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Abstract 

About one third of all recently published studies on listening effort have used at least one 

physiological measure, providing evidence of the popularity of such measures in listening effort 

research. However, the specific measures employed, as well as the rationales used to justify 

their inclusion, vary greatly between studies, leading to a literature that is fragmented and 

difficult to integrate. A unified approach that assesses multiple psychophysiological measures 

justified by a single rationale would be preferable because it would advance our understanding 

of listening effort. However, such an approach comes with a number of challenges, including 

the need to develop a clear definition of listening effort that links to specific physiological 

measures, customized equipment that enables the simultaneous assessment of multiple 

measures, awareness of problems caused by the different timescales on which the measures 

operate, and statistical approaches that minimize the risk of type-I error inflation. This paper 

discusses in detail the various obstacles for combining multiple physiological measures in 

listening effort research and provides recommendations on how to overcome them. 
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Combining Multiple Psychophysiological Measures of Listening Effort: Challenges and 

Recommendations 

Assessing physiological measures in listening effort research is common. Between 2019 

and 2021, Clarivate’s Web of Science database lists a total of 239 articles with the term 

“listening effort” in the title, abstract, or keywords. Amongst these articles, 35% (81) employed 

at least one physiological measure to examine listening effort; 7% (16) employed more than 

one physiological measure. The variety of measures used was large, and included measures 

directly indexing brain activity, such as electroencephalogram (EEG) alpha oscillations1,2, EEG 

evoked potential components3,4, and functional near-infrared spectroscopy (fNIRS)5,6, and 

peripheral measures, such as skin conductance 7,8, pupil diameter 9,10, heart rate variability 11,12, 

and cardiovascular pre-ejection period 12,13. The reason for the particular measures used 

seemed to be driven more by the researchers’ interest and availability of measurement 

equipment than by a theoretical or conceptional rationale.   

Given the lack of a unifying rationale, the heterogeneity in the employed measures 

constitutes a problem: It makes it difficult for listening effort researchers to decide which 

measure to use, to compare findings across studies involving different measures, and to draw 

straightforward conclusions from the existing literature14. Ultimately, a unifying rationale would 

boost theoretical progress and advance our understanding of the determinants, consequences, 

and mechanisms associated with listening effort. A more comprehensive approach that 

systematically integrates multiple physiological measures could be particularly useful when 

studying listening effort. However, there are a number of practical challenges to combining 
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more than a single physiological measure in a listening effort study. The purpose of this article 

is to highlight some of these challenges and to provide recommendations on how to address 

them. We hope that this will help listening effort researchers to develop a more integrative, 

unified approach to using physiological measures and thereby accelerate the advancement of 

our understanding of listening effort. Our discussion strongly draws on the experience that we 

have gained in the context of the HEAR-ECO project (http://hear-eco.eu/) in which we 

employed several physiological measures to examine listening effort11,13,15-18. The topics that 

we are going to discuss here are 1) the selection of appropriate physiological measures, 2) the 

simultaneous assessment of multiple physiological signals, 3) the aggregation and combination 

of simultaneously assessed physiological measures, and 4) the statistical analyses of multiple 

physiological measures. 

Selection of Appropriate Physiological Measures 

One of the most challenging aspects of a systematic, integrative approach that uses 

multiple physiological measures to examine listening effort is to find a good rationale for 

selecting the measures. For almost any common physiological measure, it is possible to find at 

least one publication where the authors associate the measure with listening effort or related 

constructs like effort, engagement, or resource allocation. Finding a published rationale that 

justifies the use of multiple physiological measures is, however, more difficult. Nonetheless, a 

unifying rationale seems to be desirable to facilitate the integration of results from different 

studies. Moreover, the lack of a unifying rationale increases the likelihood of a conflation of 

concept and measure, which is illustrated by the current discussion about the multiple 

dimensions of listening effort7,19-21. The lack of a unifying rationale linking the concept (listening 
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effort) to physiological measures makes it difficult to decide whether the discussion is about 

the dimensions of listening effort or about the dimensions of the measures employed in 

listening effort research. 

The first step may thus be a clear and commonly accepted definition of the concept of 

listening effort. Without a clear definition of the concept, we will struggle to differentiate it 

from other phenomena22—for instance, to decide whether a listening situation is more effortful 

or more arousing11,16— to find (psychophysiological) measures that appropriately match our 

concept22,23, and to build a refined theory of listening effort24.  Psychophysiological measures 

can be viewed as proxies to self-report measures of subjectively perceived listening effort—a 

rating or other type of assessment of the individual’s perception of how effortful listening is—

which in common language may be viewed as the most meaningful definition of listening 

effort25. Whether or not this can be regarded as the ‘ground truth’ depends on the 

experimental setup and on the specific definition of listening effort. The same applies to 

objective behavioral measures of listening effort such as dual-task measures or delayed recall. 

There are at least two approaches to developing a clear definition of a concept, and 

both have been used in listening effort literature21. The first is the empirical observation that a 

physiological measure responds to variations in an independent criterion variable—for 

instance, a listening demand-related variable like the signal-to-noise ratio of speech embedded 

in noise—as evidence that the measure constitutes a correlate of listening effort26-32. This 

implies a definition of listening effort as a state that changes in a predictable way when the 

level of the criterion variable (for instance, listening demand) changes. For example, it is usually 

assumed that a measure sensitive to listening effort should indicate relatively high effort in 
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moderately difficult listening demand conditions, and less effort in low listening demand 

conditions. Using such a concept definition, any physiological measure that has been 

demonstrated to respond to variations in the criterion variable would constitute a valid 

outcome of listening effort33 and could be included in listening effort studies that employ 

physiological measures. Listening effort researchers favoring this approach should thus specify 

their criterion variable(s) and then review the literature to find out which psychophysiological 

measures respond to changes in it/them. These measures would then constitute the set of 

physiological measures that could legitimately be used to examine listening effort. 

The second approach to define the concept of listening effort is to provide a verbal 

description of it. For instance, McGarrigle and colleagues20 defined listening effort as “the 

mental exertion required to attend to, and understand, an auditory message”, Picou and 

colleagues34 conceptualized it as “cognitive resources allocated for speech recognition”, and 

Pichora-Fuller and colleagues35 defined it as “the deliberate allocation of mental resources to 

overcome obstacles in goal pursuit when carrying out a [listening] task”. The advantage of such 

a concept definition is that it avoids the risk of circularity of the criterion-variable approach21—

the observed empirical relationship between a physiological measure and a listening-effort 

manipulation is considered to validate the measure as indicator of listening effort and, at the 

same time, hypotheses about whether the manipulation changes listening effort are tested 

using the physiological measure. If the concept definition refers to specific self-report or 

objective behavioral measures of listening effort, these measures provide an efficient way to 

resolve the circularity problem. For instance, a definition of listening effort as the subjective 

feeling of investing effort in a listening task would point to a self-report measure of listening 
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effort as criterion. However, the descriptive approach often requires additional concept 

definitions to allow the justification of the selection of physiological measures. For instance, it 

requires an additional operational definition of cognitive resource allocation as changes in pupil 

diameter to use Picou and colleagues’ definition34 to justify the use of pupil diameter in 

listening effort research. As far as we know, none of the current theoretical accounts of 

listening effort offer such a justification of specific physiological measures. 

If these additional concept definitions refer to general physiological mechanisms 

(instead of referring to a specific measure), they offer the justification of multiple physiological 

measures that is needed for a unified approach to the use of physiological measures in listening 

effort research. For instance, using the operational definition of mental resource allocation as 

increased cardiac sympathetic activity in combination with Pichora-Fuller and colleagues’ 

general definition of listening effort13 would imply that all physiological measures that reflect 

cardiac sympathetic activity should be included in listening effort research. It is obviously not 

required to have two levels of concept definitions—a general one of listening effort and an 

operational one linking listening effort to a physiological mechanism. One could directly use an 

operational definition of listening effort that refers to physiological measures—for instance, a 

definition of listening effort as cardiac sympathetic activity in listening tasks36. However, 

including a broad, descriptive concept definition of listening effort probably offers a better 

integration of the listening effort literature that has not used physiological measures, such as 

those studies only using self-report or behavioral measures. 

Recommendation 1 
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Use a clear definition of the concept of listening effort that creates an explicit link to the 

employed physiological measures. Make this definition salient. Other researchers will adopt 

your concept definition or present conflicting definitions, which will foster a discussion about 

the listening effort concept. This will hopefully lead over time to a commonly accepted 

definition of listening effort. 

Simultaneous Collection of Multiple Physiological Biosignals 

Once the physiological measures of interest have been selected, one needs to collect 

the biosignals that are required to calculate these measures. One of the most obvious 

challenges in the simultaneous collection of multiple biosignals is the parallel use of different 

measurement devices and sensors, which may interfere with one another and may result in 

discomfort and stress for study participants. For instance, EEG electrodes and fNIRS optodes 

often need to be placed at similar locations on the participant’s head, which may be physically 

impossible if two separate sensor patches are necessary. EEG and fNIRS sensors may also 

interfere with the appropriate placement of the electrodes of impedance cardiograph systems 

(required for the determination of pre-ejection period) that use electrodes on the forehead or 

behind the ears37,38. Another example is the competition of eye tracking glasses and fNIRS and 

EEG sensors for space on the forehead. In addition to the competition for space, devices may 

also interfere with one another because of their electromagnetic properties. For instance, the 

simultaneous use of EEG and fNIRS can induce noise on the EEG signal caused by the electric 

activity of the fNIRS system39,40. Another example is the interference due to the magnetic field 

of magnetic resonance imaging (MRI) systems that can influence the ECG signal41,42. 
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Many of these problems can be avoided by carefully selecting equipment. For instance, 

there are custom-made hybrid EEG-fNIRs systems that enable the simultaneous assessment of 

both signals43,44. Impedance cardiography and measures that require sensors mounted on the 

head can be made compatible by using impedance cardiographs with an electrode 

configuration that does not interfere with the other devices’ sensors (for instance, systems that 

only require electrodes on the thorax and neck45). Eye tracking is compatible with head-

mounted sensors if a screen-based (remote) eye tracker is used. The problem of MRI artefacts 

on the ECG signal can be mitigated by using carbon fiber electrodes and leads as well as by 

employing statistical methods to control for the induced artefacts41,42. However, careful 

planning, customization, and expertise are required for all involved biosignals. 

Of course, in field research, the simultaneous measurement of multiple biosignals is 

highly limited by the need for equipment to be sufficiently unobtrusive and practical so as not 

to interfere with daily life, while also remaining reliable, valid, and sensitive. This of course is 

challenging especially when experiments take place over many days and thus require the 

participants to manage the fitting and charging of equipment at home46. However, the rapid 

development of commercially available mobile sensors might solve some of the issues once 

these systems have proven to be sufficiently reliable, valid and sensitive47,48.  

The second major problem related to the simultaneous assessment of multiple 

biosignals is the synchronization of the data. The most frequently used approach is to label the 

data during the data collection process with event markers and to use these recorded markers 

to align the different signals offline. However, given that the signals are digitized by separate 

devices with their own independent clocks, there will be some delays and misalignment 
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between the signals39,40. Moreover, if the signals were originally collected at different sampling 

rates, down-sampling of the raw signals to one and the same sampling rate may considerably 

distort the temporal aspects of the signals and introduce misalignment of the signals. A more 

sophisticated approach to data synchronization is to have one device that controls the sampling 

of all other devices. There are commercial solutions available, but the device (or software) 

would probably need to be customized to suit the needs of the specific, individual setup. 

Moreover, many stand-alone measurement devices are closed systems that do not allow a 

second device to control their data sampling process. 

A researcher aiming to assess multiple physiological measures to examine listening 

effort thus needs to find a solution for the physical and electromagnetic interference of the 

employed devices and sensors as well as solve the problem of data synchronization. It may not 

always be possible to find an ideal solution, but awareness of these potential obstacles will 

allow for study designs to be optimized. 

Recommendation 2 

Determine how and whether the selected biosignals will interfere with one another and 

acquire appropriate specialized equipment accordingly to mitigate any problems caused by the 

physical and electromagnetic interference of the measurement devices and to attenuate the 

data synchronization issue. Consider these issues already at the planning stage of projects to 

ensure that the required financial, logistical, and knowledge-related resources (for instance, for 

the purchase of integrated measurement systems or for the recruitment of individuals with the 

expertise to provide custom-made solutions) are available. 

Aggregation and Combination of Physiological Measures 
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Once one has managed to simultaneously sample the required biosignals and to 

synchronize them, the derived physiological measures must be aggregated and compared. One 

of the main challenges to this is caused by differences in the time characteristics of the 

physiological measures used in listening effort research. Continuous measures have a 

meaningful value at any given point in time and their time resolution is only limited by the 

quality of the measurement device. For instance, pupil diameter10 or skin conductance level29 

have one particular value at any given moment and all such values provide meaningful 

information. In contrast, non-continuous measures either do not exist at some points in time or 

they cannot be related to one specific point in time in a meaningful manner. For instance, peak 

pupil diameter refers to a specific point in time when the pupil diameter attains its maximum 

value in a certain time interval49. At all other points in time, peak pupil diameter does not exist. 

The same applies to specific components of EEG event-related potentials like the P400 

amplitude50 or systolic blood pressure12, the maximum blood pressure between two 

consecutive heart beats.  

In addition to non-continuous measures that only exist at specific points in time, there 

are non-continuous measures that refer to specific time periods and can therefore not be 

associated with a specific point in time. For instance, pre-ejection period12 refers to the time 

interval between the onset of the electrical excitation of the left heart ventricle and the 

opening of the aortic valve. Consequently, it does not exist during other periods of the cardiac 

cycle51 and is not associated with one single, specific point in time. Another example is heart 

period 52, which refers to the time interval between two consecutive heart beats. There are also 

listening effort measures that are non-continuous because of how they are calculated. For 
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instance, the determination of EEG alpha53 and theta power54 requires the use of epochs to 

extract the frequency components of interest (for instance, an epoch of 1250 ms would be 

required for the quantification of theta power55). Another example is heart rate variability29, 

which also can only be determined by quantifying variability over a certain time period (for 

instance, one-minute intervals if a Fast Fourier Transform is used to quantify high-frequency 

heart rate variability56). Figure 1 provides an illustration of the variability in the time 

characteristics of the discussed measures. 

Associated with the various time-scales is the difference in baseline interval or nature of 

the baseline between various measures. For example, pupillometry measures often apply a 

trial-based baseline correction that is based on the mean pupil size in a relatively short period 

(e.g., 1000 – 200 msec) prior to stimulus onset57. In some studies, this baseline is corrected for 

the individual dynamic range in the pupil size58. On the other hand, the reactivity of 

cardiovascular measures like pre-ejection period or heart rate variability is often compared to a 

baseline measured before the onset of the task of interest (during rest)12.  

It should be evident then that aggregating non-continuous and continuous measures is 

complex. While it is technically possible to treat the non-continuous measure as a continuous 

one by resampling to obtain one data point of the non-continuous measure for each data point 

of the continuous measure 44,59, this leads to a bias given that data points are created where 

the measure does not exist or that a non-continuous measure is treated as a continuous one. 

The solution that probably introduces the least artificial information is to use averages across 

large time periods (e.g., over a block of stimulus response trials) for both continuous and non-

continuous measures. One could still argue that the continuous measure is more reliable 
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because it depends on more measurement points and its values are not artificially introduced. 

However, averaging across longer time periods comes with a cost: a potential loss of sensitivity 

to shorter, phasic changes and only reflecting tonic changes in the measures. Given the 

popularity of paradigms in listening effort research that rely on the analysis of short stimulus 

evoked phasic changes (for instance, changes in pupil response evoked by auditive stimuli49,60), 

this constitutes a serious shortcoming.  

In addition to the obstacles to the integration and comparison of multiple physiological 

measures created by the time characteristics of the measures themselves, differences in the 

time characteristics of the underlying physiological mechanisms must also be considered. Many 

of the physiological measures used in listening effort are driven by physiological mechanisms 

that operate on different time scales. For instance, it can take up to 20 seconds from the onset 

of nervous system activity to the maximum response of heart rate and blood pressure, and it 

also can take more than 10 seconds from the end of nervous system activity to the return of 

heart rate and blood pressure to their baseline values61,62. Pupil responses seem to be driven by 

faster physiological mechanisms given that they appear sooner (a few seconds after stimulus 

onset) and also disappear within seconds63. EEG evoked potentials rely on even faster 

mechanisms, and can be observed after a few milliseconds64. 

Given the differences in the time characteristics of the underlying physiological 

mechanisms, the paradigms used to optimize the assessment of the physiological measures of 

listening effort vary considerably. For instance, paradigms using cardiovascular measures 

normally present a single stimulus condition over a period of several minutes12,13,29, whereas 

paradigms using pupil-related measures tend to present different stimulus conditions in 
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intervals of a few seconds30,65,66. Using multiple physiological measures that are driven by 

different physiological mechanisms consequently requires researchers to develop paradigms 

that are appropriate for the various time scales of their measures. 

Recommendation 3 

Take the individual time characteristics of the physiological measures and underlying 

physiological mechanisms into account when planning a study with multiple physiological 

measures. Develop paradigms that are appropriate for all involved measures. 

Statistical Analysis of Multiple Physiological Measures 

The final challenge to using multiple physiological measures in listening effort research 

is the selection of an appropriate statistical approach. The main concern here is the prevention 

of type-I error inflation due to the number of assessed physiological measures. One approach 

that is frequently adopted in listening effort research is to use an independent statistical test 

for each assessed measure. Unfortunately, this quickly increases type-I error. It is thus 

necessary to employ a type-I error control procedure. However, the big challenge is to find one 

that has a minimal impact on statistical power. 

One option is to analyze all physiological measures in a two-step procedure where a first 

multivariate analysis of variance is used as gatekeeper for follow-up univariate tests67. For 

instance, Plain and colleagues11 analyzed seven different physiological listening effort measures 

by first conducting a multivariate analysis of variance (MANOVA) that included all measures and 

then using univariate tests for those measures that were significant. If such a two-stage 

procedure is used with appropriately adapted critical F- and t-values for the follow-up tests, it 

can successfully control the maximum type-I error rate. However, in designs with more than 
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two groups, simple single-stage multiple-comparison procedures (like the Bonferroni 

procedure) perform as well  as the more complex MANOVA-protected procedure and may thus 

be preferred67. Avoiding multivariate procedures also mitigates the problem of multicollinearity 

between the dependent variables, which can influence the interpretability of the results68. 

Multicollinearity—the correlation between the outcome variables in this case—is common in 

psychophysiological research given that the measures are often driven by the same or 

associated physiological mechanisms69. For instance, both pupil changes and heart rate changes 

are driven by sympathetic and parasympathetic nervous system activity and will highly 

correlate with one another if the autonomic outflow to the pupil and the heart does not differ. 

An alternative approach is to aggregate the measures into a single index70,71. For 

instance, pre-ejection period and pupil diameter in the dark—when the parasympathetic 

contribution is minimal72—could be combined into a single index of sympathetic activity. A 

single aggregated index could be analyzed with a single statistical test and would thus prevent 

the problem of type-I error inflation discussed in the preceding paragraphs. Moreover, it would 

have higher statistical power because no type-I error inflation control would be needed and 

specific planned contrasts could be conducted73-75. Aggregating measures requires a decision on 

whether to standardize the individual measures before the aggregation. Standardizing the 

measures controls for the impact of the variability and magnitude of the responses of the 

individual measures. At first sight, this might seem to be a good idea because one would like to 

have each measure the same influence on the aggregated index. However, the 

standardization—for instance a z-standardization76—is often performed using the collected 

data, which introduces a bias. For instance, combining a z-standardized physiological measure 
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where participants showed originally almost no response variability—for instance, heart rate 

changes with a mean of 2 beats per minute (bpm) and a standard deviation of 1 bpm—with a z-

standardized measure where participants showed strong response differences—for instance, 

systolic blood pressure responses with a mean of 20 millimeters of mercury (mmHg) and a 

standard deviation of 10 mmHg—leads to a huge bias because it treats a blood pressure change 

of 30 mmHg as being equivalent to a heart rate change of 3 bpm. A blood pressure change of 

30 mmHg constitutes a much stronger physiological response than a heart rate response of 3 

bpm, but this is neglected by the resulting index. This problem can be prevented by 

standardizing the individual physiological measures using their physiologically possible range as 

criterion (instead of their sample mean and variability). For fNIRS research, this approach has 

been taken recently by Zhang and colleagues who used a breath-holding task to scale the fNIRS 

response differences between conditions by the physiologically-plausible range of the fNIRS 

response before performing the statistical analysis77.  Unfortunately, information about the 

absolute minimum and maximum response of many of the physiological measures employed in 

listening effort research is often not available. For instance, no information is known regarding 

the physiological maximum of a skin conductance response. 

Recommendation 4 

Plan your statistical analysis to account for the problems of assessing statistical 

significance (p-values) when running multiple tests (i.e., increased Type I-error when 

uncorrected or reduced statistical power when corrected for multiple testing) and of analyzing 

measures that are potentially highly correlated. If possible, use an aggregate index that 

represents the physiological mechanism that you are interested in. 
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Summary 

Moving from using single physiological measures in listening effort research to 

combining multiple measures that are justified by a single, unifying rationale would help the 

field to overcome the fragmented approach that currently exists. The explicit presentation of 

researchers’ concept definition of listening effort and its use to justify the employed 

physiological measures would promote a discussion about the core concept and hopefully lead 

to a commonly accepted definition of listening effort. Combining multiple measures does 

however require awareness of the problems that are caused by the simultaneous use of 

multiple measurement devices as well as sound knowledge about the time characteristics of 

the measures and the underlying physiological mechanisms. Moreover, awareness of the 

statistical issues associated with analyzing multiple measures is also required. The solutions to 

many of the challenges that we have outlined are still in their infancy or are yet to be 

developed. However, we are convinced that we should not leave it to future generations of 

researchers to integrate the fragmented field that we have created. Addressing these issues 

now is the only way forward to a more integrated approach to the use of physiological 

measures in listening effort research and to a comprehensive understanding of listening effort. 
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Figure Captions 

Figure 1. Time characteristics of selected physiological measures. Dark gray lines 

indicate continuous measures, dark gray dots non-continuous measures. Dark gray dots with 

surrounding light gray boxes indicate non-continuous measures that refer to time periods and 

not to specific points in time. The light gray boxes indicate the measurement epochs required 

to obtain the measure.  
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