Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The First JWST Spectrum of a GRB Afterglow: No Bright Supernova in Observations of the Brightest GRB of all Time, GRB 221009A

Levan, AJ, Lamb, GP, Schneider, B, Hjorth, J, Zafar, T, de Ugarte Postigo, A, Sargent, B, Mullally, SE, Izzo, L, D’Avanzo, P, Burns, E, Fernández, JFA, Barclay, T, Bernardini, MG, Bhirombhakdim, K, Bremer, M, Brivio, R, Campana, S, Chrimes, AA, D’Elia, V , Valle, MD, De Pasquale, M, Ferro, M, Fong, W, Fruchter, AS, Fynbo, JPU, Gaspari, N, Gompertz, BP, Hartmann, DH, Hedges, CL, Heintz, KE, Hotokezaka, K, Jakobsson, P, Kann, DA, Kennea, JA, Laskar, T, Le Floc’h, E, Malesani, DB, Melandri, A, Metzger, BD, Oates, SR, Pian, E, Piranomonte, S, Pugliese, G, Racusin, JL, Rastinejad, JC, Ravasio, ME, Rossi, A, Saccardi, A, Salvaterra, R, Sbarufatti, B, Starling, RLC, Tanvir, NR, Thöne, CC, van der Horst, AJ, Vergani, SD, Watson, D, Wiersema, K, Wijers, RAMJ and Xu, D (2023) The First JWST Spectrum of a GRB Afterglow: No Bright Supernova in Observations of the Brightest GRB of all Time, GRB 221009A. The Astrophysical Journal Letters, 946 (1). ISSN 2041-8205

Levan_2023_ApJL_946_L28.pdf - Published Version
Available under License Creative Commons Attribution.

Download (10MB) | Preview


We present James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/Near Infrared Spectrograph (0.6-5.5 micron) and Mid-Infrared Instrument (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power law, with F ν ∝ ν −β , we obtain β ≈ 0.35, modified by substantial dust extinction with A V = 4.9. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post-jet-break model, with electron index p < 2, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/near-IR to X-SHOOTER spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disk-like host galaxy, viewed close to edge-on, that further complicates the isolation of any SN component. The host galaxy appears rather typical among long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment.

Item Type: Article
Uncontrolled Keywords: 0201 Astronomical and Space Sciences; Astronomy & Astrophysics
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: American Astronomical Society
SWORD Depositor: A Symplectic
Date Deposited: 20 Apr 2023 12:03
Last Modified: 20 Apr 2023 12:15
DOI or ID number: 10.3847/2041-8213/acc2c1
URI: https://researchonline.ljmu.ac.uk/id/eprint/19266
View Item View Item