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ABSTRACT
We determine the Milky Way (MW) mass pro�le inferred from �tting physically motivated
models to theGaiaDR2 Galactic rotation curve and other data. Using various hydrodynamical
simulations of MW-mass haloes, we show that the presence of baryons induces a contraction
of the dark matter (DM) distribution in the inner regions,r � 20 kpc. We provide an analytic
expression that relates the baryonic distribution to the change in the DM halo pro�le. For our
galaxy, the contraction increases the enclosed DM halo mass by factors of roughly 1.3, 2, and 4
at radial distances of 20, 8, and 1 kpc, respectively compared to an uncontracted halo. Ignoring
this contraction results in systematic biases in the inferred halo mass and concentration. We
provide a best-�tting contracted NFW halo model to the MW rotation curve that matches
the data very well.1 The best-�t has a DM halo mass,M DM

200 = 0.97+ 0.24
Š0.19 × 1012 M� , and

concentration before baryon contraction of 9.4+ 1.9
Š2.6, which lie close to the median halo mass–

concentration relation predicted in� CDM. The inferred total mass,M total
200 = 1.08+ 0.20

Š0.14 ×
1012 M� , is in good agreement with recent measurements. The model gives an MW stellar
mass of 5.04+ 0.43

Š0.52 × 1010 M� and infers that the DM density at the Solar position is� DM
� =

8.8+ 0.5
Š0.5 × 10Š3 M� pcŠ3 � 0.33+ 0.02

Š0.02 GeV cmŠ3. The rotation curve data can also be �tted
with an uncontracted NFW halo model, but with very different DM and stellar parameters.
The observations prefer the physically motivated contracted NFW halo, but the measurement
uncertainties are too large to rule out the uncontracted NFW halo.

Key words: Galaxy: fundamental parameters – Galaxy: halo – Galaxy: kinematics and dy-
namics – Galaxy: structure – galaxies: haloes.

1 INTRODUCTION

The wealth of data available for the Milky Way (MW) makes
our galaxy an unmatched laboratory for testing cosmology on the
smallest scales and for understanding galaxy formation physics in
detail (e.g. see the reviews by Bullock & Boylan-Kolchin2017;
Zavala & Frenk2019). The results of many of these tests are

� E-mail: marius.cautun@gmail.com
1The data products are publicly available in Cautun & Callingham (2020)
at: https://github.com/MariusCautun/MilkyWay masspro�le

sensitive to the dark matter (DM) content of our galaxy and, in
particular, to the total mass and the radial density pro�le of our
Galactic halo. For example, the total number of subhaloes is very
sensitive to the host halo mass (e.g. Purcell & Zentner2012; Wang
et al. 2012; Cautun et al.2014a; Hellwing et al.2016) while the
radial mass pro�le plays a key role in determining the orbits of
satellite galaxies and tidal streams (e.g. Barber et al.2014; Fritz
et al. 2018; Cautun et al.2019; Garavito-Camargo et al.2019;
Monachesi et al.2019a). The number and orbits of satellites are
a key test of properties of the DM, such as the mass of the DM
particle and its interaction cross-section (e.g. Peñarrubia et al.2010;

C� 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
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4292 M. Cautun et al.

Vogelsberger, Zavala & Loeb2012; Kennedy et al.2014; Lovell
et al. 2014; Cautun & Frenk2017; Kahlhoefer et al.2019), and
also constrain galaxy formation models (e.g. Sawala et al.2016a,
b; Bose, Deason & Frenk2018; Shao et al.2018a; Fillingham et al.
2019).

Most previous studies have focused on determining the total mass
of the Galactic DM halo using a variety of methods, such as the
dynamics of the stellar halo (e.g. Xue et al.2008; Deason et al.
2012; Ka�e et al.2012), globular clusters (e.g. Eadie & Harris2016;
Posti & Helmi2019; Watkins et al.2019), and satellite galaxies (e.g.
Watkins, Evans & An2010; Li et al. 2017; Patel, Besla & Mandel
2017; Callingham et al.2019), high velocity stars (e,g, Smith et al.
2007; Pif� et al. 2014; Fragione & Loeb2017; Rossi et al.2017;
Deason et al.2019a), the orbits of tidal streams (e.g. Gibbons,
Belokurov & Evans2014; Bowden, Belokurov & Evans2015), the
luminosity function of the MW satellites (e.g. Busha et al.2011;
Cautun et al.2014b), and the dynamics of the Local Group (e.g.
Li & White 2008; Diaz et al.2014; Pẽnarrubia et al.2016). However,
recent estimates of the total mass of the MW still range within about
a factor of two (see e.g. �g. 7 in Callingham et al.2019), re�ecting
systematics in many of the methods used to infer it (e.g Wang et al.
2015, 2017, 2018).

The radial density pro�le of the MW is even more poorly
measured due to a lack of data outside� 20 kpc and uncertainties
in modelling the effect of baryons on the DM halo. Most studies
assume that the DM halo is well described by an NFW pro�le
(Navarro, Frenk & White1996, 1997) and constrain the pro�le by
two parameters, such as total mass and concentration (e.g. McMillan
2011; Bovy et al. 2012; Eilers et al.2019). Such studies argue
that the Galactic halo has a very high concentration, typically� 14
or higher (e.g. Deason et al.2012; Ka�e et al. 2014; McMillan
2017; Monari et al.2018; Lin & Li 2019), that is in tension with
theoretical expectations based on cosmological simulations, which
predict a mean concentration of� 9 and a 68 percentile range of
� [7, 12] (Ludlow et al.2014; Hellwing et al.2016; Klypin et al.
2016).

The higher than expected concentration of the MW halo could be
a manifestation of the contraction of the DM halo induced by the
presence of a galaxy at its centre (e.g. Schaller et al.2015; Dutton
et al.2016; Lovell et al.2018). For MW and higher mass haloes, the
effect of baryons on the DM halo is well described by the adiabatic
contraction model (Callingham et al.2020), in which baryons slowly
accumulate at the halo centre and the DM distribution distorts in
such a way that its action integrals remain approximately constant
(Barnes & White1984; Blumenthal et al.1986; Barnes1987). This
process can be implemented analytically if the distribution of DM
actions in the absence of baryons is known (Sellwood & McGaugh
2005); however, since this is not well known and there is halo-to-
halo variation, in practice most studies have used approximations
of this process (e.g. see Blumenthal et al.1986; Abadi et al.2010;
Gnedin et al.2010). Such approaches have only occasionally been
used when analysing MW data (e.g. Pif�, Penoyre & Binney2015;
Cole & Binney2017), and most studies ignore the change in the
DM pro�le induced by the condensation of baryons at the centre
of haloes, despite, as we shall see, the fact that it is a large effect,
especially in the inner 10 kpc of our galaxy.

In this paper, we provide a best-�tting mass model for the MW
using the latestGaia rotation curve (Eilers et al.2019) combined
with the robust and extensively tested total mass determination
of Callingham et al. (2019). We improve on previous studies
by modelling the contraction of the DM halo induced by the
central galaxy. We study the DM halo contraction and propose

a simple parametric model based on the predictions of three
state-of-the-art galaxy formation simulations: Auriga (Grand et al.
2017), APOSTLE (Fattahi et al.2016; Sawala et al.2016b) and
EAGLE (Schaye et al.2015), and �nd that all three simulations
predict the same DM halo contraction within the limits of halo-
to-halo variation. We show that the contracted DM halo cannot be
modelled as a pure NFW pro�le and even more �exible formulae,
such as the generalized NFW pro�le (gNFW, which has been
used to model the MW halo – McMillan2017; Karukes et al.
2019b), struggle to describe the radial pro�le of the contracted
halo.

We model the MW galaxy using seven components (similar to
the approach used by McMillan2017): a bulge, a thin and a thick
stellar disc, an HI and a molecular gas disc, a circumgalactic medium
(CGM) component, and a DM halo. Our main results are for a DM
halo that has been contracted according to the self-consistently
determined MW stellar mass. For comparison, we use a second
model in which the DM halo is taken as an NFW pro�le. While both
models �t the data equally well, the former (i.e. the contracted halo)
is more physically motivated and is also the one whose predictions
agree best with other independent observations. In particular, our
contracted halo has the typical concentration ofa � 1012 M� halo as
predicted by numerical simulations (without imposing any prior on
the concentration), corresponds to a more massive halo than in the
pure NFW case, and also favours an MW stellar mass� 20 per cent
lower than the NFW case. We show that the two cases can be
distinguished using three diagnostics: (i) the stellar mass of the
MW, (ii) the rotation curve between 1 and 5 kpc, and (iii) an accurate
determination of the total halo mass.

This paper is structured as follows. In Section 2 we describe
our model for the various MW baryonic components. In Section 3
we characterize how the DM distribution changes in response to
the accumulation of baryons at the halo centre, which we study
using hydrodynamical simulations. Section 4 describes how much
we expect the Galactic DM halo to contract given the distribution
of visible matter in the MW. Section 5 presents our best �t
model to the MW rotation curve. The results are discussed and
interpreted in Section 6. We conclude with a short summary in
Section 7.

2 THE MW BARYONIC COMPONENTS

The goal of this paper is to infer the mass pro�le of the MW, and
in particular the pro�le of the DM halo. To do so, we �rst need to
specify the baryon distribution in the MW, which we model using
a bulge, a thin, and a thick stellar disc; an HI disc and a molecular
gas disc; and a diffuse gaseous halo. The �rst �ve of this baryonic
components are the same that McMillan (2017) considered, but
some of the parameter values we adopt are different since they
correspond to the best �tting values to the data, as we will describe
in Section 5. The mass and pro�le of the Galactic gaseous halo
(i.e. the circumgalactic medium, hereafter CGM) is unconstrained;
however, both analytical arguments (White & Frenk1991) and
hydrodynamical simulations (e.g Schaye et al.2015), suggest that
it contains the majority of the baryonic mass at large distances
from the Galactic Centre. Section 2.4 presents our best model for
the MW CGM. The MW also has a stellar halo, but its mass is
insigni�cant, roughly 3 per cent of the total Galactic stellar mass
(Deason, Belokurov & Sanders2019b), and thus we neglect this
Galactic component.

MNRAS 494,4291–4313 (2020)
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The MW mass pro�le 4293

Table 1. The parameters of the MW components that are kept �xed when
�tting our model to observations.

Component Expression Parameters

Bulge equation (1) r0 = 75 pc,rcut = 2.1 kpc,� = 1.8,q =
0.5

Thin disc equation (3) zd, thin = 300 pc
Thick disc equation (3) zd, thick = 900 pc
HI disc equation (4) zd = 85 pc,Rm = 4 kpc,Rd = 7 kpc,

� 0 = 53 M� pcŠ2

H2 disc equation (4) zd = 45 pc,Rm = 12 kpc,Rd = 1.5 kpc,
� 0 = 2200 M� pcŠ2

CGM equation (5) ACGM = 0.190,� CGM = Š 1.46

2.1 Bulge

We model the MW bulge using the McMillan (2017) pro�le (which
is an axisymmetric form of the model proposed by Bissantz &
Gerhard2002) given by,

� bulge =
� 0,bulge

(1 + r �/r 0)�
exp

�
Š

�
r �/r cut

� 2
�

, (1)

where,r
�

represents a combination of the cylindrical coordinates
(R, z) (whereR is in the plane of the MW disc andz perpendicular
to this plane):

r � =
�

R2 + (z/q )2 . (2)

The remaining quantities,� , r0, rcut, and the axial ratio,q, are
model parameters whose values are listed in Table1 and kept �xed
for the remainder of this analysis. The parameter,� 0,bulge, denotes
the central stellar density which is allowed to vary according to
the Gaussian prior given in Table2. We note that there is still a
large degree of uncertainty regarding the exact mass and pro�le of
the MW bulge (e.g. see the compilations of Iocco, Pato & Bertone
2015; Bland-Hawthorn & Gerhard2016) and that our data, which
cover only distances beyond 5 kpc from the Galactic Centre, are
not able to provide any meaningful constraints on the bulge mass
or its radial pro�le. Also, for the same reason we do not model the
complicated geometry of the stellar distribution at the centre of the
MW, i.e. peanut bulge and bar (e.g. Portail et al.2017), since it has
only minor effects on the gravitational �eld atR > 5 kpc.

2.2 Thin and thick stellar discs

We model the MW stellar distribution as consisting of two compo-
nents, a thin and a thick disc (e.g. Jurić et al.2008; Pouliasis, Di
Matteo & Haywood2017), with each component described by the
exponential pro�le:

� d(R, z) =
� 0

2zd
exp

�
Š

| z |
zd

Š
R
Rd

�
, (3)

wherezd denotes the disc scale-height,Rd is the disc scale-length,
and� 0 is the central surface density. For the scale-height, we take
the values derived by Jurić et al. (2008), who �nd that zd = 300
and 900 pc for the thin and thick discs respectively (see also the
recent analyses of theGaia and DES data: Mateu & Vivas2018;
Pieres et al.2019). We note that the exact value ofzd does not
signi�cantly affect the inferred MW mass model – see e.g. McMillan
(2011). The other two parameters of each disc model,Rd and� 0,
are derived from the data as we will discuss in Section 5. When
deriving the scale-length for both the thin and thick discs, we used
the Gaussian prior given in the fourth column of Table2, which

is based on the typical scatter inRd amongst different studies (see
the compilation of measurements in Bland-Hawthorn & Gerhard
2016).

2.3 HI and molecular discs

The next two components of the MW are the HI and the molecular
gas distributions, which can account for a signi�cant fraction of
the baryonic mass and, since they have a different geometry from
the stellar component, cannot be easily treated as part of the
stellar disc (Kalberla & Dedes2008). Instead, we model these two
components as an exponentially declining disc-like geometry given
by (Kalberla & Dedes2008)

� d(R, z) =
� 0

4zd
exp

�
Š

Rm

R
Š

R
Rd

�
sech2

�
z

2zd

�
, (4)

where, as in the stellar disc case,� 0 denotes the central surface
density,zd the scale-height, andRd the scale-length of the disc.
This disc has a inner hole whose size is controlled by the scale-
length, Rm. In general, the mass and geometry of the MW gas
distribution are still uncertain (e.g. see discussions in Kalberla &
Dedes2008; Heyer & Dame2015); however, they are reasonably
well known at the Sun’s position. We take the HI and molecular gas
parameters from McMillan (2017) determined by matching the two
gas discs to observational constraints around the Sun’s position. For
completeness, we give the values of these parameters in Table1.
They correspond to an HI mass of 1.1× 1010 M� and a molecular
gas mass of 10 per cent of the HI mass.

2.4 Circumgalactic medium

Galaxies are surrounded by an extended gaseous corona, the CGM,
which consists mostly of hot, diffuse gas but also contains denser,
colder clouds, some moving at high velocity. Due to its diffuse
nature, the CGM is dif�cult to characterize in detail, and even
more so in the case of our own galaxy where much of the X-
ray emission from the hot gas is absorbed by neutral hydrogen
in the disc (for details see the review by Tumlinson, Peeples &
Werk2017). However, the CGM can contain a large fraction of the
baryonic mass within the diffuse halo and thus needs to be included
when modelling the mass pro�le of the MW. Note that the CGM
mostly contributes to the baryonic mass pro�le at large distances,
r � 100 kpc, from the Galactic Centre, while in the inner part
most of the baryons are found in the disc. For our study, including
the CGM does not signi�cantly alter the inferred DM halo mass
or concentration since these are mostly determined by the stellar
circular velocity curve – see discussion in Section 5. However, the
CGM does affect, at the� 5 per cent level, the total mass within the
radius,R200, as well as the escape velocity at the Sun’s position,
which is determined by the total mass pro�le out to a distance of
2R200 (see Deason et al.2019a).

Observationally, the total mass and density pro�le of the CGM
in MW-mass galaxies are poorly determined and this is likely
to remain so for years to come (e.g. Tumlinson et al.2017).
However, we can use hydrodynamical simulations to place con-
straints on the Galactic CGM. For this, we have measured in the
three simulations described in Section 3.1, Auriga, APOSTLE and
EAGLE recal, the baryonic pro�le at distances,r > 0.15R200,
which, for the MW, would correspond tor � 30 kpc. We �nd
signi�cant halo-to-halo scatter, which is indicative of the diversity
of CGM distributions around MW-mass galaxies (Hani et al.
2019; Davies et al.2020), but the median distribution shows
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4294 M. Cautun et al.

Table 2. The parameters of the MW components that are varied when �tting our model to observations. The columns
are as follows: parameter description (1) and symbol denoting it (2); units (3); mean and standard deviation of the
Gaussian prior (4); the MLE and the 68 percentile con�dence interval for the model with a contracted NFW DM halo
(5); and the MLE and the 68 percentile con�dence interval for the model with an uncontracted NFW pro�le for the DM
halo (6). For convenience and ease of use, the last rows of the table give derived quantities, such as bulge, disc, and total
masses.

Quantity Symbol Units Prior Best �tting values
Contracted halo NFW halo

Bulge density � 0,bulge M� pcŠ3 100± 10 103+ 10
Š11 101+ 12

Š9

Thin disc density � 0,thin M� pcŠ2 – 731+ 91
Š112 1070+ 47

Š190

Thick disc density � 0,thick M� pcŠ2 – 101+ 41
Š65 113+ 50

Š60

Thin disc scale length Rthin kpc 2.5± 0.5 2.63+ 0.14
Š0.12 2.43+ 0.15

Š0.07

Thick disc scale length Rthick kpc 3.5± 0.7 3.80+ 0.54
Š.89 3.88+ 0.33

Š0.96

DM mass withinR200 M DM
200,MW 1012 M� – 0.97+ 0.24

Š0.19 0.82+ 0.09
Š0.18

Halo concentration• cNFW
MW – 9.4+ 1.9

Š2.6 13.3+ 3.6
Š2.7

Derived quantities
Bulge mass M�, bulge 1010 M� – 0.94+ 0.09

Š0.10 0.92+ 0.11
Š0.08

Thin disc mass M�, thin 1010 M� – 3.18+ 0.30
Š0.45 3.98+ 0.26

Š0.67

Thick disc mass M�, thick 1010 M� – 0.92+ 0.19
Š0.12 1.07+ 0.18

Š0.19

Total stellar mass M�, total 1010 M� – 5.04+ 0.43
Š0.52 5.97+ 0.40

Š0.80
H I and molecular gas
mass‚

MHI + H2 1010 M� – 1.2 1.2

CGM mass withinR200
� MCGM 1010 M� – 6.4 5.5

Total mass withinR200 M total
200,MW 1012 M� – 1.08+ 0.20

Š0.14 0.95+ 0.10
Š0.19

Halo scale radius Rs; MW kpc – 23.8+ 8.1
Š6.2 14.4+ 4.5

Š3.5

Halo radius� R200 kpc – 218+ 12
Š18 207+ 7

Š15

Notes.• The concentration is calculated with respect toR200 of the total (DM plus baryons) mass distribution. For the
contracted halo model, the halo concentration corresponds to the value associated to the NFW pro�le that describes the
halo before contraction.
‚ The gas mass has been taken as constant and was not varied when �tting our model. We give it here for completeness.
� The CGM mass is calculated as a fraction of 5.8 percent of the total mass withinR200 – see discussion in Section 2.4.
� The halo radius,R200, corresponds to the radius of a sphere whose mean enclosed total (DM plus baryons) density is
200 times the critical density.

good agreement between the three simulations. In particular, we
�nd that the CGM mass within the halo radius,R200, represents
5.8 ± 1.5 per cent of the total mass fraction, while within 2R200

the CGM mass fraction increases to 11.5 ± 2.5 per cent of the
total mass (the errors correspond to the 68 per cent con�dence
interval and are due to halo-to-halo scatter). In terms of the
cosmic mean baryon fraction,f bar = 15.7 per cent for a Planck
Collaboration XVI (2014) cosmology, the CGM corresponds to
37 and 73 per cent of the baryon budget expected withinR200

and 2R200 respectively if the baryons followed the DM distribu-
tion.

We have assumed that the CGM radial density pro�le can be
expressed as a power law of distance, i.e.� CGM � r � CGM, and then,
taking the CGM mass fractions withinR200 and 2R200 to be 5.8
and 11.5 per cent respectively, we have estimated the power-law
exponent as well as the overall density normalization. The resulting
CGM density is given by:

� CGM = 200� crit ACGM f bar

�
r

R200

� � CGM

, (5)

where� crit is the critical density of the Universe,ACGM = 0.190 is a
normalization factor, and� CGM = Š 1.46 is the index of the power

law. Then, the enclosed CGM mass within radius,r is, given by:

MCGM(< r ) =
3ACGM

� CGM + 3
f bar M tot

200

�
r

R200

� � CGM+ 3

, (6)

where M tot
200 is the total mass within the halo radiusR200. For

example, if the MW total mass is 1.0× 1012 M� , then the CGM
mass within the halo radius is 5.9× 1010 M� , which is almost equal
to the inner baryonic mass, that is the sum of the stellar components
and the HI and H2 gas discs.

3 DM HALO RESPONSE TO THE CENTRAL
GALAXY

We now summarize the details of the three galaxy formation
simulations, Auriga, APOSTLE, and EAGLErecal, which we use
to characterize the changes in the structure of DM haloes that
result from the assembly of a galaxy at their centre. In Section 3.3
we compare each host halo in the hydrodynamics run with its
counterpart in the DM-only (DMO) run. The goal is to �nd a
parametric expression for the halo radial density pro�le given a
distribution of baryons and then test how well it reproduces the
contraction of individual DM haloes.
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3.1 Simulations

The Auriga and EAGLE simulations assume the Planck Collabora-
tion XVI (2014) cosmological parameters:� m = 0.307,� b = 0.048,
� � = 0.693, andH0 = 100h km sŠ1 MpcŠ1, with h = 0.6777. The
APOSTLE project assumes theWMAP7 cosmology (Komatsu et al.
2011), with parameters:� m = 0.272,� b = 0.045,� � = 0.728, and
h= 0.704. In all the simulations, haloes are identi�ed using the FOF
algorithm (Davis et al.1985) with a linking length 0.2 times the
mean particle separation and further split into gravitationally bound
substructures using theSUBFIND code (Springel, Yoshida & White
2001). We study only central galaxies, i.e. the most massiveSUBFIND

object associated with an FOF halo, whose centre is taken to be their
most gravitationally bound particle. The haloes are characterized
by the radius,R200, of a sphere whose mean enclosed density is
200 times the critical density, and by the mass,M200, contained
within this radius.

3.1.1 Auriga

Auriga is a suite of high-resolution magnetohydrodynamical sim-
ulations of MW-mass haloes ran with theAREPO code (Springel
2010). The suite consist of 40 haloes, 30 of which have mass,M200

� [1, 2] × 1012 M� , and were �rst introduced in Grand et al. (2017),
plus 10 additional lower mass haloes, withM200 masses just below
� 1012 M� (Grand et al.2019a). The Auriga systems are zoom-
in resimulations of MW-mass haloes selected from the EAGLE
1003 Mpc3 periodic cube simulation (Schaye et al.2015) that are
relatively isolated atz = 0, that is have no objects more massive
than half their halo mass within a distance of 1.37 Mpc. See Grand
et al.2017for more details, as well as for illustrations and properties
of the central galaxies in the Auriga haloes.

The Auriga simulations successfully reproduce many properties
of observed central and satellite galaxies, such as the stellar masses
and star formation rates of spirals (Grand et al.2017; Marinacci
et al. 2017), the density and kinematics of stellar haloes (Deason
et al.2017; Monachesi et al.2019b), and the luminosity function of
MW satellites (Simpson et al.2018). Here, we use both resolution
levels of the Auriga project: the medium resolution, or level 4,
and the higher resolution, or level 3, simulation – only 6 systems
were resimulated at this resolution. The level 4 runs have initial
gas and DM particle masses of 5× 104 M� and 3× 105 M�

respectively, and gravitational softening	 = 0.37 kpc, while level
3 has a 8 times better mass resolution and 2 times better spatial
resolution.

3.1.2 APOSTLE

APOSTLE is a suite of 12 pairs of MW-mass haloes selected to
resemble the Local Group in terms of mass, separation, relative
velocity, and local environment (Fattahi et al.2016; Sawala et al.
2016a). They were selected from a DMO simulation of a 1003 Mpc3

periodic cube, known as COLOR (Hellwing et al.2016), and
were resimulated at three resolution levels. Here we have used
the medium resolution runs, which have an initial gas particle mass
of � 1.2 × 105 M� and gravitational softening	 = 0.31 kpc, and
the four volumes (8 haloes in total) simulated at 12 times higher
mass resolution and 121/3 better spatial resolution. Each APOSTLE
volume contains two galactic-size haloes, corresponding to the MW
and M31, and here we use both haloes of each pair.

The APOSTLE simulations were run with a modi�ed version
of theGADGET 3 code (Springel2005) with the reference EAGLE

galaxy formation models (Crain et al.2015; Schaye et al.2015),
which were calibrated to reproduce the galaxy mass function, galaxy
sizes, and the relation between black hole mass and galaxy mass.
The EAGLE model reproduces galaxy rotation curves (Schaller
et al. 2015), the bimodal distribution of star formation rates and
the cosmic star formation history (Furlong et al.2015), the Hubble
sequence of galaxy morphologies (Trayford et al.2015) and the
Tully-Fisher relation over a wide range of galaxy masses (Ferrero
et al.2017).

3.1.3 EAGLErecal

We have also used the MW-mass haloes from the L025N0752
box of the EAGLE project run with the recal model (labelled as
Recal-L025N0752). We refer to this run as EAGLErecal hereafter.
This consists of a cosmological volume simulation in a periodic
cube of side-length 25 Mpc with a mass resolution 8 times better
than the �ducialEAGLE simulation. The simulation contains 7523

DM particles with mass of 1.2× 106 M� and a similar number of
baryonic particles with initial mass 2.3× 105 M� respectively, and
gravitational softening	 = 0.35 kpc (for more details see Schaye
et al.2015). The EAGLErecal simulation has been run using the
same galaxy formation model as the standard EAGLE run, but
with recalibrated parameter values that account for the higher mass
resolution of the EAGLErecal run. The EAGLErecal galaxies
match observed galaxy properties at least to the same extent (and
in some cases better) than the standard EAGLE galaxies (e.g. see
Furlong et al.2015; Schaller et al.2015; Schaye et al.2015).

The APOSTLE and EAGLErecal simulations have a similar
implementation of galaxy formation processes, but use different
parameter values, and thus we expect them to make similar
predictions. There are clear advantages in studying the halo and
galaxies in the two samples, since we can test the robustness of
the results against changes in mass resolution as well as in some
of the parameters describing the subgrid galaxy formation models.
Furthermore, with EAGLErecal we can study the effect of galaxy
assembly in a much larger sample of objects than in APOSTLE and
thus better characterize the halo-to-halo variation.

We select from the EAGLErecal simulation Galactic mass
haloes, that is haloes which, in the DMO version of the simulation,
have mass,M200 � [0.7, 3] × 1012 M� , and whose counterpart in
the hydrodynamic simulation is also a main halo. These selection
criteria results in 34 haloes.

3.2 Sample selection

For all three simulation suites we make use of the hydrodynamics
and DMO versions. Finding the counterpart of a DMO halo in the
hydrodynamic simulation and viceversa is straightforward since we
are only interested in main haloes, not subhaloes.

Our strategy is to model the MW halo as an NFW pro�le in the
absence of baryons which is subsequently modi�ed by the Galactic
baryonic distribution. For this we select from the three simulation
suites those systems whose density pro�le in the DMO version
is well described by an NFW pro�le – this represents most of
the haloes in our sample (78 per cent). Some haloes are not in
equilibrium, typically because of transient events such as mergers
(e.g. see Neto et al.2007); including such haloes would misrepresent
the long-term relation between the DM distributions in the DMO
and hydrodynamics simulations so we do not consider them further.
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We proceed by �tting an NFW pro�le (Navarro et al.1996, 1997)
given by:

� (r ) =
� 0R3

s

r (r + Rs)2
(7)

�
M200

4
R 3
200

c3

ln(1 + c) Š c
1+ c

R3
s

r (r + R200
c )2

, (8)

where� 0 is the characteristic density,Rs = R200/c is the scale radius,
andc is the halo concentration. If we know the halo mass, then the
NFW pro�le is determined by a single parameter, which can be
taken as the concentration (see equation 8).

To �nd the best-�tting NFW pro�les, we minimize

� �t =
1

N Š 1

N	

i = 1

�
log � i Š log� NFW; i

� 2
, (9)

where the sum is over all theN radial bins used for the �t. As argued
in previous studies (e.g. Neto et al.2007; Schaller et al.2015), we
limit the �ts to the radial range [0.05, 1]R200. We perform the �tting
using a single free parameter: the halo concentration,c. We have
also tested two-parameter �ts, in which the total mass,M200, is also
allowed to vary and found very similar results.

Our �nal sample is composed of only the haloes whose DMO
version is well described by an NFW pro�le, which we determine
by requiring that the error in the �t (see equation 9) be smaller
than 8× 10Š3. Due to slight stochastic and dynamical differences
between the DMO and full physics simulations, mergers can
take place at slightly different times in matched haloes in the
two simulations. To ensure that we only consider haloes in near
equilibrium in the hydrodynamic version we apply the Neto et al.
(2007) criterion to further remove any systems in which the subhalo
mass fraction is higher than 10 per cent. Our �nal sample consist
of 33 medium-resolution and 5 high-resolution Auriga haloes, 16
medium-resolution, and 6 high-resolution APOSTLE haloes, and
27 EAGLE recal haloes.

We account for the limited resolution of the simulations by
considering only regions atr > 2rconv, whererconv is the convergence
radius from Ludlow, Schaye & Bower (2019a, see also Power et al.
2003). We extend the range to twice the convergence radius because
in hydrodynamics simulations the difference in the Masses of the
DM and star particles enhances arti�cial two-body scattering (for
more details see Ludlow et al.2019b).

The rotation curves for our sample of 87 simulated galaxies are
shown in Fig.1, where they are compared to the measurement of
the MW circular velocity by Eilers et al. (2019). The rotation curve
is measured in the plane of the stellar disc, which is identi�ed
with the plane perpendicular to the angular momentum of the
stellar distribution within 10 kpc from the centre of the galaxy.
The velocity is calculated asV 2

circ = R d� tot/ dR, where� tot is
the total gravitational potential andR is the radial distance in the
plane of the disc. The rotation curve of each simulated galaxy
is coloured according to the galaxy stellar mass contained within
10 kpc from its centre. Our simulated systems show a diversity
of rotation curves, with maximum values ranging from� 140 to
� 300 km sŠ1. The low stellar mass galaxies have low circular
velocities that tend to increase with radius, indicating that their
dynamics are dominated by the DM component. In contrast, the
galaxies with large stellar masses have rotation curves that tend to
decrease with radial distance.

The circular velocities of our simulated galaxies span a range of
values around the measurements for the MW. Some of them are,

Figure 1. Rotation curves for the 87 simulated galaxies used in this work.
Each line corresponds to one system. The lines are coloured according to
the stellar mass of the galaxy (see legend at the top). The black symbols with
error bars show the Eilers et al. (2019) determination of the MW rotation
curve. The error bars correspond to the statistical uncertainties associated
with the Eilers et al. measurement. ForR > 20 kpc the MW measurement
has large (� 10 per cent or higher) systematic uncertainties and thus should
be interpreted with care.

in fact, quite close matches to the MW. In particular, the rotation
curves of simulated galaxies withM� � 4 × 1010 M� match the
data well atR< 20 kpc (at farther distances the measurements have
large systematic uncertainties that are not shown) in terms of both
absolute value as well as radial gradient. This stellar mass is in
good agreement with estimates for the MW (e.g. Bovy & Rix2013;
McMillan 2017, and Section 5); thus some of our simulated galaxies
can be regarded as close analogues of our galaxy.

3.3 DM halo proÞle in the presence of baryons

To study the halo pro�le in the hydrodynamic simulations, we start
by comparing the enclosed DM mass at different radial distances
between the hydrodynamics run,MDM(< r), and the DMO run,
M DMO

DM (< r ). In the DMO case all the corresponding mass is
associated with a DM particle but, in reality, each particle should
be thought of as containing a fraction,fbar, of baryons and a fraction
1 Š fbar of DM, wherefbar = � b/� m is the cosmological baryon
fraction. This implies that the DM mass for the DMO run is given
by (1Š f bar)M DMO

tot , whereM DMO
tot denotes the total mass in the

DMO simulation.
Fig. 2 shows the radial dependence of the ratio,
 DM = MDM(<

r )/M DMO
DM (< r ), between the enclosed DM mass in the hydrodynam-

ics and in the DMO simulations. Each halo in our three simulation
suites is shown as a curve whose colour re�ects the stellar mass,
M� , of the central galaxy. We �nd that in all cases the innerr <
10 kpc halo is contracted (i.e.
 DM > 1), which implies that the
condensation of baryons at the centre of their haloes leads to an
increase in the enclosed DM mass too. The increase is largest for
the most massive central galaxies. Farther from the halo centre we
�nd that some systems still have contracted DM haloes, i.e.
 DM

> 1, while others (especially the ones with lowM� ) have
 DM <
1, that is less enclosed DM than in the DMO case. These results
are in good agreement with other hydrodynamics simulations, such
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Figure 2. The radial dependence of the ratio,
 DM, between the enclosed
DM mass in the full physics run,MDM(< r), and in the DMO only run,
M DMO

DM (< r ). Each line corresponds to a galaxy inside a MW-mass halo from
either the Auriga, APOSTLE or EAGLErecal hydrodynamical simulations.
The lines are coloured according to the stellar mass of the central galaxy
(see colour bar at the top of the panel). We show results only for distances
larger than that twice the Power et al. (2003) radius (see the main text). We
show results for multiple resolutions, with the highest resolution systems
corresponding to the curves that go down to the lowestr values.

as NIHAO (Dutton et al.2016) and IllustrisTNG (Lovell et al.
2018), which also show that, on average, the DM halo is con-
tracted and the amplitude of the contraction varies among different
systems.

The response of the DM halo to the assembly of its galaxy can
be predicted to good approximation using the adiabatic contraction
method in which the DM distribution is assumed to have the same
action integrals in the hydrodynamic run as in the DMO case (Sell-
wood & McGaugh2005; Callingham et al.2020, the latter study has
explicitly tested this prediction with the Auriga galaxies). However,
as we discussed in the Introduction, this is a rather involved and
needlessly complicated process. Other simpler adiabatic contraction
approximations, such as those used by Blumenthal et al. (1986) and
Gnedin et al. (2004), tend systematically to under- or overpredict
the halo contraction (e.g. Abadi et al.2010; Duffy et al. 2010;
Pedrosa, Tissera & Scannapieco2010; Dutton et al.2016; Artale
et al.2019). In the following, we provide a new description of how
the DM halo responds to galaxy formation processes, that combines
the simplicity of approximate methods with the accuracy of more
involved ones.

We have studied the change in the DM pro�le as a function
of the change in gravitational potential at �xedr between the
DMO and the hydrodynamic simulations, which is given by
� tot = M DMO

tot (< r )/M tot(< r ) (the mass with a DMO pre�x is
for the DMO only runs and the one without a pre�x is for the
hydrodynamics runs). We have found that the ratio of the enclosed
DM mass,
 DM = MDM(< r )/M DMO

DM (< r ), at a given distance,r, is
highly correlated with� tot. This relation is shown in Fig.3, where
each data point corresponds to the pair of (� tot, 
 DM) values for
each galaxy measured at different distances from the centre. The
tight correlation of the (� tot, 
 DM) values is especially surprising
since the same
 DM value can correspond to measurements at very
different physical radii, depending on the stellar mass of a galaxy.

Figure 3. The DM halo response to the assembly of its central galaxy. Top
panel: the ratio of the enclosed DM mass,
 DM = MDM/M DMO

DM , between
the baryonic and DMO runs as a function of the ratio,� tot = M DMO

tot /M tot,
between the total enclosed mass in the DMO and the baryonic runs. The
DM mass in the DMO run is given byM DMO

DM = (1 Š f bar)M DMO
tot , while

the total mass in the hydrodynamic run isMtot = MDM + Mbar. The points
correspond to 87 galaxies in three suites of simulations whose mass ratios
were evaluated at radial distances from 1 kpc up toR200. The thick grey
line corresponds to the best �tting function described by equation (10). This
sits on top of the running mean, which is shown by the orange line. Centre
panel: the ratio between the individual points and the best �t function. The
orange line with error bars shows the running mean and 68 percentiles of
the distribution. Bottom panel: comparison with the mean
 DM predicted by
the Blumenthal et al. (1986) (dashed line) and Gnedin et al. (2004) (solid
line) approximations to an adiabatically contracted halo.

Fig. 3 includes galaxies from the three simulation suites studied
here: EAGLErecal, and both the medium and high resolution
runs of Auriga and APOSTLE. Although not shown, we have
compared the various resolutions and found very good agreement
amongst them indicating that our results do not depend on numerical
resolution. We have also compared disc and spheroidal galaxies and
did not �nd any statistically signi�cant difference between the two
morphologies.

The mean trend between� tot and
 DM (see solid orange line in
Fig. 3) is well captured by the power-law:


 DM = A � B
tot, (10)

with the best-�tting parameters,A = 1.023 ± 0.001 andB =
Š0.540± 0.002. The best �t function is shown by the grey line
in the top panel of Fig.3 which sits exactly on the median trend
(i.e. the orange line). To better appreciate the quality of the �t, the
centre panel of the �gure shows the ratio between the individual data
points and the best-�tting function. We emphasise that equation (10)
has been found for galactic mass haloes, i.e. with massesM200 �
1 × 1012 M� , and remains to be checked if the same expression can
describe the contraction of haloes outside this mass range.
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The bottom panel of Fig.3 compares our measured relation
between� tot and
 DM with the predictions of two widely employed
approximations for adiabatic contraction. We �nd that both the
Blumenthal et al. (1986) and Gnedin et al. (2004) methods underes-
timate the DM halo contraction at high� tot values, while for� tot <
0.5 the results are mixed. In particular, for� tot > 0.2 both methods
are accurate at the 5 per cent level, and while this level of agreement
might seem good, the systematic offset is actually larger than the
typical standard deviation in the individual data points (see vertical
error bars in the middle panel). Note that a 5 per cent error in the
relation between� tot and
 DM translates into roughly a 10 per cent
error in the determination ofMDM.

Equation (10) represents a non-linear deterministic relation
between the enclosed mass ratios,� tot, and 
 DM, which, in turn,
can be expressed as a relation betweenM DMO

DM (< r ), MDM(< r) and
Mbar(< r). Thus, given any two radial mass pro�les, we can solve
for the third. For example, we can predict the DM mass pro�le
in the full physics simulation,MDM(< r), given the DM pro�le
in the absence of baryons and the �nal baryonic pro�le. This is
exactly what we are interested in doing here, since we know that
M DMO

DM (< r ) is well described by an NFW pro�le whileMbar(< r)
can be inferred from observations. These two quantities can be
combined with equation (10) to predictMDM(< r), whose solution
can be approximated as:

MDM(< r ) = M DMO
DM (< r )



0.45+ 0.38(
 bar + 1.16)0.53� . (11)

The symbol
 bar = Mbar(< r )/M DMO
bar (< r ) denotes the ratio be-

tween the enclosed baryonic masses in the hydrodynamics and the
DMO runs, whereM DMO

bar = f barM DMO
tot .

We �nish this section by testing how well equation (11) repro-
duces the contraction of the DM halo. For each halo in our sample,
we take theMbar(< r) pro�le from the hydrodynamics simulation
and takeM DMO

DM (< r ) as the best �tting NFW pro�le to the DM
distribution in the DMO run. We �nd the predicted DM mass,
M pred

DM (< r ), at eachr, which we then compare against the actual DM
mass distribution measured in the hydrodynamic run,MDM(< r). The
results are shown in top panel of Fig.4. The mean ratio of predicted
and measured DM masses is very close to one at allr, showing
that the method is unbiased. Nonetheless, individual haloes can
deviate from the mean prediction since the size of the contraction
is weakly dependent on the assembly history of the system (e.g.
Abadi et al.2010; Artale et al.2019). The halo contraction can
be best predicted at large radial distances, where the halo-to-halo
variation is� 5 per cent and is dominated by deviations of the DMO
halo from an NFW pro�le. In the inner parts, individual haloes can
deviate more from our prediction, but still at a reasonably low level,
with a halo-to-halo scatter of 7 per cent at the Sun’s position and
13 per cent at 2 kpc.

The bottom panel of Fig.4 addresses a crucial question: do
the predictions depend on the galaxy formation model? To �nd
the answer, we test the accuracy of the method separately for the
Auriga, APOSTLE and EAGLErecal samples. For each of the
three simulations we show the mean and the dispersion of the ratio
between predicted and measured DM masses as a function of radial
distance. We �nd very good agreement between APOSTLE and
EAGLE recal, which was to be expected since these two simulations
use similar galaxy formation models. We also �nd good agreement
with the Auriga sample: although this is systematically higher, the
difference is smaller than the scatter amongst individual systems.
The response of the DM halo to the baryonic component depends
on the galaxy assembly history (e.g. Duffy et al.2010; Dutton et al.
2016; Artale et al.2019); the good agreement between the halo

Figure 4. Test of the extent to which our method can recover the contracted
DM distribution as a function of radial distance. The vertical axis shows
the ratio between the predicted enclosed DM mass,M pred

DM (< r ), and the
value measured in the hydrodynamics simulation,MDM(< r). The predicted
DM mass is calculated from an NFW �t to the corresponding halo in the
DMO run. The top panel shows individual galaxies (grey lines) as well
as the mean and the 68 percentiles of the distribution (thick orange line).
The bottom panel compares the mean and the 68 percentiles for galaxies in
each of the three simulation suites used here: Auriga (blue line), APOSTLE
(green line), and EAGLErecal (red line). Our method for inferring the DM
halo contraction is unbiased and works equally well for all three simulations.
The halo-to-halo scatter grows from 5 per cent atr = 100 kpc, to 7 per cent
at r = 10 kpc and reaches 13 per cent atr = 2 kpc.

contraction predictions in our three simulations suites re�ects the
fact that these simulations have galaxy growth histories that match
observations (see Furlong et al.2015, and discussion therein).

4 THE CONTRACTION OF THE MWÕS HALO

Shortly, in Section 5, we will �t the MW rotation curve to infer the
baryonic and DM mass pro�les of our galaxy. Before doing so, in
this section, we present a brief analysis of how important is the DM
halo contraction given the baryonic distribution in the MW. Then,
in the second part, we study biases and systematic errors that arise
from not accounting for this contraction. In particular, we compare
the MW total mass and DM halo concentration inferred assuming
that the MW halo is well described by an NFW pro�le – the usual
approach in the literature – with the values inferred when the DM
halo contraction is taken into account.

To make the results of this section as relevant as possible to our
actual Galaxy, we use the best-�tting baryonic mass pro�le for the
MW which we infer in Section 5. This is given in terms of the MW
baryonic components described in Section 2 with the parameter
values given in Table1 and in the �fth column (labelled ‘best �tting
values for contracted halo’) of Table2. The enclosed MW baryonic
mass as a function of radial distance is shown by the black line in
Fig. 5.

4.1 Galactic halo contraction

Both the mass and the concentration of the Galactic halo are
uncertain, so we exemplify the DM halo contraction for a range
of halo masses and concentrations. In all cases we assume that,
in the absence of baryons, the MW DM halo is well described
by an NFW pro�le (see the discussion in the Introduction) which,
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The MW mass pro�le 4299

Figure 5. The radial enclosed mass pro�le of NFW haloes (dotted lines)
and their contracted counterparts (solid lines) given the MW baryonic
distribution. The solid black line shows the Galactic enclosed baryonic
mass pro�le. The top panel corresponds to initial NFW haloes of the same
mass but different concentrations. The bottom panel corresponds to haloes
with the same concentration but different masses.

in the presence of baryons, is contracted according to the relation
introduced in Section 3.3.

Fig. 6 shows the increase in the enclosed DM mass due to the
presence of baryons at the centre. For example, if the MW resides
in a 1× 1012 M� halo with the average NFW concentration for this
mass,cNFW = 9 (orange line in top panel), then the baryons lead to
an increase in the enclosed mass at distancesr < 50 kpc. While the
increase is largest for smallr, it is still signi�cant at larger distances
too, as for example the Sun’s orbit encloses twice as much DM, and
a 20 kpc radius 30 per cent more DM than the uncontracted halo.
The shaded region around the orange line shows the typical halo-
to-halo scatter (see Fig.4) and illustrates that we can predict, with
a high degree of con�dence, that the Galactic halo is contracted.

At distances,r > 100 kpc, we notice a small (barely visible)
decrease in the enclosed mass of the contracted halo, which re�ects
a slight expansion of the outer halo. This is caused by the fact
that at those distances the enclosed baryonic mass is below the
universal baryonic fraction for the given halo mass and thus the
halo experiences the opposite effect from a contraction: it expands,
but only slightly. Note that while our MW model does include a
CGM component, this is not massive enough to bring up the halo
baryonic content to the cosmic baryon fraction. For example, if
the Galactic DM halo mass is 1.0× 1012 M� , then withinR200 the
baryon fraction is 73 per cent of the cosmic value.

The top panel of Fig.6 also shows the contraction of equal
mass haloes of different concentrations. The blue and green curves
correspond to concentrations in the absence of baryons ofcNFW =
5 and 11, respectively, which, while falling in the tails of thecNFW

distribution, are not very extreme values. The plot illustrates that
the size of the halo contraction depends sensitively on the halo

Figure 6. The contraction of the Galactic DM halo for different halo masses
and concentrations. The Y-axis is the ratio of the enclosed DM mass in
the contracted halo to that in the original NFW halo. In all cases the
MW halo, in the absence of baryons, is described by an NFW pro�le of
mass,M200, and concentration,cNFW, that is then contracted according to
the Galactic baryonic distribution. The top panel shows haloes with mass,
M200 = 1 × 1012 M� , and concentrations ranging from 5 to 11. The bottom
panels shows haloes with concentration,cNFW = 9, and masses ranging from
0.5× to 1.5 × 1012 M� . The orange shaded region shows the 68 percentile
halo-to-halo scatter in the predictions as determined in Fig.4 (the scatter is
shown only for the orange line). The vertical dotted line shows the Sun’s
position,r� = 8.2 kpc.

concentration, with lower concentration haloes experiencing greater
contraction.

The bottom panel of Fig.6 shows that the size of the contraction
also depends on halo mass, but to a lesser extent than on halo
concentration. In this case, the blue and green curves correspond to
DM halo masses ofM200 = 0.5× and 1.5× 1012 M� , respectively.
We �nd that for the same baryonic distribution, lower mass haloes
contract more.

To understand why the amplitude of the contraction depends
on both halo mass and concentration it is useful to compare the
radial pro�le of the DM with that of the baryons. This is shown in
Fig.5 where the thick black line shows the enclosed baryonic mass,
and the various coloured lines show the enclosed DM mass pro�le
for a range of halo masses and concentrations. The dotted lines
correspond to the original (i.e. uncontracted) NFW pro�les while
the solid lines show the contracted DM distributions. We �nd that
in the inner region, where baryons dominate, the contraction leads
to DM pro�les that are much more similar to one another than to the
original NFW distributions. This implies that the baryons are the
main factor that determines the contracted DM distribution, with
the original DM distribution having a secondary effect. As a result,
lower mass or lower concentration haloes, which have less mass in
their inner regions, must contract more than higher mass or higher
concentration haloes.
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Figure 7. Top panel: the density pro�le of an NFW halo (blue dotted
curve) of mass,M200 = 1 × 1012 M� , and concentration,cNFW = 9, and its
contracted counterpart (solid red line) given the MW baryonic distribution.
This halo pro�le is roughly the same as the best �tting Galactic DM halo
inferred in Section 5. The grey dotted lines show NFW pro�les for the
same halo mass but different concentrations. Middle panel: the best �ts
to the contracted Galactic DM halo (solid red line) with an NFW (green
dashed line), generalized NFW (purple dashed line) and Di Cintio et al.
(2014, yellow dashed line) pro�les. Bottom panel: the relative difference,
� best �t /� contractedŠ 1, between the contracted halo and the three best �tting
pro�les shown in the middle panel. The grey shaded region corresponds to
r < 1 kpc, the regime within which halo contraction has been extrapolated
to radii smaller than those for which we have tested our method.

We now investigate if the pro�le of the contracted halo can be
described by a simple parametric form, such as an NFW pro�le or
more �exible generalizations. We illustrate this assuming that the
MW galaxy formed in a halo which, in the absence of baryons,
is described by an NFW pro�le with mass,M200 = 1 × 1012 M� ,
and concentration,cNFW = 9. As we shall see later in Section 5,
this halo pro�le is very close to the best �tting model for the pre-
contracted Galactic halo. The original NFW halo, as well as its
contracted version, are shown in the top panel of Fig.7 with blue
dotted and red solid lines, respectively. The various grey dotted
lines show NFW pro�les for a halo with the same mass but different
concentrations and clearly illustrate that the contracted NFW halo
pro�le is not of the NFW form.

The middle panel of Fig.7 shows the best-�tting NFW pro�le,
in which both the concentration and the mass are left as free
parameters, to the contracted halo. Since the contracted halo does
not follow an NFW pro�le, the resulting best-�tting NFW function
depends somewhat on the radial range use for the �t. Here, we �t

over the radial range 5	 r/kpc	 200 (the �t is qualitatively similar if
we use different reasonable radial ranges), to obtain the green dashed
line in the two bottom panels. The best-�tting NFW form shows
large deviations from the contracted halo pro�le,� 20 per cent and
even larger, indicating that an NFW pro�le is a poor description of a
contracted halo pro�le. These differences are best illustrated in the
bottom panel of Fig.7, which shows the relative difference between
the best-�tting pro�les and the density of the contracted halo.

We have also tested a more �exible function, the so-called
generalized NFW (gNFW) pro�le, given by:

� (r ) =
� 0

r � (r + Rs)3Š�
, (12)

which, has a third parameter,� , in addition to the two parameters,
Rs and� 0, of the NFW pro�le. We have �tted the gNFW pro�le over
the same radial range as the NFW pro�le to obtain the purple dashed
line shown in the middle and bottom panels of Fig.7. The gNFW
parametrization does better at matching the contracted pro�le in
the regionr < 5 kpc, even though that region was not used in the
�t; however, it still performs poorly atr > 8 kpc. In particular,
the gNFW best �t still shows a� 20 per cent deviation from the
contracted pro�le in the radial range 8 kpc< r < 20 kpc. This is
a concern because this radial range is the sweet-spot between the
range for which the MW rotation curve is least uncertain and the
radii at which the DM halo becomes dominant, so that the data
in this intermediate region have the potential to best constrain the
Galactic DM halo.

The inability of an NFW or gNFW function (or other functions
such as an Einasto pro�le) to describe the contracted pro�le is a
direct manifestation of the fact that in the radial range, 5 kpc< r <
30 kpc, the DM density varies roughly as� DM 
 rŠ2 (i.e. r2� DM is
�at – see black line in the top panel of Fig.7). The gNFW and Einasto
pro�les have a range where� DM 
 rŠ2, but this is typically limited
to a very narrow interval inr, while we predict that the contracted
Galactic DM halo should show this behaviour over a much wider
radial range. More general pro�les, such as the Schaller et al. (2015)
or the Dekel et al. (2017) ones, have more free parameters and
potentially can provide a better match to the contracted halo pro�le.
However, in practice, their �exibility is also a limitation since
the observational data are not good enough to provide interesting
constraints on the larger number of free parameters (e.g. when �tting
the MW rotation curve, Karukes et al.2019bfound that theRs and�
parameters of the gNFW models are highly degenerate). As we shall
discuss in Section 5, inferences based on current MW data already
results in 20 per cent uncertainties for 2-parameter DM halo models
and these are likely to be even higher for models with more free
parameters.

Some previous works have adopted pro�les with several free
parameters and �tted them to the DM density pro�les in hydrody-
namical simulations. One example is the study of Di Cintio et al.
(2014), who found that a �ve parameter pro�le of the form,

� (r ) =
� 0

�
r

Rs


 � �
1 +

�
r

Rs


 � � (� Š � )/� , (13)

provides a good description of the DM halo pro�le in their
hydrodynamic simulations for a wide range of halo masses. In
particular, these authors found that the� , � , and� parameters in
equation (13) depend only on the stellar-to-halo mass ratio, and
thus leaving only two free parameters,� 0 and Rs. Using the Di
Cintio et al. (2014) predicted values for� , � , and� , we �tted the
contracted NFW halo distribution in Fig.7 using equation (13) with
two free parameters,� 0 andRs. The resulting best-�tting function
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is shown in Fig.7 by the yellow dashed line. This functional form
captures the contracted halo pro�le reasonably well, with typical
errors of 10 per cent or less. However, these errors are still larger
than the typical uncertainties in the MW rotation curve and could
lead to systematic biases in the inferred halo mass or concentration.

4.2 Biases in inferred halo properties

We saw in the previous subsection that the settling of baryons at
the centre of a DM halo causes the halo to contract and, as a result,
the density pro�le no longer follows the NFW form. However,
many previous studies have modelled the Galactic halo as an NFW
pro�le, which raises an important question: what are the biases in
the inferred halo parameters that result when �tting an NFW halo to
the observational data? To answer this question we proceed to study
how the inferred DM halo mass and concentration differ when the
data are �t with either a contracted NFW halo or an uncontracted
NFW pro�le.

We �rst infer a DM halo mass and concentration by �tting the
enclosed mass at two different distances from the Galactic Centre,
the Sun’s position,r = 8 kpc, andr = 20 kpc. We study the enclosed
mass at two radii because the contraction of the halo becomes less
important with increasing distance from the Galactic Centre and
thus systematic differences between a contracted and an NFW halo
are distance dependent. For simplicity, we assume that there is no
uncertainty in the pro�le of the baryonic component, and infer the
DM halo properties: total mass and concentration (for the contracted
halo, the concentration corresponds to the value before contraction).
The resulting 68 and 95 per cent con�dence limits forM DM

200 and
cNFW are shown in Fig.8. To calculate the enclosed masses we
used the Eilers et al. (2019) circular velocity measurement,Vcirc(r =
8 kpc)= (230± 5) km sŠ1, and the enclosed total mass measurement
of Posti & Helmi (2019), Mtot(< r = 20 kpc)= (1.91 ± 0.18) ×
1011 M� .

Using a single mass measurement results in a degeneracy be-
tween the inferred halo mass and concentration since different
(M DM

200, cNFW) pairs can produce the same enclosed DM mass, as
may be seen from the coloured shaded regions in Fig.8. More
interestingly, the �gure shows that modelling the DM halo as an
NFW or a contracted pro�le results in very different estimates
of the halo mass and concentration. The difference is especially
striking for the estimates atr = 8 kpc (top panel in Fig.8), where
we �nd that even the 95 per cent con�dence limits for the two
models do not overlap. At larger distances, such as atr = 20 kpc
shown in the bottom panel of Fig.8, the baryons lead to a smaller
contraction of the DM halo and the two model estimates are in closer
agreement, but still do not have overlapping 68 per cent con�dence
limits.

The (M DM
200, cNFW) con�dence regions can be combined with

other measurements or theoretical priors to narrow the uncertainty
regions. For example, the (roughly) horizontal dashed line and its
associated grey-shaded region show the halo mass–concentration
relation from DM-only cosmological simulations (Hellwing et al.
2016; this is very similar to other recent mass–concentration
relations, as may be seen from Fig.5 of that paper). Using the
relation as a prior, we can estimate the DM mass of the Galactic
halo. Doing so for the contracted NFW halo model results in a
consistent estimate ofM DM

200� 1 × 1012 M� for bothr = 8 and 20 kpc,
which is in good agreement with the recent estimate by Callingham
et al. (2019, vertical dashed line). In contrast, the NFW halo model
prefers a very high DM mass atr = 8 kpc,M DM

200� 1 × 1013 M� , and
a much lower mass,� 1.5× 1012 M� , at r = 20 kpc.

Figure 8. Constraints on the mass and concentration of the MW DM halo
inferred from the enclosed mass within 8 kpc (top panel) and within 20 kpc
(bottom panel). The blue shaded region corresponds to modelling the halo
as an NFW pro�le. The red shaded region corresponds to modelling the halo
as an NFW pro�le that has been contracted by the MW baryonic distribution
– in this case the concentration corresponds to the original (uncontracted)
halo. The dark and lighter colours show the 68 and 95 percentile con�dence
regions, respectively. For clarity, for the NFW case in the bottom panel, we
show only the 68 percentile con�dence region. The vertical dashed line and
the associated grey region show the Callingham et al. (2019) MW DM halo
mass estimate and its 68percentile con�dence region. The approximately
horizontal dashed line and its associated grey region show the median and
standard deviation of the halo mass–concentration relation (Hellwing et al.
2016).

More interesting is to combine the contours in Fig.8 with other
DM mass estimates to infer the concentration of the Galactic DM
halo. We illustrate this by showing the Callingham et al. (2019) DM
mass estimate and its associated 68 per cent con�dence interval,
which are shown in the �gure as the vertical dashed line and
associated grey shaded region. The contracted halo model predicts
that the MW has an (uncontracted) concentration,cNFW � 8, which
is typical of a 1× 1012 M� � CDM halo – this can be inferred from
the fact that the vertical and horizontal dashed lines intersect inside
the dark shaded region in both panels in the �gure. In contrast, the
inferred concentration for the NFW halo model is very different for
the two radial measurements shown in Fig.8 and is systematically
higher than the theoretical� CDM prediction. Thus, incorrectly
modelling the MW halo using an NFW pro�le can lead to a large
overestimate of its concentration.

A complementary method for constraining the Galactic DM halo
mass is by measuring the escape velocity,Vesc, which, despite its
name, is not the velocity needed to reach in�nite distance with zero
speed. Deason et al. (2019a) have shown that the escape velocity
characterizes the difference in gravitational potential between the
position whereVesc is measured and the potential at a distance
2R200 from the halo centre. The potential depends on the mass
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4302 M. Cautun et al.

Figure 9. Constraints on the mass and concentration of the MW DM halo
inferred from the escape velocity measurement of Deason et al. (2019a).
The blue shaded region shows the 68 percentile con�dence region when
modelling the halo as an NFW pro�le. The red shaded regions show the 68
and 95 percentile contours when taking into account the contraction of the
Galactic DM halo – in this case the concentration corresponds to the value
before applying the baryonic contraction. The dashed lines and grey shaded
regions are as in Fig.8.

pro�le of the halo up to 2R200 and thus modelling the DM halo as
a contracted or an NFW pro�le can introduce different biases from
those present in enclosed mass measurements. These are studied in
Fig. 9, where we show the inferred DM halo properties using the
recent measurement of the escape velocity at the position of the
Sun,Vesc= (528± 25) km sŠ1, by Deason et al. (2019a).

Fig. 9 shows that using an NFW pro�le instead of a contracted
NFW halo also leads to biases in modelling the escape veloc-
ity. Given the current uncertainty in theVesc measurement, the
68 per cent con�dence regions for the two models barely overlap;
however this will not be the case with for future large data sets.
Compared to Fig.8, the escape velocity predictions are less affected
by using the incorrect NFW pro�le since much of the escape
velocity is determined by the mass at large Galactocentric radii
where both the contracted halo and the NFW pro�le are very similar.
Nonetheless, there are still differences between these two pro�les
in the inner region of the halo, which explains why the incorrect
NFW model prefers systematically higher concentrations than the
contracted halo model.

5 A TOTAL MASS MODEL FOR THE MW

In this section we describe the data and �tting procedure used to
determine the baryonic and DM mass pro�les of our galaxy. We
perform the analysis in the same spirit as Dehnen & Binney (1998,
see also Klypin, Zhao & Somerville2002; Weber & de Boer2010;
McMillan 2011; Bovy et al. 2012; Ka�e et al. 2014; McMillan
2017), that is, we estimate the best-�tting MW mass model by
varying several parameters that encode our ignorance about the
stellar and DM distributions of our galaxy. For the DM, we �t
two models: a contracted NFW halo, which is motivated by the
predictions of hydrodynamical simulations (see Section 3), and a
pure NFW pro�le, which is one of the most commonly used pro�les
in previous studies.

Figure 10. Top panel: MW Galactic rotation curve (symbols with error
bars) as a function of radial distance. The solid red line is the best �tting
MW mass model assuming a contracted DM NFW halo. The dashed blue
line the best-�tting MW mass model assuming no contraction, i.e. that the
DM halo follows an NFW pro�le. Both models were �tted only to the Eilers
et al. (2019) and the Callingham et al. (2019) data points. Bottom panel: The
difference between the data and the best �tting contracted halo model. The
dashed blue line shows the difference between the NFW halo model and the
contracted halo one. The two models give the same rotation curve to within
1 km sŠ1 or less in the range 5 kpc< r < 60 kpc.

5.1 Data

The main constraining power of our model comes from the Eilers
et al. (2019) circular velocity data (black data points in Fig.10).
These data are inferred from axisymmetric Jeans modelling of
the 6D phase space distribution of more than 23 000 red giant
stars with precise parallax measurements. The stellar positions and
velocities come from a compilation ofGaia DR2 measurements,
combined with improved parallax determinations from APOGEE
DR14 spectra and photometric information from WISE, 2MASS,
andGaia (for details see Hogg, Eilers & Rix2019).

The Eilers et al. rotation curve provides good constraints in the
inner parts of the MW system; however this does not fully break up
the degeneracy between DM halo mass and concentration. To deal
with this, we make use of the total mass estimate of Callingham
et al. (2019), M total

200,MW = (1.17± 0.18)× 1012 M� . These authors
infer the mass by comparing the observed energy and angular
momentum distribution of the classical MW satellites with the
predictions of hydrodynamical simulations. While there are many
Galactic mass estimates (e.g. see the compilations in Wang et al.
2015; Callingham et al.2019), we choose the Callingham et al. result
since it has several advantages compared to other studies: (i) the
method had been thoroughly tested with multiple hydrodynamic
simulations, (ii) it makes use of the dynamics of satellites whose
extended radial distribution directly constrains the total mass of
the system, and (iii) it makes use of the latestGaia DR2 proper
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motion measurements for the classical dwarfs (Gaia Collaboration
2018).

To remove some of the degeneracy between the thin and thick
stellar discs, we impose the prior that the ratio of the thin to
thick disc densities at the Sun’s position, which we take asR� =
8.122± 0.031 kpc (Gravity Collaboration2018), is 0.12± 0.012.
This value is derived from the analysis of MW disc stars in the
SDSS data by Jurić et al. (2008).

The last measurement we consider is the value of the vertical
force at 1.1 kpc above the plane at the Sun’s position, which we
take as (Kuijken & Gilmore1991):

K z(R� ) = 2
G × (71± 6) M� pcŠ2 . (14)

To implement this constraint, we express it as a function of the
local total surface mass density,� , which is given by (McKee,
Parravano & Hollenbach2015):

� =
K z

2
G
+ ��, (15)

where�� represents a correction term for the fact that the circular
velocity varies with Galactocentric radius and with thez coordinate
above the disc plane. We calculate the�� term using equation (53)
from McKee et al. (2015), combined with the Eilers et al. (2019)
rotation curve to obtain�� = 9 M� pcŠ2.

We note that most of the constraining power comes from the Eilers
et al. (2019) circular velocity data. This is due to a combination
of Eilers et al. having the most data points, 38 in total, and to
the fact that most of the measurements are very precise, with
errors below 2 km sŠ1, corresponding to less than 1 per cent relative
errors. In contrast, the vertical force measurement has an 8 per cent
relative error, while the total mass estimate has a 15 per cent relative
error.

5.2 The Þtting procedure

To obtain the best-�tting model, we follow the Bayesian
framework in which the probability of a set of parameter
values,� = (logM DM

200, cNF W , � 0,bulge, � 0,thin, � 0,thick, Rthin, Rthick),
given the data,D, is

p (� |D) =
p (D|� ) p (� )

p (D)
, (16)

where p(D|� ) is the probability of the data given the model
parameters,p(� ) is the prior distribution of parameter values, and
p(D) is a normalization factor. We take three Gaussian priors for
(� 0,bulge, Rthin, Rthick), as given in the fourth column of Table2.
For the remaining parameters we consider no prior information;
that is we take a �at prior over a range much larger than the
constraints inferred from the data. The likelihood,p(D|� ), is taken
as the product of the likelihoods associated with each of the 41
data points described in Section 5.1, that is 38 circular velocity
measurements plus one data point for each of the following: the
total mass, thin to thick disc ratio, and the vertical force at the Sun’s
position. The circular velocity is calculated in the plane of the disc
asV 2

circ = R d� tot/ dR, where� tot is the total gravitational potential
andR is the radial distance in the plane of the disc.

We are interested in obtaining a global model that �ts equally
well all the measurements within their uncertainties. However, when
considering only the observational errors for the Eilers et al. (2019)
rotation curve we �nd that the reduced� 2 is close to two and that this
large value is mostly driven by a couple of regions: a dip inVcirc atR
� 9 kpc and a second one atR� 20 kpc that are several� away from

the overall trend. Such outlying data points could drive the model
away from the set of parameters that give a good global �t and force
it to parameter values that better reproduce these local features, even
though such features are not expected to be captured by the model.
To mitigate any such problems, we introduce an additional model
uncertainty,� model, such that the total uncertainty associated with
a data point is given by� =

�
� 2

obs + � 2
model, where� obs denotes

the Eilers et al. errors. We take� model = µ� sys, where� sys is the
systematic error associated with the Eilers et al. determination. In
Appendix B we compare different ways of de�ning� modeland show
that our results are largely insensitive to the de�nition of� model. The
quantityµ = 0.21 denotes a weight factor whose value we have
found by requiring that the reduced� 2 should be unity (see Ap-
pendix B for details). Increasing the errors as discussed mostly af-
fects the points in the rangeR� [8, 13] kpc (the ones with very small
observational uncertainties of� 1 km sŠ1) and leads to errors that
are at most a factor of 1.5 times higher than the observational ones.

To �nd the best-�tting model parameters and their associated
con�dence intervals we employ a Markov Chain Monte Carlo
(MCMC) approach using theEMCEE python module (Foreman-
Mackey et al.2013). We �t two different models for the DM halo:
�rst, a pro�le that is contracted according to the baryon distribution,
and, secondly, an (uncontracted) pure NFW pro�le.

5.3 The best-Þtting models

5.3.1 The contracted halo model

The best-�tting MW rotation curve for the contracted NFW halo
model is shown as the solid red line in Fig.10. The black
data points are the Eilers et al. (2019) Vcirc data and the dark
blue square is the Callingham et al. (2019) total mass estimate
converted to aVcirc value at the halo radius,R200. The other
colour data points are the Posti & Helmi (2019), Watkins et al.
(2019), and Eadie & Juríc (2019) estimates of the enclosed mass
at various Galactocentric radii, which were converted to circular
velocities as

�
GM (< r )/r , where G is Newton’s gravitational

constant andM(< r) is the enclosed mass within radius,r. The latter
measurements are inferred from the dynamics of globular clusters
with proper motions measured byGaia DR2 and several various
HSTprograms (for details see Eadie & Jurić 2019).

The components of the best �tting model are shown in Fig.11.
Fig. 10 shows that the contracted NFW halo model matches well
the Eilers et al. (2019) and Callingham et al. (2019) measurements,
which were the ones used for the �tting procedure. The model
also agrees well with the mass measurements by Posti & Helmi
(2019) and Watkins et al. (2019). However, it does not match
the Eadie & Juríc (2019) data particularly well, which may be
due to the assumption by these authors of a power-law model for
the MW potential, which is an oversimpli�cation. For example,
Eadie, Keller & Harris (2018) have tested their method against
cosmological simulations and �nd that their estimates are often
affected by systematic uncertainties that are not incorporated in
their quoted error bars.

The good agreement between the model and the data can be
clearly seen in the bottom panel of Fig.10, which shows the
difference between the predictions of the model and the various
data points. In particular, we notice two regions where the data
show systematic deviations from the model. First, atr � 9 kpc, the
data show a small, but statistically signi�cant dip compared to the
model. This dip is probably due to localized irregularities in the
kinematics of our galaxy since it is also present when comparing
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Figure 11. The rotation curve of the best �tting MW contracted NFW
halo model separated into contributions from individual components. The
solid lines show the maximum likelihood model and the shaded region the
68 percentile con�dence regions. The symbols with error bars show the
Bovy & Rix (2013) determination of the stellar disc and DM halo of the
MW.

against a running average of theVcirc data. Such local irregularities
are not allowed for in our globalVcirc model and thus it should not
be surprising that the model does not reproduce them. Secondly,
at r � 20 kpc, four neighbouring data points are systematically 2-
3� below the model predictions. This could be a manifestation of
systematic errors in the Eilers et al.Vcirc data since the regionr �
20 kpc is where some of their model assumptions could break down
(see their Fig.4).

The best-�tting parameter values for the contracted NFW halo
model are given in the �fth column of Table2 (see also the top
right-hand corner of Fig.12). The maximum likelihood (ML) model
corresponds to the MW residing in a DM halo with mass,M DM

200 =
0.97+ 0.24

Š0.19 × 1012 M� , and concentration before baryon contraction,
cNFW = 9.4+ 1.9

Š2.6. The ML value for the concentration is, in fact, equal
to the median concentration of� 1× 1012 M� haloes (e.g. Neto et al.
2007; Hellwing et al.2016), implying that the MW resides in an
average concentration halo. Note that we did not use a prior for
the concentration and thus the very good agreement between our
inferred value and the theoretical predictions may be interpreted as
a validation that our model gives a good description of the Galactic
data.

The total mass of our galaxy isM total
200 = 1.08+ 0.20

Š0.14 × 1012 M� , in
good agreement with the Callingham et al. (2019) measurement as
well as other mass determinations (see �g. in Callingham et al.). As
discussed previously, most of our constraints come from theVcirc

data and thus, even though we used the Callingham et al. value in our
�t, the good agreement of ourM total

200 with this measurement is not
guaranteed. Indeed, excluding the Callingham et al. measurement
from our data sample does not introduce any systematic differences
in the inferred halo mass or concentration but results in somewhat
larger uncertainties.

We also �nd that the preferred MW stellar mass isM� total =
5.04+ 0.43

Š0.52 × 1010 M� , with most (three �fths) residing in the thin disc
and the remainder equally split between the thick disc and the bulge

(each containing roughly one �fth of the total stellar mass). The
constraints on the bulge mass are mostly given by the prior since the
data we use, which corresponds toR> 5 kpc, is largely insensitive to
the mass or geometry of the bulge (see Fig.12). Most of the baryonic
mass within the halo is in the gaseous component: 1.2× 1010 M� as
H I and molecular gas, and 6.4× 1010 M� as the CGM. Adding up
everything, we �nd that the MW contains roughly 72 per cent of the
cosmic baryonic fraction. Caution should be taken when interpreting
this result since the cold gas and especially the CGM distribution
in the MW are rather uncertain. Here, we have modelled the CGM
using the average predictions from hydrodynamical simulations,
not taking into account halo-to-halo variation in CGM mass, which
the simulations predict is rather large.

The contribution of the various MW components to the total
rotation curve of the best-�tting model is shown in Fig.11. The
shaded regions around each curve show the 68 percentile con�dence
intervals. The inner region,R < 10 kpc, is dominated by baryons,
in particular by the stellar component. Our inferred stellar mass is
slightly smaller than the Bovy & Rix (2013) estimate, but consistent
within the 68 percentile errors (see black symbols with error bars).
However, we �nd a much more massive DM halo than Bovy & Rix.
This is mostly the result of the latestGaiadata which favour a MW
rotation curve of (229± 1) km sŠ1 at the Solar position, rather than
the (218± 10) km sŠ1 value inferred by Bovy & Rix. Our results also
solve a long-standing puzzle: previous measurements suggested that
the MW rotation curve is dominated by the stellar component up
to distances ofR � 12–14 kpc (e.g. Bovy & Rix2013; Eilers et al.
2019), in disagreement with recent hydrodynamical simulations
that �nd that the DM should already be dominant forR > 5 kpc
(e.g. Schaller et al.2015; Grand et al.2017; Lovell et al. 2018).
In our model, the Galactic DM halo exceeds the stellar component
contribution atR � 8 kpc, in good agreement with the theoretical
predictions (see �g. 11 in Lovell et al.2018) when accounting for
the fact that the MW is a 1� outlier in the stellar-to-halo mass
relation (see discussion in Section 6.1).

To test the effect of the CGM, we have considered two variants
of our MW model: (i) excluding a CGM component altogether,
and (ii) assuming that the CGM mass is nearly twice as large as
in the �ducial model such that the MW halo contains the universal
baryonic fraction. In both cases the CGM contribution to the rotation
curve is negligible forr � 30 kpc and hardly affects the best-�tting
values of the stellar discs or the DM halo. The largest effect is on
the total mass of the MW and even then the variation is small, well
within the quoted uncertainty range (the total mass increases by
5 per cent in the model with the most massive CGM component
compared to the model without a CGM).

To get a better understanding of the various degeneracies between
the model parameters, we show in Fig.12 the posterior distribution
for each pair of parameters. In the off-diagonal panels, the red
shaded regions illustrate the 68 and 95 per cent con�dence regions,
while, in the diagonal panels, the red lines show the marginalized
probability of each model parameter. To aid the physical interpre-
tation, we have converted the bulge and the stellar disc densities,
which are the parameters used in the �tting procedure, to the total
stellar mass of the bulge, thin, and thick disc, and only show these
quantities in Fig.12.

Fig. 12 shows that most parameters are weakly correlated but
there are a few interesting degeneracies. Most pronounced is the
degeneracy between DM halo mass and concentration. As we
already discussed, most of the model constraints come from the
inner regions, i.e.r � 20 kpc, and the same enclosed mass can
be obtained by, for example, decreasing the halo concentration
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