesian networks (Fan et al., 2020a; Friedman et al., 1997; Wang and 

Yang, 2018). Therefore, this study will use TAN to establish a TAN-BN model to analyze the 

influential factors of accident severity. 

Firstly, the severity grade of marine accidents is coded, and "accident severity" is taken as class 

variable (𝑆). The three accident severity grades in Table 1 are assigned to 𝑆, which are represented 

by "𝑆1", "𝑆2" and "𝑆3" respectively. Secondly, the third-level indexes in the data set of influential 

factors in Table 2 are taken as AIFs to establish the risk variable set 𝑅, and let 𝑅 = {𝑅1, … 𝑅35}. 

Finally, for a DAG, if class variable is regarded as the only parent node of each variable in set 𝑅, 

namely ∏ 𝑅𝑖 = {𝑆} , 1 ≤ 𝑖 ≤ 35, and the parent set corresponding to class quantity 𝑆 is an empty 

set, that is, class variable 𝑆  does not have a parent node, then the joint probability distribution 

formula defined in BN is shown in Eq. (1): 

𝑃(𝑅1, … 𝑅35, 𝑆) = 𝑃(𝑆) ∙ ∏ 𝑃(𝑅𝑖|𝑆)𝑛
𝑖=1       (1) 

If 𝑅𝑖 in all AIFs has only one parent in addition to the established class variable 𝑆, then the 

DAG is a tree, so a function 𝜋 should also be defined in the set 𝑅 to ensure that there are no loops 

in the tree structure. The condition for the function 𝜋 to define a tree on 𝑅 is that there exists one 

and only one 𝑖 such that 𝜋(𝑖) = 0, that is, each variable has only a unique parent, and there is no 

sequence 𝑖1, … 𝑖𝑘, such that 𝜋(𝑖𝑗) = 𝑖𝑗+1, 𝑖 ≤ 𝑗 < 𝑘, and 𝜋(𝑖𝑘) = 𝑖1, that is to ensure that the acyclic 

structure appears. In this case, the function 𝜋  defines a tree network, and when 𝜋(𝑖) > 0  and 

∏ 𝑅𝑖 = {𝑆, … 𝑅𝜋(𝑖)} , when 𝜋(𝑖) = 0 , ∏ 𝑅𝑖 = {𝑆} . Therefore, when the TAN structure model 

conducts learning inference, the main process is to find a tree in the model and define the function 

𝜋 about the set 𝑅 to maximize its log-likelihood value. In addition, the TAN structure also uses the 

calculation of conditional mutual information between variables in the learning and reasoning 

process, and the calculation process of mutual information is shown in Eq. (2): 

𝐼𝑃(𝑅𝑖 , 𝑅𝑗|𝑆) = ∑ 𝑃(𝑟𝑖𝑖 , 𝑟𝑗𝑖 , 𝑆𝑖)𝑙𝑜𝑔
𝑃(𝑟𝑖𝑖,𝑟𝑗𝑖|𝑆𝑖)

𝑃(𝑟𝑖𝑖|𝑆𝑖)𝑃(𝑟𝑗𝑖,𝑆𝑖)𝑟𝑖𝑖,𝑟𝑗𝑖,𝑆𝑖
    (2) 

where 𝐼𝑃 stands for conditional mutual information, 𝑟𝑖𝑖 stands for the 𝑖th state of 𝑅𝑖 in AIF, 𝑟𝑗𝑖 stands 

for the 𝑖th state of 𝑅𝑗 in AIF, 𝑆𝑖  stands for the 𝑖th grade of accident severity. 

After determining the calculation method of mutual information 𝐼𝑃 and joint probability 𝑃, the 

establish process of the TAN model is mainly divided into the following four steps (Yang et al., 

2018)： 

(1) Based on the AIFs in Table 2, the corresponding node graph of all variables 𝑅𝑖 is set up and 
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connected to complete the construction of the entire undirected graph. Each node graph contains the 

name of the variable and the corresponding number of each state, and the correlation degree between 

variables is determined by calculating the mutual information value between nodes. 

(2) Establish a maximum weighted spanning tree. The main process is to ensure that there is 

no cycle in the tree structure according to the function 𝜋 defined above, and to maximize its log-

likelihood value. 

(3) For the established undirected tree, the connection direction between the target node and 

the attribute variable is determined by using the calculated mutual information value. 

(4) Add class variable 𝑆 and establish directed connection with all variables 𝑅𝑖 to complete the 

TAN modeling process. 

3.4 Sensitivity analysis 

3.4.1 Mutual information 

Mutual information is a measure to describe the interdependence between variables, and can 

also be used as a standard for feature selection and feature transformation among variables in 

machine learning (Fan et al., 2020a). Therefore, when studying the relationship between influential 

factors and accident severity, "accident severity", as a class variable, can be determined by 

calculating the mutual information value between risk variables included in AIFs and "accident 

severity". The specific calculation process is shown in Eq. (3): 

𝐼(𝑆, 𝑟𝑖) = − ∑ 𝑃(𝑆, 𝑟𝑖𝑗)𝑙𝑜𝑔
𝑃(𝑆,𝑟𝑖𝑗)

𝑃(𝑆)𝑃(𝑟𝑖𝑗)𝑆,𝑖       (3) 

where 𝑆 represents the severity of an accident, 𝑟𝑖 represents the 𝑖th AIF variable, 𝑟𝑖𝑗 represents the 

𝑗th state of the 𝑖th AIF, and 𝐼(𝑆, 𝑟𝑖) represents the mutual information value between the severity of 

the accident and the 𝑖th AIF. 

In this study, after establishing the TAN-BN model, calculating the mutual information value 

can be used to compare the relationship between a single AIF and "accident severity", that is, the 

greater the mutual information value, the stronger the relationship between the AIF and "accident 

severity". This method can screen the risk variables, filter out the AIF with relatively small impact, 

and reduce the workload of subsequent calculation. 

3.4.2 Joint probability 

Joint probability refers to the probability that contains multiple conditions and all conditions 

hold at the same time (Jiang et al., 2020). In this study, the TAN-BN model is used to assign 

corresponding probability values to different states of related AIFs. When other AIFs variables are 

locked, the probability distributions of different states of class variables or target nodes can be 

calculated. The sum of the joint distribution probability values corresponding to different states of 

an AIF is 1. The specific calculation process is shown in Eq. (4), where 𝑆 represents the severity of 

the accident and 𝑅𝑖𝑗 represents the 𝑗th state of the 𝑖th AIF: 

𝑃(𝑆, 𝑅𝑖𝑗) = 𝑃(𝑆) ∙ 𝑃(𝑅𝑖𝑗|𝑆)        (4) 

3.4.3 True risk influence 

True Risk Influence (TRI) is a novel sensitivity verification method proposed by Alyami (2019). 

In the process of sensitivity analysis, AIFs with relatively greater impact are screened out through 

the mutual information value, and the TAN-BN model is used to calculate the high risk influence 

value (HRI) and low risk influence value (LRI) of these AIFs, and then the average value of the two, 

namely TRI, is calculated to determine the impact degree of a variable on the severity of the accident. 

The calculation process is divided into three steps:  
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(1) Increase the occurrence probability of the state that has the greatest impact on a certain 

accident severity grade in a variable node to 100%, obtain the occurrence probability of 

this accident severity grade at this time, and make the difference with the initial probability 

value to obtain HRI. 

(2) Increase the occurrence probability of the state that has the least influence on the severity 

grade of an accident to 100% in a variable node, obtain the occurrence probability of the 

severity grade of the accident at this time, and make the difference with the initial 

probability value to obtain LRI. 

(3) Calculate TRI by using the obtained HRI and LRI, and the specific process is shown in Eq. 

(5): 

𝑇𝑅𝐼 =
𝐻𝑅𝐼+𝐿𝑅𝐼

2
         (5) 

Therefore, in order to compare the influence degree of other relevant variable nodes on 

"accident severity", the TRI corresponding to each accident severity grade was calculated for all 

screened AIFs, and the TRI values of all variables on all accident severity grades are obtained, and 

the priority is arranged. Under this sensitivity analysis method, the greater the value of TRI, the 

greater the impact of the corresponding node on the "accident severity". 

3.5 Model validation 

Since axiom-based verification is widely used in BN, two axioms are used to verify the 

robustness of the model. To further ensure the validity of the model, receiver operating characteristic 

curve (ROC) and case analysis were used for model validation based on similar studies (Fan et al., 

2020a; Guo et al., 2023; Wang and Yang, 2018; Yang et al., 2018). 

3.5.1 Validation method 1 (2 Axiom) 

Model validation is one of the important steps in the result analysis stage. In the process of 

sensitivity analysis, according to relevant literature (Jones et al., 2010; Zhang et al., 2013) , the 

TAN-BN model should satisfy the following two axioms: 

Axiom 1: When the prior probability of each AIF slightly increases or decreases, the posterior 

probability of the target node should be increased or decreased accordingly. 

Axiom 2: The total effect of the comprehensive probability change of 𝑥 parameters should not 

be less than the total effect of the probability change of the set of 𝑦 (𝑦 ∈ 𝑥). 

3.5.2 Validation method 2 (ROC) 

The sensitivity and accuracy of the established TAN-BN structure can be verified by drawing 

the receiver operating characteristic curve (ROC). The abscissa of this curve is the false positive 

rate and the ordinate is the true positive rate (Jiang et al., 2020). After the structure of the TAN-BN 

model is determined, the area under the curve (AUC) can be used to quantitatively analyze the 

performance of the model, and the value of AUC is generally between 0.5 and 1. The larger the 

value of AUC, the better the performance of this model is (Wang and Yang, 2018). 

3.5.3 Validation method 3 (case analysis) 

In order to further verify the reliability of the model, this study chooses a historical accident 

report which is not included in this study, and puts the known accident factors to the established 

TAN-BN model, and observe model of the output as a result. The result will be compared with the 

accident report to verify the veracity and reliability of the model. 

3.6 Scenario analysis (MPE) 

In order to observe the connections between related nodes in BN and find the most likely state 
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of occurrence in a node, a BN model can provide the most likely explanation (MPE) based on the 

determined accident severity, which is also a special case of maximum posterior probability. By 

setting a state of class variable or target node as the MPE mode, the BN model can observe the most 

likely situation of other nodes under a certain accident severity, that is, the most likely AIF state, 

and predict the causes of marine accidents to a certain extent. 

In the MPE mode, there is at least one 100% confidence bar in all states of each node, and the 

confidence bars of other states are at a lower level. The node state corresponding to the confidence 

bar at 100% level is the most likely situation, and the state at other levels represents the relatively 

low possibility of occurrence, and its probability value is the result after scaling. Some nodes also 

have multiple 100% level confidence bars, which means that the node states corresponding to these 

100% level confidence bars are equally likely to appear under a certain accident severity grade. 

4 Results and discussion 

4.1 TAN-BN modelling 

The structure learning of BN can be carried out from two steps: (1) establishing the relationship 

between variables based on data-driven method, and (2) analyzing and improving the established 

relationship structure based on expert knowledge. The relationship based on the data-driven method 

can be used to calculate the mutual information value to evaluate the correlation degree between 

variables. However, the structure established by this method has certain complexity, and the 

connections between some nodes may not be consistent with the actual situation (Fan et al., 2020a; 

Liang et al., 2022; Liu et al., 2021; Wang and Yang, 2018). Therefore, on the basis of machine 

learning and data training, this study further evaluates and improves the preliminarily established 

structure through expert evaluation, so that the final TAN-BN model has better robustness. 

4.1.1 TAN-BN structure 

According to the method in Section 3.3, the Netica software package (Norsys, 

https://www.norsys.com) is used as an auxiliary calculation tool, and the built-in "structure learning" 

function of the software is used, combined with Eq. (3), to establish the TAN-BN model as shown 

in Fig. 2. The TAN-BN model established in this study includes 35 AIFs in Table 2 and shows the 

relationship between the variables. 
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Fig. 2. TAN-BN model nodes. 

 

4.1.2 Experts’ knowledge 

Fig. 2 shows the TAN-BN model preliminarily established based on the data-driven method. 

Subsequently, five experts in the field of marine accident analysis are invited to further evaluate the 

connections between the established model nodes. The basic information of these experts is shown 

in Table 3. 

Table 3 The background information of the employed experts. 

Expert No. Age Job Title Field and Experience 

Expert A 45 Officer of the Maritime Administration Engaged in maritime supervision for 15 

years 

Expert B 38 Associate professor, second officer Engaged in research related to marine 

accident analysis for 10 years 

Expert C 35 Associate professor, third officer Engaged in research related to ship safety for 

8 years 

Expert D 63 Chief officer and professor Engaged in research related to maritime 

safety for 35 years 

Expert E 47 Captain and associate professor Engaged in theory and practice related to 

marine navigation for 21 years 

 

According to the expert judgment, it can be found that the relationship between some nodes in 
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the model (as shown in Fig. 2) does not conform to the actual situation. Therefore, the corresponding 

connections are deleted according to expert evaluation opinions, as shown in Table 4, and the TAN-

BN model established in this study is finally obtained, as shown in Fig. 3. 

 

Table 4 The deleted connections of some nodes. 

Node Linked node 

Depth-draft ratio (H/D) Fairway width/Ship Length 

Time in present rank 

Visibility 

Ship type Ship age 

Flag state 

Ship manning 

Month Ship type 

Seaworthiness 

Communication 

Time 

 

 

Fig. 3.  Modeling results of TAN-BN. 

 

Based on the TAN-BN model established in Fig. 3, the CPTs of all nodes can be calculated to 

obtain the posterior probability of each variable. Then, each CPT at this time is modified by using 
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Fig. 3 following the use of expert judgment. Therefore, effective information about the relationship 

between the severity of marine accidents and influential factors can be obtained by analyzing the 

relevant AIFs. 

4.2 Sensitivity analysis 

4.2.1 Mutual information 

In this study, mutual information can be used as a measure to characterize the degree of 

relationship between influential factors and class variables. Therefore, according to the calculation 

method of mutual information value in Eq. (3) and the TAN-BN model in Fig. 3, this study analyzes 

and calculates the mutual information between related factors and the severity of marine accidents.  

Table  shows the mutual information value between "accident severity" and each AIFs in the 

TAN-BN model. Since the TAN-BN model established in this study takes "accident severity" as its 

parent node, when the mutual information value is larger, the corresponding variable has a greater 

impact on "accident severity", and the node "accident type" with the mutual information value of 

0.25554 has the greatest impact on class variables. 

 

Table 5 Mutual information between AIFs and "Accident Severity". 

Node                      Mutual Information Percent  Variance of Beliefs 

Accident type 0.25554 16.3 0.0487978 

Engine power 0.10594 6.78 0.0193506 

Gross tonnage 0.1012 6.47 0.0178318 

Ship type 0.08282 5.3 0.0175808 

Location 0.02725 1.74 0.0049555 

Safety system 0.02318 1.48 0.0031612 

Visibility 0.02142 1.37 0.0036286 

Drill 0.02078 1.33 0.0033224 

Ship age 0.02074 1.33 0.0039497 

Rectification of problem 0.02034 1.3 0.0026059 

Width length 0.01998 1.28 0.0032698 

Company culture 0.01903 1.22 0.0021741 

Training 0.01741 1.11 0.0027337 

Time 0.01724 1.1 0.0028676 

PSC FSC exam 0.0148 0.947 0.0025012 

Sea state 0.01473 0.942 0.0033939 

Time in rank 0.01381 0.883 0.0027797 

Education background 0.01313 0.84 0.0024164 

Month 0.01303 0.833 0.0018662 

Time at sea 0.01136 0.727 0.0018887 

Seafarer certificates 0.01104 0.706 0.0026789 

Depth draft ratio 0.01083 0.693 0.0013852 

Wind force 0.01028 0.657 0.0021378 

Violation operation 0.00912 0.583 0.0011223 

Ship manning 0.0084 0.537 0.0016262 

Regulation 0.00668 0.427 0.0007406 

Current speed 0.00598 0.382 0.0010653 

Seaworthiness 0.00597 0.382 0.0008956 

Traffic density 0.00566 0.362 0.0007355 

Supervision 0.00509 0.325 0.0006244 

Ship certificates 0.00463 0.296 0.0009759 

Operational error 0.0012 0.0768 0.0002156 

Physical & Psychological state 0.00082 0.0524 0.0001542 

Communication 0.00071 0.0453 0.0001352 

Flag state 0.00038 0.0242 0.0000536 

 

In order to select AIFs that have a greater impact on "accident severity", the first five variables 

with a greater mutual information value, such as "accident type", "engine power", "gross tonnage", 

"ship type" and "location", are selected as important AIFs for subsequent sensitivity analysis.  
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4.2.2 Sensitivity analysis 

After screening the important AIFs, the joint probability and TRI are further calculated to 

analyze the impact of related factors on the severity of the accident. Table  shows the joint 

probability between each state of the selected AIFs and the target variable. 

 

Table 6 Joint probability between significant AIFs and accident severity. 

Accident type S1 S2 S3 

1 29.1 50.8 20.1 

2 41.9 44.9 13.3 

3 18.3 44.1 37.6 

4 17.6 62.6 19.8 

5 6.22 9.99 83.8 

6 32.3 10.1 57.5 

7 24.2 6.41 69.3 
    

Engine power S1 S2 S3 

1 12.7 24.4 62.9 

2 20 30.8 49.1 

3 35.2 41.8 23 
    

Ship type S1 S2 S3 

1 35.5 38.8 25.7 

2 30.8 41 28.1 

3 28.4 43.4 28.2 

4 23.7 48.3 28 

5 33.5 37.1 29.5 

6 24.2 29.6 46.2 

7 9.32 19.6 71.1 

8 20.8 32.1 47.1 

9 26.3 27.8 45.9 

10 21 31.4 47.6 
    

Gross tonnage S1 S2 S3 

1 13 25.9 61.1 

2 19.9 35.5 44.6 

3 36.2 40.6 23.2 
    

Location S1 S2 S3 

1 16.7 47.6 35.7 

2 30.8 36 33.2 

3 23.6 27.2 49.2 

4 25.9 42.9 31.2 

 

Table  shows the state of each variable that has the greatest and least impact on accident severity 

(see bold). For example, the most likely accident type of "Less serious casualties and marine 

incidents" is "stranding/grounding" (41.9%), the most likely accident type of "serious accident" is 

"contact" (62.6%), and the most likely accident type of "very serious accident" is 
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"capsizing/sinking" (83.8%). In terms of "engine power" and "tonnage", ships with "less than 

750KW" and "less than 500T" are more likely to have "very serious accidents" (62.9% and 61.1%), 

and ships with "more than or equal to 3000KW" and "more than or equal to 3000T" are more likely 

to have "Less serious casualties and marine incidents" (35.3% and 36.2%). "Fishing ships" are more 

likely to have "very serious accidents" (71.1%) and less likely to have "Less serious casualties and 

marine incidents" and "serious accidents" (9.32% and 19.6% respectively), while "bulk carriers" are 

more likely to have "Less serious casualties and marine incidents" (35.5%). "Coastal areas" are more 

likely to occur "very serious accidents" (49.2%), "ports" are more likely to occur " Less serious 

casualties and marine incidents " (30.8%), and "inland waters" are more likely to occur "serious 

accidents" (47.6%). The analysis of the joint probability data can show the probability of the 

occurrence of an accident grade and some influential factors in the accident, and explain the 

influence of some states of a single variable on the severity of an accident. 

By calculating the average TRI values of different accident severity grades and prioritizing 

them, the influence of relevant variables on "accident severity" can be illustrated. The higher the 

TRI, the greater the influence of the corresponding AIF node on the "accident severity". Table  

shows the TRI values of different accident severity grades corresponding to different "accident type" 

states. 
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Table 7 TRI values of different states of "accident type" corresponding to accident severity grade. 

Accident type 

1 2 3 4 5 6 7 S1 HRI LRI TRI 

/  / / / / / / 25.8 16.1 19.58 17.84 

100% 0 0 0 0 0 0 29.1 
  

  

 0 100% 0 0 0 0 0 41.9 
  

  

 0 0 100% 0 0 0 0 18.3 
  

  

 0 0 0 100% 0 0 0 17.6 
  

  

 0 0 0 0 100% 0 0 6.22 
  

  

 0 0 0 0 0 100% 0 32.3 
  

  

 0 0  0  0  0  0  100% 24.2       

1 2 3 4 5 6 7 S2 HRI LRI TRI 

/  / / / / / / 34.7 27.9 28.29 28.095 

100% 0 0 0 0 0 0 50.8 
  

  

 0 100% 0 0 0 0 0 44.9 
  

  

 0 0 100% 0 0 0 0 44.1 
  

  

 0 0 0 100% 0 0 0 62.6 
  

  

 0 0 0 0 100% 0 0 9.99 
  

  

 0 0 0 0 0 100% 0 10.1 
  

  

 0 0  0  0  0  0  100% 6.41       

1 2 3 4 5 6 7 S3 HRI LRI TRI 

/  / / / / / / 39.5 44.3 26.2 35.25 

100% 0 0 0 0 0 0 20.1 
  

  

 0 100% 0 0 0 0 0 13.3 
  

  

 0 0 100% 0 0 0 0 37.6 
  

  

 0 0 0 100% 0 0 0 19.8 
  

  

 0 0 0 0 100% 0 0 83.8 
  

  

 0 0 0 0 0 100% 0 57.5 
  

  

 0 0  0  0  0  0  100% 69.3       
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In Table , taking "Less serious casualties and marine incidents" as an example, 25.8% in the 

first row represents the initial probability of "general accident" in the model, and each row below 

represents the probability of "general accident" when different states respectively reach 100% , for 

example, in the second row, the probability of “state 1” of the accident type is set to 100% (other 

state probability is 0), the probability of "Less serious casualties and marine incidents" is 29.1%; in 

the third row, the probability of “state 2” of the accident type is set to 100% (other state probability 

is 0), the probability of "Less serious casualties and marine incidents" is 41.9%, and so on. After the 

calculation of all the states, it can be found that the maximum probability value of "Less serious 

casualties and marine incidents" is 41.9%, which corresponds to “state 2” of accident type. The 

minimum probability of "Less serious casualties and marine incidents" is 6.22%, which corresponds 

to “state 5”. Therefore, by calculating the difference between the calculated maximum and minimum 

probability values and the initial probability, HRI and LRI are obtained as 16.1% and 19.58%, 

respectively. Then, the average value of HRI and LRI is taken to obtain the TRI of "Less serious 

casualties and marine incidents" corresponding to different "accident type" states is 17.84%. In this 

way, the TRI values of important AIFs under different accident severity grades are shown in Table . 

 

Table 8 TRI values of important AIFs under different accident severity grades. 

Node 
TRI 

S1 S2 S3 Average 

Accident type 17.84 28.095 35.25 27.0617 

Engine power 11.25 8.7 19.95 13.3 

Gross tonnage 11.6 7.35 18.95 12.6333 

Ship type 13.09 14.35 22.7 16.7133 

Location 7.05 10.2 9 8.75 

 

Table  shows the TRI of the important AIFs for different accident severity grades. By 

comparing and ranking the TRI, the decreasing ranking of the most important variables for the 

accident severity is shown as follows: 

Accident type > Ship type > Engine power > Gross tonnage > Location 

Then, the important AIFs variables under different accident severity grades are ranked 

according to the above method, as shown in Table : 

 

Table 9 TRI value ranking of important AIFs. 

Accident severity Accident type Engine power Gross tonnage Ship type Location 

S1 1 4 3 2 5 

S2 1 4 5 2 3 

S3 1 3 4 2 5 

 

As can be seen from Table , there are both similarities and differences in the prioritization of 

the influence of different variables under different accident severity grades. For example, "Accident 

type" and "ship type" are consistently the most important AIFs among the three accident severity 

grades. In the comparison of "Very serious accident" with "Less serious casualties and marine 

incidents" and "Serious accident", "main engine power" has more influence than "tonnage" and 

"accident location". For "Very serious accidents", the influence ranking of the above variables is 

consistent with the average TRI. At the same time, this method not only illustrates the influence 
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degree of single factor on the target node of the network model, but also shows the influence degree 

of multi-factor superposition on the target node. 

4.2.3 Model validation 

In the process of model verification, since the TAN-BN model nodes have certain correlation 

and each target node has different independent states, this study observes the model results by 

calculating the change of different states of each node to verify the reliability of the model. In the 

process of model verification, the selected important AIFs are taken as the target nodes and the 

different states of different nodes are adjusted successively. The specific process is as follows: (1) 

select "Accident Type" as the first verification node, increase the value of the state that has the 

greatest impact on "accident severity" by 10%, (2) and decrease the value of the state that has the 

least impact on "accident severity" by 10% in this node, this process is expressed as "~10%" in 

Table , (3) apply the same method to " engine power", "tonnage", "ship type" and "position" 

successively, and record the accumulated variation. At the same time, the same verification process 

is successively applied to different grades of "accident severity" until all the accident severity states 

are included. The specific results are shown in Table . 

 

Table 10 Influence of the change of target node status on different accident severity grades. 

Accident type / ~10% ~10% ~10% ~10% ~10% 

Engine power / / ~10% ~10% ~10% ~10% 

Gross tonnage / / / ~10% ~10% ~10% 

Ship type / / / / ~10% ~10% 

Location / / / / / ~10% 

S1 25.8 29.4 31.7 34 36.8 38.6 

S2 34.7 41 42.7 44 47.5 49.7 

S3 39.5 46.5 50.6 54.5 58.6 60.3 

 

It can be seen from Table , the original data in the TAN-BN model in the first column is the 

probability of occurrence of different accident severity grades, and the accumulated data after 

changes in the verification process in each subsequent column. Besides, the calculation for different 

accident severity grades is independent, that is, each row is calculated independently. Specifically, 

the first line of "25.8%" is the original value of the "Less serious casualties and marine incidents", 

let the biggest impact of the state in "accident type" to the "Less serious casualties and marine 

incidents" value increased by 10%, the minimal impact of the state in "accident type" decreases by 

10%, so the state of the "Less serious casualties and marine incidents" status value change to 

"29.4%". On this basis, the same steps are successively performed for "engine power", "tonnage", 

"ship type" and "position" nodes to obtain the corresponding change values. In addition, apply the 

same validation process to "Serious accidents" and "Very serious accidents" until all calculations 

are completed. It can be found from Table  that the change law of the state value of the target node 

conforms to Axiom 1. By comparing the initial state values of different accident severity grades 

with the updated node state values, with the increase and decrease of the corresponding states of 

related AIFs, the state change of the target node conforms to Axiom 2, verifying the reliability of 

this model. 

In addition, the receiver operating characteristic curve (ROC) is used to verify the accuracy of 

the model data. The abscissa of the curve is the false positive rate, and the ordinate is the true positive 

rate. The area under the curve (AUC) can be used to judge the reliability of the model. Generally, 
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the value of AUC is greater than 0.5 and less than 1, and the larger the AUC is, the better the 

reliability of the model is (Wang and Yang, 2018). 

With the severity of the accident as the target node, the state of the three severity grades is 

treated with binary classification. The TAN-BN models corresponding to Fig. 2 and Fig. 3 are tested 

and compared by Netica software, respectively. The corresponding verification results of different 

severity grades of accidents are shown in Table . It can be found from Table  that the AUC of the 

TAN-BN model established in this study is all greater than 0.5 for the three grades of accident 

severity, and the AUC value of the TAN-BN model in Fig. 3 modified by combining expert 

knowledge is larger and its performance is better. 

 

Table 11 AUC corresponding to different grades of accident severity. 

State S1 S2 S3 

Fig (2)-AUC 0.7996 0.7503 0.7446 

Fig (3)-AUC 0.8738 0.8997 0.9148 

 

In addition, historical accident investigation reports, which are not included in the accident 

report database of this study, can also be used to validate the model. For example, this study selects 

the marine accident investigation report (MAIB15-2021) issued by MAIB as the object of case 

analysis. The incident occurred on 28/03/2020, near the factory pier on the Isle of Skye in Scotland. 

A chemical ship named Key Bora ran aground 400 meters from the pier for about 12 minutes before 

refloating. There were no injuries or contamination, minor structural damage to the ship, the severity 

grade of the accident belongs to the "Less serious casualties and marine incidents" established by 

this study. Through the analysis of the accident report, the relevant information of the accident is as 

follows: 

1) The type of accident is "stranding/grounding", and the time of accident is "1505 28/03/ 

2020"; 

2) The ship type is "chemical ship", the ship age is "14 years", the gross tonnage is "2627T", 

the crew fitness certificate is "complete and valid", since Key Bora's crew comprised of 6 

officers and 6 crew who were all suitably qualified for their roles in accordance with The 

minimum safe manning certificate; 

3) The captain involved has "> 10 years of sea experience", "> 5 years of service", and "good" 

theoretical knowledge level. Since the master was a 48-year-old Polish national who had 

worked at sea for 30 years. He had over 15 years' experience in Chemical tankers, 

including 8 years as master. The communication is "good", because of "effective 

communication", but there are mistakes in the operation process of the relevant crew. Since 

the bridge team relied on locally produced survey data that did not show a boulder 

obstruction near the pier. 

4) The accident occurred in the waters near the "port", at which time the wave speed is "2kts"; 

5) For the shipping enterprises involved in the accident, the correction of the problem is "not 

timely", because the relevant departments fail to find the problems in the Electronic Chart 

Display and Information System (ECDIS) and correct them in time. 

Although some information in the accident report is not recorded, this study sets the state 

parameters of relevant nodes according to the existing data, and the output result of the model shows 
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that there is 74.6% probability of "Less serious casualties and marine incidents", which is also 

consistent with the actual situation of the accident, and further verifies the reliability of the model, 

as shown in Fig. 4: 

 

Fig. 4. Model validation based on a real case. 

 

4.3 Implications (MPE) 

In order to observe the connections between related nodes in BN and find the most likely state 

of occurrence in a node, TAN-BN model can provide the most likely explanation (MPE) based on 

the determined accident severity, which is also a special case of maximum posterior probability. 

Using the MPE mode of BN, the most likely AIFs in the current scenario can be observed, and the 

known scenario can be updated by manual input of evidence, that is, the most likely AIFs in an 

accident under a known severity grade can be observed. This method can provide a more 

comprehensive and reliable scheme for the analysis of marine accidents, predict the causes of 

accidents, and help prevent the occurrence of marine accidents. 

In the MPE mode, each node will have at least one 100% level confidence bar, and usually 

several lower level confidence bars, which can be manually set to 100% level for each node to obtain 
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the most likely other configuration information. If the other nodes are in the most likely 

configuration, the shorter bars represent the relative probabilities (scaled) of the other states, as 

shown in Fig. 5.  

 

Fig. 5. MPE mode. 

 

As can be seen from Fig. 5, "Less serious casualties and marine incidents" occur with a high 

frequency and have the most likely accident severity grade. The relevant important AIFs screened 

in the previous section show the corresponding most likely state, that is to say, there is a high 

probability that a "Less serious casualties and marine incidents" caused by a "collision" will occur 

to a "bulk carrier" under the following circumstances: 

1) Gross tonnage is "greater than or equal to 3000GT", engine power is "greater than or equal 

to 3000KW"; 

2) the ship is located in the "port" and the traffic density is "high"; and 

3) "errors" and "violations" in crew operation. 

Through the above configuration, it can be found that the result after the collision accident 

depends on the ship's own condition and external environment to a certain extent, and the ship's own 
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condition mainly includes ship factors and human factors. From the analysis of ship factors, it can 

be seen that, generally speaking, large ships have longer turning basin and stop time than small ships. 

From the perspective of navigation environment, it is more difficult for large ships to operate in 

waters with high navigable density, such as port areas or waterways, and the possibility of collisions 

is higher. From the analysis of human factors, it can be found that the crew's operation errors and 

violations may lead to the collision. Such errors and violations include the insufficient risk 

assessment, the unclear command, the late steering or even the reverse steering and other 

navigational behaviors. 

The above scenario configuration also reflects the causal relationship between the relevant 

factors and the severity of accident, so as to avoid the evolution of "Less serious casualties and 

marine incidents" into "serious accident" and "very serious accident" to a certain extent. For example, 

in terms of ship scale, the stability of large ships is higher than that of small ships. Therefore, in case 

of collision, large ships are relatively safer, and it is more likely that the accident severity grade is 

lower. For the accident type, collision is different from sinking/capsizing and other types of 

accidents. The consequences of collision depend on the degree of collision, For example, the 

collision of commercial fishing ships often leads to "very serious accident" for fishing ships, while 

"serious accident" or " Less serious casualties and marine incidents " may occur for merchant ships. 

In addition to operation errors, better navigation environment and management can also prevent 

"Less serious casualties and marine incidents" from evolving into "serious accidents" and "very 

serious accidents" to a certain extent. 

Similarly, Fig. 6 shows the interpretation when "accident severity" is selected as "very serious 

accident" in the MPE mode: 
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Fig. 6. MPE scenario for a "very serious accident". 

 

As can be seen from Fig. 6, after setting "very serious accident" as the most likely accident 

severity grade, other AIFs also change accordingly compared with Fig. 5: 

1) The ship type is "fishing ship", the gross tonnage is "< 500GT", and the engine power is 

"< 750KW". 

2) The type of accident is "hull/machinery damage". 

3) The ship is located "coastal area" and the traffic density is "high". 

According to the configuration in Fig. 6 and the analysis above, the consequences and severity 

of the accident are closely related to the important AIFs selected above. During the actual voyage 

of a ship, especially a fishing ship operating offshore, the ship size is usually smaller, and due to 

cost constraints, the ship is in poor condition and the possibility of hull/machinery damage is higher. 

Based on the above conditions, in the event of an accident, if it is affected by human error or the 

adverse environment, it is more likely to cause a more serious accident. 

In addition, when establishing the database of accident risk factors, besides human factors, ship 

factors and environmental factors, management factors are also taken as the first-level indexes 

affecting the severity of accidents. When mutual information is used to screen important AIFs, 
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although the mutual information value corresponding to the three-level indexes of related 

management factors is not large, it can be found that there is an important causal relationship 

between management factors and accident severity under the MPE mode. In fact, the management 

factors include the maritime authority, the shipping company and the ship. The AIFs contained 

therein are further subdivided into regulation, supervision, safety management system, rectification 

of problems, and company safety culture, training, drill, etc. Taking the safety management system 

as an example, set the safety management system node state to "defective" in the MPE mode of the 

BN model. The configuration where other factors are most likely to appear is shown in Fig. 7: 

 

Fig. 7. MPE scenario when the "safety management system" has problems. 

 

Comparing Fig. 7 with Fig. 5, when the safety management system node state is set to 

"defective," the scenario is configured as follows: 

1) The ship type is "fishing boat", the gross tonnage is "< 500GT", and the main engine power 

is "< 750KW". 

2) The type of accident is "hull/machinery damage", and the severity of accident is "very 

serious accident". 

3) The ship is located "coastal area" and the traffic density is "high". 
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4) The rectification of problems is "poor", the company safety culture is "poor", the training 

is "not going according to plan", and the drill is "not going according to plan". 

By comparing the above configuration with Fig. 5 and Fig. 6, it can be found that management 

factors play a very important role in the occurrence of accidents. When the probability of a variable 

in the management factor becomes higher, the probability of related associated variables will 

increase. For example, comparing the situation in Fig. 6, the probability of other management factors 

will also increase after the node state of "safety management system" is set to "defective" in Fig. 7. 

This also shows that the management factors are composed of complex multivariable combinations, 

and the change of a single state will cause changes of a series of factors. In contrast to the situation 

in Fig. 5, the state of the target node for the accident severity and other non-management factors 

changes when the "safety management system" node state is set to "defective" in Fig. 7, which also 

validates the importance of the management factors. 

5. Conclusions 

Based on 1,294 marine accident investigation reports from 2000 to 2019, a data-driven 

Bayesian Network model combining with the TAN Bayes algorithm was established to study the 

impact of relevant risk influential factors on the severity of accidents. In the process of identifying 

the influential factors of accidents, in addition to the traditional ship factors, human factors and 

environmental factors, this study focuses on adding management factors, which can help maritime 

authorities and shipping companies to improve the working mechanism and enhance the supervision 

and management of ships and crew to a certain extent. After the establishment of the model, through 

the calculation of mutual information, the first five important AIFs were screened out, namely 

"accident type", "ship type", "engine power", "gross tonnage" and "location", and further analysis 

and discussion of these important AIFs were conducted. The results show that: 

1) The three accident types "capsizing/sinking", "hull/machinery damage" and "collision" are 

the AIFs most likely to cause “very serious casualties”. The severity of the accident is also closely 

related to the size of the ship. Generally speaking, small ships (such as fishing ships), passenger 

ships and chemical ships with special passenger and cargo properties are more likely to have "very 

serious casualties", because such ships are more likely to cause environmental pollution or casualties 

after the accident. In addition, "coastal areas" are more prone to "very serious casualties" than 

"ports", "inland waterways" and "open seas", because "coastal areas" have more dense traffic than 

"open seas", and ships generally sailing more slowly in "ports" and "inland waterways". 

2) The influence of different variables on the priority of different accident severity grades is 

different. For example, in the comparison of "Very serious accident" with "Less serious casualties 

and marine incidents" and "Serious casualties", the influence of “engine power” is larger than "gross 

tonnage" and "location of accident". For "very serious casualties", the ranking of their impact by the 

relevant variables is consistent with the average TRI. 

3) There is also a strong causal relationship between management factors and accident severity. 

The change of the probability of a single variable in the management factor will cause the 

corresponding change of the probability of the target variable. At the same time, there is a certain 

correlation between the variables in the management factors. For example, the failure of the safety 

management system will increase the probability of the deterioration of the safety culture of the 

shipping company, and it will also lead to the higher possibility of the ship not following the planned 



 

30 

drill and training. 

In general, the TAN-BN model established in this study explains the related factors affecting 

the severity of marine accidents in different perspectives, for the analysis of marine accidents and 

the safe management of ships. However, there are still some limitations in this study. For example, 

a BN model is used on the assumption that the sample and variables are independent with each other, 

and the relationship between nodes also needs to be determined in the process of machine learning, 

which often needs further discussion in the actual application. In this study, the relationship between 

nodes is improved on the basis of the data driven and expert knowledge. However, if there are 

irrelevant connection between nodes, the results may be biased. Therefore, in further studies, 

researchers can use a BN model combined with other methods to enhance the reliability of the results. 

In addition, the collection and assessment of subjective data associated with human factors and 

management factors should be strengthened, which is also helpful to improve the quantitative 

analysis of marine accidents. 

 

References 

Acharya, T.D., Yoo, K.W., Lee, D.H., 2017. GIS-based Spatio-temporal Analysis of Marine Accidents 

Database in the Coastal Zone of Korea. Journal of Coastal Research 79, 114-118. 

https://doi.org/10.2112/SI79-024.1 

Afenyo, M., Khan, F., Veitch, B., Yang, M., 2017. Arctic shipping accident scenario analysis using 

Bayesian Network approach. Ocean Engineering 133, 224-230. 

https://doi.org/10.1016/j.oceaneng.2017.02.002 

AGCS, 2022. Safety & Shipping Review 2022. Allianz Global Corporate & Specialty, Munich. 

Alyami, H., Yang, Z., Riahi, R., Bonsall, S., Wang, J., 2019. Advanced uncertainty modelling for 

container port risk analysis. Accident Analysis & Prevention 123, 411-421. 

https://doi.org/10.1016/j.aap.2016.08.007 

Baksh, A.-A., Abbassi, R., Garaniya, V., Khan, F., 2018. Marine transportation risk assessment using 

Bayesian Network: Application to Arctic waters. Ocean Engineering 159, 422-436. 

https://doi.org/10.1016/j.oceaneng.2018.04.024 

Bye, R.J., Aalberg, A.L., 2018. Maritime navigation accidents and risk indicators: An exploratory 

statistical analysis using AIS data and accident reports. Reliability Engineering & System Safety 176, 

174-186. https://doi.org/10.1016/j.ress.2018.03.033 

Cakir, E., Fışkın, R., Sevgili, C., 2021a. Investigation of tugboat accidents severity: An application of 

association rule mining algorithms. Reliability Engineering & System Safety 209, 107470. 

https://doi.org/10.1016/j.ress.2021.107470 

Cakir, E., Sevgili, C., Fiskin, R., 2021b. An analysis of severity of oil spill caused by vessel accidents. 

Transportation Research Part D: Transport and Environment 90, 102662. 

https://doi.org/10.1016/j.trd.2020.102662 

Ceylan, B.O., Akyuz, E., Arslan, O., 2021. Systems-Theoretic Accident Model and Processes (STAMP) 

approach to analyse socio-technical systems of ship allision in narrow waters. Ocean Engineering 239, 

109804. https://doi.org/10.1016/j.oceaneng.2021.109804 

Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.-P., Langard, B., 2013. Human and organisational 

factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis & 

https://doi.org/10.2112/SI79-024.1
https://doi.org/10.1016/j.oceaneng.2017.02.002
https://doi.org/10.1016/j.aap.2016.08.007
https://doi.org/10.1016/j.oceaneng.2018.04.024
https://doi.org/10.1016/j.ress.2018.03.033
https://doi.org/10.1016/j.ress.2021.107470
https://doi.org/10.1016/j.trd.2020.102662
https://doi.org/10.1016/j.oceaneng.2021.109804


 

31 

Prevention 59, 26-37. https://doi.org/10.1016/j.aap.2013.05.006 

Chen, J., Bian, W., Wan, Z., Yang, Z., Zheng, H., Wang, P., 2019. Identifying factors influencing total-

loss marine accidents in the world: Analysis and evaluation based on ship types and sea regions. Ocean 

Engineering 191, 106495. https://doi.org/10.1016/j.oceaneng.2019.106495 

Cho, D.-O., 2007. The effects of the M/V Sea Prince accident on maritime safety management in Korea. 

Marine Policy 31 (6), 730-735. https://doi.org/10.1016/j.marpol.2007.01.005 

Coraddu, A., Oneto, L., Navas de Maya, B., Kurt, R., 2020. Determining the most influential human 

factors in maritime accidents: A data-driven approach. Ocean Engineering 211, 107588. 

https://doi.org/10.1016/j.oceaneng.2020.107588 

Deng, J., Liu, S., Xie, C., Liu, K., 2021. Risk Coupling Characteristics of Maritime Accidents in Chinese 

Inland and Coastal Waters Based on N-K Model. Journal of Marine Science and Engineering 10 (1), 4. 

https://doi.org/10.3390/jmse10010004 

Dinis, D., Teixeira, A.P., Guedes Soares, C., 2020. Probabilistic approach for characterising the static risk 

of ships using Bayesian networks. Reliability Engineering & System Safety 203, 107073. 

https://doi.org/10.1016/j.ress.2020.107073 

EMSA, 2021. Annual Overview of Marine Casualties and Incidents 2021. European Maritime Safety 

Agency, Lisbon. 

Fan, S., Blanco-Davis, E., Yang, Z., Zhang, J., Yan, X., 2020a. Incorporation of human factors into 

maritime accident analysis using a data-driven Bayesian network. Reliability Engineering & System 

Safety 203, 107070. https://doi.org/10.1016/j.ress.2020.107070 

Fan, S., Zhang, J., Blanco-Davis, E., Yang, Z., Yan, X., 2020b. Maritime accident prevention strategy 

formulation from a human factor perspective using Bayesian Networks and TOPSIS. Ocean Engineering 

210, 107544. https://doi.org/10.1016/j.oceaneng.2020.107544 

Friedman, N., Geiger, D., Goldszmidt, M., 1997. Bayesian Network Classifiers. Machine Learning 29, 

131–163. https://doi.org/10.1023/A:1007465528199 

Galieriková, A., 2019. The human factor and maritime safety. Transportation Research Procedia 40, 

1319-1326. https://doi.org/10.1016/j.trpro.2019.07.183 

Guo, Y., Jin, Y., Hu, S., Yang, Z., Xi, Y., Han, B., 2023. Risk evolution analysis of ship pilotage operation 

by an integrated model of FRAM and DBN. Reliability Engineering & System Safety 229, 108850. 

https://doi.org/10.1016/j.ress.2022.108850 

Hänninen, M., 2014. Bayesian networks for maritime traffic accident prevention: Benefits and challenges. 

Accident Analysis & Prevention 73, 305-312. https://doi.org/10.1016/j.aap.2014.09.017 

Hänninen, M., Kujala, P., 2014. Bayesian network modeling of Port State Control inspection findings 

and ship accident involvement. Expert Systems with Applications 41 (4, Part 2), 1632-1646. 

https://doi.org/10.1016/j.eswa.2013.08.060 

Hänninen, M., Valdez Banda, O.A., Kujala, P., 2014. Bayesian network model of maritime safety 

management. Expert Systems with Applications 41 (17), 7837-7846. 

https://doi.org/10.1016/j.eswa.2014.06.029 

IMO, 2000. Reports on marine casualties and incidents (MSC/Circ.953). 

Jiang, M., Lu, J., Yang, Z., Li, J., 2020. Risk analysis of maritime accidents along the main route of the 

Maritime Silk Road: a Bayesian network approach. Maritime Policy & Management 47 (6), 815-832. 

https://doi.org/10.1080/03088839.2020.1730010 

https://doi.org/10.1016/j.aap.2013.05.006
https://doi.org/10.1016/j.oceaneng.2019.106495
https://doi.org/10.1016/j.marpol.2007.01.005
https://doi.org/10.1016/j.oceaneng.2020.107588
https://doi.org/10.3390/jmse10010004
https://doi.org/10.1016/j.ress.2020.107073
https://doi.org/10.1016/j.ress.2020.107070
https://doi.org/10.1016/j.oceaneng.2020.107544
https://doi.org/10.1023/A:1007465528199
https://doi.org/10.1016/j.trpro.2019.07.183
https://doi.org/10.1016/j.ress.2022.108850
https://doi.org/10.1016/j.aap.2014.09.017
https://doi.org/10.1016/j.eswa.2013.08.060
https://doi.org/10.1016/j.eswa.2014.06.029
https://doi.org/10.1080/03088839.2020.1730010


 

32 

Jin, D., 2014. The determinants of fishing vessel accident severity. Accident Analysis & Prevention 66, 

1-7. https://doi.org/10.1016/j.aap.2014.01.001 

Jones, B., Jenkinson, I., Yang, Z., Wang, J., 2010. The use of Bayesian network modelling for 

maintenance planning in a manufacturing industry. Reliability Engineering & System Safety 95 (3), 267-

277. https://doi.org/10.1016/j.ress.2009.10.007 

Kaptan, M., Sarıalı̇oğlu, S., Uğurlu, Ö., Wang, J., 2021. The evolution of the HFACS method used in 

analysis of marine accidents: A review. International Journal of Industrial Ergonomics 86, 103225. 

https://doi.org/10.1016/j.ergon.2021.103225 

Li, X., Tang, W., 2019. Structural risk analysis model of damaged membrane LNG carriers after 

grounding based on Bayesian belief networks. Ocean Engineering 171, 332-344. 

https://doi.org/10.1016/j.oceaneng.2018.10.047 

Li, Z., Hu, S., Gao, G., Xi, Y., Fu, S., Yao, C., 2021. Risk Reasoning from Factor Correlation of Maritime 

Traffic under Arctic Sea Ice Status Association with a Bayesian Belief Network. Sustainability 13 (1), 

147. https://doi.org/10.3390/su13010147 

Liang, X., Fan, S., Lucy, J., Yang, Z., 2022. Risk analysis of cargo theft from freight supply chains using 

a data-driven Bayesian network. Reliability Engineering & System Safety, 108702. 

https://doi.org/10.1016/j.ress.2022.108702 

Liu, K., Yu, Q., Yuan, Z., Yang, Z., Shu, Y., 2021. A systematic analysis for maritime accidents causation 

in Chinese coastal waters using machine learning approaches. Ocean & Coastal Management 213, 

105859. https://doi.org/10.1016/j.ocecoaman.2021.105859 

MoT, 2014. Regulation of water transportation accident statistics. Ministry of Transport of China, Beijing. 

MoT, 2022. Statistical Bulletin on Transport Industry Development. Ministry of Transport of China, 

Beijing. 

National, A., 2005. The Merchant Shipping (Accident Reporting and Investigation) Regulations, No. 881, 

UK. 

Navas de Maya, B., Kurt, R.E., 2020. Marine Accident Learning with Fuzzy Cognitive Maps 

(MALFCMs): A case study on bulk carrier's accident contributors. Ocean Engineering 208, 107197. 

https://doi.org/10.1016/j.oceaneng.2020.107197 

Puisa, R., Lin, L., Bolbot, V., Vassalos, D., 2018. Unravelling causal factors of maritime incidents and 

accidents. Safety Science 110, 124-141. https://doi.org/10.1016/j.ssci.2018.08.001 

Rahman, S., 2017. An Analysis of Passenger Vessel Accidents in Bangladesh. Procedia Engineering 194, 

284-290. https://doi.org/10.1016/j.proeng.2017.08.147 

Rawson, A., Brito, M., 2022. A survey of the opportunities and challenges of supervised machine learning 

in maritime risk analysis. Transport Reviews, 1-23. https://doi.org/10.1080/01441647.2022.2036864 

Talley, W.K., Jin, D., Kite-Powell, H., 2008. Determinants of the severity of cruise vessel accidents. 

Transportation Research Part D: Transport and Environment 13 (2), 86-94. 

https://doi.org/10.1016/j.trd.2007.12.001 

Tang, L., Tang, Y., Zhang, K., Du, L., Wang, M., 2019. Prediction of Grades of Ship Collision Accidents 

Based on Random Forests and Bayesian Networks, 2019 5th International Conference on Transportation 

Information and Safety (ICTIS), pp. 1377-1381. 

Wang, H., Liu, Z., Wang, X., Graham, T., Wang, J., 2021. An analysis of factors affecting the severity of 

marine accidents. Reliability Engineering & System Safety 210, 107513. 

https://doi.org/10.1016/j.aap.2014.01.001
https://doi.org/10.1016/j.ress.2009.10.007
https://doi.org/10.1016/j.ergon.2021.103225
https://doi.org/10.1016/j.oceaneng.2018.10.047
https://doi.org/10.3390/su13010147
https://doi.org/10.1016/j.ress.2022.108702
https://doi.org/10.1016/j.ocecoaman.2021.105859
https://doi.org/10.1016/j.oceaneng.2020.107197
https://doi.org/10.1016/j.ssci.2018.08.001
https://doi.org/10.1016/j.proeng.2017.08.147
https://doi.org/10.1080/01441647.2022.2036864
https://doi.org/10.1016/j.trd.2007.12.001


 

33 

https://doi.org/10.1016/j.ress.2021.107513 

Wang, H., Liu, Z., Wang, X., Huang, D., Cao, L., Wang, J., 2022. Analysis of the injury-severity outcomes 

of maritime accidents using a zero-inflated ordered probit model. Ocean Engineering 258, 111796. 

https://doi.org/10.1016/j.oceaneng.2022.111796 

Wang, L., Yang, Z., 2018. Bayesian network modelling and analysis of accident severity in waterborne 

transportation: A case study in China. Reliability Engineering & System Safety 180, 277-289. 

https://doi.org/10.1016/j.ress.2018.07.021 

Weng, J., Yang, D., 2015. Investigation of shipping accident injury severity and mortality. Accident 

Analysis & Prevention 76, 92-101. https://doi.org/10.1016/j.aap.2015.01.002 

Wu, B., Tang, Y., Yan, X., Guedes Soares, C., 2021. Bayesian Network modelling for safety management 

of electric vehicles transported in RoPax ships. Reliability Engineering & System Safety 209, 107466. 

https://doi.org/10.1016/j.ress.2021.107466 

Xing, Y., Chen, S., Zhu, S., Zhang, Y., Lu, J., 2020. Exploring Risk Factors Contributing to the Severity 

of Hazardous Material Transportation Accidents in China. International Journal of Environmental 

Research and Public Health 17 (4), 1344. https://doi.org/10.3390/ijerph17041344 

Xue, J., Papadimitriou, E., Reniers, G., Wu, C., Jiang, D., van Gelder, P.H.A.J.M., 2021. A comprehensive 

statistical investigation framework for characteristics and causes analysis of ship accidents: A case study 

in the fluctuating backwater area of Three Gorges Reservoir region. Ocean Engineering 229, 108981. 

https://doi.org/10.1016/j.oceaneng.2021.108981 

Yang, Z., Yang, Z., Yin, J., 2018. Realising advanced risk-based port state control inspection using data-

driven Bayesian networks. Transportation Research Part A: Policy and Practice 110, 38-56. 

https://doi.org/10.1016/j.tra.2018.01.033 

Yip, T.L., Jin, D., Talley, W.K., 2015. Determinants of injuries in passenger vessel accidents. Accident 

Analysis & Prevention 82, 112-117. https://doi.org/10.1016/j.aap.2015.05.025 

Zaccone, R, Martelli, M.A. 2020. Collision avoidance algorithm for ship guidance applications. Journal 

Of Marine Engineering and Technology 19, 62-75. 

Zhang, D., Yan, X.P., Yang, Z.L., Wall, A., Wang, J., 2013. Incorporation of formal safety assessment and 

Bayesian network in navigational risk estimation of the Yangtze River. Reliability Engineering & System 

Safety 118, 93-105. https://doi.org/10.1016/j.ress.2013.04.006 

Zhang, G., Thai, V.V., 2016. Expert elicitation and Bayesian Network modeling for shipping accidents: 

A literature review. Safety Science 87, 53-62. https://doi.org/10.1016/j.ssci.2016.03.019 

Zhang, M., Zhang, D., Yao, H., Zhang, K., 2020. A probabilistic model of human error assessment for 

autonomous cargo ships focusing on human–autonomy collaboration. Safety Science 130, 104838. 

https://doi.org/10.1016/j.ssci.2020.104838 

Zhao, X., Yuan, H., Yu, Q., 2021. Autonomous Vessels in the Yangtze River: A Study on the Maritime 

Accidents Using Data-Driven Bayesian Networks. Sustainability 13 (17), 9985. 

https://doi.org/10.3390/su13179985 

 

https://doi.org/10.1016/j.ress.2021.107513
https://doi.org/10.1016/j.oceaneng.2022.111796
https://doi.org/10.1016/j.ress.2018.07.021
https://doi.org/10.1016/j.aap.2015.01.002
https://doi.org/10.1016/j.ress.2021.107466
https://doi.org/10.3390/ijerph17041344
https://doi.org/10.1016/j.oceaneng.2021.108981
https://doi.org/10.1016/j.tra.2018.01.033
https://doi.org/10.1016/j.aap.2015.05.025
https://doi.org/10.1016/j.ress.2013.04.006
https://doi.org/10.1016/j.ssci.2016.03.019
https://doi.org/10.1016/j.ssci.2020.104838
https://doi.org/10.3390/su13179985

