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ABSTRACT
We present population-orbit superposition models for external galaxies based on
Schwarzschild’s orbit-superposition method, by tagging the orbits with age and metallicity.
The models fit the density distributions, kinematic, and age and metallicity maps from integral
field unit (IFU) spectroscopy observations. We validate the method and demonstrate its power
by applying it to mock data, similar to those obtained by the Multi-Unit Spectroscopic
Explorer (MUSE) IFU on the Very Large Telescope (VLT). These mock data are created
from Auriga galaxy simulations, viewed at three different inclination angles (ϑ = 40◦, 60◦,
80◦). Constrained by MUSE-like mock data, our model can recover the galaxy’s stellar orbit
distribution projected in orbital circularity λz versus radius r, the intrinsic stellar population
distribution in age t versus metallicity Z, and the correlation between orbits’ circularity λz

and stellar age t. A physically motivated age–metallicity relation improves the recovering
of intrinsic stellar population distributions. We decompose galaxies into cold, warm, and
hot+counter-rotating components based on their orbit circularity distribution, and find that the
surface density, velocity, velocity dispersion, and age and metallicity maps of each component
from our models well reproduce those from simulation, especially for projections close to
edge-on. These galaxies exhibit strong global age versus σ z relation, which is well recovered
by our model. The method has the power to reveal the detailed build-up of stellar structures
in galaxies, and offers a complement to local resolved, and high-redshift studies of galaxy
evolution.

Key words: methods:numerical – galaxies: formation – galaxies: kinematics and dynamics –
galaxies: structure.

1 IN T RO D U C T I O N

Stellar dynamics provides a fossil record of the formation history of
galaxies. Stars that were born and remain in quiescent environments
tend to be on regular rotation-dominated orbits. On the other hand,

� E-mail: lzhu@shao.ac.cn

stars born from turbulent gas or that have been dynamically heated
after birth will be on warmer orbits with more random motions
(Leaman et al. 2017). Stellar heating mechanisms include violent
mergers (e.g. Benson et al. 2004; House et al. 2011; Few et al. 2012;
Helmi et al. 2012; Ruiz-Lara et al. 2016) and long-term secular
heating of the disc via internal instabilities (e.g. Jenkins & Binney
1990; Aumer, Binney & Schönrich 2016; Grand et al. 2016).

C© 2020 The Author(s)
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As the Universe evolves, a galaxy’s mass density, gas fraction,
and star formation all decrease. This likely reduces the velocity
dispersion of the gas from which stars form, the mass spectrum
of dense giant molecular clouds, and the frequency of mergers
(Genzel et al. 2011; Wisnioski et al. 2015). Stellar kinematics is
therefore expected for multiple reasons to be systematically corre-
lated with stellar ages (Trayford et al. 2019). Several observations
have revealed that old stars dominate the light of random-motion-
dominated bulges, while younger stars live on thinner discs. Stars
born during the same epoch tend to live on similar orbits (e.g. Bird
et al. 2013; Stinson et al. 2013). At the present day, the stellar phase-
space distribution of a galaxy is thus a combination of stars formed
over its lifetime. A mixture of merging events and star formation
episodes determines the diversity of a galaxy’s structure and stellar
populations.

Observationally, it is difficult to identify coherent structures in
the density distribution and kinematics of stars formed at high
redshift (van der Wel et al. 2016). Fortunately, the chemistry and age
imprinted in a star provide coordinates of the time and environment
of its birth. Taking the Milky Way (MW) as an example, the chemical
abundance and the 6D phase-space information of a single star could
be obtained by combining Gaia (Gaia Collaboration et al. 2018) and
spectroscopic surveys. In the solar neighbourhood, most stars are
disc stars, which we can identify as they are on near-circular orbits,
and are both young and metal rich (e.g. Mackereth et al. 2017).
Although spatially coincident, we can also identify a small fraction
of halo stars as they are on radial/vertical-motion-dominated orbits,
and are old and metal poor (e.g. Belokurov et al. 2018, 2020; Helmi
et al. 2018). The chemical information of disc stars and halo stars
gives us insight into the formation history of the MW (Belokurov
et al. 2018; Helmi et al. 2018; Fattahi et al. 2019).

However, only a handful of galaxies are near enough for us to
resolve their stars. For most external galaxies, all of our information
comes from integrated light. In these cases, the spectrum we observe
at each pixel is a light-weighted combination of spectra from
all the stars along the line of sight, which come from different
populations with different ages, metallicities, and kinematics. By
full spectrum fitting (e.g. Cappellari 2017), we can obtain the line-
of-sight velocity distribution (LOSVD), which is usually described
by a Gauss–Hermite (GH) profile with parameters of velocity (V),
velocity dispersion (σ ), and/or higher order GH coefficients, like
the third and fourth order h3 and h4 or even higher h5 and h6.

These full spectrum fits also return the average age and metallicity
of the underlying stellar populations. Such methodologies have been
applied in many integral field unit (IFU) spectroscopic surveys, such
as the Calar Alto Legacy Integral Field Area (CALIFA) survey
(Sánchez et al. 2012), the Sydney AAO Multi-object Integral Field
(SAMI) galaxy survey (Croom et al. 2012), and the Mapping Nearby
Galaxies at APO (MaNGA) survey (Bundy et al. 2015). These
surveys provide a spectrum at each pixel across the galaxy plane.
From these spectra and the aforementioned techniques, we obtain
kinematic maps (V, σ , h3, h4,...), as well as age and metallicity maps.

Disentangling the different stellar populations in present-day
galaxies, and the structures they form, will give us insight into
the galaxy’s formation history; however, this is challenging as it
typically requires resolved stellar abundances and ages or deep
integrated light spectroscopy (Leaman, VandenBerg & Mendel
2013; Boecker et al. 2020). Full spectrum (or spectral energy
distribution, SED) fitting has been pushed to provide not only
average stellar population properties, but also a distribution of

ages and metallicities – such as a star formation history (SFH)
or age–metallicity relation (AMR; e.g. Cid Fernandes et al. 2005;
McDermid et al. 2015; Cappellari 2017; Carnall et al. 2019; Leja
et al. 2019). Based on the SFH obtained at each pixel, galaxies
can be decomposed into structures with different stellar ages and
metallicities (Guérou et al. 2016; Pizzella et al. 2018; Pinna et al.
2019a,b; Tabor et al. 2019).

Dynamical models offer us an alternative and powerful tool to
probe a galaxy’s formation history. The particle-based made-to-
measure method (M2M; de Lorenzi et al. 2007; Long & Mao 2010;
Hunt & Kawata 2014) and the orbit-based Schwarzschild method
(van der Marel & Franx 1993; Rix et al. 1997; Cretton & van den
Bosch 1999; Gebhardt et al. 2000; Valluri, Merritt & Emsellem
2004; van den Bosch et al. 2008; van de Ven, de Zeeuw & van
den Bosch 2008; Vasiliev & Valluri 2020) probe how stars orbit
in a gravitational potential without ad hoc assumptions about the
underlying orbital structures. The triaxial Schwarzschild model
developed by van den Bosch et al. (2008) has proved to be effective
at recovering the orbit distributions of a variety of galaxies (Zhu
et al. 2018a,b; Jin et al. 2019). It has notably been applied to a large
sample of 300 CALIFA galaxies in the local Universe to recover
their stellar orbit distributions (Zhu et al. 2018b). However, the
orbits recovered in that study (and most others) are monochromatic
and provide no information about the underlying stellar populations.

Recently, there have been a few pioneering works that have
moved beyond this monochromatic view by tagging particles or
orbits in dynamical models with a characteristic chemistry or age
indicator. These works include a chemodynamic M2M model of
the MW bulge (Portail et al. 2017), and both M2M (Long 2016)
and Schwarzschild (Long & Mao 2018) chemodynamic models of
four nearby galaxies. However, the power and limitations of these
methods have not been characterized by testing against mock data.
This is what we set out to do here.

Starting from the Schwarzschild code developed by van den
Bosch et al. (2008), we arrive at a new population-orbit superposi-
tion method. Under the assumption that stars on the same orbit were
born close in space and time, we tag each orbit in the Schwarzschild
model with an age and metallicity. Thus if we imagine observing
the model as we would in a real galaxy, we can predict not only
the kinematic distribution along the line of sight, but also the age
and metallicity properties as well. In this way, stellar populations at
different positions are connected by the underlying orbits, providing
a holistic model of the galaxy. A rather similar approach was
recently applied to an edge-on galaxy, NGC 3115 (Poci et al. 2019),
which offers a tantalizing view into the power of the method by
providing the global stellar age versus dispersion (σ z) relation in an
external galaxy.

In this paper, we validate our population-orbit superposition
method and demonstrate its power in recovering dynamical struc-
tures of different stellar populations by using MUSE-like mock
data created with a range of projections from a variety of sim-
ulated galaxies. The paper is organized in the following way: in
Section 2, we describe the mock data created from the simulations;
in Section 3, we describe the method; in Section 4, we illustrate
the model recovery of intrinsic orbit distribution, stellar population
distribution, and the correlation in between for each galaxy; and in
Section 5, we illustrate the orbital decomposition of the galaxies and
show the recovery of the age and metallicity properties of different
components. We discuss the results in Section 7, and summarize in
Section 8.
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Table 1. The three simulated galaxies from Auriga project. From left to right: the galaxy name, stellar mass M�, neutral hydrogen mass MH I

(Marinacci et al. 2017), dark matter (DM) halo mass M200, stellar particle resolution MStarParticle, DM particle resolution MDMParticle in unit of
solar mass M�, Hubble types and specific properties, and the inclination angles (ϑ in degree) projected with for creating mock data sets.

Name M� MH I M200 MStarParticle MDMParticle Type ϑ (◦)

Au-5 6.7e10 7.2e9 1.2e12 ∼5e4 ∼3e5 Spiral: spiral arms, weak bar 40, 60, 80
Au-6 4.75e10 1.5e10 1.0e12 ∼5e4 ∼3e5 Spiral: spiral arms, weak bar 40, 60, 80
Au-23 9.02e10 1.45e10 1.6e12 ∼5e4 ∼3e5 Spiral: warps, strong bar 40, 60, 80

2 MO C K DATA

2.1 Simulations

The simulations used for our study are taken from the Auriga project
(Grand et al. 2017, 2019), which is a suite of 40 cosmological
magnetohydrodynamical simulations for the formation of the MW-
mass haloes. These simulations were performed with the AREPO

moving-mesh code (Springel 2010), and follow many important
galaxy formation processes such as star formation, a model for the
ionizing ultraviolet (UV) background radiation, a model for the
multiphase interstellar medium, mass loss and metal enrichment
from stellar evolutionary processes, energetic supernovae and active
galactic nuclei (AGN) feedback, and magnetic fields (Pakmor et al.
2017). We refer the reader to Grand et al. (2017) for more details. In
this study, we select three galaxies from the Auriga simulation suite
at a mass resolution of ∼5 × 104 M� for baryons, the typical number
of stellar particles is thus ∼1–2 × 106. The comoving gravitational
softening length for the star particles and high-resolution dark
matter particles is set to 500 h−1 cpc. The physical gravitational
softening length grows with the scale factor until a maximum
physical softening length of 369 pc is reached. This corresponds
to z = 1, after which the softening is kept constant. The details of
which are listed in Table 1.

2.2 Mock data

From each simulation, we take three projections with inclination
angles of ϑ = 80o, 60o 40o (from edge-on to face-on). Then, we
create a mock data set for each projection, thus we have 3 × 3 = 9
mock galaxies in total. Au-6 ϑ= 80◦ is taken to illustrate the method
throughout the paper.

The mock data are created as follows. We first project a simulation
to the observational plane with inclination angle ϑ (80◦, 60◦, 40◦),
and place it at distance d = 30 Mpc, then observe it with pixel
size of 1 arcsec (1 arcsec = 145 pc). Then we calculate the stellar
mass of particles in each pixel to obtain a surface mass density map.
According to the number of particles in each pixel, we then perform
a Voronoi binning process to reach a target signal-to-noise ratio
of S/NT = 50, assuming Poisson noise ∼√

Nparticles. Given all the
particles in each Voronoi bin, we derive the mass-weighted velocity,
dispersion, h3, and h4 by fitting a GH function (Gerhard 1993; van
der Marel & Franx 1993) to the stellar LOSVD, as well as calculate
mass-weighted average age (t) and metallicity (Z/Z�). Note that
here the velocity and dispersion are not actually the mean velocity
and velocity dispersion directly calculated from the LOSVD, but
the parameters of the base Gaussian in the GH function.

After the Voronoi binning, the spatial resolution of our mock
data is ∼150–1000 pc. Considering the softening length of 369 pc
for star particles in the simulation, the actual spatial resolution is
∼400–1000 pc, which is comparable, but slightly lower than that of
the kinematic data (binned with target single-to-noise ratio S/NT =

100) from the Fornax 3D project (Sarzi et al. 2018). We use a simple
function inferred from the CALIFA data to construct the errors for
kinematic maps (Tsatsi et al. 2015), with the errors proportional
to S/NT

S/Nbin
(1 + 1.4 log Npix), where S/Nbin = √

Nparticles, and Npix is
the number of pixels in a Voronoi bin. We will have larger errors
for kinematics in the area with lower surface density, where more
pixels are included in each bin in order to reach the target S/NT. For
age and metallicity, the observational errors are more complicated.
Tests on full-spectrum fitting to mock spectra of S/NT = 40 obtained
random errors of 10 per cent for age and metallicity (Pinna et al.
2019b), the errors could be lower for spectra with higher S/N, while
it could be higher for real spectra due to possible systematic effects.
For this proof-of-concept we adopt relative errors of 10 per cent for
age and metallicity. The kinematics and age and metallicity maps
are then perturbed by random numbers, normally distributed with
dispersions equal to the observational errors. The error maps of the
mock data are similar to the data of MUSE observations for galaxies
in the Fornax 3D project (Sarzi et al. 2018).

The mock data created from the simulation Au-6 with ϑ = 80◦

are shown in Fig. 1. From left to right, they are stellar velocity
V, velocity dispersion σ , GH coefficients h3 and h4, and age and
metallicity maps. The first row is the perturbed data and the second
row is the corresponding error maps.

For real galaxies, the kinematic maps obtained from observations
are usually light-weighted. In that case, we typically measure light-
weighted age and metallicity maps, and use surface brightness as
the tracer density for consistency. Orbits in the model should be
interpreted as light-weighted. Here, however, the mock kinematics
and age and metallicity maps are mass-weighted so that we use
surface mass density – rather than surface brightness – as the tracer
density distribution. Therefore, the orbits in the model are mass-
weighted. For method validation, mass-weighted or light-weighted
data do not make any difference.

3 M E T H O D

In this section, we describe how we fit the stellar kinematic maps and
the age and metallicity maps with a population-orbit superposition
method. The model will proceed as a two-step process: first,
fitting the kinematics maps with a standard Schwarzschild’s orbit-
superposition model to obtain the orbit weights; second, tagging the
orbits with age and metallicities and fitting the age and metallicity
maps to obtain the best-fitting age and metallicity of the orbits.

3.1 Schwarzschild method

The three main steps to build a Schwarzschild model are as
follows: (1) create a suitable model for the underlying gravitational
potential; (2) calculate a representative library of orbits within the
gravitational potential; and (3) find the combination of orbits (solve
the orbit weights) that match the observed kinematic maps and
luminosity/mass distribution of the tracers.

MNRAS 496, 1579–1597 (2020)
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1582 L. Zhu et al.

Figure 1. MUSE-like mock data created from the simulation Au-6, projected with inclination angle of ϑ= 80◦. The six columns from left to right are velocity
V, velocity dispersion σ , GH coefficients h3 and h4, and age and metallicity maps. The first row is perturbed data, the second row is errors (dt and dZ are
10 per cent of the original unperturbed data). The overplotted contours represent the surface mass density.

The gravitational potential is constructed by a combination of
stellar mass distribution and dark matter halo. We deproject the
surface brightness to 3D luminosity density by assuming a set of
viewing angles (ϑ, φ, ψ). Here ϑ and φ define the orientation of line
of sight with respect to the principle axis of the object. The angle
ψ is required to specify the rotation of the object around the line of
sight.

By multiplying the surface brightness by a stellar mass-to-light
ratio, we obtain the intrinsic stellar mass density. Here for the mock
galaxies, we actually use surface mass density, instead of surface
brightness, to construct the gravitational potential. We still allow
for a scale parameter αstar, which is analogous to a mass-to-light
ratio, but with a true value of 1, to be a free parameter.

A multi-Gaussian expansion (MGE) is used for modelling the
surface density and deprojection to 3D density for the stellar
component (Emsellem, Monnet & Bacon 1994; Cappellari 2002).
For our galaxies close to axisymmetric, we always align the
projected major axis with long x-axis on the observational plane
and do not allow for a twist between the different Gaussians, thus
ψ is always close to 90◦.

We use the parameters describing intrinsic shapes (q = Z/X, p =
Y/X, u = σ obs, major/σ intr, major = x/X) of the Gaussians, instead of
the three viewing angles as free parameters. X, Y, and Z are the
intrinsic major, intermediate, and long axis of the galaxy, u is the
ratio between σ of observed long axis to the intrinsic long axis.
We further fix u = 0.9999, while p and q are left free. Note that
the intrinsic shape is determined by p and q, thus triaxiality of the
stellar component is still allowed in our model. In our case fixing
u = 0.9999 restricts φ in a small region close to 90◦ and σ intr, major

close to σ obs, major.
The dark matter is assumed to be a spherical Navarro–Frenk–

White (NFW) halo, with concentration C fixed according to M200

versus C correlation of Dutton & Macciò (2014).
In summary, we have four free parameters describing the gravita-

tional potential: the scale parameter of stellar mass αstar (comparable
to a stellar mass-to-light ratio), intrinsic shape parameters p and q,
and dark matter virial mass M200.

The method of orbit library sampling and model fitting follow
exactly as described in Zhu et al. (2018b) and van den Bosch et al.
(2008), which we do not repeat here. It should be emphasized that
we do not fit V, σ maps directly, but rather the LOSVD expanded
in GH coefficients h1, h2, h3, and h4 to solve the orbit weights.

However, we extract V and σ maps from the model at the end for
direct comparison to the observational data. By exploring the free
parameters describing the gravitational potential, we find the best-
fitting model that reproduces the observed stellar kinematic maps
and mass distribution.

We characterize the orbits with two parameters: time-averaged
radius r and circularity λz. Following Zhu et al. (2018b), λz is
defined as the angular momentum Lz normalized by the maximum
that is allowed by a circular orbit with the same binding energy.
All quantities are taken as average of the particles sampled along
the orbit over equal time interval. The stellar orbit distribution
of a galaxy is described as the probability density distribution
in the phase space of λz versus r. Fig. 2 illustrates the orbit
distribution of a typical spiral galaxy. Darker colour indicates higher
probability; the total weight of the orbits has been normalized to
unity.

The orbit library consists of a few thousand orbits, and a few
hundred of them gain significant weights at the end. To reduce the
noise in fitting age and metallicity maps, we perform a Voronoi
binning in the phase-space r versus λz, and divide the orbits into
Nbundle ∼ 100 bundles. Orbits with similar r and λz are included
in the same bundle, to ensure each bundle has a minimum of orbit
weight of 0.005. The resulting binning scheme is shown as the red
polygons in Fig. 2.

3.2 Tagging stellar orbits with stellar populations

The observed age map presents values of age, t i
obs, at each aperture

i on the observational plane, with a total number of Nobs apertures.
Throughout the paper, one aperture indicates one spatial bin on the
observational plane that may include a few pixels. After dividing
the orbits into Nbundle bundles (Fig. 2), we resample particles from
these orbits in each bundle, by recalculating each orbit and adopting
particles along the orbit trajectory with the number of particles
drawn from each orbit proportional to its orbit weight. Then we
add up all the particles sampled from each orbit bundle, project
them to the observational plane, and calculate the mass f i

k (mass
for mass-weighted and flux for light-weighted models) contributed
by the orbital bundle k at each aperture i.

This orbit bundle k is tagged with a single value of age tk. The
average value of age in each aperture i is a linear average of the
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Figure 2. Probability density of stellar orbits in the phase space of
circularity λz versus time-averaged orbital radius r. Darker colour indicates
higher probability as indicated by the colour bar, and the total orbit weight
has been normalized to unity. This galaxy has a large fraction of highly
circular tube orbits with λz ∼ 1 extending to large radius. In the inner
regions, there are more tube orbits with significant random motions with λz

∼ 0.5, some radial-motion-dominated box orbits λz ∼ 0, and a small fraction
of counter-rotating (CR) orbits with λz < 0. The red polygons indicate the
Voronoi binning scheme we have adopted in the phase space, yielding ∼100
orbit bundles, each with a minimum weight of 0.005.

Nbundle orbital bundles,

t i
obs = 	

Nbundle
k=1 tkf

i
k /	kf

i
k , (1)

for i = 1, ...Nobs. Similarly, for metallicity,

Zi
obs = 	

Nbundle
k=1 Zkf

i
k /	kf

i
k . (2)

We then solve for the values of tk and Zk using a Bayesian statistical
analysis, which we will describe in detail in Section 3.4. As we
will see, reproducing on-sky age and metallicity maps may be
possible, however, to reproduce them with the correctly correlated
combinations of age and especially metallicity is non-trivial.

3.3 Age–metallicity correlation

We wish to adopt the most agnostic parametrization of the possible
metallicity and age values for each orbit bundle. Unfortunately, a
completely unconstrained age–metallicity parameter space results
in poor recovery of the known 2D distribution in age versus
metallicity (see Section 4.3).

In order to provide a theoretically motivated link between age and
metallicity that is flexible enough and unbiased for our purposes,
we leverage the statistical chemical scaling relations presented
in Leaman (2012), and model described by Oey (2000). These
essentially map a galaxy’s chemical evolution into a parameter space
that is (1) self-similar across time and spatial scales for galaxies of
different masses, and (2) easily expressed in a robust statistical
functional form (binomial).

The shape of galaxy AMRs and metallicity distribution functions
show mass-dependent behaviours (e.g. Kirby et al. 2013; Leaman
et al. 2013). However, Leaman (2012) identified that in linear
metal fraction (Z/Z�), all Local Group galaxies (in mass range

of M∗ < 1010 M�) exhibit metallicity distribution functions that
are binomial in statistical form, i.e. the variance σ (Z)2 and mean
<Z > are tightly correlated, but the ratio is less than unity. Using
a binomial chemical evolution model from Oey (2000), Leaman
(2012) demonstrated that galaxies approximately evolve along the
σ (Z)2–Z scaling relation. This provides a mass-independent, self-
similar framework to link two quantities of interest: the spread in
metals and the average metallicity of a galaxy or region of a galaxy.

To further link age to these two quantities we consider the
binomial chemical evolution model of Oey (2000), which produces
metallicity distribution functions with variance and mean:

σ (Z)2 = nQ(1 − Q), (3)

< Z >= nQ,

where n represents the final number of star-forming generations,
and Q represents the covering fraction of enrichment events within
a generation. To make time explicit in the model, we consider that
the gas reduction increment in the Oey (2000) model, D = 1 − nδ,
can be related through the gas fraction definition as

Mgas

M∗
= 1 − nδ

nδ
. (4)

From this we can express an approximate star formation law and
relate it to n in the binomial model as

n = M∗
δ

=
∫ tH

t
ε SFR(τ ) dτ

SFR(t)
, (5)

where tH is the Hubble time and t is when the last generation of
star formation happens. Following empirical and theoretical star
formation laws, we have introduced ε to allow for non-perfect
conversion of gas to stars. This variable is often expressed as an
inverse of the gas depletion time: ε = 1/tdep.

For a constant star formation rate, n then becomes

n = tH − t

tdep
, (6)

where tH − t is the length of time that all generations of star
formation last in the galaxy. Combining this with the expressions
for variance and mean Z in equation (3) we find

σ (Z)2 = Z

(
1 − Ztdep

tH − t

)
. (7)

This can then be re-expressed as a link between age, average
metallicity, and spread in metallicity:

t = tH − tdep
Z

1 − σ (Z)2/Z
. (8)

We can now use equation (8) to set a mass-independent link
between age and metallicity distributions. To further link these
quantities and specify the metallicity spread in terms of average
metallicity, we consider the observed statistical correlations present
in metallicity distributions of Local Group dwarf to MW-mass
galaxies. Empirically, the observed relation between σ (Z) and Z
from Local Group galaxies (Leaman 2012):

σ (Z)2 = 10a+b log 10(Z), (9)

where a = −0.689 and b = 1.889 shown as the black solid line in the
top panel of Fig. 3. As our priors are best expressed in natural log
space, and considering ln Z of each population follows a Gaussian
distribution, then a purely mathematical calculation yields

g(Z) ≡ σ (ln(Z)) =
√

ln(1 + σ (Z)2/Z2). (10)
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Figure 3. Top: the relation of metallicity spread σ (Z) versus Z, the black
stars are Local Group dwarf galaxies from Leaman (2012), the black curve
(labelled as a) is fitting to these data points (equation 9). Bottom: σ (ln(z))
versus Z converted from the curve in the top panel based on equation (10).

Combined with equation (9), this yields for g(Z), the black solid
curve shown in the bottom panel of Fig. 3.

Setting tH = 14 Gyr and by substituting σ (Z)2 from equation (9)
into equation (8), we obtain a relation between average metallicity
Z and formation time t. This AMR Z(t|tdep) still depends on
depletion time tdep. As shown in Fig. 4, Z(t) is steeper with smaller
tdep, and shallower with larger tdep. Actually, tdep will likely be
different for different regions in a galaxy with complicated SFH.
The dots overplotted in Fig. 4 are the observed age tobs and
metallicity Zobs (Au-6 ϑ = 80◦) coloured by their elliptical radius
Rellp =

√
x2 + y2/(qobs)2 on the observational plane, where qobs is

observed flattening of the galaxy. There is almost a linear correlation
between tdep indicated by (tobs, Zobs) and radius Rellp (also see Fig. A1
in Appendix A). The star formation in a galaxy is consistent with
smaller tdep at small radii, and larger tdep at large radii. We note that
the range of depletion times is consistent with those found for a
wide range of galaxy masses, regions – including at larger redshifts
(cf. Bigiel et al. 2011).

3.4 Bayesian analysis

We use Bayesian statistical analysis (PYTHON package PYMC3) to
obtain age (tk) and metallicity (Zk) of the orbital bundles.

3.4.1 Fit to age map

We first fit the age map following equation (1). To use Bayesian
theorem to compute the posterior p(θ |x) of a model, we require
the prior p(θ ) and the data likelihood p(x|θ ). We adopt a bounded

Figure 4. The age–metallicity relation (AMR) Z(t|tdep) derived with com-
bination of equations (8) and (9). The solid curves with different colours are
Z(t) by choosing different tdep as labelled. The dots are the observed age tobs

and metallicity Zobs (Au-6 ϑ = 80◦) coloured by their elliptical radius Rellp

on the observational plane.

normal distribution for the prior of tk,

f (tk|μk, σk) =
√

1

2πσ 2
k

exp − (tk − μk)2

2σ 2
k

, (11)

with lower and upper boundary of 0 and 14 Gyr, we set μk and σ k

as follows:

μk = Randn(< tobs >, 2σ (tobs)), (12)

σk = 2σ (tobs), (13)

where <tobs> and σ (tobs) indicate average and standard deviation of
age from the observational age map. Note that Randn(a, b) means
a random number generated from normal distribution with centre
a and dispersion b, the above priors are uniform for all the orbital
bundles.

Next, we require the data likelihood p(x|θ ) (or called ‘observed
stochastic’). Even though the observed data are known and fixed,
we need to formally assign it a probability distribution as if it were
a random variable. We adopt a student’s t-distribution tν(x|μ(θ ), σ )
for the data likelihood (Salvatier, Wiecki & Fonnesbeck 2016). It
will allow some outliers in the data and results in a robust fitting.
The chain is initialized with the method automatic differentiation
variational inference (ADVI) with 200 000 draws, and we run 2000
steps. We take the average and standard deviation of the last 500
steps of the posterior chain as mean and 1σ uncertainties of tk.
The last 500 steps will also be used for smoothing the overall age
distribution of the galaxy obtained by our model.

In general, we expect stellar kinematics to be systematically
correlated with stellar age, because stars on dynamical hot orbits
are systematically older than stars on near-circular orbits (Trayford
et al. 2019). From our experience, with the above priors for tk,
it is not easy to perfectly recover the correlation between stellar
age t and orbits’ circularity λz, especially for the face-on galaxies
(see Section 4.4). The results could be improved by fitting a linear
relation t = t0 + pλz (λz ≥ 0.0) to the t(λz) relation of the first
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model.1 Then for the second model iteration, we set the μk and σ k

of the Gaussian priors as

μk = Randn(t0 + pλz,k, 2σ (tobs) − |p|/2) (λz,k ≥ 0.0)

= t0 (λz,k < 0.0),(14)

σk = 2σ (tobs). (15)

In this case, the standard deviation of μks is still ∼2σ (tobs), similar to
the previous prior. We perform the Bayesian analysis again with the
new priors. This iterative process could be repeated more than once,
but we found the results already converged after the first iteration.
We stress this is only an iterative refinement on the choices of priors,
not a prescribed link between age and circularity directly.

3.4.2 Fit to metallicity map

After we have obtained ages of the orbital bundles, we then fit
the metallicity map following equation (2). Metallicity expressed
in linear unit Z/Z� is adopted in our analysis. We use a bounded
lognormal distribution as prior of metallicity Zk of each orbital
bundle,

f (Zk|μk, σk) = 1

Zk

√
1

2πσ 2
k

exp − (ln Zk − μk)2

2σ 2
k

, (16)

with lower and upper boundary of 0 and 10. We first start with μk

and σ k of the lognormal distribution as follows:

μk = ln(Randn(< Zobs >, σ (Zobs))), (17)

σk = σ (Zobs), (18)

where <Zobs> and σ (Zobs) are the average value and standard
deviation of metallicity from the observational metallicity map.
Then we perform Bayesian analysis similar to the fitting of age
map. We take the average and standard deviation of the last 500
steps of the Markov chain Monte Carlo (MCMC) as mean and 1σ

error of ln (Zk), the last 500 steps are also used for smoothing the
overall metallicity distribution of the galaxy obtained by our model.

The above uniform priors for Zk lead to a poor recovery of the
age–metallicity distribution. To this end, we use the AMR derived
in Section 3.3 to give more reasonable priors for Zk, with age of each
orbit tk already obtained. We adopt again the bounded lognormal
distribution, but now with μk and σ k given by

μk = ln(Z(tk|tdep(rk))), (19)

σk = g(μk). (20)

We let the depletion time locally vary as a function of radius rk

(which traces mass density), and refer the reader to Appendix A for
details.

In order to understand how the different priors on tk and Zk affect
our results, we perform two model fits to age and metallicity maps:
an unconstrained version, and one with the above-mentioned priors.
These are summarized in Table 2. The model results from these
different priors are marked as R1 and R2, respectively, throughout
the paper.

1For the spiral galaxies that we test, our model has relatively large
uncertainty on stellar ages of the small fraction CR orbits with λz < 0.0,
thus we do not include them for the t–λz fit.

Table 2. The priors for the Bayesian fitting to age and metallic-
ity maps. We have ∼100 orbital bundles in the model, k indicates
any of these. We take a bounded normal distribution as prior
for tk (equation 11), a bounded lognormal distribution for Zk

(equation 16), with the mean μk and dispersion σ k specified
differently for the two rounds of model fitting: R1, R2. When
fitting to age, for model R1, we use uniform priors for tk, and
for model R2 we use a relation tk = t0 + pλz, k fitted from the
result of model R1. When fitting to metallicity, for model R1
we use uniform priors for Zk, while for model R2 we use the
age–metallicity spread relation Z(t|tdep) (Fig. 4), g(Z) (Fig. 3)
(see Section 3.3).

Model Prior for age tk
Norm(tk|μk, σ k)

R1 μk = Randn(<tobs>, 2σ (tobs))
σ k = 2σ (tobs)

R2 μk = Randn(t0 + pλz, k, 2σ (tobs) − |p|/2)
σ k = 2σ (tobs)

Model Prior for metallicity Zk

LogNorm(Zk|μk, σ k)
R1 μk = ln (Randn(<Zobs>, σ (Zobs)))

σ k = σ (Zobs)
R2 μk = ln (Z(tk|tdep(rk)))

σ k = g(μk)

4 R ESULTS ON STELLAR ORBI T AND
POPULATI ON D I STRI BUTI ONS

In this section, we describe how the models match the intrinsic
orbit distribution, age–metallicity distribution, and age–circularity
correlation with the nine MUSE-like mock data created from Auriga
simulation. For illustration of model fitting and some results, we do
not show all nine galaxies but just Au-6 ϑ= 80◦. We refer the reader
to Appendix B for results for the other galaxies.

4.1 Best-fitting model

A best-fitting model of the mock data from Au-6 with ϑ = 80◦

is shown in Fig. 5. From left to right, the columns are surface
mass density, mean velocity, velocity dispersion, h3, h4, age (t),
and metallicity (Z). The first row is the data, the second row is
reproduced by the best-fitting model, and the third row is residual.
The model matches the kinematic maps, age and metallicity maps
well. For just the projected on-sky maps, we see that the models with
different priors (R1, R2) fit the age and metallicity maps equally
well.

In summary, up to this point we have obtained an orbit-
superposition model, with the orbit weights solved by matching
the stellar mass distribution and kinematic maps. Here we further
divided the orbits into ∼100 bundles, and obtained the age and
metallicity of these bundles by fitting the age and metallicity maps.
By taking a Bayesian statistical analysis, we obtained the mean
value tk and Zk of each bundle k, as well as their uncertainties σ (tk)
and σ (Zk).

4.2 Stellar orbit distribution

We first check how well the orbit distribution in our model matches
the true distribution from the simulation. The real gravitational
potential and 6D phase-space information of particles are known
in the simulation. Thus we know the instantaneous circularity λz
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1586 L. Zhu et al.

Figure 5. The best-fitting model. The columns are surface mass density, velocity V, velocity dispersion σ , GH coefficient h3, h4, age t, and metallicity Z. The
first row is observational data, the second row is from the best-fitting model, and the third row is residuals.

of each particle (Gómez et al. 2017), which does not necessarily
conserve λz when orbiting in the potential, especially for those
particles on radial/box orbits with λz ∼ 0. To obtain the orbits’
circularity, in principle, we have to freeze the potential, integrate
the particle orbits in the potential, and calculate the average values
along the orbits. Here for simplicity, we use a single snapshot and
select those particles that are close in energy, E, angular momentum,
Lz, and the total angular momentum amplitude, |L|. Under the
assumption that these particles are on the same orbit in a near-
axisymmetric system, we then compute the corresponding averages
of radius r and circularity λz of these particles, which are taken as
the orbit’s r and λz. The stellar orbit distribution of one galaxy is
then presented as the probability density distribution of all these
orbits in the phase space of r versus λz, which is shown in the
left-hand panel of Fig. 6 for Au-6.

In our model, we calculate orbit’s circularity and time-averaged
radius from the particles sampled from the orbit with equal time
interval. The middle panel of Fig. 6 shows the distribution of orbits
in our best-fitting model for mock data Au-6 ϑ = 80◦.

Our model matches the major features in the phase space of r
versus λz as the true orbit distribution from the simulations. For
the case of Au-6 ϑ = 80◦ we show here counter-rotating (CR)
orbits contribute a small fraction in the simulation, and our model
underestimates CR orbits by ∼50 per cent. The right-hand subpanel
is the marginalized λz distribution. The black dashed curve is the
true distributions; red solid curve represents that from our model.
We did a 1D Kolmogorov–Smirnov (KS) test to check how well the
λz distribution recovered by our model match the true distribution
from simulation. The D-statistics, D, is the maximum deviation
from the accumulated curves of two distributions. We obtained D =
0.09 here for the λz distribution. A similar comparison for Au-5,
Au-6, and Au-23 with inclination angles of ϑ = 40◦, 60◦, and 80◦

is shown in Appendix B (Fig. B1).

4.3 Age–metallicity distribution

Age and metallicity maps projected on-sky can be reproduced with
many degenerate combinations of age–metallicity distributions of
the stars. However, not all combinations may be physical, nor match
the intrinsic age versus metallicity distribution of the simulated
galaxy. Here we check how the age and metallicity distribution of

orbits in our models match the intrinsic distribution of particles in
these simulations.

In Fig. 7, we show the probability density distribution of parti-
cles/orbits in age (t) versus metallicity (Z/Z�), from the simulations
and from our model of Au-6 ϑ = 80◦. The first panel labelled with
‘True’ shows the true distribution in age versus Z of particles in the
simulation. The following panels are those obtained by our model
for mock data ϑ = 80◦ but with prior R1, R2 from left to right. The
probability contours are smoothed by the last 500 steps of MCMC
chains of tk and Zk from the Bayesian analysis.

The upper subpanel for each halo is the marginalized age distri-
bution and the right-hand subpanel is the marginalized metallicity
distribution. The black dashed curve is the true distributions; red
and blue solid curves represent those from models with prior R1
and R2, respectively. From a 1D KS test, we obtained D = 0.12
and 0.08 for age distribution and D = 0.12 and 0.06 for metallicity
distribution, for models with prior R1 and R2, respectively. Both
intrinsic age and metallicity distributions are recovered better with
model R2 than R1.

In the true distribution, most stars follow a relation with older stars
that are more metal poor. Model R1 hardly recovers this relation
(Fig. 7), missing a significant fraction in mass of subsolar metallicity
stars, and showing roughly uncorrelated distributions of constant
metallicity groupings over a wide range in age. The recovery of
AMR significantly improved with model R2, especially for more
face-on galaxies (see Figs B2 and B3).

4.4 Age–circularity correlation

In this section, we study the correlation of stellar orbit circularity
and ages in the simulation, and check how well the correlation can
be recovered by our models.

The intrinsic probability density distribution of orbits on age t
versus circularity λz for simulation Au-6 is shown in the left-hand
panel of Fig. 8. Darker colour indicates higher probability density. In
the simulation, there is a correlation between stellar age and orbits’
circularity: highly circular orbits are systematically younger, and
radial-motion-dominated orbits are older. We calculate the average
age of orbits as a function of λz by binning on λz (the magenta
dashed curve) and average λz as a function of age by binning on
age t (the green dashed curve).
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Population-orbit superposition: method validation 1587

Figure 6. The stellar orbit distribution described as probability density of orbits in the phase space of λz versus r, for Au-6. The left-hand panel is the true
stellar orbit distributions from simulations. The second is the distribution of orbits in our best-fitting model for mock data with ϑ = 80◦. The right-hand panel
is comparison of marginalized λz distribution between true and model. Similar figures for the other galaxies are included in Appendix B (Fig. B1).

Figure 7. The intrinsic age–metallicity distribution for Au-6 ϑ= 80◦. The left-hand panel is the true distribution in stellar age t versus metallicity Z of particles
of the simulation. The rest panels are obtained by our model constrained by mock data Au-6 ϑ = 80◦ with priors R1 and R2 from left to right. The probability
contours of our models are smoothed by the last 500 steps of MCMC chains of tk and Zk from the Bayesian analysis. The upper subpanel is the marginalized
age distribution and the right-hand subpanel is the marginalized metallicity distribution. The black dashed curve is the true; red and blue solid curves represent
that from model with priors R1 and R2, respectively. The D-statistics, D, calculated from KS test comparing 1D age/metallicity distribution from our model to
the true age/metallicity distribution is labelled.

The orbit distribution in age versus circularity obtained by our
models with Au-6 ϑ = 80◦ is shown in the following panels,
for model R1 and R2, respectively. In each panel, the probability
contours represent the distribution that is derived from the last 500
steps of MCMC chain of tk from the Bayesian analysis. The magenta
triangles are average age as function of λz from the model. The
magenta solid line (t = t0 + pλz) is a linear fit to the triangles,
which from model R1 is used as prior of age tk for model R2 when
fitting to age map. The green diamonds are average λz as a function
of age by binning on age from the model.

Our models generally match the t–λz correlation from the
simulation, model R2 matches it better than R1 for Au-6 ϑ= 80◦; the
improvement of R2 comparing to R1 is more significant for more
face-on galaxies (see Figs B4 and B5). The results in following
sections are based on model R2 if not otherwise specified.

5 O RBI TAL DECOMPOSI TI ON

To further quantify the correlation between the orbits’ dynamical
properties and stellar populations, we decompose galaxies (cf. Zhu
et al. 2018b) by dividing the orbits into cold (λz ≥ 0.8), warm (0.25 ≤
λz < 0.8), hot (|λz| < 0.25), and CR (λz < −0.25) components. We
emphasize that the separation of cold, warm, hot+CR components
is just for proof of concept. For real galaxies, we may adjust the
component separation case by case.

We rebuild the 3D structure for each of the cold, warm, hot+CR
components by particles in simulations and orbits in models. Then
we project the 3D structures, here with the same inclination angle as
the galaxy was observed, to the observational plane, thus obtaining
surface density (SD), velocity and velocity dispersion, and age and
metallicity maps for each component. In Fig. 9, we compare these
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1588 L. Zhu et al.

Figure 8. The intrinsic correlation of age versus circularity, for Au-6 and those from our models with mock data ϑ= 80◦. The first one is the true distributions
of the particles from simulation, darker colour indicates higher probability density, the magenta dashed curve is average age t as a function of λz, while the
green dashed curve is average λz as a function of age t from the simulation. The following panels are obtained by model R1 and R2, respectively. In each panel,
the magenta triangles are average age as a function of λz for the corresponding panel, the magenta solid line is a linear fit (t = t0 + pλz) to the triangles. The
magenta solid line from model R1 is used as priors of ages tk in model R2. Similarly, the green diamonds represent average λz as a function of age t for the
model. Model R2 matches the true relations in the simulation better than model R1.

Figure 9. Surface mass density and age and metallicity maps of the whole galaxy, cold, warm, and hot+CR component (from top to bottom) of Au-6 ϑ =
80◦. The left-hand panels are constructed by particles in the simulation, the right-hand panels are constructed by orbital bundles in our model constrained by
mock data with ϑ = 80◦. The galaxy is at a distance of 30 Mpc, 1 arcsec = 145 pc.

maps from the simulation Au-6 (left) to those recovered from our
model with mock data Au-6 ϑ = 80◦ (right).

Our model generally reproduces the morphology, kinematics,
and age and metallicity maps of the different components: the cold
thin disc is fast rotating with small velocity dispersion, young, and
metal rich; the warm thicker component has weaker rotation and
higher velocity dispersion, older, and metal poorer; and the hot+CR
spheroid has almost no rotation and high velocity dispersion, with
oldest and most metal-poor stellar populations. The 2D maps, both
along the major and minor axis, of each component are visually
well recovered by our model.

For a quantitatively comparison, we show in Fig. 10 the radial
profiles (along the major axis) of the SD, age, and metallicity for the
cold, warm, and hot+CR component, obtained from the simulation
(left) and from our model (right). The three components are plotted

as black, yellow, and red. In the right-hand panels, we show not only
the best-fitting model, but also all the models within 1σ uncertainty
when fitting to kinematics (Zhu et al. 2018b). The shadow areas
indicate the scatter of these models within 1σ uncertainty, the solid
thick curves are corresponding averages, and the thin dashed curves
are the best-fitting one.

The cold thin disc is spatially extended with a SD profile close
to exponential, the warm component is less extended, while the
hot+CR spheroid is concentrated in the inner regions. The SD
profiles of the three components are generally reproduced well by
our model. Note that we slightly overestimate the SD of warm
components, although the warm component itself is a small fraction
compared to the cold component at the outer regions.

The simulation shows an increase in stellar age from cold to
hot orbits, with little change in that behaviour with galactocentric
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Population-orbit superposition: method validation 1589

Figure 10. Surface mass density, age, and metallicity profiles along major
axis (1 arcsec = 145 pc) of the cold (black), warm (warm), and hot+CR
(red) component of Au-6 ϑ = 80◦. The left-hand panels are constructed
by particles in the simulation. The right-hand panels are those constructed
by orbital bundles in our model constrained by mock data with ϑ = 80◦,
the shadow regions indicate 1σ uncertainty of our models, the solid thick
curves are average of models within 1σ , and the dashed thin curves are the
best-fitting one.

distance; there is only a shallow negative gradient for the cold
disc from inner to out regions. Our models generally reproduce
this behaviour. An implication of this is that for the galaxy as a
whole, the projected age gradient is a result of different dynamical
components superimposed: the old-hot component dominates in the
centre and a young-cold component dominates in the outer regions.

The three components have similar metallicity (Z/Z�) at the
centre, with a strong negative metallicity gradient in the hot+CR
component, and the gradient becomes weaker from hot+CR, warm
to cold component. Our models generally match the metallicity
gradients for warm and hot+CR component, but overestimate the
metallicity of cold component in the inner region, thus resulting in
a too strong metallicity gradient for the cold component.

A similar decomposition is performed for all galaxies. For edge-
on galaxies (ϑ = 80◦), the age and metallicity profiles of three
components are recovered similarly well for Au-5, Au-6, and Au-
23 (see Figs B6 and B7). Age and metallicity profiles of each
component are recovered less well in more face-on galaxies.

6 G LOBA L AGE–DISPERSION R ELATION

The stellar age versus vertical velocity dispersion σ z relation is
widely used for resolved systems to study the dynamical heating
processes (e.g. Leaman et al. 2017). Here, we extract similar
relations for external galaxies based on our model to galaxies
with integrated-light data. Application of a similar approach to
NGC 3115 has provided a t–σ z relation of this galaxy (Poci et al.
2019). Here, we check how reliable the global (not disc alone) t–σ z

relation can be recovered.
We can construct t–σ z relations by separating the galaxies into

multiple components in two ways based on Fig. 8, by applying a cut
either on circularity λz, or on stellar age of the orbits in our model.

First we follow the separating on circularity λz as we did in

Figure 11. The global age t versus dispersion σz relation. The three panels
are for Au-5, Au-6, and Au-23, respectively. We separate each galaxy to
be cold, warm, hot+CR components based on the orbits’ circularity λz,
and calculate average age and dispersion σz for each component. In each
panel, the black asterisks are the true values calculated from the simulations,
dispersion increases with age from cold, warm to hot component, the solid
black curve just connects the asterisks. The red, blue, and purple diamonds
represent those calculated from our models for galaxies with ϑ = 80◦, 60◦,
and 40◦, respectively.

Figure 12. The global age t versus dispersion σz relation. Similar to Fig. 11,
but by separating the simulation/model in to equal mass bins according to
stellar age. We separate the simulation into 10 age bins, and model into five
age bins.

last section, to separate the simulation/model into cold, warm,
hot+CR components, then we calculate the average age and σ z

of each component. In Fig. 11, we show the resulting t–σ z relation
in these simulations and how our model recovered it. The three
panels are for Au-5, Au-6, and Au-23, respectively. In each panel,
the black asterisks are the true ages and velocity dispersions σ z of
each component from the simulation. There are strong age versus
σ z correlation in these three Auriga simulations; cold components
have small σ z and are younger, while hot components have larger
σ z and are older.

The red, blue, and purple diamonds represent those calculated
from our models for galaxies with ϑ = 80◦, 60◦, and 40◦, respec-
tively. For all three simulations, our models match the average age
of each orbital component well, thus also the t–σ z correlation. There
are slightly larger offsets for the face-on galaxies (ϑ= 40◦), but they
still generally match the trend. Our method works better for Au-5
and Au-23, in which the intrinsic age–σ z correlations are steeper,
than Au-6, in which the correlation is shallower.

As local observations have traditionally computed the velocity
dispersion of stars in similar age bins, we also separate the galaxy
by applying cuts on stellar age, with equal mass in each bin. We use
10 age bins for the simulation, and five age bins for the models, and
calculate average age and dispersion in each bin. In this way, it can
be compared to similar observed vertical dispersion of galaxies at
high redshift. The resulting t–σ z relation is shown in Fig. 12.

By binning along stellar age, our models still recover the t–
σ z relation reasonably well for edge-on galaxies. It is recovered
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Figure 13. The best-fitting model of age (left) and metallicity (right) maps
of Au-23 ϑ = 40◦. The first row is the mock data, a bar-like structure is not
obvious in age map, but significant in metallicity, the contours overplotted
illustrate the real surface mass density of the galaxy that has a strong barred
structure. The second row is our model fitted age and metallicity maps, the
overplotted contours illustrate the surface mass density of our model.

less well for face-on galaxies, for which σ z of old populations are
underestimated by our model. This is likely due to the relative large
uncertainty of age of each orbital bundle. Some cold orbits could
get old ages, and so contaminate the old populations and lead to an
underestimation of σ z.

7 D ISCUSSION

We have shown that our population-orbit superposition methods
work well in recovering the intrinsic stellar orbit distributions and
stellar population distributions of external galaxies. This method
could be widely applied to nearby galaxies with IFU observations,
making it possible to separate structures in external galaxies from
a combination of stellar kinematics and stellar chemical properties,
thus bridging the gap between the MW and external galaxies.

The current method works well in a few important aspects, but
also as we have shown, the interpretation of some results need
to be taken with caution as it does not work equally well for all
projections. Here we discuss in detail some limitations and how to
improve it in the future.

7.1 Features of bars

We do not have a bar structure explicitly in the model, while Auriga
galaxies are strongly barred. The bar regions of these galaxies are
filled by mostly warm orbits with similar circularity in our model
as the resonant orbits supporting the real bar in the simulation. Bars
generally have stellar age slightly younger than the discs, but are
significantly metal richer, consistent with the observational results
(Neumann et al. 2020). We take Au-23 ϑ= 40◦ shown in Fig. 13 as an
example. The first row shows the mock data of age and metallicity
maps with contours showing the real surface mass density. The
second row is our best fit to the data with contours showing surface
mass density in our model. The bar is not a prominent feature
in the age map, but much more obvious in the metallicity map.
Based on the orbital constructions in our model, we do not have
the ability to match the bar structure in the metallicity map. This
could directly lead to a bias in the recovered metallicity for different
orbital components.

Figure 14. Difference between prior and posterior distributions of metal-
licity for halo 6 ϑ = 80◦. The black dashed curve is the real metallicity
distribution in the simulation, the blue dotted curve is the prior distribution
set by the age–metallicity relation (AMR), and the red solid curve is the
posterior distribution after fitting to the data. We use D-statistics to quantify
the difference of two distributions, the D value between any of the two
distributions is labelled.

For edge-on cases, the structure in metallicity caused by the bar
could be roughly matched by assigning different metallicities to
the corresponding warm orbits, thus our model can still work on
recovering metallicities of cold, warm, hot+CR components. This
is not the case for face-on projections. Including a bar explicitly in
our Schwarzschild model in the future, as attempted in other studies
(Vasiliev & Valluri 2020), will certainty lead to improving recovery
of metallicities of different structures in barred galaxies.

In the current model, we group the orbits into bundles on a 2D
phase space of radius r versus circularity λz, but do not include (a
proxy for) a third integral of motion. With this grouping, the age
and metallicity maps are already fitted remarkable well, except for
the bar regions. In order to fit the bar in age and metallicity, orbit
bundles divided on a 3D phase space rather than 2D might be needed
to fit the corresponding features.

7.2 Priors

An iterative fitting procedure is used for age, starting with uninfor-
mative uniform priors. The correlation between age and circularity
from the first step is then used as prior for a second step, etc.
Typically only two steps are required to converge to a final
age versus circularity correlation. In this way, the resulting age
distribution is driven by the data.

Next for metallicity, we use a physically motivated age–
metallicity correlation to sample the priors. In Fig. 14, we show the
difference between prior and posterior of the metallicity distribution
for halo 6 ϑ = 80◦. The black dashed curve is the real metallicity
distribution in the simulation, the blue dotted curve is the prior
distribution set by the age–metallicity correlation, and the red solid
curve is the posterior distribution after fitting the data. We use D-
statistics to quantify the difference of two distributions, with the D
value between any of the two distributions as labelled.

We adopt a flexible age–metallicity prior that obeys some
inescapable limits, there is a physical, well-motivated reason that
the posterior and prior might be similar. However, as shown in
Fig. 14, the prior metallicity distribution is actually far away from
the true metallicity distribution (Dprior-true = 0.15), there is sufficient
information in the data to drive the posterior metallicity distribution
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Figure 15. The intrinsic age–metallicity distribution for Au-6 ϑ = 80◦.
In the left-hand panel, the contours represent the probability density
distribution of particles in the simulation, the diamonds represent age versus
metallicity of orbital bundles, which we obtained by dividing the particles
based on 2D r–λz plane. In the right-hand panel, the diamonds are age versus
metallicity of orbital bundles in our model, the contours are smoothed by
results of the last 500 steps of the PYMC3 process.

very close to the true metallicity distribution (Dpost-true = 0.05). In
the prior distribution, there is low probability (but not zero) to get
metallicity Z/Z� higher than 4. While in the observational data, there
are some metal-rich points, which drive the posterior distribution to
match the true distribution at high Z end. Note that this is still true
for face-on galaxies, although in these cases the final distribution
matches the real distribution less well but still with Dpost-true < 0.1
as we show in Fig. B3.

7.3 Beyond single age and metallicity per orbit

We tag a single value of age and metallicity to each orbit bundle
divided in the 2D r–λz plane, while each orbit bundle should have
a distribution of age and metallicities. A consequence of this is the
most-poor end of the metallicity distribution is difficult to match
completely (see Figs 7 and B3). This can be due to two effects that
we explain below.

In the left-hand panel of Fig. 15, the contours are probability
density distribution in age versus metallicity of particles in the
simulation. We divide the particles into different orbital bundles on
r–λz, each diamond represents average age and metallicity of an
orbit bundle. As can be seen, the age and metallicity distributions
of the orbit bundles are narrower than those of true distribution of
particles. There are rarely orbit bundles with average Z/Z� < 0.5
– even in the simulation. Thus it is expected that when assigning a
single value of age and metallicity to each orbital bundle, our model
will also show a narrow distribution in age and metallicity (even
smoothing over the last samples of our PYMC3 process).

A second related aspect is that our model is reproducing on-sky
projected age and metallicity maps. For any projection, even at the
high spatial resolution of modern MUSE observations, such spatial
binning results in a significant loss in information when compared
to the true particle age and metallicities. Further work looking at
optimal reconstruction of true particle distributions from binned
maps and observational estimates of line-of-sight metallicity and
age distributions per pixel will provide help in this front. Techni-
cally, it is not difficult to impose an age and metallicity distribution to
each orbital bundle. However, the distribution is fully unconstrained
by our current data, which are only light/mass weighted age and
metallicity maps averaged along line of sight. If we want to constrain
the age and metallicity distributions of each orbital bundle, we will
need line-of-sight age and metallicity distribution from observation,

Figure 16. The perfectly face-on (left) and edge-on (right) surface density
and age and metallicity maps of halo 6, and those in the models constrained
by data halo 6 ϑ = 80◦, ϑ = 60◦, and ϑ = 40◦ from top to bottom.

which we still need to further investigate from the observational
side.

We find that the method works better for edge-on than face-
on galaxies in a few aspects: recovering the general age versus
circularity correlation, the detailed age and metallicity profiles of
different dynamical components, and the t–σ z relation. Apart from
the presence of bars, age and metallicity information of different
structures, e.g. thin/thick discs and bulge, are revealed in the edge-
on age/metallicity maps, while blended in face-on projected data.
The ability of recovering 3D age and metallicity structures and
other aspects as we mentioned for face-on galaxies could also
improve if we can use line-of-sight age/metallicity distribution from
observations as model constraints.

7.4 Recovery of 3D distributions

The recovery of a 3D density distribution from a 2D image on
the sky-plane is non-trivial even for axisymmetric systems if not
edge-on (e.g. Gerhard & Binney 1996). Here by fitting the surface
density, kinematics, age, and metallicity maps, we check how the
3D density, age, and metallicity distributions are recovered in our
model. In Fig. 16, we show the perfectly face-on (ϑ= 0◦) and edge-
on (ϑ = 90◦) surface density and age and metallicity maps of the
simulation halo 6, and those in the models constrained by halo 6
ϑ = 80◦, ϑ = 60◦, and ϑ = 40◦ from top to bottom.

The model constrained by halo 6 ϑ = 80◦ matches the face-on
and edge-on view of surface density, as well as age and metallicity
maps of the true simulation well, except for the central bar regions.
While for more face-on galaxies (ϑ= 60◦ and ϑ= 40◦), the density
distributions are more-or-less similar to the true, but the age and
metallicity structures at edge-on view are significantly biased. The
recovery of 3D density distribution for face-on galaxies benefits
from fitting the LOSVD rather than just the zero moments surface
density map. Thus the 3D age and metallicity distributions are also
expected to be recovered better once we fit the line-of-sight age and
metallicity distributions as we discussed in Section 7.3.

8 SU M M A RY

We present a population-orbit superposition method in this paper
by tagging age and metallicity to orbits in the Schwarzschild model
and requiring it to fit the observed luminosity/mass distribution, as
well as stellar kinematics and age and metallicity maps. We validate
the method by testing against mock data created from simulations.
We take three simulations from Auriga, and project each simulation
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with three different inclination angles ϑ = 80◦, 60◦, and 40◦. With
each projection, we create a set of mock data with MUSE-like data
quality, including surface mass density, stellar kinematics, and age
and metallicity maps. Thus, we have nine mock data sets in total,
each is taken as an independent observed galaxy, to which we apply
our method.

The mock data is fitted well by our model with no difficulty except
for the barred features in face-on galaxies. To reproduce correct
relations between age and metallicity, we found a physically mo-
tivated chemical evolution prescription for the priors significantly
improved the results. To evaluate the method’s ability of recovering
galaxies’ intrinsic properties, we compare these properties from our
models to those from simulations.

(1) Our models can generally and equally well recover the stellar
orbit distribution in the phase space of circularity λz versus radius
r for galaxies with different viewing angles.

(2) The intrinsic stellar population distribution in age t versus
metallicity Z is hard to fully recover. We derived a theoretically
motivated link between age, mean metallicity, and metallicity
spread, which we impose as priors when fitting metallicity maps.
This link improved our recovery of age–metallicity correlations,
and the marginalized metallicity distributions.

(3) Our method works well in recovering the age–circularity
correlation for edge-on galaxies, but less well for more face-on
galaxies. An iterative fitting by updating the priors for age based
on an initial fit helps improving the results, especially for face-on
galaxies.

(4) To further check the method’s ability on recovering intrinsic
properties of different galaxy structures, we decompose galaxies
into cold (λz > 0.8), warm (0.25 < λz < 0.8), hot+CR (λz < 0.25)
components. We then rebuild the surface density, velocity, velocity
dispersion, and age and metallicity maps of each component. By
comparing with those constructed from the simulation, we find these
maps of each component are quantitatively well recovered by our
model for projections close to edge-on.

(5) All three simulations have a strong global age(t) versus
velocity dispersion (σ z) correlation such that older stars are hotter
with larger σ z. This relation is well recovered by our method
for all galaxies with different projection angles when we bin on
circularity: they become older and with larger σ z from cold, warm
to hot components. When we bin on stellar age, the t–σ z relation
is still recovered reasonably well for edge-on galaxies, but we
underestimate σ z of old populations for face-on galaxies.

The results presented will be our basis to apply this method to real
data, including case/statistical studies for galaxies with MUSE-like
IFU observations. The decomposition of cold, warm, and hot+CR
components is not a final solution for dynamical decomposition of
real galaxies, as flexible choice for galaxies case-by-case could be
investigated. While continued improvements to the methodology
will be developed by our team, this proof-of-concept shows great
promise in the ability of the method to uncover the build-up and
time-scales for formation of different components within galaxies
observed with modern IFU instruments.
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M., Saglia R. P., 2018, A&A, 616, A22
Poci A., McDermid R. M., Zhu L., van de Ven G., 2019, MNRAS, 487,

3776
Portail M., Wegg C., Gerhard O., Ness M., 2017, MNRAS, 470, 1233
Rix H.-W., de Zeeuw P. T., Cretton N., van der Marel R. P., Carollo C. M.,

1997, ApJ, 488, 702
Ruiz-Lara T., Few C. G., Gibson B. K., Pérez I., Florido E., Minchev I.,
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APPEN D IX A : D EPLETION TIME IN
ME TA LLICITY PRIORS

From the observed age (tobs) and metallicity (Zobs) at each position,
we can derived a corresponding tdep according to the theoretical
relation Z(t|tdep) as shown in Fig. 4. Here in Fig. A1, we show the
correlation of tdep with elliptical radius Rellp across the observational
plane. tdep is almost linearly correlated with the elliptical radius Rellp.
tdep is smaller in the inner regions with large mass density, and larger
in the outer regions with small mass density.

The observed metallicity maps have a narrow region of metallicity
due to projection effects, compared to the intrinsic metallicity
distribution of the particles. Thus the tdep we derived in this way will
likely underestimate the true maximum depletion time (and range
of depletion times).

As shown in Fig. 4, the observed age and metallicity distributions
are bounded by depletion times that correlate with the projected
radius of the bins. The upper panels of Fig. A1 show the explicit

Figure A1. Top panels: correlation of tdep and elliptical radius Rellp for all
nine mock galaxies. tdep at each position is derived by (tobs, Zobs) according
to the theoretic relation Z(t|tdep) in Fig. 4. The two vertical dashed lines
in each panel indicate Re and 2Re. The thick black lines tdep(r) = ar + b
are determined by two points: (0, tdep, min) and (Re, 4 Gyr). Bottom panels:
correlation of tdep and intrinsic radius r in the three simulations. The grey
dots represent particles in the simulation, the coloured dots denote particles
binned in the phase space r versus λz, coloured by their circularity λz as
shown by the colour bar. The black lines are the same as the upper panels.
Note that the y-axis has different scales in the upper and bottom panels.

link between the derived depletion time, and the projected elliptical
radius of each bin for the nine mock galaxy projections. In the
bottom panels, we show the relation of tdep with the intrinsic radius
r for the particles in the simulations, each grey dot represents one
particle in the simulation (we plot 1/1000), the coloured dots denote
particles binned in the phase space r versus λz, coloured by their
circularity λz as shown by the colour bar.

To correct for the loss of information (primarily the suppression of
the width of projected metallicity and age distributions, compared
to the true particle distributions), we compute a depletion time
correlation with radius that extends to larger values than the (biased)
projected bins. We find that a more complete range of depletion
times (important for the most metal-poor orbits) is encompassed if
we fit a linear relation tdep(r) = ar + b to two points: (1) tdep, min

based on the observed age and metallicity at r = 0, (2) tdep(Re) =
4 Gyr. This relation that we adopt for this work is shown as the
black line in Fig. A1. The relations are generally consistent with
the relation of tdep with the intrinsic radius r in the simulations.

A P P E N D I X B: FI G U R E S FO R A L L N I N E
G A L A X I E S

Similar to figures we show for the galaxy Au-6 ϑ= 80◦ in Section 4.
Fig. B1 shows the stellar orbit distribution in r versus λz comparing
with the true from simulation and those from our models for all nine
galaxies. Figs B2 and B3 show the stellar population distribution t
versus Z from our models for all nine galaxies, with different priors
of R1 and R2, respectively. Figs B4 and B5 are the correlation of
age t and circularity λz for all nine galaxies, with different priors of
R1 and R2, respectively.

Similar to figures we show from Au-6 ϑ = 80◦ in Section 5.
Fig. B6 are surface brightness, velocity, velocity dispersion, and
age and metallicity maps of cold, warm, hot+CR components,
comparing with true from simulation with our model R2, for Au-5
ϑ = 80◦ and Au-23 ϑ = 80◦. Fig. B7 is the age and metallicity
profiles along major axis.

MNRAS 496, 1579–1597 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/2/1579/5854214 by Liverpool John M
oores U

niversity user on 18 April 2023

http://dx.doi.org/10.1093/mnras/stt1540
http://dx.doi.org/10.1093/mnras/stx2014
http://dx.doi.org/10.3847/1538-4357/ab133c
http://dx.doi.org/10.1088/1674-4527/16/12/189
http://dx.doi.org/10.1111/j.1365-2966.2010.16438.x
http://dx.doi.org/10.1088/1674-4527/18/12/145
http://dx.doi.org/10.1093/mnras/stv105
http://dx.doi.org/10.1093/mnras/stx1774
http://dx.doi.org/10.1093/mnras/stw3366
http://dx.doi.org/10.1051/0004-6361/202037604
http://dx.doi.org/10.1086/312921
http://dx.doi.org/10.1093/mnras/stx1074
http://dx.doi.org/10.1051/0004-6361/201935154
http://dx.doi.org/10.1051/0004-6361/201833193
http://dx.doi.org/10.1051/0004-6361/201731712
http://dx.doi.org/10.1093/mnras/stz1154
http://dx.doi.org/10.1093/mnras/stx1293
http://dx.doi.org/10.1086/304733
http://dx.doi.org/10.1051/0004-6361/201526470
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.1051/0004-6361/201117353
http://dx.doi.org/10.1051/0004-6361/201833137
http://dx.doi.org/10.1111/j.1365-2966.2009.15715.x
http://dx.doi.org/10.1093/mnras/stt1600
http://dx.doi.org/10.1093/mnras/stz431
http://dx.doi.org/10.1093/mnras/sty2860
http://dx.doi.org/10.1088/2041-8205/802/1/L3
http://dx.doi.org/10.1086/380896
http://dx.doi.org/10.1111/j.1365-2966.2008.12874.x
http://dx.doi.org/10.1086/172534
http://dx.doi.org/10.3847/0067-0049/223/2/29
http://dx.doi.org/10.1111/j.1365-2966.2008.12873.x
http://dx.doi.org/10.3847/1538-4357/ab5fe0
http://dx.doi.org/10.1088/0004-637X/799/2/209
http://dx.doi.org/10.1038/s41550-017-0348-1
http://dx.doi.org/10.1093/mnras/stx2409


1594 L. Zhu et al.

Figure B1. The stellar orbit distribution in λz versus r, for Au-5, Au-6, and Au-23 from top to bottom. The first column is the true stellar orbit distributions
from simulations. The rest columns are the distribution of orbits in our best-fitting models for mock data with ϑ = 80◦, 60◦, and 40◦ from left to right. The
last column is the marginalized λz distribution. The black dashed curves are the true from simulations; red, blue, and purple solid curves represent those from
models for mock data with ϑ = 80◦, 60◦, and 40◦, respectively. The D-statistics D calculated from KS test comparing total λz distribution from our model to
the true from simulations is labelled with the corresponding colours.

Figure B2. The intrinsic age–metallicity distribution, for Au-5, Au-6, and Au-23 from top to bottom, for model R1. For each halo, the panel labelled with
‘True’ is the true distribution in age versus Z of particles in the simulation. The following panels from left to right are those obtained by our model for mock
data with inclination angle ϑ = 80◦, 60◦, and 40◦, respectively. The contours are smoothed by the distribution of t and Z from MCMC sampling. The upper
subpanel is the marginalized age distribution and the right-hand subpanel is the marginalized metallicity Z distribution. The black dashed curve is the true; red,
blue, and purple solid curves represent that from model for mock data with ϑ = 80◦, 60◦, and 40◦, respectively, the D-statistics D calculated from 1D KS test
is labelled with the corresponding colours.
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Figure B3. Similar to Fig. B2, but with model R2. The major tracks on age versus metallicity distribution are recovered better than model R1, the D-statistics
D from 1D KS test for metallicity distribution is also smaller.

Figure B4. The intrinsic correlation of age versus circularity, for Au-5, Au-6, and Au-23 from top to bottom, for model R1. The first column is true distributions
of the particles from simulations, darker colour indicates higher probability density, the magenta dashed curves are average t as a function of λz, and the green
dashed curves are average λz as a function of age t for the true distributions. The following panels from left to right are those obtained by our models for mock
data with inclination angle ϑ = 80◦, 60◦, and 40◦, respectively. In each panel, the magenta triangles are average t as a function of λz, the magenta lines are
linear fits to the triangles, and the green diamonds are average λz as a function of age t from the model.
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Figure B5. Similar to Fig. B4, but for model R2, in which we use t = t0 + pλz (the blue line fitting the blue triangles) from model R1 as priors of tk in fitting
the age map. Model R2 matches the age versus λz correlation in the simulation better than model R1, especially for face-on galaxies.

Figure B6. Surface mass density/brightness, velocity, velocity dispersion, and age and metallicity maps of the whole galaxy, cold, warm, and hot+CR
component (from top to bottom) of Au-5 ϑ = 80◦ and Au-23 ϑ = 80◦. The left-hand panels are the true values from the simulation, and the right-hand panels
are rebuilt by orbital bundles from our model R2. These galaxies are at a distance of 30 Mpc, 1 arcsec = 145 pc.
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Figure B7. Surface mass density/brightness profile, age, and metallicity
along major axis (1 arcsec = 145 pc) of the cold, warm, and hot component,
comparison between true and those built by model, similar to Fig. 10 for Au-
6 ϑ= 80◦. We generally recover the surface brightness, age, and metallicity
profiles of each component well. Except for Au-23, we overestimate
metallicity of cold component in the inner regions, thus resulting in a stronger
negative metallicity gradient of this component than the true.
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